
MANUAL

OS Awareness Manual VxWorks

OS Awareness Manual VxWorks

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual VxWorks .. 1

 History .. 4

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Quick Configuration Guide 7

 Hooks & Internals in VxWorks 7

 Features ... 8

 Display of Kernel Resources 8

 Task Stack Coverage 8

 Task-Related Breakpoints 9

 Task Context Display 10

 MMU Support 12

 Space IDs 12

 MMU Declaration 12

 Symbol Autoloader 15

 SMP Support 17

 Debugging Modules 17

 Debugging Real Time Processes 18

 Debugging Protection Domains 19

 Dynamic Task Performance Measurement 20

 Task Runtime Statistics 21

 Task Trace with ARM ContextID 22

 Task Trace with PowerPC NPIDR 23

 Function Runtime Statistics 24

 Task State Analysis 25

 VxWorks specific Menu 27

 VxWorks Commands .. 28

 TASK.LKUP Show system symbol table 28

 TASK.MemPShow Show memory partition 28
OS Awareness Manual VxWorks | 2©1989-2024 Lauterbach

 TASK.MMU.SCAN Scan RTP MMU entries 29

 TASK.MMU.SCANSPACE Scan PD MMU entries 29

 TASK.ModShow Show loaded modules 30

 TASK.MsgQShow Show message queues 30

 TASK.Option Set awareness options 31

 TASK.PDShow Show protection domains 31

 TASK.RELOC Relocate system symbols 32

 TASK.RTPShow Show loaded RTPs 32

 TASK.SemShow Show semaphores 33

 TASK.SHLShow Show loaded libraries 33

 TASK.TaskInfo Task information 33

 TASK.WDShow Show watchdogs 34

 VxWorks PRACTICE Functions ... 35

 TASK.AVAIL() Availability of object lists 35

 TASK.CONFIG() OS Awareness configuration information 35

 TASK.MODLIST() Next module magic number 36

 TASK.MODNAME() Module name of module 36

 TASK.MODULE() Segment address of module 36

 TASK.RTP.ID() RTP ID of rtp name 37

 TASK.RTP.SEGADDR() Segment address of RTP 37

 TASK.RTP.SEGSIZE() Segment size of RTP 37

 TASK.RTP.SPACEID() Space ID of RTP ID 38

 TASK.RTP.TTB() TTB address of RTP ID 38

 TASK.SHL.ID() ID of library name 38

 TASK.SHL.SEGADDR() Segment address of library 39

 TASK.SHL.SEGSIZE() Segment size of library 39

 TASK.TASKLIST() Next task magic number in task list 39

 TASK.TASKNAME() Task name of task 40

OS Awareness Manual VxWorks | 3©1989-2024 Lauterbach

OS Awareness Manual VxWorks

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for VxWorks contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual VxWorks | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently VxWorks is supported for the following versions:

• VxWorks 5.x, 6.x and 7 on several architectures.

• VxWorks 653 2.x on several architectures

Please note that VxWorks 653 3.x is based on Wind River Hypervisor, and supported by the Awareness for
Wind River Hypervisor. Please use the awareness and scripts from the directory
“~~/demo/<arch>/kernel/vxworks653”.
OS Awareness Manual VxWorks | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “vxworks.t32” (directory
“~~/demo/<arch>/kernel/vxworks”). It contains all necessary extensions.

This command:

• Configures the OS Awareness for VxWorks,

• Loads an additional VxWorks menu (see “VxWorks Specific Menu”),

• Sets the default stack pattern to 0xEE (see “Task Stack Coverage”),

• Configures the symbol autoloader (see “Symbol Autoloader”).

The OS Awareness tries to locate all needed VxWorks internals automatically. For this purpose all symbol
information of the kernel application must be loaded and accessible at any time the OS Awareness is used.
See also Hooks & Internals.

It is recommended to load the awareness first, after the kernel is initialized, to avoid faulty memory accesses
by the OS Awareness. A good place would be at or after usrRoot().

If the application enables the MMU and/or uses RTPs, configure the MMU Support, after the kernel
initialized the MMU (i.e. after usrMmuInit(), e.g. at usrAppInit()).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

The extension definition file will refer to further files in the extension directory. Be sure that the installation in
this directory is complete.

If, for any reason, you have to specify VxWorks internal addresses manually, contact LAUTERBACH for
assistance.

