LAUTERBACH A

OS Awareness Manual uClinux

OS Awareness Manual uClinux

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
OS Awareness ManUAISccccriiimiisssmiiiris s s e e n s s e e n e e e e nnnnn
OS Awareness Manual UCHNUXccccicmmiirnmisismnnssnss s ssess s anas

[1= (o

OVEIVIBW ...ceeiiiiieeiee s rrres s e s e s s s s s s e e s s man s e e e s amaaa e e e nnmas s e s e annnnsannerann

Terminology
Brief Overview of Documents for New Users
Supported Versions

Configuration ... ————

Quick Configuration Guide
Hooks & Internals in uCLinux

FEatures ... rs s r s s e n s s ma s e nn s s e an s e ma s e nna e

Terminal Emulation

Display of Kernel Resources
Task Stack Coverage
Task-Related Breakpoints
Task Context Display
Symbol Autoloader
Dynamic Task Performance Measurement
Task Runtime Statistics
Task State Analysis
Function Runtime Statistics
uCLinux specific Menu

Debugging uCLinux Kernel and User Processes

uCLinux Kernel
Downloading the Kernel
Debugging the Kernel
User Processes
Debugging the Process
Debugging into Shared Libraries
Debugging uCLinux Threads
Kernel Modules

UCLINUX COMMANAS ccoiieeeeeiiiiremmassisirssssssssssssnssssssssssnnsssssssssnnnssssssnes

©1989-2024 Lauterbach

OS Awareness Manual uClinux

2

TASK.DMESG Display the kernel ring buffer 22
TASK.DTask Display tasks 22
TASK.DTB Display the device tree blob 23
TASK.DTS Display the device tree source 23
TASK.FS Display file system internals 24
TASK.FS.MountDevs Display mounted devices 24
TASK.FS.PROC Display /proc file system 24
TASK.FS.Types Display file system types 24
TASK.MODule Display kernel modules 25
TASK.MAPS Display process maps 25
TASK.NET Display network devices 25
TASK.Option Set awareness options 26
TASK.PS Display “ps” output 26
TASK.sYmbol Process/Module symbol management 28
TASK.sYmbol.DELete Unload process symbols 28
TASK.sYmbol.DELeteLib Unload library symbols 29
TASK.sYmbol.DELeteMod Unload module symbols 29
TASK.sYmbol.LOAD Load process symbols 30
TASK.sYmbol.LOADLIib Load library symbols 30
TASK.sYmbol.LOADMod Load module symbols 31
TASK.sYmbol.Option Set symbol management options 32
TASK.VMAINFO Display vmalloced areas 34
TASK.Watch Watch processes 35
TASK.Watch.ADD Add process to watch list 36
TASK.Watch.DELete Remove process from watch list 36
TASK.Watch.DISable Disable watch system 36
TASK.Watch.DISableBP Disable process creation breakpoints 37
TASK.Watch.ENable Enable watch system 37
TASK.Watch.ENableBP Enable process creation breakpoints 37
TASK.Watch.Option Set watch system options 38
TASK.Watch.View Show watched processes 39
UCLinuXx PRACTICE FUNCHIONS ... inccnn s nsmms s s s s s ssms s s smmms s mmnn s 41
TASK.CONFIG() OS Awareness configuration information 41
TASK.ERROR.CODE() Error code 41
TASK.ERROR.HELP() ErrorhelpID 42
TASK.LIB.ADDRESS() Load address of library 42
TASK.LIB.CODESIZE() Code size of library 42
TASK.MOD.CODEADDR() Code start address of module 42
TASK.MOD.DATAADDR() Data start address of module 43
TASK.MOD.MAGIC() Magic value of module 43
TASK.MOD.NAME() Name of module magic 43
TASK.MOD.SECTION() Address of module 44
TASK.PROC.CODEADDR() Code start address of process 44
©1989-2024 Lauterbach OS Awareness Manual uClinux 3

TASK.PROC.CODESIZE()
TASK.PROC.DATAADDR()
TASK.PROC.DATASIZE()
TASK.PROC.MAGIC()
TASK.PROC.NAME()
TASK.PROC.PSID()

Code size of process

Data start address of process
Data size of process

Magic value of process
Name of process

Process ID of process

44
45
45
45
45
46

©1989-2024 Lauterbach

OS Awareness Manual uClinux

4

OS Awareness Manual uClinux

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK. TASKState.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 5

