
MANUAL

OS Awareness Manual
MicroC/OS-III

OS Awareness Manual MicroC/OS-III

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual MicroC/OS-III ... 1

 Overview .. 3

 Brief Overview of Documents for New Users 3

 Supported Versions 3

 Configuration ... 4

 Quick Configuration Guide 5

 Hooks & Internals in µC/OS-II3 5

 Features ... 6

 Display of Kernel Resources 6

 Task Stack Coverage 6

 Task-Related Breakpoints 7

 Task Context Display 8

 Dynamic Task Performance Measurement 8

 Task Runtime Statistics 9

 Task State Analysis 9

 Function Runtime Statistics 10

 µC/OS-III specific Menu 11

 µC/OS-III Commands ... 12

 TASK.eventFLAG Display event flags 12

 TASK.MEMory Display memory partitions 12

 TASK.MUTEX Display mutexes 13

 TASK.Queue Display message queues 13

 TASK.SEMaphore Display semaphores 14

 TASK.Task Display tasks 14

 TASK.TiMeR Display timers 15

 µC/OS-III PRACTICE Functions .. 17

 TASK.CONFIG() OS Awareness configuration information 17

 TASK.STRUCT() OS structure names 17
OS Awareness Manual MicroC/OS-III | 2©1989-2024 Lauterbach

OS Awareness Manual MicroC/OS-III

Version 06-Jun-2024

Overview

The OS Awareness for µC/OS-III contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently µC/OS-III is supported for the following versions:

• µC/OS-III V3.0 on ARM.
OS Awareness Manual MicroC/OS-III | 3©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “ucos3.t32” (directory
“~~/demo/<processor>/kernel/ucos3”). It contains all necessary extensions.

Automatic configuration tries to locate the µC/OS-III internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

See also “Hooks & Internals” for details on the used symbols.

Format: TASK.CONFIG ucos3
OS Awareness Manual MicroC/OS-III | 4©1989-2024 Lauterbach

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Run the PRACTICE demo script (~~/demo/<processor>/kernel/ucos3/ucos3.cmm). Start the
demo with “do ucos3” and “go”. The result should be a list of tasks, which continuously
change their state.

2. Make a copy of the PRACTICE script file “ucos3.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Hooks & Internals in µC/OS-II3

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global µC/OS-III variables and
structures. Be sure that your application is compiled and linked with debugging symbols switched on.

µC/OS-III needs to be configured with OS_CFG_DBG_EN = 1.
OS Awareness Manual MicroC/OS-III | 5©1989-2024 Lauterbach

Features

The OS Awareness for µC/OS-III supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
µC/OS-III components can be displayed:

For a description of the commands, refer to chapter “µC/OS-III Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of µC/OS-III Tasks, you can use the TASK.STacK command. Without any
parameter, this command will set up a window with all active tasks. If you specify only a magic number as
parameter, the stack area will be automatically calculated.

To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas
when working with the emulation memory. When working with the target memory a stack pattern must be
defined with the command TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD rsp.
TASK.STacK.ReMove commands with the task magic number as parameter, or omit the parameter and
select from the task list window.

It is recommended to display only the tasks you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.Task Tasks

TASK.SEMaphore Semaphores

TASK.MUTEX Mutexes

TASK.eventFLAG Event Flags

TASK.Queue Message Queues

TASK.TiMeR Timers

TASK.MEMory Memory Partitions
OS Awareness Manual MicroC/OS-III | 6©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual MicroC/OS-III | 7©1989-2024 Lauterbach

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

The TASK.TASK <task> window contains a button (“context”) to execute this command with the displayed
task, and to switch back to the current context (“current”).

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual MicroC/OS-III | 8©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual MicroC/OS-III | 9©1989-2024 Lauterbach

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities added to the calling task.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData
OS Awareness Manual MicroC/OS-III | 10©1989-2024 Lauterbach

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

µC/OS-III specific Menu

The menu file “ucos3.men” contains a menu with µC/OS-III specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called µC/OS-III.

• The Display menu items launch the appropriate kernel resource display windows.