See also the example script “~~/demo/<arch>/kernel/vxworks/vxworks.cmm”

TASK.CONFIG ~~/demo/<arch>/kernel/vxworks/vxworks.t32
OS Awareness Manual VxWorks | 6©1989-2024 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for VxWorks with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.

2. Load your application as normal.

3. Wait until the kernel is initialized.

4. Load the VxWorks extension file:

5. Start your application.

6. If the application enables the MMU and/or uses RTPs, configure the MMU Support, after the
kernel initialized the MMU (i.e. after usrMmuInit(), e.g. at usrAppInit()).

Now you can access the VxWorks extensions through the menu.

See also the example script “~~/demo/<arch>/kernel/vxworks/vxworks.cmm”

Hooks & Internals in VxWorks

No hooks are used in VxWorks.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

VxWorks 653 v2.x:

In some BSPs, the clock interrupt handler sysClkInt() checks for missed timer ticks and raises an error
if some ticks were lost (e.g. i8253Timer.c, ppcDecTimer.c). This check could be triggered, if the target is
halted with the debugger. To skip this check after a break, set the variable “ignoreLostTicks” each time
before the execution is resumed. You can automate this with these Data.PROLOG settings:

In BSPs for PowerPC e500 cores, sysToMonitor() (sysLib.c) sets the MSR register to zero. This
disables JTAG debugging, too. If you want to debug beyond this point, please change or patch this to keep
the MSR:DE bit set:
vxMsrSet(0x200);

TASK.CONFIG ~~/demo/<arch>/kernel/vxworks/vworks.t32

Data.PROLOG.SEQuence SET ignoreLostTicks 1
Data.PROLOG.ON
OS Awareness Manual VxWorks | 7©1989-2024 Lauterbach

Features

The OS Awareness for VxWorks supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. The following information can be
displayed:

For a description of the commands, refer to chapter “VxWorks Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.TaskInfo Tasks

TASK.WDShow Watchdogs

TASK.MsgQShow Message queues

TASK.SemShow Semaphores

TASK.MemPShow Memory partitions

TASK.ModShow Modules

TASK.RTPShow RTPs

TASK.PDShow Protection domains

TASK.LKUP Target symbol database
OS Awareness Manual VxWorks | 8©1989-2024 Lauterbach

VxWorks typically initializes task stacks with the value 0xEE. When configuring the OS Awareness for
VxWorks, this pattern is set for stack detection. If VxWorks uses a different pattern, inform the debugger
about this with the command TASK.STacK.PATtern.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual VxWorks | 9©1989-2024 Lauterbach

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual VxWorks | 10©1989-2024 Lauterbach

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.
OS Awareness Manual VxWorks | 11©1989-2024 Lauterbach

MMU Support

To provide full debugging possibilities on MMU enabled systems, the debugger has to know, how virtual
addresses are translated to physical addresses and vice versa. All MMU and TRANSlation commands refer
to this necessity. If the VxWorks configuration variable “_WRS_CONFIG_MMULESS_KERNEL” is not set, the
MMU will be activated by the kernel.

Space IDs

RTPs of VxWorks may reside virtually on the same address. To distinguish those addresses, the debugger
uses an additional space ID that specifies to which virtual memory space the address refers. The command
SYStem.Option.MMUSPACES ON enables the additional space ID. For all tasks using the kernel address
space, the space ID is zero. For tasks within an RTP, the debugger assigns a space ID unique to the RTP.

See also chapter “Debugging Real Time Processes”.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

The MMU will be initialized first in usrMmuInit(). In order to read out the correct information, the MMU
declaration must happen after this function ran, e.g. when reached usrAppInit(). To get the kernel TTB
address, the debugger needs to read the target memory. If this is not possible while the target runs, halt the
target before declaring the MMU.

<format> Options for ARM:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Define MMU
table structure

<format> Description

STD Standard format defined by the CPU

TINY MMU format using a tiny page size of only 1024 bytes
OS Awareness Manual VxWorks | 12©1989-2024 Lauterbach

<format> Options for PowerPC:

<format> Options for RISC-V:

<format> Description

STD Standard format defined by the CPU

VX653 MMU format for VXWORKS 653

VXWORKS.E500 VxWorks specific format for PowerPC e500 core with 128-bit PTEs

VXWORKS.E500MC VxWorks specific format for PowerPC e500mc core with 36 bit physical
addresses (PPC64 only)with 128-bit PTEs

VXWORKS.E500_64 VxWorks specific format for PowerPC e500 core (PPC64 only)with 128-bit
PTEs