Overview

/A TRACE32 for uClinux =n| Wl <
File Edit View Var Break Run CPU Misc Trace Pef Cov uClinux Window Help
MRt eernE e T Hum s @ 22
-
o BiTASK.DTask [= [= |[== || o B:TASKFSTy... [= |[=][=]
agic command state uid pid tty [flags nice | name #devs |
01072000 |swapper running 0. 0. | 0 (00000100 20. | . rootfs 1. -
010FEQOD [init sleeping 0. 1. | 0 |oooOOLOO 0. bdev 1.
010FCO00 |keventd =leeping 0. 2. | O |00DO0040 0. (|2 proc 1.
010F8000 |ksoftirqd_CPUD |sleeping 0. 3. | 0 |0000DO4D 139, sockfs 1.
010F&000 |kswapd =leeping 0. 4. | 0 |00D00B40 0. pipefs 1.
010F4000 |bdfTush sleeping 0. 5.| 0 |o0DODOD4D 0. ext2 1.
010F2000 |kupdated =leeping 0. 6. | O |00000040 0. romfs 1.
010C6000 |sh running 0. 14. |50 00000000 0.
01102000 [hello current 0. 17. |50 00000000 0. kv
- 1 ¢
] 1 r
[I
7 ﬁ ofa B TASK.FS.Mount [=)[=]==]
' Br:Task.DTask 0x11D2000 =R SeS e o D 3 FN el =
magic command state uid pid tty [flags 010E9Z60 |/dev/root [/ romfs [ro .
01102000 [hello lcurrent | 0. 17.|50 |0000000Q [010B92A0 |/proc /proc |proc |rw
010B92E0 |/dev/ram0 |/var ext2 rw
gid sigpending wvm size tth tty name path i
0. 00000DOD 00O0DOODO - tty50 /bin/hello 4 i 3
flags i —— ==
= parent yvoungest child yvounger sibli ﬁB::TASK.PSpidtt}rstatcmd mem pcpu =N =N
sh - - —_—
= arguments [CDNFIG...]
helTo pid |tty |state command %mem |%cpu |
= environment 0. [- running |Lswapper] - 12.6 L
TERM=Tinux o 1. | - sleeping [init 0. 0.0
PATH=/bin:/usr/bin:fetc:/sbin:fusr/shin 2. - sleeping |[keventd] - 0.0
open fil 3. - sleeping |[ksoftirgd_CPuo] | - 0.0
= code addr/size data addr/size stack a4, | - sleeping |[kswapd] - 0.0 -
011CB040 7 ~ 5G00TID0 011CT214 7 00000110 011CH 5.| - |S1eeping |[bdFlush] _ 0.0 i
code fil 6. sleeping |[kupdated] - 0.0
times 14. |ttyS0 |running |/bin/sh 0.0 | 0.0
17. |ttyS0 |current |hello 0.0 | 0.0
1 LI} 4 1 +
£ | Bu:t.stat.task total min max ratio bar EI@
[& setup... | i1 Groups...]L{bnﬂg |[£ petzied ||] Mesting][fchart |[BProfile
tasks: 4. total: 14 790ms
range total min max ratio® [|1% 2% 5% 10% 20% 50% 10
swapper 5.916ms 5.916ms 5.916ms | 40.000% ~
sh 1.968ms 1.968ms 1.968ms | 13.307%
hello 6.855ms - 6.855ms | 46.345% v
] 1 ¢
B::
emulate trigzer | [devices |[trace |[Data | war |[st [PERE][other | [previous
UR:011C808C \\helo\hello\main hello stopped at breakpoint MIX |UP

The OS Awareness for uCLinux contains special extensions to the TRACE32 Debugger. This manual

describes the additional features, such as additional commands and statistic evaluations.

Terminology

uCLinux uses the terms “processes” and “tasks”. If not otherwise specified, the TRACE32 term “task”

corresponds to uCLinux tasks (executing processes).

©1989-2024 Lauterbach

OS Awareness Manual uClinux

6

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently uCLinux is supported for the following versions:

. uCLinux (Linux kernel version 2.4 and 2.6) on 68k/ColdFire, ARM architecture, Blackfin,
MicroBlaze, MIPS32 and Nios-II

©1989-2024 Lauterbach OS Awareness Manual uClinux | 7

Configuration

The TASK.CONFIG command loads an extension definition file called “uclinux.t32” (directory
“~~/demo/<processor>/kernel/uclinux”). It contains all necessary extensions.

Automatic configuration tries to locate the uCLinux internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG uclinux

Note that the default uCLinux configuration does not include any kernel symbols to the debug information.
Please change your configuration to generate kernel debug information.

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/uclinux/uclinux.cmm”.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Carefully read the PRACTICE demo start-up script
(~~/demo/<arch>/kernel/uclinux/uclinux.cmm).

