
MANUAL

OS Awareness Manual
Windows Standard

OS Awareness Manual Windows Standard

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manuals for Windows .. 

 OS Awareness Manual Windows Standard .. 1

 History ... 5

 Overview ... 6

 Terminology 6

 Brief Overview of Documents for New Users 7

 Supported Versions 7

 Configuration .. 8

 Quick Configuration Guide 8

 Hooks & Internals in Windows 8

 Features .. 9

 Display of Kernel Resources 9

 Task-Related Breakpoints 9

 Task Context Display 11

 MMU Support 12

 Space IDs 12

 MMU Declaration 12

 Symbol Autoloader 14

 SMP Support 16

 Crash Dump Analysis 16

 Dynamic Task Performance Measurement 17

 Task Runtime Statistics 17

 Function Runtime Statistics 18

 Windows Specific Menu 20

 Debugging Windows Components ... 22

 Windows Kernel 22

 User Processes 22

 Debugging the Process 22

 Debugging into Libraries 24

 Debugging Windows Threads 25

 On Demand Paging 25
OS Awareness Manual Windows Standard | 2©1989-2024 Lauterbach

 Kernel Modules 26

 Windows Commands ... 28

 TASK.CrashDump Windows crash dump analysis 28

 TASK.CrashDump.LOADNT Load the kernel debug symbols 28

 TASK.CrashDump.LOADREG Load the registers from the crash dump 28

 TASK.KDBG.SET Set kernel debugger data block address 29

 TASK.MODule Display kernel modules 29

 TASK.NTBASE Set kernel base address 30

 TASK.Process Display processes 31

 TASK.sYmbol Process/module symbol management 32

 TASK.sYmbol.DELete Unload process symbols 32

 TASK.sYmbol.DELeteDLL Unload library symbols 33

 TASK.sYmbol.DELeteKM Unload module symbols 33

 TASK.sYmbol.DELeteUM Unload UEFI module symbols 33

 TASK.sYmbol.LOAD Load process symbols 34

 TASK.sYmbol.LOADDLL Load library symbols 34

 TASK.sYmbol.LOADKM Load module symbols 35

 TASK.sYmbol.LOADNT Load the kernel symbols 35

 TASK.sYmbol.LOADUM Load UEFI runtime service module symbols 35

 TASK.sYmbol.Option Set symbol management options 36

 TASK.Thread Display threads 37

 TASK.UefiMODule Display UEFI runtime service modules 37

 PRACTICE Functions ... 38

 TASK.CONFIG() OS Awareness configuration information 38

 TASK.KDBG() Kernel debugger data block 38

 TASK.KERNELPT() Kernel page table 38

 TASK.LIB.DEBUG() Library with debug information 39

 TASK.LIB.GUID() GUID of library 39

 TASK.LIB.MACHINE() 32bit or 64bit setting of library 40

 TASK.LIB.MAGIC() Magic number of library 40

 TASK.LIB.PDBPATH() Path to PDB file of library 41

 TASK.MOD.BASE() Base address of module 41

 TASK.MOD.DEBUG() Module with debug information 41

 TASK.MOD.ENTRY() Entry address of module 42

 TASK.MOD.GUID() GUID of module 42

 TASK.MOD.MACHINE() 32bit or 64bit setting of the module 42

 TASK.MOD.MAGIC() Magic number of module name 43

 TASK.MOD.PDBPATH() Path to PDB file of module 43

 TASK.MOD.YF2M() Magic number of module symbol file 43

 TASK.NTBASE() Kernel base address 43

 TASK.PHYMEMBLOCK() Kernel physical memory descriptor 44

 TASK.PROC.DEBUG() Process with debug information 44

 TASK.PROC.GUID() GUID of the process magic 44
OS Awareness Manual Windows Standard | 3©1989-2024 Lauterbach

 TASK.PROC.MACHINE() 32-bit or 64-bit setting of process 45

 TASK.PROC.MAGIC() Magic value of process 45

 TASK.PROC.PDBPATH() Path to PDB file of process 45

 TASK.PROC.SID2MAGIC() Magic number of process 46

 TASK.PROC.SPACEID() Space ID of process 46

 TASK.PROC.TRACEID() Trace ID of process 46

 TASK.UMOD.MACHINE() 32-bit or 64-bit setting of UEFI module 47

 TASK.UMOD.MAGIC() Magic value of UEFI module 47

 TASK.UMOD.PDBPATH() Path to PDB file of UEFI module 47
OS Awareness Manual Windows Standard | 4©1989-2024 Lauterbach

OS Awareness Manual Windows Standard

Version 06-Jun-2024

History

30-Dec-20 Add description for commands and functions relative to debug of UEFI runtime service
modules.
OS Awareness Manual Windows Standard | 5©1989-2024 Lauterbach

Overview

The OS Awareness for Windows Standard contains special extensions to the TRACE32 Debugger. This
manual describes the additional features, such as additional commands and statistic evaluations.

Terminology

Windows uses the terms “processes” and “threads”. If not otherwise specified, the TRACE32 term “task”
corresponds to Windows threads.
OS Awareness Manual Windows Standard | 6©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently Windows Standard awareness is supported for Intel® x86/x64, ARM and ARM64 architectures.

The following table summarize the supported targets

Windows version Bit-ness Supported Architectures

Windows XP 32 x86, x64

Windows Vista 32 x86, x64

Windows 7 32 x86, x64

Windows 8 32 x86, x64

Windows 10 32 x86, x64, ARM, ARM64

Windows 7 64 x64

Windows 8 64 x64

Windows 10 64 x64, ARM64
OS Awareness Manual Windows Standard | 7©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file. Depending on the target architecture, and
the Windows bit-ness, the corresponding extension file need to be configured:

For x64 targets running 32bit Windows versions, the extension “~~/demo/x86/kernel/windows/win32.t32”
needs to be used. And for ARM64 targets running 32bit Windows versions the extension
“~~/demo/arm/kernel/windows/win32.t32” needs to be used.

