LAUTERBACH A

OS Awareness Manual VxWorks

OS Awareness Manual VxWorks

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual VXWOIKScccccvirercemerrrnssccerrssssmnsssssssmmessesssmmsssssssnmmsssssssmmsssesssmmsssens 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
Quick Configuration Guide 7
Hooks & Internals in VxWorks 7
=Y 1 = 8
Display of Kernel Resources 8
Task Stack Coverage 8
Task-Related Breakpoints 9
Task Context Display 10
MMU Support 12
Space IDs 12
MMU Declaration 12
Symbol Autoloader 15
SMP Support 17
Debugging Modules 17
Debugging Real Time Processes 18
Debugging Protection Domains 19
Dynamic Task Performance Measurement 20
Task Runtime Statistics 21
Task Trace with ARM ContextID 22
Task Trace with PowerPC NPIDR 23
Function Runtime Statistics 24
Task State Analysis 25
VxWorks specific Menu 27
VXWOrks COMMANGAS ccccmirririrnmmerrssssnmerrsssssse s sasssnmssseasssnmsssessssmseseasssnmsssesssnnneseesssnmsessnsssnnnns 28
TASK.LKUP Show system symbol table 28
TASK.MemPShow Show memory partition 28
©1989-2024 Lauterbach OS Awareness Manual VxWorks | 2

TASK.MMU.SCAN Scan RTP MMU entries 29
TASK.MMU.SCANSPACE Scan PD MMU entries 29
TASK.ModShow Show loaded modules 30
TASK.MsgQShow Show message queues 30
TASK.Option Set awareness options 31
TASK.PDShow Show protection domains 31
TASK.RELOC Relocate system symbols 32
TASK.RTPShow Show loaded RTPs 32
TASK.SemShow Show semaphores 33
TASK.SHLShow Show loaded libraries 33
TASK.TaskInfo Task information 33
TASK.WDShow Show watchdogs 34
VXxWorks PRACTICE FUNCHIONS ... cms s s 35
TASK.AVAIL() Availability of object lists 35
TASK.CONFIG() OS Awareness configuration information 35
TASK.MODLIST() Next module magic number 36
TASK.MODNAME() Module name of module 36
TASK.MODULE() Segment address of module 36
TASK.RTP.ID() RTP ID of rtp name 37
TASK.RTP.SEGADDR() Segment address of RTP 37
TASK.RTP.SEGSIZE() Segment size of RTP 37
TASK.RTP.SPACEID() Space ID of RTP ID 38
TASK.RTP.TTB() TTB address of RTPID 38
TASK.SHL.ID() ID of library name 38
TASK.SHL.SEGADDR() Segment address of library 39
TASK.SHL.SEGSIZE() Segment size of library 39
TASK.TASKLIST() Next task magic number in task list 39
TASK. TASKNAME() Task name of task 40
©1989-2024 Lauterbach OS Awareness Manual VxWorks | 3

OS Awareness Manual VxWorks

History

Version 06-Jun-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A TRACE32 for ViWorks =n| Wl <
File Edit View Var Break Run CPU Misc Trace Pef Cov PPC405xx ViWorks Window Help
MWl ol=znnaacs | @z~

=
ofa B:TASK Taskdnfo (===
name entry tid pri_[status pc sp errno delay |
tiobTask O01F44AC |00743010 0. |PEND 0021C75C |0076BOFD (00000000 0. ~
‘tExcTask 001F369C |002CEG20 0. |PEND 0021C75C (00200700 (00000000 0.
‘tLogTask 001F45D8 (00745010 0. |PEND 0021A278 (00760410 (00000000 0.
‘tNbioLog 001F5430 (00745200 0. |PEND 0021C75C |007708A0 (00000000 0.
‘tAioWait 001D4AES |00749830 51. |PEND 0021C75C |0077AFCO (00000000 0.
tAioIoTaskl 00104D0C |00749CC0 50. |PEND 0021CF40 |00783030 (00000000 0. =
‘tAioIoTasko 00104D0DC |0074BBES 50. |PEND 0021CF40 |007BB050 (00000000 0.
‘tErfTask 001499E8 |0074F083 10. |PEND 0021CF40 |007ED0OS0 (00000000 0.
thet0 0011363C |0074FD20 50. |RUNNING -- -- 0ooo0000 0.
ipcom_syslogd 00241604 |007572B0 50. |PEND 0021CF40 |0080BEACQ (00000000 0.
ipnetd 0025617C (00750910 50, IPENDHT Q021C75C | 00300004 30590.

S — 0ooo0000 0.

e BrTASK.RTPShow 0:962BA0 | = |l = | & | | loooooooo 0.

id name state entr options [task cnt 88888888 8 i
00962BA0 |. /RTPLODDTe. vxe normal EF000293 |00000011 1. ~ "

G
options: 00000011 RTP_GLOBAL_SYMBOLS RTP_DEEBUG
nents : . /RTPCobble.
raumen fRIFCobbe-wxe o B:TASK.SemShow oo =]
environment: EFQ20F8C id type queue state pending tasks
R 002C9FDC [BINARY |PRIORITY |EMPTY 1. tiobTask .
0095CD68 iRTPCobble | 00743200 [BINARY |PRIORITY |[EMPTY 0.
00981F20 002C9F4C |[BINARY |PRIORITY |EMPTY 1. tExcTask
i 00743370 |BINARY |PRIORITY |EMPTY 0.

segment start s1zZe 00743EES |BINARY |PRIORITY |EMPTY 0.
text EF0O0080 61128 00201900 [MUTEX FIFO NotOwned 0.
data EFOOFO00 2824, 00743F30 |BINARY |FIFO EMPTY 1. tNbioLog ™
bss EFOOFBOS 1256. B m s
e B:TASK.MemPShow =T
id total bytes [free bytes [alloc bytes [free blocks [alloc blocks |
002C6383 20376624, 15230360, 5145000. 5. 11954, ~
00755940 1z2040. 4736. 7096. 10. 115.

4 I 2

‘B::TASK.|

[Taskinfo | [semsShow | [MsgQShow] [MemPShow| [wDShow | [ModShow | [RTPShow | [other | [pravious

ASPD01EAEE | eorks| okl montor+) [ENet0 system ready MIX |UP

The OS Awareness for VxWorks contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual VxWorks | 4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently VxWorks is supported for the following versions:

o VxWorks 5.x, 6.x and 7 on several architectures.