2. Make a copy of the PRACTICE script file “uclinux.cmm”. Modify the file according to your
application.

3. Run the modified version in your environment. This should allow you to display the kernel
resources, use the trace functions (if available) and debug processes.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in uCLinux

No hooks are used in the kernel.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 8

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. This requires that the whole Linux kernel is compiled with debug symbols switched on,
and that the symbols of the “vmlinux” file are loaded.

If you control the compile stage by hand, just switch on debug symbols by adding the option “-g” to gcc. In
most kernel configuration scripts, you have an option “Kernel Hacking” -> “Compile kernel with debug info”
that enables debug symbols to the kernel.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 9

Features

The OS Awareness for uCLinux supports the following features.

Terminal Emulation

TRACE32 Terminal Emulation is available for two interfaces: printk debug outputs and console driver. The
communication via two memory buffers requires no external interface.

The demo directory contains a PRACTICE script file (patch_printk.cmm) to reroute printk outputs to a
TRACE32 terminal. Please adjust the output addresses before using the patch in your application.

To use a terminal emulation as console device, you have to include the TRACE32 serial driver (t32serial.c)
as console driver into your uCLinux image. See the “uclinux.cmm” file for details on starting the terminal.

See also the TERM command for a description of the terminal emulation.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
uCLinux components can be displayed:

TASK.DTask Tasks

TASK.PS “ps” outputs
TASK.MODule Kernel modules
TASK.FS File system internals

For a detailed description of each command, refer to chapter “uCLinux Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 10

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 11

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 12

Symbol Autoloader

The OS Awareness for uClinux contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding uClinux components and the appropriate load
command. Whenever the user accesses an address within an address range specified in the autoloader, the
debugger invokes the appropriate command. The command is usually a call to a PRACTICE script that
loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLoad.List shows a list of all known address ranges/components and their
symbol load commands.

The autoloader can be configured to react only on processes, kernel modules, (all) libraries, or libraries of
the current process (see also TASK.sYmbol.Option AutoLoad). It is recommended to set only those
components you are interested in, because this significantly reduces the time of the autoloader checks.

The autoloader reads the target’s tables for the chosen components and fills the autoloader list with the
components found on the target. All necessary information, such as load addresses, are retrieved from
kernel-internal information.

I sYmbol.AutoLOAD.CHECKLINUX " <action>"

<action> Action to take for symbol load, e.g. "DO autoload"

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

I sYmbol.AutoLOAD.CHECK [ON | OFF]

(no argument) A single sYmbol.AutoLoad.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current process, module or library table are not covered.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 13

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual uClinux | 14

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 15

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

uCLinux specific Menu

The menu file “uclinux.men” contains a menu with uCLinux specific menu items. Load this menu with the
MENU.ReProgram command.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 16

You will find a new menu called uCLinux.

J The Display menu items launch the kernel resource display windows. See chapter “Display of
Kernel Resources”.

J Process Debugging refers to actions related to process based debugging.
See also chapter “Debugging the Process”.

- Use Load Symbols and Delete Symbols to load rsp. delete the symbols of a specific
process. You may select a symbol file on the host with the Browse button. See also
TASK.sYmbol.

- Debug Process on main allows you to start debugging a process on it’'s main() function.
Select this prior to starting the process. Specify the name of the process you want to debug.
Then start the process in your Linux terminal. The debugger will load the symbols and halt at
main(). See also the demo script “app_debug.cmm”.

- Watch Processes opens a process watch window or adds or removes processes from the
process watch window. Specify a process name. See TASK.Watch for details.

. Module Debugging refers to actions related to kernel module based debugging.
See also chapter “Kernel Modules”.

- Use Load Symbols and Delete Symbols to load rsp. delete the symbols of a specific kernel
module. You may select a symbol file on the host with the Browse button. See also
TASK.sYmbol.

. Use the Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

- Use Set Components Checked to specify, which Linux components should be managed by
the autoloader. See also TASK.sYmbol.Option AutoLOAD.

J Linux Terminal opens a terminal window that can be configured prior to opening with Configure
Terminal.
J The Stack Coverage submenu starts and resets the uCLinux specific stack coverage and

provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states, if a trace is available. See also chapter “Task
Runtime Statistics”.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 17

Debugging uCLinux Kernel and User Processes

uClinux runs on physical address spaces. Each user process gets its own unique address space and is
linked to this address when loaded. This linking stage needs some attention when debugging uClinux
processes.

uCLinux Kernel

The uCLinux make process can generate different outputs (e.g. zipped, non-zipped, with or without debug
info). For downloading the uClinux kernel, you may choose whatever format you prefer. However, the
uCLinux awareness needs several kernel symbols, i.e. you have to compile your kernel with debug
information and preserve the resulting kernel file (usually “image.elf”). This file is in ELF format, and all other
kernel images are derived from this file.