 After loading the extension definition file, the extension needs to load the Windows kernel symbols using the
command TASK.sYmbol.LOADNT. This is necessary for the proper operation of the Windows awareness.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following road map:

1. Carefully read the PRACTICE demo start-up scripts (~~/demo/<arch>/kernel/windows/board/)

2. Make a copy of the PRACTICE script file “windows.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in Windows

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel pointers. For some
features, also the symbols and structure definitions of the kernel are necessary (ntkr*.pdb). The debugger
needs access to the kernel symbol file or needs the ability to download the symbol file from the Microsoft
Symbol Server.

Format: TASK.CONFIG <config_file>

<config_file>: select the file appropriate for your target architecture and bit-ness:
~~/demo/x86/kernel/windows/win32.t32
~~/demo/x64/kernel/windows/win64.t32
~~/demo/arm/kernel/windows/win32.t32
~~/demo/arm/kernel/windows/win64.t32
OS Awareness Manual Windows Standard | 8©1989-2024 Lauterbach

Features

The OS Awareness for Windows Standard supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
Windows components can be displayed:

For a description of the commands, refer to chapter “Windows Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

TASK.Process Processes

TASK.Thread Threads

TASK.MODule Kernel modules / drivers

TASK.UefiMODule UEFI runtime service modules

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual Windows Standard | 9©1989-2024 Lauterbach

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual Windows Standard | 10©1989-2024 Lauterbach

Example for a task-related breakpoint, equivalent to the Break.Set <function> /TASK <task> command:

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.

name of function

name of thread

breakpoint is seton

related to this breakpoint

click on “advanced”
to get more options
OS Awareness Manual Windows Standard | 11©1989-2024 Lauterbach

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU and TRANSlation commands refer to this necessity.

Because of the “On Demand Paging” mechanism of Windows, when single stepping the code, the
instruction pointer could jump to a not yet loaded page. The debugger will not be able to display the
assembly code and could not single step the current instruction. See “On Demand Paging” for details and
workaround.

Space IDs

Under Windows different processes may use identical virtual addresses. To distinguish between those
addresses, the debugger uses an additional identifier, the so-called space ID (memory space ID) that
specifies, which virtual memory space an address refers to. The command SYStem.Option.MMUSPACES
ON enables the use of the space ID. The space ID is zero for the kernel. For processes using their own
address space, the space ID equals the “cid” of the process. Threads of a particular process use the
memory space of the invoking parent process. Consequently threads have the same space ID as the parent
process.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target. When loading the extension file (see chapter Configuration), the debugger already
declares the MMU format automatically.

Just for reference, the following code contains the setup done for x86/x64 Windows 32bit:

The set up done for x64 Windows 64bit versions is the following:

MMU.FORMAT PAE
TRANSlation.COMMON 0x80000000--0xFFFFFFFF
TRANSlation.TableWalk ON
TRANSlation.ON

MMU.FORMAT PAE64
TRANSlation.COMMON 0xFFFF080000000000--0xFFFFFFFFFFFFFFFF
TRANSlation.TableWalk ON
TRANSlation.ON
OS Awareness Manual Windows Standard | 12©1989-2024 Lauterbach

The set up done for ARM and ARM64 for Windows 32bit is the following:

The set up done for ARM64 for Windows 64bit is the following:

TRANSlation.COMMON 0x80000000--0xFFFFFFFF
TRANSlation.TableWalk ON
TRANSlation.ON

TRANSlation.COMMON 0xFFFFF80000000000--0xFFFFFFFFFFFFFFFF
TRANSlation.TableWalk ON
TRANSlation.ON
OS Awareness Manual Windows Standard | 13©1989-2024 Lauterbach

Symbol Autoloader

The OS Awareness for Windows Standard installs a so-called symbol autoloader, which automatically loads
symbol files corresponding to executed processes, modules or libraries. The autoloader maintains a list of
address ranges, corresponding to Windows components and the appropriate load command. Whenever the
user accesses an address within an address range specified in the autoloader (e.g. via List.auto), the
debugger invokes the command necessary to load the corresponding symbols to the appropriate addresses
(including relocation). This is usually done via a PRACTICE script.

In order to load symbol files, the debugger needs to be aware of the currently loaded components. This
information is available in the kernel data structures and can be interpreted by the debugger. The command
sYmbol.AutoLOAD.CHECK defines, when these kernel data structures are read by the debugger (only on
demand or after each program execution).

The loaded components can change over time, when processes are started and stopped and kernel
modules or libraries are loaded or unloaded. The command sYmbol.AutoLOAD.CHECK configures the
strategy, when to “check” the kernel data structures for changes in order to keep the debugger’s information
regarding the components up-to-date.

Without parameters, the sYmbol.AutoLOAD.CHECK command immediately updates the component
information by reading the kernel data structures. This information includes the component name, the load
address and the space ID and is used to fill the autoloader list (shown via sYmbol.AutoLOAD.List).

With sYmbol.AutoLOAD.CHECK ON, the debugger automatically reads the component information each
time the target stops executing (even after assembly steps), having to assume that the component
information might have changed. This significantly slows down the debugger which is inconvenient and often
superfluous, e.g. when stepping through code that does not load or unload components.

With the parameter ONGO, the debugger checks for changed component info like with ON, but not when
performing single steps.

With sYmbol.AutoLOAD.CHECK OFF, no automatic read is performed. In this case, the update has to be
triggered manually when considered necessary by the user.

The command TASK.sYmbol.Option AutoLoad configures which types of components the autoloader
shall consider:

• Processes

• Kernel modules

• All libraries, or

• Libraries of the current process.

It is recommended to restrict the components to the minimal set of interest (rather than all components),
because it makes the autoloader checks much faster. By default, only processes are checked by the
autoloader.