J VxWorks 653 2.x on several architectures

Please note that VxWorks 653 3.x is based on Wind River Hypervisor, and supported by the Awareness for

Wind River Hypervisor. Please use the awareness and scripts from the directory
“~~/demo/<arch>/kernel/vxworks653”.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “vxworks.t32” (directory
“~~/demo/<arch>/kernel/vxworks”). It contains all necessary extensions.

I TASK.CONFIG ~~/demo/<arch>/kernel/vxworks/vxworks.t32

This command:

. Configures the OS Awareness for VxWorks,

. Loads an additional VxWorks menu (see “VxWorks Specific Menu”),
J Sets the default stack pattern to OxEE (see “Task Stack Coverage”),
J Configures the symbol autoloader (see “Symbol Autoloader”).

The OS Awareness tries to locate all needed VxWorks internals automatically. For this purpose all symbol
information of the kernel application must be loaded and accessible at any time the OS Awareness is used.
See also Hooks & Internals.

Itis recommended to load the awareness first, after the kernel is initialized, to avoid faulty memory accesses
by the OS Awareness. A good place would be at or after usrRoot().

If the application enables the MMU and/or uses RTPs, configure the MMU Support, after the kernel
initialized the MMU (i.e. after usrMmulnit(), e.g. at usrApplnit()).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

The extension definition file will refer to further files in the extension directory. Be sure that the installation in
this directory is complete.

If, for any reason, you have to specify VxWorks internal addresses manually, contact LAUTERBACH for
assistance.

See also the example script “~~/demo/<arch>/kernel/vxworks/vxworks.cmm”

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 6

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for VxWorks with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.

2 Load your application as normal.
3. Wait until the kernel is initialized.
4

Load the VxWorks extension file:

TASK.CONFIG ~~/demo/<arch>/kernel/vxworks/vworks.t32

5. Start your application.

6. If the application enables the MMU and/or uses RTPs, configure the MMU Support, after the
kernel initialized the MMU (i.e. after usrMmulnit(), e.g. at usrApplnit()).

Now you can access the VxWorks extensions through the menu.

See also the example script “~~/demo/<arch>/kernel/vxworks/vxworks.cmm”

Hooks & Internals in VxWorks

No hooks are used in VxWorks.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.
VxWorks 653 v2.x:

In some BSPs, the clock interrupt handler sysC1lkInt () checks for missed timer ticks and raises an error
if some ticks were lost (e.g. i8253Timer.c, ppcDecTimer.c). This check could be triggered, if the target is
halted with the debugger. To skip this check after a break, set the variable “ignorelLostTicks” each time
before the execution is resumed. You can automate this with these Data.PROLOG settings:

Data.PROLOG.SEQuence SET ignoreLostTicks 1
Data.PROLOG.ON

In BSPs for PowerPC €500 cores, sysToMonitor () (sysLib.c) sets the MSR register to zero. This
disables JTAG debugging, too. If you want to debug beyond this point, please change or patch this to keep
the MSR:DE bit set:

vxMsrSet (0x200) ;

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 7

Features

The OS Awareness for VxWorks supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. The following information can be
displayed:

TASK.Taskinfo Tasks

TASK.WDShow Watchdogs
TASK.MsgQShow Message queues
TASK.SemShow Semaphores
TASK.MemPShow Memory partitions
TASK.ModShow Modules
TASK.RTPShow RTPs

TASK.PDShow Protection domains
TASK.LKUP Target symbol database

For a description of the commands, refer to chapter “VxWorks Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 8

b BuTASK.STack o -E =]

name | low high % [lowest spare max

tJobTask (00769240 00768180 1% |0076AEDOD Q0001CS0 8!
tExcTask (002CESDO 002DOSDO 3% |002D07AQ QO001EDO 3%
tLogTask [0076C1A0 00760530
tNbioLog [0076F610 00770940
tAioWait [007740E0 0077BOEQ
tAioIoTaskl [0077C100 00783100
tAioIoTask0 (00784120 0078B120
tErfTask [0078C140 00780140
thHetO |0078F170 00791830
ipcom_syslogd (00807840 008039040
ipnetd (00866670 00869670
ipcom_telnetd (00763010 00764810
ipftps [0086A690 O08GBEID

5% |0076D3EQ0 00001240 6%
5% (00770870 00001260 6%
1% |0077ACB0 00006BAD 3%
0% (00783000 00006F00 0%
0% |0078B020 00006F00 0%
4% |0078CBO0 000009CO 39%
13% 00791320 0000Z1B0 13%
6% (00808C50 00001410 16%
1% [00B6BEAD 00002830 16%
7% (00764310 00001300 20%
8% (00866960 00001200 21%
twdbTask |0086E3B0 008703B0 2% (008702C0 00001F10 2%
tShe]]OJOOS?SFSO 00883F50 |00 1% |00B82ZAF0 0O00D0EBAD 7%

4 m v

[] I I [] | [=

m

VxWorks typically initializes task stacks with the value OXEE. When configuring the OS Awareness for
VxWorks, this pattern is set for stack detection. If VxWorks uses a different pattern, inform the debugger
about this with the command TASK.STacK.PATtern.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 9

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

e B::Break.List EI@
[neterl] [O sl | (@ e[@ Init [2 imp..| (52 Swre.. [Laze... [Set..
im t |

address types mp1 ask
C:0021EBED [Program |SOFT "t5heTT0™ semMGive 7
C:0021F628 |Program |SOFT "tNet0d” semMTake
4 [

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:
I Frame.TASK [<task>] Display task context.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 10

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

o BFrame (=[O el

"% Downl [@Args [[Jlocals [Jcaller | Task: “twdbTask” -

-000|[zemETake(semId = OxD03839C54, timeout = -1) i
-001||zemTake(semId = 0x00389C54, timeout = -1)

-002||udpRevTrom(commId = Ox0, addr = Ox00370C8C, len = 512, pAddr = O0x00370504,
-003||wdbRpcRov({xportHandle = Ox003704C8, timeout = O =i

K

— |end of frame
4 | i b

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 11

MMU Support

To provide full debugging possibilities on MMU enabled systems, the debugger has to know, how virtual
addresses are translated to physical addresses and vice versa. Al MMU and TRANSIation commands refer
to this necessity. If the VxWorks configuration variable “_WRS_CONFIG_MMULESS_KERNEL' is not set, the
MMU will be activated by the kernel.

Space IDs

RTPs of VxWorks may reside virtually on the same address. To distinguish those addresses, the debugger
uses an additional space ID that specifies to which virtual memory space the address refers. The command
SYStem.Option.MMUSPACES ON enables the additional space ID. For all tasks using the kernel address
space, the space ID is zero. For tasks within an RTP, the debugger assigns a space ID unique to the RTP.