Downloading the Kernel

If you start the uClinux kernel from Flash, or if you download the kernel via Ethernet, do this as you are doing
it without debugging.

If you want to download the kernel image using the debugger, you have to specify, to which address to
download it. The uCLinux kernel image is usually located at the physical start address of the RAM
(sometimes the vector table is skipped, check label _stext in the system map).

When downloading a binary image, specify the start address, where to load. E.g., if the physical address
starts at 0x01000000:

Data.LOAD.Binary linux.bin 0x01000000 /nosymbol

When downloading the kernel via the debugger, remember to set startup options that the kernel may
require, before booting the kernel.

Debugging the Kernel

For debugging the kernel itself, and for using the uCLinux awareness, you have to load the symbols of the
kernel into the debugger. The uClinux ELF image contains all addresses linked correctly, so it's enough to

simply load the file:

Data.LOAD.E1f vmlinux /GNU /NoCODE

©1989-2024 Lauterbach OS Awareness Manual uClinux | 18

User Processes

Each user process in uCLinux gets its own memory area, to which the process is linked when loaded.

Note that at every time the uCLinux awareness is used, it needs the kernel symbols. Please see the
chapters above on how to load them. Hence, load all process symbols with the option /NoClear to preserve
the kernel symbols.

Debugging the Process

To correlate the symbols of a user process with the linked addresses of this process, it is necessary to load
the symbols and relocate them to the appropriate addresses.

Manually Load Process Symbols:

The debugger can read out the load addresses of a process and relocate the symbols accordingly. The
option /RELOCTYPE of the Data.LOAD.EIf command instructs the debugger to use the relocation
information on the target. Internally to the Linux Awareness, processes have the type 1, so specify this as
reloctype. Please note that access to the kernel variables must be possible whenever executing this
command.

For example, if you've got a process called “hello™:

Data.LOAD.E1lf hello /NoCODE /NoClear /RELOCTYPE 1

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

TASK.sYmbol .LOAD "hello" ; load symbols and relocate

This command loads the symbols of “hello” and relocates the symbols to the appropriate addresses. See
TASK.sYmbol.LOAD for more information.

Using the Symbol Autoloader:
If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be

automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

sYmbol . AutoLoad.CHECK
sYmbol .AutoLoad.TOUCH "hello"

©1989-2024 Lauterbach OS Awareness Manual uClinux | 19

Debugging a Process From Scratch, Using a Script:

The uCLinux awareness provides the script app_debug . cmm that allows to debug a process from the start.
This script can be found in the path of the uCLinux awareness.

The uCLinux menu offers the same feature in a menu item: uCinux -> Process Debugging -> Debug
Process on main which is based on the app_debug . com script. See also chapter “uCinux Specific
Menu”.

When finished debugging with a process, or if restarting the process, you have to delete the symbols and
restart the application debugging. Delete the symbols with

sYmbol .Delete \\hello

If the autoloader is configured:

sYmbol .AutoLoad.CLEAR "hello"

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

Debugging into Shared Libraries

If the process uses shared libraries, uCLinux loads them into own address areas. The process itself contains
no symbols of the libraries. If you want to debug those libraries, you have to load the corresponding symbols
into the debugger.

Manually Load Library Symbols:

1. Start your process and open a TASK.DTask window.
2. Double-click the magic value of the process that uses the library.
3. Expand the “code files” tree (if available).

A list will appear that shows the loaded libraries and the corresponding load addresses.
4. Load the symbols to this address.

E.g. if the library is called “lib.so” and it is loaded on address 0xff8000, then use the command:

Data.LOAD.El1f lib.so 0xff8000 /GNU /NoCODE /NoClear

Of course, this library must be compiled with debugging information.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 20

Automatically Load Library Symbols:

If a library name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

TASK.sYmbol .LOADLib "hello" "libc.so" ; load symbols

This command loads the symbols of the library “libc.s0”, used by the process “hello”. See
TASK.sYmbol.LOADL.ib for more information.

Using the Symbol Autoloader:
If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be

automatically loaded when accessing an address inside the library. You can also force the loading of the
symbols of a library with

sYmbol .AutoLoad.CHECK
sYmbol .AutoLoad.TOUCH "libc.so"

Debugging uCLinux Threads

uCLinux Threads are implemented as tasks that share the same memory. It is sufficient, to load the debug
information of this process only once to debug all threads of this process. See chapter “Debugging the
Process” for loading the process’ symbols.