VXWORKS.E6500 VxWorks specific format for PowerPC e6500 core with 64-bit PTEs

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV48 48-bit page table format (for SV64 targets only)

SV48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.
OS Awareness Manual VxWorks | 13©1989-2024 Lauterbach

<format> Options for x86:

<base_address>

<base_address> specifies the TTB of the kernel. Use TASK.RTP.TTB(0). Take care that the kernel TTB can
only be read, if the target is halted.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual address range of the kernel.
For ARM, PowerPC and x64 architecture, this is typically specified in adrSpaceArchLibP.h, as
KERNEL_SYS_MEM_RGN_BASE and KERNEL_SYS_MEM_RGN_SIZE. For x86, the start address is zero,
and the size is typically the size of RAM. The default values are:

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

The kernel code, which resides in the kernel space, can be accessed by any RTP, regardless of the current
space ID. Use the command TRANSlation.COMMON to define the complete address range that is
addressed by the kernel as commonly used area. In ARM PowerPC and x86 architectures, this is the same
range as the kernel range specified with TRANSlation.COMMON. In x64 architectures, specify a bigger
range as mentioned in the example below.

Enable the debugger’s table walk with TRANSlation.TableWalk ON, and switch on the debugger’s MMU
translation with TRANSlation.ON.

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

ARM 0x0--0x1fffffff

PowerPC 0x0--0x1fffffff

x64 0xffffffff80000000--0xffffffffffffffff

x86 0x0--<LOCAL_MEM_SIZE+LOCAL_MEM_LOCAL_ADRS>
OS Awareness Manual VxWorks | 14©1989-2024 Lauterbach

Example for ARM with RAM at physical address 0x10000000;

Example for PowerPC with e500 core:

Example for x86 with 1GB RAM:

Example for x64 with 1GB RAM. Please see also the sample scripts in the ~~/demo directory.

Symbol Autoloader

The OS Awareness for VxWorks contains a symbol autoloader which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding Vxworks kernel modules, RTPs and libraries,
and the appropriate load command. Whenever the user accesses an address within an address range
specified in the autoloader, the debugger invokes the appropriate command. The command is usually a call
to a PRACTICE script that loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

IF RUN()
 BREAK
MMU.FORMAT STD task.rtp.ttb(0) 0x0--0x1fffffff 0x10000000
TRANSlation.COMMON 0x0--0x1fffffff
TRANSlation.TableWalk ON
TRANSlation.ON

IF RUN()
 BREAK
MMU.FORMAT VXWORKS.E500 task.rtp.ttb(0) 0x0--0x1fffffff 0x0
TRANSlation.COMMON 0x0--0x1fffffff
TRANSlation.TableWalk ON
TRANSlation.ON

IF RUN()
 BREAK
MMU.FORMAT STD A:task.rtp.ttb(0) 0x0--0x3fffffff 0x0
TRANSlation.COMMON 0x0--0x3fffffff
TRANSlation.TableWalk ON
TRANSlation.ON

IF RUN()
 BREAK
MMU.FORMAT STD A:task.rtp.ttb(0) 0xffffffff80000000--0xffffffffffffffff 0x0
TRANSlation.COMMON 0xffff800000000000--0xffffffffffffffff
TRANSlation.TableWalk ON
TRANSlation.ON
OS Awareness Manual VxWorks | 15©1989-2024 Lauterbach

The autoloader reads the target’s tables for modules RTPs and libraries and fills the autoloader list with the
modules found on the target. All necessary information, such as load addresses, are retrieved from kernel-
internal information.

The symbol autoloader is set automatically when configuring the OS Awareness for VxWorks. If, for any
reason, you need to change the behavior of the symbol autoloader, use:

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses of the component to the action. Usually, <action> is a call to a PRACTICE script that
handles the parameters and loads the symbols. Please see the example script “autoload.cmm” in the
~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

sYmbol.AutoLOAD.CHECKCoMmanD "<action>"

<action> Action to take for symbol load, usually:
"DO ~~/demo/arm/kernel/vxworks/autoload.cmm "

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or step
cycle. This significantly slows down the debugger’s speed when single
stepping.

ONGO The debugger automatically reads the information on every go/halt cycle,
but not when single stepping.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current module table are not covered.
OS Awareness Manual VxWorks | 16©1989-2024 Lauterbach

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Debugging Modules

If you want to debug kernel modules that are dynamically loaded within VxWorks, you have to load the
symbols into the debugger. The symbols need to be relocated to the actual addresses, where VxWorks
loaded the module.