• The Stack Coverage submenu starts and resets the µC/OS-III specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual MicroC/OS-III | 11©1989-2024 Lauterbach

µC/OS-III Commands

TASK.eventFLAG Display event flags

Displays the event flag table of µC/OS-III or detailed information about one specific event flag.

Without any arguments, a table with all created event flags will be shown. Specify an event flag magic
number to display detailed information on that event flag.

“magic” is a unique ID, used by the OS Awareness to identify a specific event flag (address of the
OS_FLAG_GRP structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.MEMory Display memory partitions

Displays the memory partition table of µC/OS-III or detailed information about one specific memory partition.

Without any arguments, a table with all created memory partitions will be shown. Specify a memory partition
magic number to display detailed information on that memory partition.

“magic” is a unique ID, used by the OS Awareness to identify a specific memory partition (address of the
OS_MEM structure).

The fields “magic”, and “address” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

Format: TASK.eventFLAG [<flag>]

Format: TASK.MEMory [<memory>]
OS Awareness Manual MicroC/OS-III | 12©1989-2024 Lauterbach

TASK.MUTEX Display mutexes

Displays the mutex table of µC/OS-III or detailed information about one specific mutex

Without any arguments, a table with all created mutexes will be shown. Specify a mutex magic number to
display detailed information on that mutex.

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
OS_SEM structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Queue Display message queues

Displays the message queue table of µC/OS-III or detailed information about one specific message queue.

Without any arguments, a table with all created message queue will be shown. Specify a message queue
magic number to display detailed information on that message queue.

“magic” is a unique ID, used by the OS Awareness to identify a specific message queue (address of the
OS_Q structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.MUTEX [<mutex>]

Format: TASK.Queue [<queue>]
OS Awareness Manual MicroC/OS-III | 13©1989-2024 Lauterbach

TASK.SEMaphore Display semaphores

Displays the semaphore table of µC/OS-III or detailed information about one specific semaphore

Without any arguments, a table with all created semaphores will be shown. Specify a semaphore magic
number to display detailed information on that semaphore.

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
OS_SEM structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Task Display tasks

Displays the task table of µC/OS-III or detailed information about one specific task.

Format: TASK.SEMaphore [<semaphore>]

Format: TASK.Task [<task>]
OS Awareness Manual MicroC/OS-III | 14©1989-2024 Lauterbach

Without any arguments, a table with all created tasks will be shown.
Specify a task magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Pressing the “context” button changes the register context to this task. “current” resets it to the current
context. See “Task Context Display”.

TASK.TiMeR Display timers

Displays the timer table of µC/OS-III or detailed information about one specific timer.

Without any arguments, a table with all created timers will be shown. Specify a timer magic number to
display detailed information on that timer.

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the OS_TMR
structure).

Format: TASK.TiMeR [<timer>]
OS Awareness Manual MicroC/OS-III | 15©1989-2024 Lauterbach

The fields “magic”, and “callback” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.
OS Awareness Manual MicroC/OS-III | 16©1989-2024 Lauterbach

µC/OS-III PRACTICE Functions

There are special definitions for µC/OS-III specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.STRUCT() OS structure names

Reports OS structure names.

Parameter Type: String (without quotation marks).

Return Value Type: String.

Syntax: TASK.CONFIG(magic | magicsize | tcb)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

tcb Parameter Type: String (without quotation marks).
Returns the name of the TCB structure.

Syntax: TASK.STRUCT(<item>)
OS Awareness Manual MicroC/OS-III | 17©1989-2024 Lauterbach

	OS Awareness Manual MicroC/OS-III
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in µC/OS-II3

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	µC/OS-III specific Menu

	µC/OS-III Commands
	TASK.eventFLAG Display event flags
	TASK.MEMory Display memory partitions
	TASK.MUTEX Display mutexes
	TASK.Queue Display message queues
	TASK.SEMaphore Display semaphores
	TASK.Task Display tasks
	TASK.TiMeR Display timers

	µC/OS-III PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.STRUCT() OS structure names