See also chapter “Debugging Real Time Processes”.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range> Define MMU
<physical_kernel_address>]] table structure

The MMU will be initialized first in usrMmulnit(). In order to read out the correct information, the MMU
declaration must happen after this function ran, e.g. when reached usrApplnit(). To get the kernel TTB
address, the debugger needs to read the target memory. If this is not possible while the target runs, halt the
target before declaring the MMU.

<format> Options for ARM:
<format> Description
STD Standard format defined by the CPU
TINY MMU format using a tiny page size of only 1024 bytes

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 12

<format> Options for PowerPC:

<format> Description
STD Standard format defined by the CPU
VX653 MMU format for VXWORKS 653

VXWORKS.E500

VxWorks specific format for PowerPC €500 core with 128-bit PTEs

VXWORKS.E500MC

VxWorks specific format for PowerPC e500mc core with 36 bit physical
addresses (PPC64 only)with 128-bit PTEs

VXWORKS.E500_64

VxWorks specific format for PowerPC €500 core (PPC64 only)with 128-bit
PTEs

VXWORKS.E6500

VxWorks specific format for PowerPC 6500 core with 64-bit PTEs

<format> Options for RISC-V:

<format> Description

STD Automatic detection of the page table format from the SATP register.

Sv32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

Sv4s 48-bit page table format (for SV64 targets only)

sSv4s8Xx4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

©1989-2024 Lauterbach

OS Awareness Manual VxWorks | 13

<format> Options for x86:

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

<base_address>

<base_address> specifies the TTB of the kernel. Use TASK.RTP.TTB(0). Take care that the kernel TTB can
only be read, if the target is halted.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual address range of the kernel.

For ARM, PowerPC and x64 architecture, this is typically specified in adrSpaceArchLibPh, as
KERNEL_SYS_MEM RGN_BASE and KERNEL_SYS_MEM_RGN_SIZE. For x86, the start address is zero,
and the size is typically the size of RAM. The default values are:

ARM O0x0--0x1fffffff

PowerPC 0x0--0x1fffffff

x64 Oxffffff£ff80000000--Oxffffffffffffffff

x86 0x0--<LOCAL_MEM_SIZE+LOCAL_MEM_LOCAI_ADRS>

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

The kernel code, which resides in the kernel space, can be accessed by any RTP, regardless of the current
space ID. Use the command TRANSIation.COMMON to define the complete address range that is
addressed by the kernel as commonly used area. In ARM PowerPC and x86 architectures, this is the same
range as the kernel range specified with TRANSIation.COMMON. In x64 architectures, specify a bigger
range as mentioned in the example below.

Enable the debugger’s table walk with TRANSIation.TableWalk ON, and switch on the debugger's MMU
translation with TRANSIation.ON.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 14

Example for ARM with RAM at physical address 0x10000000;

IF RUN()
BREAK
MMU.FORMAT STD task.rtp.ttb(0) 0x0--Ox1fffffff 0x10000000
TRANSlation.COMMON 0x0--Ox1fffffff
TRANSlation.TableWalk ON
TRANSlation.ON

Example for PowerPC with €500 core:

IF RUN()
BREAK
MMU . FORMAT VXWORKS.E500 task.rtp.ttb(0) 0x0--Ox1fffffff 0xO0
TRANSlation.COMMON O0x0--Ox1fffffff
TRANSlation.TableWalk ON
TRANSlation.ON

Example for x86 with 1GB RAM:

IF RUN()

BREAK
MMU.FORMAT STD A:task.rtp.ttb(0) 0x0--0x3fffffff 0xO0
TRANSlation.COMMON 0x0--O0x3fffffff
TRANSlation.TableWalk ON
TRANSlation.ON

Example for x64 with 1GB RAM. Please see also the sample scripts in the ~~/demo directory.

IF RUN()

BREAK
MMU.FORMAT STD A:task.rtp.ttb(0) Oxffffffff80000000--Oxffffffffffffffff 0xO0
TRANSlation.COMMON Oxfff£800000000000--Oxfffffffffffff£f£Lf
TRANSlation.TableWalk ON
TRANSlation.ON

Symbol Autoloader

The OS Awareness for VxWorks contains a symbol autoloader which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding Vxworks kernel modules, RTPs and libraries,
and the appropriate load command. Whenever the user accesses an address within an address range
specified in the autoloader, the debugger invokes the appropriate command. The command is usually a call
to a PRACTICE script that loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 15

The autoloader reads the target’s tables for modules RTPs and libraries and fills the autoloader list with the
modules found on the target. All necessary information, such as load addresses, are retrieved from kernel-
internal information.

The symbol autoloader is set automatically when configuring the OS Awareness for VxWorks. If, for any
reason, you need to change the behavior of the symbol autoloader, use:

I sYmbol.AutoLOAD.CHECKCoMmanD "<action>"

<action> Action to take for symbol load, usually:
"DO ~~/demo/arm/kernel/vxworks/autoload.cmm

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses of the component to the action. Usually, <action> is a call to a PRACTICE script that
handles the parameters and loads the symbols. Please see the example script “autoload.cmm” in the
~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or step
cycle. This significantly slows down the debugger’s speed when single
stepping.

ONGO The debugger automatically reads the information on every go/halt cycle,

but not when single stepping.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current module table are not covered.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 16

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Debugging Modules

If you want to debug kernel modules that are dynamically loaded within VxWorks, you have to load the
symbols into the debugger. The symbols need to be relocated to the actual addresses, where VxWorks
loaded the module.

Check TASK.ModShow, if the module is shown in the module list.

NOTE: Loading the symbols of a module only works, if the debugger has access to
memory to read out the relocation addresses.

Use the Symbol Autoloader to load the symbols of a module:

; specify the name of the module
sYmbol .AutoLOAD.TOUCH "mymod.out"

If the symbol autoloader is configured, you can use the local menu in TASK.ModShow to load the symbols:
Right-click on the module’s ID or name, and then select Load Module Symbols.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 17

Alternatively, you can load the symbols of a module manually.

Use the “/RELOCTYPE 2” load option to relocate the symbols to the appropriate addresses.

Use the “/NoCODE” option to load only the symbols and use the “/NoClear” option to keep the VxWorks
kernel symbols.