Check TASK.ModShow, if the module is shown in the module list.

Use the Symbol Autoloader to load the symbols of a module:

If the symbol autoloader is configured, you can use the local menu in TASK.ModShow to load the symbols:
Right-click on the module’s ID or name, and then select Load Module Symbols.

NOTE: Loading the symbols of a module only works, if the debugger has access to
memory to read out the relocation addresses.

; specify the name of the module
sYmbol.AutoLOAD.TOUCH "mymod.out"
OS Awareness Manual VxWorks | 17©1989-2024 Lauterbach

Alternatively, you can load the symbols of a module manually.
Use the “/RELOCTYPE 2” load option to relocate the symbols to the appropriate addresses.
Use the “/NoCODE” option to load only the symbols and use the “/NoClear” option to keep the VxWorks
kernel symbols.

The following example script loads the symbols of a module called “mymod.out”:

Debugging Real Time Processes

If you want to debug real time processes (RTPs) that are dynamically loaded within VxWorks, you have to
load the symbols into the debugger. The symbols need to be relocated to the actual addresses, where
VxWorks loaded the RTP.

Check TASK.RTPShow , if the RTP is shown in the RTP list.

Use the symbol autoloader to load the symbols of an RTP:

I the symbol autoloader is configured, you can use the local menu in TASK.RTPShow to load the symbols:
Right click on the RTP’s ID or name and select “Load RTP Symbols”.

Alternatively, you can load the symbols of an RTP manually.
Use the “/LOCATEAT” load option to relocate the symbols to the start address of the RTP.
Use the “/NoCODE” option to load only the symbols and use the “/NoClear” option to keep the VxWorks
kernel symbols.

; load the symbols of mymod.out
Data.LOAD.Elf mymod.out /NoCODE /NoClear /RELOCTYPE 2

NOTE: • Loading the symbols of an RTP only works, if the debugger has access to
memory to read out the relocation addresses.

• RTPs run in an MMU mapped virtual address range. The MMU Support
with space IDs must be enabled to correctly support debugging RTPs.

; specify the name of the RTP
sYmbol.AutoLOAD.TOUCH "myrtp.vxe"
OS Awareness Manual VxWorks | 18©1989-2024 Lauterbach

The following example script loads the symbols of an RTP called “myrtp.vxe”:

Debugging a Real Time Process from its entry point

If you want to debug your RTP from its entry point, you need to split the loading and starting of the RTP.

First, load the RTP (e.g. “myRtp.vxe”) in the VxWorks command shell with the -s option, to keep the RTP in
stopped state:

[vxWorks *]# rtp exec -s myRtp.vxe &

Then load the symbols of the RTP into the debugger, and set a breakpoint on its entry point. E.g.:

At last, start the RTP in the VxWorks command shell with its RTP ID, e.g. 0x12345678 (check with rtp list):
[vxWorks *]# rtp list
[vxWorks *]# rtp continue 0x12345678

Debugging Protection Domains

Protection domains (aka ARINC653 partitions) reside on a prelinked virtual address. All PDs use the same
virtual address range (but of course different physical addresses). The MMU takes care to remap the virtual
address range on a domain change.

The debugger needs to distinguish the different domain translations, to uniquely access a specific virtual
address. For this, the debugger extends the virtual address by a “space ID”, which is a 16bit extension of the
32bit vitual address. Use the command SYStem.Option.MMUSPACES ON to switch on the address
extension (space ID).

Load the symbols of your applications into the space ID of the PD. Use TASK.PDShow to see the space ID
that belongs to your application. Use the “/NoCODE” option to load only the symbols and use the
“/NoClear” option to keep the VxWorks kernel symbols. Note: do not load the symbols of the
vxSysLib.sm; it may spoil the VxWorks Awareness.

; declare local variables
LOCAL &rtpid &spaceid &text

; get the space ID and load address
&rtpid=task.rtp.id("./myrtp.vxe")
&spaceid=task.rtp.spaceid(&rtpid)
&text=task.rtp.segaddr(".text",&rtpid)

; load the symbols of myrtp.vxe
Data.LOAD.Elf myrtp.vxe &spaceid:0 /NoCODE /NoClear /LOCATEAT &text

Break
sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "myRtp.vxe"
Break.Set \\myRtp\main
Go
OS Awareness Manual VxWorks | 19©1989-2024 Lauterbach

Set up the debugger address translation to get access to each PD. Set TRANSlation.COMMON to the
kernel area (everything below the partition virtual address). After VxWorks came up, scan the MMU tables o
each partition with TASK.MMU.SCANSPACE. Switch on the debugger address translation with
TRANSlation.ON.