Format: sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]
OS Awareness Manual Windows Standard | 14©1989-2024 Lauterbach

When configuring the OS Awareness for Windows Standard with the TASK.CONFIG command, it
automatically sets the autoloader:

The command sYmbol.AutoLOAD.CHECKWINDOWS is used to define which action is to be taken, for
loading the symbols corresponding to a specific address. The action defined is invoked with specific
parameters (see below). With Windows Standard, the pre-defined action is to call the script
~~/demo/<arch>/kernel/windows/autoload.cmm.

The action is executed on demand, i.e. when the address is actually accessed by the debugger e.g. in the
List.auto or Trace.List window. In this case the autoloader executes the <action> appending parameters
indicating the name of the component, its type (process, library, kernel module), the load address and space
ID.

For checking the currently active components use the command sYmbol.AutoLOAD.List. Together with the
component name, it shows details like the load address, the space ID, and the command that will be
executed to load the corresponding object files with symbol information. Only components shown in this list
are handled by the autoloader.

The symbol autoloader - moreover the script that is invoked by the symbol autoloader (autoload.cmm), takes
care of symbol storages. TASK.sYmbol.Option SymCache configures a path, where the debugger stores
symbol files that it once retrieved, to prevent it from re-loading it from external sources. Additionally an
external program (getsymfile.exe) is used to load Microsoft specific symbol files from the public Microsoft
symbol server, if desired.

Format: sYmbol.AutoLOAD.CHECKWINDOWS "<action>"

<action>: action to take for symbol load, e.g. "do autoload"

NOTE: • The action parameter needs to be written with quotation marks (for the
parser it is a string).

• Defining this action does not cause its execution.
OS Awareness Manual Windows Standard | 15©1989-2024 Lauterbach

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Crash Dump Analysis

The OS Awareness for Windows Standard implements some facilities to help analyzing a Windows Crash
Dump file. The memory image is loaded into e.g the TRACE32 Instruction Set Simulator using the command
Data.LOAD.CrashDump. Then, the command TASK.CrashDump.LOADNT could be used to retrieve and
autoload the Windows kernel debug symbols from the Microsoft Symbol Store or from the specified
symbol cache directory. After correctly loading the Windows kernel debug symbols, the command
TASK.CrashDump.LOADREG could be used. This will set the context of all the cores available in the
Crash Dump file to the state of the system when the crash happened. The context includes the core
registers and some special registers that are relative to the memory management unit configuration.

An example script is available in the folder of the OS Awareness for Windows. It shows how to load and
analyze a Windows Crash Dump using the TRACE32 Instruction Set Simulator. Currently, only the
architectures Intel® x86 and Intel® x64 are supported.

After the Crash Dump is correctly loaded, the developer can inspect the crash reason using the Frame.view
window. It is also possible to inspect the running processes, threads and libraries, as well as the kernel
modules and drivers at the moment of the crash.

DO ~~/demo/<arch>/kernel/windows/crashdump.cmm MEMORY.DMP
OS Awareness Manual Windows Standard | 16©1989-2024 Lauterbach

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual Windows Standard | 17©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32
OS Awareness Manual Windows Standard | 18©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual Windows Standard | 19©1989-2024 Lauterbach

Windows Specific Menu

The OS Awareness for Windows Standard installs a Windows specific menu (win<x>.men). You can reload
this menu with the MENU.ReProgram command.

You will find a new menu called MSWindows.

• The Display menu items launch the kernel resource display windows. See chapter “Display of
Kernel Resources”.

• Process Debugging refers to actions related to process based debugging.
See also chapter “Debugging the Process”.

- Use Load Symbols and Delete Symbols to load or delete the symbols of a specific process.
You may select a symbol file on the host with the Browse button. See also TASK.sYmbol.

- Debug New Process allows you to start debugging a process on its main() function. Select
this prior to starting the process. Specify the name of the process you want to debug. Then
start the process on your target machine. The debugger will load the symbols and halt at
main(). See also the script “app_debug.cmm”.

• Module Debugging refers to actions related to kernel module based debugging.
See also chapter “Kernel Modules”.

- Use Load Symbols and Delete Symbols to load or delete the symbols of a specific kernel
module. You may select a symbol file on the host with the Browse button. See also
TASK.sYmbol.

- Debug Module on init allows you to start debugging a kernel module on its init function.
Select this prior to loading the module. Specify the name of the module you want to debug.
Then load the module on your target machine. The debugger will load the symbols and halt at
the init function (if available). See also the demo script “mod_debug.cmm”.

• DLL Debugging refers to actions related to library based debugging.
See also chapter “Debugging into Libraries”.

- Use Load Symbols and Delete Symbols to load or delete the symbols of a specific library.
Please specify the library name and the process name that uses this library. You may select a
symbol file on the host with the Browse button. See also TASK.sYmbol.

• Use the Autoloader submenu to configure the symbol autoloader. See also chapter “Symbol
Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.
OS Awareness Manual Windows Standard | 20©1989-2024 Lauterbach

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

- Use Set Components Checked to specify, which Windows components should be managed
by the autoloader. See also TASK.sYmbol.Option AutoLOAD.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states, if a trace is available. See also chapter “Task
Runtime Statistics”.
OS Awareness Manual Windows Standard | 21©1989-2024 Lauterbach

Debugging Windows Components

Windows runs on virtual address spaces. The kernel uses a static address translation. For example for
Windows 32bit versions the kernel is usually starting from virtual address 0x80000000 mapped to the
physical start address of the RAM. Each user process gets its own user address space when loaded,
usually starting from virtual 0x0, mapped to any physical RAM area that is currently free. Due to this address
translations, debugging the Windows kernel components and user processes requires some settings to the
Debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself is attached to the space ID zero. Each process that has its own
memory space gets a space ID that is equal to its process ID. Windows threads get the space ID of the
parent process.

See also chapter “MMU Support”.