The following example script loads the symbols of a module called “mymod.out”:

; load the symbols of mymod.out
Data.LOAD.El1f mymod.out /NoCODE /NoClear /RELOCTYPE 2

Debugging Real Time Processes

If you want to debug real time processes (RTPs) that are dynamically loaded within VxWorks, you have to
load the symbols into the debugger. The symbols need to be relocated to the actual addresses, where
VxWorks loaded the RTP.

Check TASK.RTPShow , if the RTP is shown in the RTP list.

NOTE: . Loading the symbols of an RTP only works, if the debugger has access to
memory to read out the relocation addresses.
. RTPs run in an MMU mapped virtual address range. The MMU Support
with space IDs must be enabled to correctly support debugging RTPs.

Use the symbol autoloader to load the symbols of an RTP:

; specify the name of the RTP
sYmbol .AutoLOAD.TOUCH "myrtp.vxe"

I the symbol autoloader is configured, you can use the local menu in TASK.RTPShow to load the symbols:
Right click on the RTP’s ID or name and select “Load RTP Symbols”.

Alternatively, you can load the symbols of an RTP manually.

Use the “/LOCATEAT” load option to relocate the symbols to the start address of the RTP.

Use the “/NoCODE” option to load only the symbols and use the “/NoClear” option to keep the VxWorks
kernel symbols.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 18

The following example script loads the symbols of an RTP called “myrtp.vxe”:

; declare local variables
LOCAL &rtpid &spaceid &text

; get the space ID and load address
&rtpid=task.rtp.id("./myrtp.vxe")
&spaceid=task.rtp.spaceid (&rtpid)
&text=task.rtp.segaddr (".text", &rtpid)

; load the symbols of myrtp.vxe
Data.LOAD.El1f myrtp.vxe &spaceid:0 /NoCODE /NoClear /LOCATEAT &text

Debugging a Real Time Process from its entry point
If you want to debug your RTP from its entry point, you need to split the loading and starting of the RTP.

First, load the RTP (e.g. “myRtp.vxe”) in the VxWorks command shell with the -s option, to keep the RTP in

stopped state:
[vxWorks *1# rtp exec -s myRtp.vxe &

Then load the symbols of the RTP into the debugger, and set a breakpoint on its entry point. E.g.:

Break

sYmbol .AutoLOAD.CHECK

sYmbol .AutoLOAD.TOUCH "myRtp.vxe"
Break.Set \\myRtp\main

Go

At last, start the RTP in the VxWorks command shell with its RTP ID, e.g. 0x12345678 (check with rtp list):
[vxWorks *]1# rtp list
[vxWorks *]# rtp continue 0x12345678

Debugging Protection Domains

Protection domains (aka ARINC653 partitions) reside on a prelinked virtual address. All PDs use the same
virtual address range (but of course different physical addresses). The MMU takes care to remap the virtual
address range on a domain change.

The debugger needs to distinguish the different domain translations, to uniquely access a specific virtual
address. For this, the debugger extends the virtual address by a “space ID”, which is a 16bit extension of the
32bit vitual address. Use the command SYStem.Option.MMUSPACES ON to switch on the address

extension (space ID).

Load the symbols of your applications into the space ID of the PD. Use TASK.PDShow to see the space ID
that belongs to your application. Use the “/NoCODE” option to load only the symbols and use the
“/NoClear” option to keep the VxWorks kernel symbols. Note: do not load the symbols of the
vxSysLib.sm; it may spoil the VxWorks Awareness.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 19

Set up the debugger address translation to get access to each PD. Set TRANSIation.COMMON to the
kernel area (everything below the partition virtual address). After VxWorks came up, scan the MMU tables o
each partition with TASK.MMU.SCANSPACE. Switch on the debugger address translation with
TRANSIation.ON.

Check TASK.PDShow, if the protection domain is shown in the PD list.
The following example script loads the symbols of two partitions”:

; declare local variables

local &virt

; reset symbols for MMUSPACES option
sYmbol .RESet

SYStem.Option.MMUSPACES ON

; load core 0S symbols (needed by Awareness!)
Data.LOAD.El1f coreOS.sm /NoCODE

; load symbols of partitions

; lookup the space ID of each partition in TASK.PDShow
Data.LOAD.El1f myFirstPartition.sm 1:0 /NoCODE /NoClear
Data.LOAD.El1f mySecondPartition.sm 2:0 /NoCODE /NoClear

; Lookup "partitionVirtualAddress" in the "CoreOSDescription"
; of your XML file
&virt=0x40000000

; set up COMMON area everything below partition address
TRANSLATION.COMMON 0x0-- (&virt-1)

; scan the MMU translation of each partition ID
TASK.MMU.SCANSPACE 1 &virt
TASK.MMU.SCANSPACE 2 &virt

; clean up translation table and switch on debugger translation

TRANSlation.CLEANUP
TRANSlation.ON

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 20

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

£ B:PERF.ListTASK

(=[O el

508

100 |

(& setup... || 28 Qonfig...][Y Goto... || =] Detaied || &3, View | jyy(Profie|[€ Init |[O Dissble | & Arm
name ratio 1% 2% 5% 10% 20%

demaZ 51.376%

demo 48.624%

twdbT32Pol1 0. 000%

twdbTask 0. 000%

tLogTask 0. 000%

‘tExcTask 0.000%

J P

Task Runtime Statistics

NOTE:

Logger). For details, refer to

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or

“OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

The start of the recording time, when the calculation
“(unknown)”.

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as

colored graph

Display all data access records to the “magic”
location

Display all context ID records

doesn’t know which task is running, is calculated as

©1989-2024 Lauterbach

OS Awareness Manual VxWorks |

= | B:Trace STATistic. TASK =n| Wl <
[& setup... || 71 Groups... || 22 Gonfig... |[= | Detaiied | [Nesting][v{Chart || BProfie |
tasks: 3. total: 13.107ms
range total min max avr count ratio® [|1% 2% 5% 10% 20% |
demo2 4, 059ms 5.400us 46.500us 28.191us 144, 30.971% |
(kernel) 4. 847ms 3.000us 94, 000us 16.770us 289. 36.9?6%:
demo 4, 201ms 16.400us 38.600us 29.174us 144, 32.051% | i
“ I ol BrTrace. CHART.TASK == =< L
[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull
-8.200ms -8.000ms -7.800ms -7.600ms
rangeds | I I
demoZsy| mmmmm 1 L1] : [_ N}
Ckernel)Gjmmm 1 mm mE | EE | I | mEm
demo &y . _ . . EEEEm . -
4 |l » 4 3

Task Trace with ARM ContextIiD

On ARM architectures, VxWorks serves the ContextlD register with the address space ID (ASID) of the RTP.
This allows tracking the program flow of the kernel and RTPs and evaluation of the RTP switches. But it does
not provide performance information of tasks.