Check TASK.PDShow, if the protection domain is shown in the PD list.

The following example script loads the symbols of two partitions”:

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

; declare local variables
local &virt
; reset symbols for MMUSPACES option
sYmbol.RESet
SYStem.Option.MMUSPACES ON

; load core OS symbols (needed by Awareness!)
Data.LOAD.Elf coreOS.sm /NoCODE

; load symbols of partitions
; lookup the space ID of each partition in TASK.PDShow
Data.LOAD.Elf myFirstPartition.sm 1:0 /NoCODE /NoClear
Data.LOAD.Elf mySecondPartition.sm 2:0 /NoCODE /NoClear

; Lookup "partitionVirtualAddress" in the "CoreOSDescription"
; of your XML file
&virt=0x40000000

; set up COMMON area everything below partition address
TRANSLATION.COMMON 0x0--(&virt-1)

; scan the MMU translation of each partition ID
TASK.MMU.SCANSPACE 1 &virt
TASK.MMU.SCANSPACE 2 &virt

; clean up translation table and switch on debugger translation
TRANSlation.CLEANUP
TRANSlation.ON
OS Awareness Manual VxWorks | 20©1989-2024 Lauterbach

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual VxWorks | 21©1989-2024 Lauterbach

Task Trace with ARM ContextID

On ARM architectures, VxWorks serves the ContextID register with the address space ID (ASID) of the RTP.
This allows tracking the program flow of the kernel and RTPs and evaluation of the RTP switches. But it does
not provide performance information of tasks.

To allow a detailed performance analysis on VxWorks tasks, the context ID must contain the task ID. Set the
lower 8 bit of the context ID register with the RTPs ASID, and set the upper 24 bit with the ID of the task, i.e.
“(taskid << 8) | ASID”.

The VxWorks awareness needs to be informed about the changed format of the context ID:

TASK.Option THRCTX ON

To implement the above context ID setting, you need a VxWorks 7 version where the os_arch_arm
component release number is at least 1.1.3.3. If you’re using an older VxWorks version, contact Lauterbach
for a patch.

In the VxWorks 7 Source Build Project, check for the option “PROCID_IN_CONTEXTIDR”. If this option is
available, set it to “yes”.

In your application, implement a task switch hook to serve the PROCID field in the ContextID register.
Implement a new assembly source file, e.g. ctxIdTrace.s.
OS Awareness Manual VxWorks | 22©1989-2024 Lauterbach

Example for 32bit Arm systems:

Example for 64bit Arm systems:

Insert a task switch hook within your application

Task Trace with PowerPC NPIDR

If the used PowerPC architecture supports the NPIDR register, you may use this register to trace task
switches. Implement a task switch hook to serve the NPIDR register:

#define _ASMLANGUAGE
#include <vxWorks.h>
#include <asm.h>
#include <prjParams.h>
FUNC_EXPORT(storeContextID)
FUNC_BEGIN(storeContextID)
 /* write new TCB pointer to Proc field in Context ID register */
 lsl r1, r1, #0x8 /* pNewTcb <<= 8 */
 mrc CP_MMU, 0, r2, c13, c0, 1 /* read Context ID register */
 and r2, r2, #0xff /* mask ASID */
 orr r2, r2, r1 /* add new proc ID */
 mcr CP_MMU, 0, r2, c13, c0, 1 /* set new Context ID */
 bx r14
FUNC_END(storeContextID)

#define _ASMLANGUAGE
#include <vxWorks.h>
#include <asm.h>
#include <prjParams.h>
FUNC_EXPORT(storeContextID)
FUNC_BEGIN(storeContextID)
 /* write new TCB pointer to Proc field in Context ID register */
 lsl x1, x1, #0x8 /* pNewTcb <<= 8 */
 mrs x2, CONTEXTIDR_EL1 /* read Context ID register */
 and x2, x2, #0xff /* mask ASID */
 orr x2, x2, x1 /* add new proc ID */
 msr CONTEXTIDR_EL1, x2 /* set new Context ID */
 ret
FUNC_END(storeContextID)

void storeContextID (WIND_TCB *pOldTcb, WIND_TCB *pNewTcb);
taskSwitchHookAdd((FUNCPTR)storeContextID);
OS Awareness Manual VxWorks | 23©1989-2024 Lauterbach