Windows Kernel

The Windows awareness needs several kernel symbols, it is necessary to load at least the symbols for the
Windows kernel. The command TASK.sYmbol.LOADNT could be used to automatically retrieve the
symbol file from the Microsoft Symbol Store, and to load the symbols into the debugger. It is also possible to
load the symbols from the specified symbol cache directory.

User Processes

Each user process in Windows gets its own virtual memory space, each usually starting at address zero. To
distinguish the different memory spaces, the debugger assigns a “space ID”, which is equal to the process
ID. Using this space ID, it is possible to address a unique memory location, even if several processes use the
same virtual address.

Windows uses the “on demand paging” mechanism to load the code and data of processes and shared
libraries. Debugging those pages is not trivial, see “On Demand Paging” for details and workaround.

Note that at every time the Windows awareness is used, it needs the kernel symbols. Please see the
chapters above on how to load them. Hence, load all process symbols with the option /NoClear, to
preserve the kernel symbols.

Debugging the Process

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID.

TASK.sYmbol.Option SymCache "C:\Symbols" ; set symbol cache directory
TASK.sYmbol.LOADNT ; load the kernel symbols
OS Awareness Manual Windows Standard | 22©1989-2024 Lauterbach

Please watch out for demand paging (see chapter “On Demand Paging”).

Manually Load Process Symbols:

For example, if you’ve got a a process called “hello.exe” with the process ID 12. (the dot specifies a decimal
number!):

The space ID of a process may also be calculated by using the PRACTICE function
task.proc.spaceid() (see chapter “PRACTICE Functions”).

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of “hello”. See TASK.sYmbol.LOAD for more information.

Using the Symbol Autoloader:

With the symbol autoloader (see chapter “Symbol Autoloader”), the symbols will be automatically loaded
when accessing an address inside the process. You can also force the loading of the symbols of a process
with

Using the Menus:

Select the menu item MSWindows > Process Debugging > Load Symbols to load the symbols of a
specific process. Alternatively, select Display Processes, right click on the “magic” of a process, and select
Load Symbols.

Debugging a Process From Scratch, Using a Script:

If you want to debug your process right from the beginning (at “main()”), you have to load the symbols before
starting the process. This is a tricky thing because you have to know the process ID, which is assigned first
at the process start-up. The demo directory contains a script “app_debug.cmm” that assists you for this
purpose. Call the script with the process name as argument before the process is started:

Data.LOAD.eXe hello.pdb 12.:0 /NoCODE /NoClear

TASK.sYmbol.LOAD "hello" ; load symbols of "hello.exe"

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "hello"

DO ~~/demo/<arch>/kernel/windows/app_debug.cmm hello
OS Awareness Manual Windows Standard | 23©1989-2024 Lauterbach

Then, start the process in Windows. The debugger should automatically halt at the entry point of the
process. You can also use the menu item MSWindows > Process Debugging > Debug New Process,
which does essentially the same within a dialog.

Debugging into Libraries

If the process uses libraries (DLLs), Windows loads them into the address space of the process. The
process itself contains no symbols of the libraries. If you want to debug those libraries, you have to load the
corresponding symbols into the debugger.

Please watch out for demand paging (see chapter “On Demand Paging”).

Manually Load Library Symbols:

1. Start your process and open a TASK.Process window.

2. Double-click the magic value of the process that uses the library.

3. Expand the “modules” tree (if available).

A list will appear that shows the loaded libraries and the corresponding base addresses.

4. Load the symbols to this address and into the space ID of the process.

E.g. if the process has the space ID 12., the library is called “mylib.dll” and it is loaded on address
0x76550000, then use the command:

Of course, this library must be compiled with debugging information.

Automatically Load Library Symbols:

If a library name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command:

This command loads the symbols of the library “mylib.dll”, used by the process “hello”. See
TASK.sYmbol.LOADDLL for more information.

Using the Symbol Autoloader:

With the symbol autoloader (see chapter “Symbol Autoloader”), the symbols will be automatically loaded
when accessing an address inside the library. You can also force the loading of the symbols of a library with

Using the Menus:

Data.LOAD.EXE mylib.pdb 12.:0x76550000 /NoCODE /NoClear

TASK.sYmbol.LOADLib "hello" "mylib.dll" ; load library symbols

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "mylib.dll"
OS Awareness Manual Windows Standard | 24©1989-2024 Lauterbach

Select the menu item MSWindows > DLL Debugging > Load Symbols to load the symbols of a specific
library. Alternatively, select Display Processes, double click on the “magic” of the process, expand the
“modules” section, right click on the “magic” of a library and select Load Symbols.

Debugging Windows Threads

Windows threads share the same virtual memory of the parent process. The OS Awareness for Windows
Standard assigns one space ID for all threads that belong to a specific process. It is sufficient, to load the
debug information of this process only once (onto its space ID) to debug all threads of this process. See
chapter “Debugging the Process” for loading the process’ symbols.

The TASK.Thread window shows which thread is currently running (“current”).

On Demand Paging

When a process is started, Windows doesn’t load any code or data of this process. Instead, it uses the “on
demand paging” mechanism. This means, Windows loads memory pages first, when they are accessed. As
long as they aren't accessed by the CPU, they're not present in the system.

A “memory page” is a 4 KByte continuous memory region, with a dedicated virtual and physical address
range. The MMU handles the whole (user space) memory in such pages.

When starting a process, Windows just sets up its kernel structures and loads the characteristics of the
process’ code and data sections from the process’ file (size and addresses of the sections), but not the
sections themselves. Then the kernel jumps to the “main” routine of the process. The first instruction fetch
will then cause a code page fault, because the code is not yet present. The page fault handler then loads the
actual code page (4 KByte) that contains the code of the “main” entry point, from the file. Note that only one
page is loaded. If the program jumps to a location outside this page, or steps over a page boundary, another
code page fault happens. While running, more and more pages will be loaded. Note that, if RAM becomes
low, pages may also be discarded. If a process terminates, all pages of this process are removed.