To allow a detailed performance analysis on VxWorks tasks, the context ID must contain the task ID. Set the
lower 8 bit of the context ID register with the RTPs ASID, and set the upper 24 bit with the ID of the task; i.e.
“(taskid << 8) | ASID"

The VxWorks awareness needs to be informed about the changed format of the context ID:
TASK.Option THRCTX ON

To implement the above context ID setting, you need a VxWorks 7 version where the os_arch_arm
component release number is at least 1.1.3.3. If you're using an older VxWorks version, contact Lauterbach
for a patch.

In the VxWorks 7 Source Build Project, check for the option “PROCID_IN_CONTEXTIDR?. If this option is
available, set it to “yes”.

In your application, implement a task switch hook to serve the PROCID field in the ContextID register.
Implement a new assembly source file, e.g. ctxldTrace.s.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 22

Example for 32bit Arm systems:

#define _ASMLANGUAGE
#include <vxWorks.h>
#include <asm.h>
#include <prjParams.h>
FUNC_EXPORT (storeContextID)
FUNC_BEGIN (storeContextID)
/* write new TCB pointer to Proc field in Context ID register */

1sl rl, rl, #0x8 /* pNewTcb <<= 8 */

mrc cCp_MMU, 0, r2, cl3, c0, 1 /* read Context ID register */
and r2, r2, #O0xff /* mask ASID */

orr r2, r2, rl /* add new proc ID */

mcr cp_mMU, 0, r2, cl3, c0, 1 /* set new Context ID */

bx rl4

FUNC_END (storeContextID)

Example for 64bit Arm systems:

#define _ ASMLANGUAGE
#include <vxWorks.h>
#include <asm.h>
#include <prjParams.h>
FUNC_EXPORT (storeContextID)
FUNC_BEGIN (storeContextID)
/* write new TCB pointer to Proc field in Context ID register */

1s1 x1, x1, #0x8 /* pNewTcb <<= 8 */

mrs x2, CONTEXTIDR_EL1 /* read Context ID register */
and x2, x2, #0xff /* mask ASID */

orr x2, x2, x1 /* add new proc ID */

msr CONTEXTIDR_EL1, x2 /* set new Context ID */

ret

FUNC_END (storeContextID)

Insert a task switch hook within your application

void storeContextID (WIND_TCB *pOldTcb, WIND_TCB *pNewTcb) ;
taskSwitchHookAdd ((FUNCPTR) storeContextID) ;

Task Trace with PowerPC NPIDR

If the used PowerPC architecture supports the NPIDR register, you may use this register to trace task
switches. Implement a task switch hook to serve the NPIDR register:

©1989-2024 Lauterbach OS Awareness Manual VxWorks

23

Implement a new assembly source file, e.g. pidTrace.s:

#define _ASMLANGUAGE

#include <vxWorks.h>

#include <asm.h>

#include <prjParams.h>

FUNC_EXPORT (storeNPIDR)

FUNC_BEGIN (storeNPIDR)
/* write new TCB pointer to NPIDR register */
mtspr 517,r4
blr

FUNC_END (storeNPIDR)

And insert a task switch hook within your application

void storeNPIDR (WIND_TCB *pOldTcb, WIND_TCB *pNewTcb) ;
taskSwitchHookAdd ((FUNCPTR) storeNPIDR) ;

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 24

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

113 ”
(unknown)”.
£ | B:Trace.STATistic. TASKTREE tree task total min max count internalratio internalbar EI@
[& setwp... | 73l Gougs... [&8 onfig... |[A Goto....|[| Detaiked | {F]Nesting][= chart |
funcs: 11. total: 13.107ms
tree taszk total min max count intern% 1% 2% 5% 10% |
= (root) demoZ 4.059ms - 4.059ms - 29.491%
= sysClkInt demo2 34.200us 11.400us 11.400us 3. 0.137% |+
— usrClock |demo2 16.200us 5.400us 5.400us 3. 0.123% |+
function demo2 159. 800us 3.400us 3.400us 47. 1.219% |mem
= {root) (kernel) 4. 847ms - 4. 847ms - 36.590%
LE sy=CTkInt (kernel) 50.700us 16.900us 16.900us 3 0.137% |+
L— usrClock |[(kernel) 32.700us 10. 900us 10. 900us 3. 0.249% |+
= {(root) demo 4. 201ms - 4. 201ms - 30.571%
function demo 159. 800us 3.400us 3.400us 47. 1.219% |mm
=l sysClkInt demo 34.200us 11.400us 11.400us 3. 0.137% |+
— usrClock |demo 16.200us 5.400us 5.400us 3. 0.123% |+
||« [| % BrTrace.CHART.TASKFUNC == =] | ¢
[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull
. 000ms -&.800ms -&.600ms -&.400ms
range [, L L |
(root) 1 1 R
(root) (- ¥ 1— ¥ . ¥ 1— ¥ - ¥ 1—
(root) -
function 1 1 1 =
sysClkInt I3
usrClock
function 1 1
sysClkInt —
usrClock))) L . . . i
4 (ml r o4 1 3

To correctly detect the function run times, the trace must contain the task switches. See Task Runtime
Statistics for possibly needed patches.

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

©1989-2024 Lauterbach OS Awareness Manual VxWorks |

25

This feature requires that the following data accesses are recorded:
J All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 26

VxWorks specific Menu

The configuration of the OS Awareness for VxWorks also loads an additional menu with VxWorks specific

menu items (see Configuration). See the menu file at ~~/demo/<arch>/kernel/vxworks/vxworks.men.

You will find a new menu called VxWorks.