Implement a new assembly source file, e.g. pidTrace.s:

And insert a task switch hook within your application

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

#define _ASMLANGUAGE
#include <vxWorks.h>
#include <asm.h>
#include <prjParams.h>
FUNC_EXPORT(storeNPIDR)
FUNC_BEGIN(storeNPIDR)
 /* write new TCB pointer to NPIDR register */
 mtspr 517,r4
 blr
FUNC_END(storeNPIDR)

void storeNPIDR (WIND_TCB *pOldTcb, WIND_TCB *pNewTcb);
taskSwitchHookAdd((FUNCPTR)storeNPIDR);

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32
OS Awareness Manual VxWorks | 24©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

To correctly detect the function run times, the trace must contain the task switches. See Task Runtime
Statistics for possibly needed patches.

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual VxWorks | 25©1989-2024 Lauterbach

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual VxWorks | 26©1989-2024 Lauterbach

VxWorks specific Menu

The configuration of the OS Awareness for VxWorks also loads an additional menu with VxWorks specific
menu items (see Configuration). See the menu file at ~~/demo/<arch>/kernel/vxworks/vxworks.men.

You will find a new menu called VxWorks.

• Task Information opens the TASK.TaskInfo window.

• The Show menu items launch the appropriate kernel resource display window.
In VxWorks 5.x you may be asked for the ID to show.

• The Stack Coverage submenu starts and resets the VxWorks specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

• The Symbol Autoloader submenu allows to control the Symbol Autoloader.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

Right-clicking a variable shows an additional VxWorks submenu that allows to show this variable as a
specific VxWorks object.
OS Awareness Manual VxWorks | 27©1989-2024 Lauterbach

VxWorks Commands

TASK.LKUP Show system symbol table

Displays the target symbol table with the specified filtering.

Examples:

TASK.MemPShow Show memory partition

Displays the memory partition table of VxWorks or detailed information about one specific memory partition.

Without any arguments, a table with all created memory partition will be shown.
Specify a memory partition ID to display detailed information about this memory partition.

Format: TASK.LKUP [0|<address>|<symbol> [0|<module_id>|<module_name>]
 [<section_name>]]]

TASK.LKUP ;shows all symbols

TASK.LKUP "mysymbol" ;shows only the entry of "mysymbol"

TASK.LKUP 0 "apps.out" ;shows all symbols of module "apps.out"
 ;(null is the specifier for all)

TASK.LKUP 0 0 "common" ;shows all symbols of the common section

TASK.LKUP 0 "apps.out" "common" ;shows all symbols of the common section
 ;of apps.out.

Format: TASK.MemPShow <memory_partition>
OS Awareness Manual VxWorks | 28©1989-2024 Lauterbach

TASK.MMU.SCAN Scan RTP MMU entries

Scan the MMU entries of RTPs.

This command copies the address translation of an RTP into the debugger’s MMU. See TRANSlation.List.

Without any argument, the MMU translation tables of all RTPs are scanned.

The first parameter specifies the RTP ID to scan.

Optionally this command takes a start address and a size parameter to restrict the scanned address range.
The size defaults to 0x08000000, if only an address is given.

TASK.MMU.SCANSPACE Scan PD MMU entries

Scan the MMU entries of protection domains.

This command copies the address translation of a PD into the debugger’s MMU. See TRANSlation.List.

Without any argument, the MMU translation tables of all PDs are scanned.

The first parameter specifies the space ID (= partition ID) to scan. Check TASK.PDShow for the space ID.

Optionally this command takes a start address and a size parameter to restrict the scanned address range.
The size defaults to 0x08000000, if only an address is given.

Format: TASK.MMU.SCAN [<rtp_id> [<address>] [<size>]]] (deprecated)
Use full MMU Support instead.

Format: TASK.MMU.SCANSPACE [<pdid> [<address>] [<size>]]] (deprecated)
Use full MMU Support instead.
OS Awareness Manual VxWorks | 29©1989-2024 Lauterbach

TASK.ModShow Show loaded modules

Displays a table with all loaded modules.

TASK.MsgQShow Show message queues

Displays the message queue table of VxWorks or detailed information about one specific message queue.

Without any arguments, a table with all created message queues will be shown.
Specify a message queue ID to display detailed information about this message queue.