The same page loading mechanism applies to data and stack addresses. Variables are first visible to the
system, after the CPU accessed them (by reading or writing the address and thus urging a page load). The
stack grows page wise, as it is used.

When debugging those paged processes, you have to take care about this paging.

• The process’ code and data is first visible to the debugger, after the pages were loaded.

• You cannot set a software breakpoint onto a function that is located in a page which is not yet
loaded. The code for this function simply not yet exists, and thus cannot be patched with the
breakpoint instruction. In such cases, use on-chip breakpoints instead.

• The CPU handles on-chip breakpoints before code page faults. If the CPU jumps onto an on-chip
breakpoint, and the appropriate page is not yet loaded, the debugger will halt before the page is
loaded. You’ll see the program counter on a location with no actual code (usually the debugger
shows “???” then). The same may happen, if you single step over a page boundary. In such
cases, set an on-chip(!) breakpoint onto the next instruction and let the system “Go”. The page
fault handler will then load the page, the processor will execute the first instruction and halt on the
next breakpoint. A simple workaround for functions is to set the breakpoint at the function entry
plus 4 (e.g. "main+4"). Then the application will halt *after* the page was loaded.
OS Awareness Manual Windows Standard | 25©1989-2024 Lauterbach

The on demand paging is a basic design feature of Windows that cannot be switched off.

Kernel Modules

Kernel modules, aka device drivers, are dynamically loaded and linked by the kernel into the kernel space. If
you want to debug kernel modules, you have to load the symbols of the kernel module into the debugger,
and to relocate the code and data address information.

Manually Load Module Symbols:

Load your module and open a TASK.MODule window. A list will appear that shows all loaded modules and
the corresponding base addresses. Load the symbols to this address and into space ID zero (kernel). E.g. if
the module is called “mydriver.sys” and it is loaded on address 0x95DD3000, use the command:

Of course, this module must be compiled with debugging information.

Automatically Load Module Symbols:

If a module name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of the module “mydriver.sys”. See TASK.sYmbol.LOADKM for more
information.

Using the Symbol Autoloader:

With the symbol autoloader (see chapter “Symbol Autoloader”), the symbols will be automatically loaded
when accessing an address inside the kernel module. You can also force the loading of the symbols of a
kernel module with

Using the Menus:

Select the menu item MSWindows > Module Debugging > Load Symbols to load the symbols of a
specific process. Alternatively, select Display Modules, right click on the “magic” of a module, and select
Load Symbols.

Debugging the kernel module’s init routine:

Data.LOAD.EXE mydriver.pdb 0:0x39DD30000 /NoCODE /NoClear

TASK.sYmbol.LOADKM "mydriver" ; load module symbols

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "mydriver"
OS Awareness Manual Windows Standard | 26©1989-2024 Lauterbach

If you want to debug your module’s init routine, you have to load the symbols before initializing the module.
The demo directory contains a script “mod_debug.cmm” that assists you for this purpose. Call the script with
the module name as argument before the module is loaded:

Then, load the module in Windows. The debugger should automatically halt at the entry point of the module.
You can also use the menu item MSWindows > Module Debugging > Debug Module on init, which does
essentially the same within a dialog.

DO ~~/demo/<arch>/kernel/windows/mod_debug.cmm mydriver
OS Awareness Manual Windows Standard | 27©1989-2024 Lauterbach

Windows Commands

TASK.CrashDump Windows crash dump analysis

The TASK.CrashDump command group helps to analyze the Windows crash dump:

TASK.CrashDump.LOADNT Load the kernel debug symbols

The TASK.CrashDump.LOADNT command helps to retrieve and auto-load the Windows kernel debug
symbols that are relative to the loaded memory dump. The address parameter specifies the virtual address
of the kernel debugger data block (KdDebuggerDataBlock).

This address could easily be found in the crash dump file header at a fixed offset depending on the windows
bit-ness. For a 32-bit Windows the KdDebuggerDataBlock is a 4 bytes address at the file offset 0x60 and for
64-bit Windows KdDebuggerDataBlock is an 8 bytes address at the file offset 0x80.

TASK.CrashDump.LOADREG Load the registers from the crash dump

The TASK.CrashDump.LOADREG command helps to load the context of all the cores available in the
Crash Dump file to the state of the system when the crash happened. The context include the core registers
and some special registers that are relative to the memory management unit configuration.

Format: TASK.CrashDump

TASK.CrashDump.LOADNT Load the kernel debug symbols of the loaded memory dump.

TASK.CrashDump.LOADREG Load the context of all the available cores from the loaded
memory dump.

Format: TASK.CrashDump.LOADNT <address>

Format: TASK.CrashDump.LOADREG
OS Awareness Manual Windows Standard | 28©1989-2024 Lauterbach

TASK.KDBG.SET Set kernel debugger data block address

This command sets the virtual address of the kernel debugger data block (KdDebuggerDataBlock). This
address is changing each time the target is started.

For the Windows awareness version November 2016 and newer, setting the kernel debugger data block
address is no longer needed when working on a live debug session. This may help in postmortem debug
session when loading a raw memory dump into TRACE32 simulator.

TASK.MODule Display kernel modules

Displays a table with all loaded kernel modules / device drivers of Windows.

“magic” is a unique ID, used by the OS Awareness to identify a module.
The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.KDBG.SET <address>

Format: TASK.MODule
OS Awareness Manual Windows Standard | 29©1989-2024 Lauterbach

TASK.NTBASE Set kernel base address

The Windows extension tries to detect the kernel base address when loading the kernel symbols using the
command TASK.sYmbol.LOADNT. If any, the kernel base address detection fails, this command could be
used to set it manually.

Format: TASK.NTBASE <address>
OS Awareness Manual Windows Standard | 30©1989-2024 Lauterbach

TASK.Process Display processes

Display all active processes or detailed information about one specific process.

Without any arguments, this command displays a table with all created processes.
Specify a process magic, ID or name to see the detailed information on this process.