/A TRACE32 for ViWorks =n| Wl <
File Edit View Var Break Run CPU Misc Trace Pef Cov IMX51J| VeWorks [JWindow Help
WK+ v e > [E 2N O] 8 g Tekinomation
Show Semaphore
&% B:TASK Taskinfo (=1 > Show Message Queue
name entr tid ri1_|status C -
‘EDmalobTask |0041651C |20000500 | 45. [PEND 002C EhoNE o Bahtion
miiBusMonitor (001D2234 |20004F80 (252. |DELAY 002D Show Watchdog
‘tErfTask 001D7AEQD (20209180 | 10. [PEND 002¢C
‘tNetD 00100584 |2020DB10 | 50. |PEND 002C|= Show Modules
EHCD_IHO D02AC7DC (202D9010 [100. [PEND 002¢C Show RTPS
BusMuA 00282510 |202D9640 [100. [DELAY 002D &
=dBusMonitor |00260E48 |202DC210 |100. |PEND 002C Show Protection Domains
sdBusMonitor |D0260E48 |202DCC28 [100. |PEND 002C
‘tJobTask 002663DC |202E44A0 | 0. [PEND 002C
‘tExcTask 002663FC (00550388 0. |PEND 002C Hed: e '
‘tLogTask D0266EBE |2057B9A0 | 0. [PEND 002C
tAiowWait 001B147C |202EBAA8 | 51. [PEND 002C ~ Symbol Autcloader 3
4 m 3
B:: TASK.
[Taskinfo | [SemsShow | [MsgQShow| [MemPShow| [WDShow | [Modshow | [RTPShow | [PDShow | [other | [previous
WERO0R000C4 || Shoemir_viéoris Gloal|ssmiTake+ 000 (td tVxdbg Task 0 [system ready MIX |UP
. Task Information opens the TASK.TaskInfo window.
. The Show menu items launch the appropriate kernel resource display window.

In VxWorks 5.x you may be asked for the ID to show.

. The Stack Coverage submenu starts and resets the VxWorks specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

. The Symbol Autoloader submenu allows to control the Symbol Autoloader.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function

runtime statistics or statistics on task states.

Right-clicking a variable shows an additional VxWorks submenu that allows to show this variable as a
specific VxWorks object.

©1989-2024 Lauterbach OS Awareness Manual VxWorks

27

VxWorks Commands

TASK.LKUP Show system symbol table

Format: TASK.LKUP [0l<address>l<symbol> [0l<module_id>l<module_name>]
[<section_name>]]]

Displays the target symbol table with the specified filtering.

Examples:
TASK .LKUP ;shows all symbols
TASK.LKUP "mysymbol" ;shows only the entry of "mysymbol"
TASK.LKUP 0 "apps.out" ;shows all symbols of module "apps.out"
; (null is the specifier for all)
TASK.LKUP 0 0O "common" ;shows all symbols of the common section
TASK.LKUP 0 "apps.out" "common" ;shows all symbols of the common section
;of apps.out.
TASK.MemPShow Show memory partition
Format: TASK.MemPShow <memory_partition>

Displays the memory partition table of VxWorks or detailed information about one specific memory partition.

Without any arguments, a table with all created memory partition will be shown.
Specify a memory partition ID to display detailed information about this memory partition.

o B:TASK.MemPShow =n| Wl <
i total bytes [free bytes [alloc bytes [free blocks alloc blocks |
00486630 16771872, 9837056, 6934608, 32. B2. ~
00486900 33554176, 28509312, 5044840, 69, 2669.
20394400 1z032. B256. 3776. 2. 63,
]
o B:TASK.MemPShow Var.Value(memSysPartld) =n| Wl <
id status bytes blocks avgblock |
00486900 ~
current
free 28509312, 69, 413178.
alloc 5044640, 2669. 1890,
internal 432. 2. 216. |E
cumulative
alloc 5726112, | 3026. | 1392,
peak
alloc 5176720.
4 1 3

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 28

TASK.MMU.SCAN Scan RTP MMU entries

Format: TASK.MMU.SCAN [<rip_id> [<address>] [<size>]]] (deprecated)
Use full MMU Support instead.

Scan the MMU entries of RTPs.

This command copies the address translation of an RTP into the debugger's MMU. See TRANSIation.List.
Without any argument, the MMU translation tables of all RTPs are scanned.

The first parameter specifies the RTP ID to scan.

Optionally this command takes a start address and a size parameter to restrict the scanned address range.
The size defaults to 0x08000000, if only an address is given.

TASK.MMU.SCANSPACE Scan PD MMU entries

Format: TASK.MMU.SCANSPACE [<pdid> [<address>] [<size>]]] (deprecated)
Use full MMU Support instead.

Scan the MMU entries of protection domains.

This command copies the address translation of a PD into the debugger's MMU. See TRANSIation.List.
Without any argument, the MMU translation tables of all PDs are scanned.

The first parameter specifies the space ID (= partition ID) to scan. Check TASK.PDShow for the space ID.

Optionally this command takes a start address and a size parameter to restrict the scanned address range.
The size defaults to 0x08000000, if only an address is given.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 29

TASK.ModShow Show loaded modules

Format: TASK.ModShow

Displays a table with all loaded modules.

o B:TASK.ModShow =n| Wl <
1d name group |text start/length |data start/length |bss start/length
00936720 [KMCobbTe.out | 1. [00802010 00000615 (00802628 00000014 [not Found -
4 i 3

TASK.MsgQShow Show message queues

Format: TASK.MsgQShow <msg_queue>

Displays the message queue table of VxWorks or detailed information about one specific message queue.

Without any arguments, a table with all created message queues will be shown.
Specify a message queue ID to display detailed information about this message queue.

o B:TASK.MsgQShow f=e ==

1d ueue length |max sendtim [recvtim |

2022E010 |FIFO 32. 50. 0. 0. ~

204BEA40 |PRIORITY 20. 10. 0. o

204BECAN FTED 0 10 0 0 £

203434

204C 20 5?. B:TASK.MsgQShow Var.Value(msgQueue) EI@
1d queue length |max sendtim [recvtim |

< 204BEA40 |PRIORITY | 20. | 10. | P

messages gUEUEd:
address ength content n

addrece Tength content |) BxTASKMsgQShow VarValue(msgQueue2) =n| Wl <
length |max sendtim [recvtim |
[20. | 10. | 0. | 0.

-

1d quELE
v Z04EEC40 [FIFO

receivers blocked:
id pri__name
2Z04BELED 20. tDemo

4 i 3

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 30

TASK.Option

Set awareness options

Format:

<option>:

TASK.Option <option>

THRCTX [ON | OFF]

Set various options to the awareness.

THRCTX

TASK.PDShow

Set the context ID type that is recorded with the real-time trace (e.g. ETM).

If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

Show protection domains

Format:

TASK.PDShow [<pd_id>]

Displays a table with all created protection domains (aka ARINC653 partitions) or detailed information about
one specific PD.

Without any arguments, a table with all protection domains will be shown.
Specify a PD ID to display detailed information on that PD.