Format: TASK.ModShow

Format: TASK.MsgQShow <msg_queue>
OS Awareness Manual VxWorks | 30©1989-2024 Lauterbach

TASK.Option Set awareness options

Set various options to the awareness.

TASK.PDShow Show protection domains

Displays a table with all created protection domains (aka ARINC653 partitions) or detailed information about
one specific PD.

Without any arguments, a table with all protection domains will be shown.
Specify a PD ID to display detailed information on that PD.

Format: TASK.Option <option>

<option>: THRCTX [ON | OFF]

THRCTX Set the context ID type that is recorded with the real-time trace (e.g. ETM).
If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

Format: TASK.PDShow [<pd_id>]
OS Awareness Manual VxWorks | 31©1989-2024 Lauterbach

TASK.RELOC Relocate system symbols

This command takes the same parameters as TASK.LKUP and relocates the symbols to their correct
addresses.

Example:

Relocates all symbols of the COMMON section of the apps.out module.

TASK.RTPShow Show loaded RTPs

Displays a table with all loaded RTPs or detailed information about one specific RTP.

Without any arguments, a table with all loaded RTPs will be shown.
Specify an RTP name or ID to display detailed information on that RTP.

Format: TASK.RELOC [0|<address>|<symbol> [0|<module_id>|<module_name>]
 [<section_name>]]]

TASK.RELOC 0 "apps.out" "common"

Format: TASK.RTPShow [<rtp>]
OS Awareness Manual VxWorks | 32©1989-2024 Lauterbach

TASK.SemShow Show semaphores

Displays the semaphore table of VxWorks or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown.
Specify a semaphore ID to display detailed information about this semaphore.

The column “pending tasks” contains the number of tasks pending in the first place, following the task
names.

TASK.SHLShow Show loaded libraries

Displays a table with all loaded libraries or detailed information about one specific library.

Without any arguments, a table with all loaded libraries will be shown.
Specify a library name or ID to display detailed information on that library.

TASK.TaskInfo Task information

Displays the task table of VxWorks or detailed information about one specific task.

The display is similar to the “i” command of the VxWorks shell.

Format: TASK.SemShow <semaphore>

Format: TASK.SHLShow [<library>]

Format: TASK.TaskInfo <task>
OS Awareness Manual VxWorks | 33©1989-2024 Lauterbach

Without any arguments, a table with all created tasks will be shown.
Specify a task name or task magic number to display detailed information on that task.

The task ID ('tid') is equal to the “magic number” of this task.
The “pc” and “sp” columns show the program counter resp. the stack pointer of the task on the stack (only
available if task is not running).
The fields “name”, “entry”, “tid” and “pc” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking on the “tid” will show a local menu.

TASK.WDShow Show watchdogs

Displays the watchdog table of VxWorks or detailed information about one specific watchdog.

Without any arguments, a table with all created watchdogs will be shown.
Specify a watchdog ID to display detailed information about this watchdog.

The “routine” field is mouse sensitive.

Format: TASK.WDShow <watchdog>
OS Awareness Manual VxWorks | 34©1989-2024 Lauterbach

VxWorks PRACTICE Functions

There are special definitions for VxWorks specific PRACTICE functions.

TASK.AVAIL() Availability of object lists

Reports availability of object lists.

Parameter Type: String (without quotation marks).

Return Value Type: Hex value.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.AVAIL(<item>)

<item>: semlist | msgqlist | memplist | wdlist

Syntax: TASK.CONFIG(magic | magic:<core> | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magic:<core> Parameter Type: String (without quotation marks).
Returns the address for the magic number of the given core ID.

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual VxWorks | 35©1989-2024 Lauterbach

TASK.MODLIST() Next module magic number

Returns the next module magic number in the module list.

Parameter Type: Decimal or hex or binary value. Specify zero for the first module.

Return Value Type: Hex value. Returns zero if no further module available.

TASK.MODNAME() Module name of module

Returns the module name for the specified module magic number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.MODULE() Segment address of module

Reports the segment address of a given module.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.MODLIST(<module_magic>)

Syntax: TASK.MODNAME(<module_magic>)

Syntax: TASK.MODULE("<module_name>",<segment_id>)

<segment_id>: 0 | 1 | 2 | 3

<module_name> Parameter Type: String (with quotation marks).

0, 1, 2, 3 Parameter Type: Decimal or hex or binary value.
0=text, 1=data, 2=bss, 3=common
OS Awareness Manual VxWorks | 36©1989-2024 Lauterbach

TASK.RTP.ID() RTP ID of rtp name

Returns the RTP ID of a given rtp name.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.RTP.SEGADDR() Segment address of RTP

Returns the segment address of a given segment name and RTP ID.