“magic” is a unique ID, used by the OS Awareness to identify a specific process.
The fields “magic”, “name” and other detailed fields are mouse sensitive, double clicking on them open
appropriate windows. Right clicking on them will show a local menu.

Format: TASK.Process [<process>]
OS Awareness Manual Windows Standard | 31©1989-2024 Lauterbach

TASK.sYmbol Process/module symbol management
t

The TASK.sYmbol command group helps to load and unload symbols of a given process or module. In
particular the commands are:

TASK.sYmbol.DELete Unload process symbols

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process.

Format: TASK.sYmbol

TASK.sYmbol.LOAD Load process symbols

TASK.sYmbol.DELete Unload process symbols

TASK.sYmbol.LOADNT Load the kernel symbols

TASK.sYmbol.LOADKM Load module symbols

TASK.sYmbol.DELeteKM Unload module symbols

TASK.sYmbol.LOADUM Load uefi module symbols

TASK.sYmbol.DELeteUM Unload uefi module symbols

TASK.sYmbol.LOADDLL Load library symbols

TASK.sYmbol.DELeteDLL Unload library symbols

TASK.sYmbol.Option Set symbol management options

Format: TASK.sYmbol.DELete <process>

<process> Specify the process name or path (in quotes) or magic to unload the
symbols of this process.
OS Awareness Manual Windows Standard | 32©1989-2024 Lauterbach

TASK.sYmbol.DELeteDLL Unload library symbols

When debugging of a library is finished, or if the library is removed from the kernel, you should remove
loaded library symbols. Otherwise the remaining entries may interfere with further debugging. This
command deletes the symbols of the specified library.

See also chapter “Debugging Into Shared Libraries”.

TASK.sYmbol.DELeteKM Unload module symbols

Specify the module name (in quotes) or magic to unload the symbols of this kernel module.

When debugging of a module is finished, or if the module is removed from the kernel, you should remove
loaded module symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified module.

See also chapter “Debugging Kernel Modules”.

TASK.sYmbol.DELeteUM Unload UEFI module symbols

Specify the uefi runtime service module name (in quotes) or the magic to unload the symbols of this module.

This command deletes the symbols of the specified UEFI module.

Format: TASK.sYmbol.DELeteDLL <process> <library>

<process> As first parameter, specify the process to which the desired library belongs
(name in quotes or magic).

<library> Specify the library name in quotes as second parameter. The library name
must match the name as shown in TASK.Process <process>, ”modules”.

Format: TASK.sYmbol.DELeteKM <module>

Format: TASK.sYmbol.DELeteUM <umodule>
OS Awareness Manual Windows Standard | 33©1989-2024 Lauterbach

TASK.sYmbol.LOAD Load process symbols

Specify the process name or path (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process (see chapter “Debugging
User Processes”).

This command retrieves the appropriate space ID and loads the symbol file of an existing process. Note that
this command works only with processes that are already loaded in Windows (i.e. processes that show up in
the TASK.Process window).

TASK.sYmbol.LOADDLL Load library symbols

In order to debug a library, the debugger needs the symbols of this library, relocated to the correct addresses
where Windows linked this library. This command retrieves the appropriate load addresses and loads the
symbol file of an existing library. Note that this command works only with libraries that are already loaded in
Windows (i.e. processes that show up in the TASK.Process <process> window).

Format: TASK.sYmbol.LOAD <process>

Format: TASK.sYmbol.LOADDLL <process> <library>

<process> Specify the process to which the desired library belongs (name in quotes or
magic).

<library> Specify the library name in quotes. The library name must match the name
as shown in TASK.Process <process>, ”modules”.
OS Awareness Manual Windows Standard | 34©1989-2024 Lauterbach

TASK.sYmbol.LOADKM Load module symbols

In order to debug a kernel module, the debugger needs the symbols of this module. This command retrieves
the appropriate load addresses and loads the symbol file of an existing module. Note that this command
works only with modules that are already loaded in Windows (i.e. modules that show up in the
TASK.MODule window).

See also chapter “Debugging Kernel Modules”.

TASK.sYmbol.LOADNT Load the kernel symbols

This command tries to locate the kernel base address and load the Windows kernel symbols.

TASK.sYmbol.LOADUM Load UEFI runtime service module symbols

In order to debug a UEFI runtime service module, the debugger needs the symbols of this module. This
command retrieves the appropriate load addresses and loads the symbol file of an existing uefi module.
Note that this command works only with modules that are already loaded in Windows (i.e. modules that
show up in the TASK.UefiMODule window).

Format: TASK.sYmbol.LOADKM <module>

<module> Specify the module name (in quotes) or magic to load the symbols of this
module.

Format: TASK.sYmbol.LOADNT

Format: TASK.sYmbol.LOADUM<umodule>

<umodule> Specify the uefi module name (in quotes) or magic to load the symbols of
this module.
OS Awareness Manual Windows Standard | 35©1989-2024 Lauterbach

TASK.sYmbol.Option Set symbol management options

Set a specific option to the symbol management.

AutoLoad:
This option controls, which components are checked and managed by the symbol autoloader:

The options are set *additionally*, not removing previous settings.

The default is “Process”, i.e. only the processes are checked by the symbol autoloader.

Example:

sYmCache:

If this option is set, the symbol autoloader tries to find the symbol files in the specified symbol cache
directory. The directory is populated and searched referencing the file’s name and GUID.

Format: TASK.sYmbol.Option <option>

<option>: AutoLoad <option>
sYmCache <path>

Process Check processes

Library Check all libraries of all processes

KModule Check kernel modules

UModule Check UEFI modules

CurrLib Check only libraries of current process

ProcLib <process> Check libraries of specified process

ALL Check processes, libraries and kernel modules

NoProcess Don’t check processes

NoLibrary Don’t check libraries

NoKModule Don’t check kernel modules

NoUModule Don’t check UEFI modules

NONE Check nothing.