% B:TASK.PDShow

[E=N Noh/

O0ATBEED

4

myFourthPartition

M

1d name type zpace start =ize Ipri [hpri [task cnt
00457ECC |corelS kernel 0000 (00000000 |02400000 [255. 0. | 17. ~
00778400 |wvxSysLib system 1ib 0000 (10000000 (00072000 0. 0. 0.
00770060 |myFirstPartition application (0001 (40000000 |00300000 |255. |100. 1.
00AG7010 |mySecondPartition application (0002 |40000000 |00300000 |255. |100. 1.
00AGCC70 |myThirdPartition application (0003 |40000000 |00300000 |255. |100. 1.
application |0004 |40000000 |00300000 |255. |100. 1.

©1989-2024 Lauterbach

OS Awareness Manual VxWorks

31

TASK.RELOC Relocate system symbols

Format: TASK.RELOC [0l<address>|<symbol> [0l<module_id>l<module_name>]
[<section_name>]]]

This command takes the same parameters as TASK.LKUP and relocates the symbols to their correct
addresses.

Example:

TASK.RELOC 0 "apps.out" "common"

Relocates all symbols of the COMMON section of the apps.out module.

TASK.RTPShow Show loaded RTPs

Format: TASK.RTPShow [<rip>]

Displays a table with all loaded RTPs or detailed information about one specific RTP.

Without any arguments, a table with all loaded RTPs will be shown.
Specify an RTP name or ID to display detailed information on that RTP.

o B:TASK.RTPShow =n| Wl <

L name state entr options task cnt

00962BA0 |. /RTPCo ERES norma EF000293 |00000011 1. -
4 [[

% B:TASK.RTPShow 0x10430010 = =R
1d name space |state entry options task cnt
10430010 [/romfs/t32Fdx.vxe [0001 |normal [00802ZD& (00000041 2. ~

options: 00000041 RTP_GLOBAL_SYMBOLS RTP_LOADED_WAIT

arguments: Jromfs/t32fdx. vxe

@ environment:
LD_LIERARY_PATH=/romfs/T1b
SHELL_INTERPRETER=Cmd

initial task: 10432520 iT32fdx
symbol table: 10432C4C

= segment start S1zZe

text 00800000 40024,

data 0080A000 480.

bss O0B0ALED 948.
@ Tlibraries:

id ame base

10436FCO /romfs/T1b/FDXL1b.so 00833000

10420F88 Jromfs/Tib/1ibc.s0.1 00BES000

v

£ >

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 32

TASK.SemShow Show semaphores

Format: TASK.SemShow <semaphore>

Displays the semaphore table of VxWorks or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown.
Specify a semaphore ID to display detailed information about this semaphore.

o B:TASK.SemShow =n| Wl <
1d type ueue state pending tasks |
00535190 |[MUTEX PRIORITY |NotOwned 0.

00535120 |BIMNARY PRICRITY |EMPTY 1. tlobTask
202E4720 |BINARY PRICRITY |EMPTY 0.

00535088 |BIMARY PRICRITY |EMPTY 1. tExcTask
202E47C3 |BINARY PRICRITY |EMPTY 0.

2057BC3C |[BINARY PRICRITY |EMPTY 0.

00553650 |[MUTEX FIFO NotOwned 0.

202E4898 |MUTEX PRIORITY |NotOwned 0. i

4 1 3

The column “pending tasks” contains the number of tasks pending in the first place, following the task
names.

TASK.SHLShow Show loaded libraries

Format: TASK.SHLShow [<library>]

Displays a table with all loaded libraries or detailed information about one specific library.

Without any arguments, a table with all loaded libraries will be shown.
Specify a library name or ID to display detailed information on that library.

o B:TASK.SHLShow = =R
13436FCO ??Q;fs;"hh;'FDXL'lh.so CDTr.Tt ESQEOOOO !
10420F88 |/romfs/Tib/1ibc.s0.1 | 1. |00834000
< >
TASK.Taskinfo Task information
Format: TASK.TasklInfo <task>

Displays the task table of VxWorks or detailed information about one specific task.

The display is similar to the “i” command of the VxWorks shell.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 33

Without any arguments, a table with all created tasks will be shown.
Specify a task name or task magic number to display detailed information on that task.

4

eXC.

options: 07
WX_SUPERVISOR_MODE VX_UNBREAKAELE VX_DEALLOC_STACK VX_DEALLOC_EXC_STACK VX_DEALLOC_TCE

events:

= registers:
ri

proc id: 002CA850
010090

pended on 00000000

= 00000000 rl/sp
r4 = 00000000 rS5

stack: base 008713A0 end 008703C0

received 00000000

00B70ZED r2
00000000 ré

M

start 008713C0

options 00000000

002ZA53F4
00000000

o B:TASK Taskinfo =n| Wl <

name entry tid pri_|status pc =p Errno delay |

tiobTask O01F44AC |00743010 0. |PEND 0021C75C |0076BOFD (00000000 0. ~

‘tExcTask 001F369C |002CEG20 0. |PEND 0021C75C (00200700 (00000000 0.

‘tLogTask 001F45D8 (00745010 0. |PEND 0021A278 (00760410 (00000000 0.

‘tNbioLog 001F5430 (00745200 0. |PEND 0021C75C |007708A0 (00000000 0. =

‘tAioWait 001D4AES |00749830 51. |PEND 0021C75C |0077AFCO (00000000 0. T

tAioIoTaskl 00104D0C |00749CC0 50. |PEND 0021CF40 |00783030 (00000000 0.

‘tAioIoTasko 00104D0DC |0074BBES 50. |PEND 0021CF40 |007BB050 (00000000 0.

‘tErfTask 001499E8 |0074F083 10. |PEND 0021CF40 |007ED0OS0 (00000000 0.

thet0 0011363C |0074FD20 50. |RUNNING -- -- 0ooo0000 0.

ipcom_syslogd [00241604 |007572B0 50. |PEND 0021CF40 |0080BEACQ (00000000 0.

ipnetd 0025617C (00750910 50. |PEND+T 0021C75C |008695C0O (00300004 (30590.

-ipcom_te]netd 00242652 OOTABOA O C DM a e Nl OOTEAEAN FaTaTalalatatalal ('l -

g o B:TASK Taskinfo 0x26E0F0 =n| Wl <
name entry tid ri_|statu pc =p Errno dela
tWdbTask [00212A6C |0D03REOFD | 3. |F‘END [0021C75C [00870ZED [00000000 0. ~
task stack: base 008703B0 end O0BG6E3B0 size 8192. high 240. margin 7952,

=ize 4064. high 48. margin 4016.

r3
r7

0Qo00000
00000000 i

The task ID (‘tid') is equal to the “magic number” of this task.
The “pc” and “sp” columns show the program counter resp. the stack pointer of the task on the stack (only
available if task is not running).