Parameter and Description:

Return Value Type: Hex value.

TASK.RTP.SEGSIZE() Segment size of RTP

Returns the segment size of a given segment name and RTP ID.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.RTP.ID("<rtp_name>")

Syntax: TASK.RTP.SEGADDR("<segment_name>",<rtp_id>)

<segment_name> Parameter Type: String (with quotation marks).

<rtp_id> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.RTP.SEGSIZE("<segment_name>",<rtp_id>)

<segment_name> Parameter Type: String (with quotation marks).

<rtp_id> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual VxWorks | 37©1989-2024 Lauterbach

TASK.RTP.SPACEID() Space ID of RTP ID

Returns the space ID of a given RTP ID.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.RTP.TTB() TTB address of RTP ID

Returns the TTB address of a given RTP ID.

Parameter Type: Decimal or hex or binary value. Specify zero to get the TTB of the kernel.

Return Value Type: Hex value.

TASK.SHL.ID() ID of library name

Returns the ID of a given library name.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.RTP.SPACEID(<rtp_id>)

Syntax: TASK.RTP.TTB(<rtp_id>)

Syntax: TASK.SHL.ID("<shl_name>")
OS Awareness Manual VxWorks | 38©1989-2024 Lauterbach

TASK.SHL.SEGADDR() Segment address of library

Returns the segment address of a given segment name and library ID.

Parameter and Description:

Return Value Type: Hex value.

TASK.SHL.SEGSIZE() Segment size of library

Returns the segment size of a given segment name and library ID.

Parameter and Description:

Return Value Type: Hex value.

TASK.TASKLIST() Next task magic number in task list

Returns the next task magic number in the task list.

Parameter Type: Decimal or hex or binary value. Specify zero for the first task.

Return Value Type: Hex value. Returns zero if no further task available.

Syntax: TASK.SHL.SEGADDR("<segment_name>",<shl_id>)

<segment_name> Parameter Type: String (with quotation marks).

<shl_id> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.SHL.SEGSIZE("<segment_name>",<shl_id>)

<segment_name> Parameter Type: String (with quotation marks).

<shl_id> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.TASKLIST(<task_magic>)
OS Awareness Manual VxWorks | 39©1989-2024 Lauterbach

TASK.TASKNAME() Task name of task

Returns the task name of the specified task.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: TASK.TASKNAME(<task_magic>)
OS Awareness Manual VxWorks | 40©1989-2024 Lauterbach

	OS Awareness Manual VxWorks
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in VxWorks

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration

	Symbol Autoloader
	SMP Support
	Debugging Modules
	Debugging Real Time Processes
	Debugging Protection Domains
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task Trace with ARM ContextID
	Task Trace with PowerPC NPIDR

	Function Runtime Statistics
	Task State Analysis
	VxWorks specific Menu

	VxWorks Commands
	TASK.LKUP Show system symbol table
	TASK.MemPShow Show memory partition
	TASK.MMU.SCAN Scan RTP MMU entries
	TASK.MMU.SCANSPACE Scan PD MMU entries
	TASK.ModShow Show loaded modules
	TASK.MsgQShow Show message queues
	TASK.Option Set awareness options
	TASK.PDShow Show protection domains
	TASK.RELOC Relocate system symbols
	TASK.RTPShow Show loaded RTPs
	TASK.SemShow Show semaphores
	TASK.SHLShow Show loaded libraries
	TASK.TaskInfo Task information
	TASK.WDShow Show watchdogs

	VxWorks PRACTICE Functions
	TASK.AVAIL() Availability of object lists
	TASK.CONFIG() OS Awareness configuration information
	TASK.MODLIST() Next module magic number
	TASK.MODNAME() Module name of module
	TASK.MODULE() Segment address of module
	TASK.RTP.ID() RTP ID of rtp name
	TASK.RTP.SEGADDR() Segment address of RTP
	TASK.RTP.SEGSIZE() Segment size of RTP
	TASK.RTP.SPACEID() Space ID of RTP ID
	TASK.RTP.TTB() TTB address of RTP ID
	TASK.SHL.ID() ID of library name
	TASK.SHL.SEGADDR() Segment address of library
	TASK.SHL.SEGSIZE() Segment size of library
	TASK.TASKLIST() Next task magic number in task list
	TASK.TASKNAME() Task name of task