; check processes and kernel modules
TASK.sYmbol.Option AutoLoad Process
TASK.sYmbol.Option AutoLoad KModule
OS Awareness Manual Windows Standard | 36©1989-2024 Lauterbach

TASK.Thread Display threads

Displays the thread table of Windows or detailed information about one specific task.

Without any arguments, a table with all created threads will be shown.
Specify a thread name, ID or magic number to display detailed information on that thread.

“magic” is a unique ID, used by the OS Awareness to identify a specific thread.
The fields “magic”, “name” and other detailed fields are mouse sensitive, double clicking on them open
appropriate windows. Right clicking on them will show a local menu.

TASK.UefiMODule Display UEFI runtime service modules

Displays a table with all UEFI runtime service modules used by windows. This requires that the UEFI bios is
compiled with debug information.

Format: TASK.Thread [<thread>]

Format: TASK.UefiMODule [<umodule>]
OS Awareness Manual Windows Standard | 37©1989-2024 Lauterbach

PRACTICE Functions

There are special definitions for Windows specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.KDBG() Kernel debugger data block

Returns the kernel debugger data block as configured by the extension.

Return Value Type: Hex value.

TASK.KERNELPT() Kernel page table

Returns the kernel page table.

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.KDBG()

Syntax: TASK.KERNELPT()
OS Awareness Manual Windows Standard | 38©1989-2024 Lauterbach

TASK.LIB.DEBUG() Library with debug information

Returns if debug information could be detected from library, loaded by the specified process.

Parameter and Description: Parameter Type: Hex value.

Return Value and Description:

TASK.LIB.GUID() GUID of library

Returns the GUID of the library, loaded by the specified process.

Parameter and Description:

Return Value Type: String.

Syntax: TASK.LIB.DEBUG(<librarymagic>, <process_magic>)

<librarymagic> Parameter Type: Hex value.

<process_magic> Parameter Type: Hex value.

 0 debug information couldn’t be detected.

 1 debug information could be detected.

Syntax: TASK.LIB.GUID(<librarymagic>, <process_magic>)

<librarymagic> Parameter Type: Hex value.

<process_magic> Parameter Type: Hex value.
OS Awareness Manual Windows Standard | 39©1989-2024 Lauterbach

TASK.LIB.MACHINE() 32bit or 64bit setting of library

Returns the detected 32bit/64bit setting of the library loaded by the specified process.

Parameter and Description:

Return Value Type: Hex value.

Return Value and Description:

TASK.LIB.MAGIC() Magic number of library

Returns the “magic number” of the library, loaded by the specified process.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.LIB.MACHINE(<library_magic>, <process_magic>)

<library_magic> Parameter Type: Hex value.

<process_magic> Parameter Type: Hex value.

0 0 for 32bit.

1 1 for 64bit.

Syntax: TASK.LIB.MAGIC("<library_name>", <process_magic>)

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Hex value.
OS Awareness Manual Windows Standard | 40©1989-2024 Lauterbach

TASK.LIB.PDBPATH() Path to PDB file of library

Returns the path to the PDB file of the library, loaded by the specified process.

Parameter and Description:

Return Value Type: String.

TASK.MOD.BASE() Base address of module

Returns the base address of the module.

Parameter Type: Hex value.

Return Value Type: Hex value.

TASK.MOD.DEBUG() Module with debug information

Returns if debug information could be detected from the loaded module.

Parameter Type: Hex value.

Return Value Type: Hex value.

Return Value and Description:

Syntax: TASK.MOD.PDBPATH(<library_magic>,<process_magic>)

<library_magic> Parameter Type: Hex value.

<process_magic> Parameter Type: Hex value.

Syntax: TASK.MOD.BASE(<module_magic>)

Syntax: TASK.MOD.DEBUG(<module_magic>)

 0 debug information couldn’t be detected.

 1 debug information could be detected.
OS Awareness Manual Windows Standard | 41©1989-2024 Lauterbach

TASK.MOD.ENTRY() Entry address of module

Returns the entry address of the module.

Parameter Type: Hex value.

Return Value Type: Hex value.

TASK.MOD.GUID() GUID of module

Returns the GUID of the module magic.

Parameter Type: Hex value.

Return Value Type: String.

TASK.MOD.MACHINE() 32bit or 64bit setting of the module

Returns the detected 32bit/64bit setting of the module.

Parameter Type: Hex value.

Return Value Type: Hex value.

Return Value and Description:

Syntax: TASK.MOD.ENTRY(<module_magic>)

Syntax: TASK.MOD.GUID(<module_magic>)

Syntax: TASK.MOD.MACHINE(<module_magic>)

 0 0 for 32bit.

 1 1 for 64bit.
OS Awareness Manual Windows Standard | 42©1989-2024 Lauterbach

TASK.MOD.MAGIC() Magic number of module name

Returns the “magic” value of the module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.MOD.PDBPATH() Path to PDB file of module

Returns the path to the PDB file of the module.

Parameter Type: Hex value.

Return Value Type: String.

TASK.MOD.YF2M() Magic number of module symbol file

Returns the “magic number” of the module that fits to the given symbol file.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.NTBASE() Kernel base address

Returns the kernel base address as located by the extension.

Return Value Type: Hex value.

Syntax: TASK.MOD.MAGIC("<module_name>")

Syntax: TASK.MOD.PDBPATH(<module_magic>)

Syntax: TASK.MOD.YF2M("<modulesymfile>")

Syntax: TASK.NTBASE()
OS Awareness Manual Windows Standard | 43©1989-2024 Lauterbach

TASK.PHYMEMBLOCK() Kernel physical memory descriptor

Returns the address of physical memory blocks descriptor as configured by Windows.

Return Value Type: Hex value.

TASK.PROC.DEBUG() Process with debug information

Returns if debug information could be detected from the loaded process.

Parameter Type: Hex value.

Return Value Type: Hex value.

Return Value and Description:

TASK.PROC.GUID() GUID of the process magic

Returns the GUID of the process magic.