The fields “name”, “entry”, “tid” and “pc” are mouse sensitive, double clicking on them opens appropriate

windows. Right clicking on the “tid” will show a local menu.

TASK.WDShow

Show watchdogs

Format:

TASK.WDShow <watchdog>

Displays the watchdog table of VxWorks or detailed information about one specific watchdog.

Without any arguments, a table with all created watchdogs will be shown.
Specify a watchdog ID to display detailed information about this watchdog.

a°. B:TASKWDShow [E=5EoR 5
state ticks routine parameter
0002?(0 IN_Q 999, :I:IE !:E]I:I [00000032 |usrWatchdog -

4

M

The “routine” field is mouse sensitive.

©1989-2024 Lauterbach

OS Awareness Manual VxWorks

34

VxWorks PRACTICE Functions

There are special definitions for VxWorks specific PRACTICE functions.

TASK.AVAIL() Availability of object lists
Syntax: TASK.AVAIL(<item>)
<item>: semlist | msgqlist | memplist | wdlist

Reports availability of object lists.
Parameter Type: String (without quotation marks).

Return Value Type: Hex value.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magic:<core> | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magic:<core> Parameter Type: String (without quotation marks).
Returns the address for the magic number of the given core ID.

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 35

TASK.MODLIST() Next module magic number

Syntax: TASK.MODLIST(<module_magic>)

Returns the next module magic number in the module list.
Parameter Type: Decimal or hex or binary value. Specify zero for the first module.

Return Value Type: Hex value. Returns zero if no further module available.

TASK.MODNAME() Module name of module

Syntax: TASK.MODNAME(<module_magic>)

Returns the module name for the specified module magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.MODULE() Segment address of module

Syntax: TASK.MODULE("<module_name>",<segment_id>)

<segment_id>: 0111213

Reports the segment address of a given module.

Parameter and Description:

<module_name> Parameter Type: String (with quotation marks).

0,1,2,3 Parameter Type: Decimal or hex or binary value.
O=text, 1=data, 2=bss, 3=common

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 36

TASK.RTP.ID() RTP ID of rtp name

Syntax: TASK.RTP.ID("<rtp_name>")

Returns the RTP ID of a given rtp name.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.RTP.SEGADDR() Segment address of RTP

Syntax: TASK.RTP.SEGADDR("<segment_name>",<rtp_id>)

Returns the segment address of a given segment name and RTP ID.

Parameter and Description:

<segment_name> Parameter Type: String (with quotation marks).

<rtp_id> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.RTP.SEGSIZE() Segment size of RTP

Syntax: TASK.RTP.SEGSIZE("<segment_name>",<rip_id>)

Returns the segment size of a given segment name and RTP ID.

Parameter and Description:

<segment_name> Parameter Type: String (with quotation marks).

<rtp_id> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 37

TASK.RTP.SPACEID() Space ID of RTP ID

Syntax: TASK.RTP.SPACEID(<rtp_id>)

Returns the space ID of a given RTP ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.RTP.TTB() TTB address of RTP ID

Syntax: TASK.RTR.TTB(<rtp_id>)

Returns the TTB address of a given RTP ID.
Parameter Type: Decimal or hex or binary value. Specify zero to get the TTB of the kernel.

Return Value Type: Hex value.

TASK.SHL.ID() ID of library name

Syntax: TASK.SHL.ID(" <shl_name>")

Returns the ID of a given library name.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 38

TASK.SHL.SEGADDR() Segment address of library

Syntax: TASK.SHL.SEGADDR(" <segment_name>",<shl_id>)

Returns the segment address of a given segment name and library ID.

Parameter and Description:

<segment_name> Parameter Type: String (with quotation marks).

<shl_id> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.SHL.SEGSIZE() Segment size of library

Syntax: TASK.SHL.SEGSIZE("<segment_name>",<shl_id>)

Returns the segment size of a given segment name and library ID.

Parameter and Description:

<segment_name> Parameter Type: String (with quotation marks).

<shl_id> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.TASKLIST() Next task magic number in task list

Syntax: TASK.TASKLIST(<task_magic>)

Returns the next task magic number in the task list.
Parameter Type: Decimal or hex or binary value. Specify zero for the first task.

Return Value Type: Hex value. Returns zero if no further task available.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 39

TASK.TASKNAME() Task name of task

Syntax: TASK.TASKNAME(<task_magic>)

Returns the task name of the specified task.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual VxWorks | 40

	OS Awareness Manual VxWorks
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in VxWorks

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration

	Symbol Autoloader
	SMP Support
	Debugging Modules
	Debugging Real Time Processes
	Debugging Protection Domains
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task Trace with ARM ContextID
	Task Trace with PowerPC NPIDR

	Function Runtime Statistics
	Task State Analysis
	VxWorks specific Menu

	VxWorks Commands
	TASK.LKUP Show system symbol table
	TASK.MemPShow Show memory partition
	TASK.MMU.SCAN Scan RTP MMU entries
	TASK.MMU.SCANSPACE Scan PD MMU entries
	TASK.ModShow Show loaded modules
	TASK.MsgQShow Show message queues
	TASK.Option Set awareness options
	TASK.PDShow Show protection domains
	TASK.RELOC Relocate system symbols
	TASK.RTPShow Show loaded RTPs
	TASK.SemShow Show semaphores
	TASK.SHLShow Show loaded libraries
	TASK.TaskInfo Task information
	TASK.WDShow Show watchdogs

	VxWorks PRACTICE Functions
	TASK.AVAIL() Availability of object lists
	TASK.CONFIG() OS Awareness configuration information
	TASK.MODLIST() Next module magic number
	TASK.MODNAME() Module name of module
	TASK.MODULE() Segment address of module
	TASK.RTP.ID() RTP ID of rtp name
	TASK.RTP.SEGADDR() Segment address of RTP
	TASK.RTP.SEGSIZE() Segment size of RTP
	TASK.RTP.SPACEID() Space ID of RTP ID
	TASK.RTP.TTB() TTB address of RTP ID
	TASK.SHL.ID() ID of library name
	TASK.SHL.SEGADDR() Segment address of library
	TASK.SHL.SEGSIZE() Segment size of library
	TASK.TASKLIST() Next task magic number in task list
	TASK.TASKNAME() Task name of task