Parameter Type: Hex value.

Return Value Type: String.

Syntax: TASK.PHYMEMBLOCK()

Syntax: TASK.PROC.DEBUG(<process_magic>)

 0 debug information couldn’t be detected.

 1 debug information could be detected.

Syntax: TASK.PROC.GUID(<process_magic>)
OS Awareness Manual Windows Standard | 44©1989-2024 Lauterbach

TASK.PROC.MACHINE() 32-bit or 64-bit setting of process

Returns the detected 32-bit/64-bit setting of the process.

Parameter Type: Hex value.

Return Value Type: Hex value.

Return Value and Description:

TASK.PROC.MAGIC() Magic value of process

Returns the “magic” value of the process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.PDBPATH() Path to PDB file of process

Returns the path to the PDB file of the process.

Parameter Type: Hex value.

Return Value Type: String.

Syntax: TASK.PROC.MACHINE(<process_magic>)

0 0 for 32-bit.

1 1 for 64-bit.

Syntax: TASK.PROC.MAGIC("<process_name>")

Syntax: TASK.PROC.PDBPATH(<process_magic>)
OS Awareness Manual Windows Standard | 45©1989-2024 Lauterbach

TASK.PROC.SID2MAGIC() Magic number of process

Returns the “magic number” of the process that fits to the given space ID.

Parameter Type: Hex value.

Return Value Type: Hex value.

TASK.PROC.SPACEID() Space ID of process

Returns the space ID of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.TRACEID() Trace ID of process

Returns the trace ID of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.PROC.SID2MAGIC(<space_id>)

Syntax: TASK.PROC.SPACEID("<process_name>")

Syntax: TASK.PROC.TRACEID("<process_name>")
OS Awareness Manual Windows Standard | 46©1989-2024 Lauterbach

TASK.UMOD.MACHINE() 32-bit or 64-bit setting of UEFI module

Returns the detected 32-bit/64-bit setting of the UEFI module.

Parameter Type: Hex value.

Return Value Type: Hex value.

Return Value and Description:

TASK.UMOD.MAGIC() Magic value of UEFI module

Returns the “magic” value of the UEFI module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.UMOD.PDBPATH() Path to PDB file of UEFI module

Returns the path to the PDB file of the uefi module.

Parameter Type: Hex value.

Return Value Type: String.

Syntax: TASK.UMOD.MACHINE(<umod_magic>)

0 0 for 32-bit.

1 1 for 64-bit.

Syntax: TASK.UMOD.MAGIC("<umod_name>")

Syntax: TASK.UMOD.PDBPATH(<umod_magic>)
OS Awareness Manual Windows Standard | 47©1989-2024 Lauterbach

	OS Awareness Manual Windows Standard
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in Windows

	Features
	Display of Kernel Resources
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration

	Symbol Autoloader
	SMP Support
	Crash Dump Analysis
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	Windows Specific Menu

	Debugging Windows Components
	Windows Kernel
	User Processes
	Debugging the Process
	Debugging into Libraries
	Debugging Windows Threads
	On Demand Paging

	Kernel Modules

	Windows Commands
	TASK.CrashDump Windows crash dump analysis
	TASK.CrashDump.LOADNT Load the kernel debug symbols
	TASK.CrashDump.LOADREG Load the registers from the crash dump
	TASK.KDBG.SET Set kernel debugger data block address
	TASK.MODule Display kernel modules
	TASK.NTBASE Set kernel base address
	TASK.Process Display processes
	TASK.sYmbol Process/module symbol management
	TASK.sYmbol.DELete Unload process symbols
	TASK.sYmbol.DELeteDLL Unload library symbols
	TASK.sYmbol.DELeteKM Unload module symbols
	TASK.sYmbol.DELeteUM Unload UEFI module symbols
	TASK.sYmbol.LOAD Load process symbols
	TASK.sYmbol.LOADDLL Load library symbols
	TASK.sYmbol.LOADKM Load module symbols
	TASK.sYmbol.LOADNT Load the kernel symbols
	TASK.sYmbol.LOADUM Load UEFI runtime service module symbols
	TASK.sYmbol.Option Set symbol management options
	TASK.Thread Display threads
	TASK.UefiMODule Display UEFI runtime service modules

	PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.KDBG() Kernel debugger data block
	TASK.KERNELPT() Kernel page table
	TASK.LIB.DEBUG() Library with debug information
	TASK.LIB.GUID() GUID of library
	TASK.LIB.MACHINE() 32bit or 64bit setting of library
	TASK.LIB.MAGIC() Magic number of library
	TASK.LIB.PDBPATH() Path to PDB file of library
	TASK.MOD.BASE() Base address of module
	TASK.MOD.DEBUG() Module with debug information
	TASK.MOD.ENTRY() Entry address of module
	TASK.MOD.GUID() GUID of module
	TASK.MOD.MACHINE() 32bit or 64bit setting of the module
	TASK.MOD.MAGIC() Magic number of module name
	TASK.MOD.PDBPATH() Path to PDB file of module
	TASK.MOD.YF2M() Magic number of module symbol file
	TASK.NTBASE() Kernel base address
	TASK.PHYMEMBLOCK() Kernel physical memory descriptor
	TASK.PROC.DEBUG() Process with debug information
	TASK.PROC.GUID() GUID of the process magic
	TASK.PROC.MACHINE() 32-bit or 64-bit setting of process
	TASK.PROC.MAGIC() Magic value of process
	TASK.PROC.PDBPATH() Path to PDB file of process
	TASK.PROC.SID2MAGIC() Magic number of process
	TASK.PROC.SPACEID() Space ID of process
	TASK.PROC.TRACEID() Trace ID of process
	TASK.UMOD.MACHINE() 32-bit or 64-bit setting of UEFI module
	TASK.UMOD.MAGIC() Magic value of UEFI module
	TASK.UMOD.PDBPATH() Path to PDB file of UEFI module