There are several different mechanisms how threads are managed inside the Linux kernel. The Linux
Awareness tries to detect them automatically, but this may fail on some systems. If the TASK.DTask window
doesn’t show all threads of a process, declare the threading method manually with the TASK.Option
Threading command.

The TASK.DTask window shows which thread is currently running (“current”).

Kernel Modules

Kernel modules are dynamically loaded and linked by the kernel into the kernel space. If you want to debug
kernel modules, you have to load the symbols of the kernel module and relocate the code and data address
information.

Please see the document “OS Awareness Manual Linux”, chapter “Kernel Modules” for a detailed
description how to load kernel module symbols. Ignore all MMU statements done there.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 21

uCLinux Commands

TASK.DMESG Display the kernel ring buffer
Format: TASK.DMESG [/<option>]
<option>: Level <log_level>

Facility <log_facility>
DETAILED
COLOR

Display the kernel messages in a window similar to the dmesg Linux command.

Level Restrict the displayed log messages to the specified log levels. This
option can be used multiple times. Log levels names or numbers can be
used with this options. Level names: EMERG, ALERT, CRIT, ERR,
WARN, NOTICE, INFO, DEBUG.

Facility Restrict the displayed log messages to the specified log facilities. This
option can be used multiple times. Log facility names or numbers can be
used with this options. Facility names: KERN, USER, MAIL, DAEMON,
AUTH, SYLOG, LPR, NEWS.

DETAILED Display the log level and facility as readable strings.

COLOR Enable the coloring of the log messages according to the log level and
facility.

TASK.DTask Display tasks

Format: TASK.DTask [<task>]

Displays the task table of uCLinux or detailed information about one specific task.
“Tasks” are activated processes.
Without any arguments, a table with all created tasks will be shown.
©1989-2024 Lauterbach OS Awareness Manual uClinux | 22

Specify a task name, ID or magic humber to display detailed information on that task.

o B:TASK.DTask =n| Wl <
mag1 command state uid pid tty [T1ags nice |
01072000 [swapper running 0. 0. | 0 [0O0OO100 20. | o
010FEDOO [init sleeping 0. 1. | 0 |00000100 0.
010FCO00 |keventd =leeping 0. 2. | O |00DO0040 0. ||
010F8000 |ksoftirgd_CPUD |sTeeping 0. 3. | 0O |00DO0040 19.
010F&000 |kswapd =leeping 0. 4. | 0 |00D00B40 0.
010F4000 |bdfTush =leeping 0. 5. | 0 |00000040 0.
010F2000 |kupdated =leeping 0. 6. | O |00000040 0.
010C6000 |sh running 0. 14. |50 00000000 0.
01102000 [hello current 0. 17. |50 00000000 0.
]
o BiiTask.DTask "hello” =n| Wl <
magic command state uid pid tty [T1ags nic_
01102000 [hello [current | 0. 17.[50 (00000000 | ~
gid sigpending wvm size tth tty name path
0. 00000DOD 00O0DOODO - tty50 /bin/hello
T
= younges hild vounger sibling older sibling
PATH=/bin:/usr/bin:fetc:/sbin:fusr/shin
=] open files
console
= size data addr/size stack start
/ 00001100 011C9214 [/ 00000110 O11CEFSS
¥ es
F times
4 m 3

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task struct).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it

will show a local menu.

TASK.DTB

Display the device tree blob

Format: TASK.DTB

Display the device tree blob as a tree view.

TASK.DTS

Display the device tree source

Format: TASK.DTS

Display the source code of the device tree.

©1989-2024 Lauterbach

OS Awareness Manual uClinux | 23

TASK.FS Display file system internals

Format: TASK.FS.<sub_cmd>

<sub_cmd>: Types | MountDevs | PROC

This command displays internal data structures of the used file systems.See the appropriate command
description for details.

TASK.FS.MountDevs Display mounted devices

Format: TASK.FS.MountDevs

This command displays all currently mounted devices (i.e. super blocks).

TASK.FS.PROC Display /proc file system

Format: TASK.FS.PROC

This command displays the contents of the “/proc” file system (procfs), even if it is not mounted.

TASK.FS.Types Display file system types

Format: TASK.FS.Types

This command displays the all file system types that are currently registered in the uCLinux kernel.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 24

TASK.MODule Display kernel modules

Format: TASK.MODule

Displays a table with all loaded kernel modules of uCLinux. The display is similar to the output of “lsmod”.

% B:TASK.MODule = =R
magic name size code addr data addr used by |
6850000 pcmcia_core 537984, [CeB5D060 CEB6597C 0. Cunused) .
017B2584 0. CO17BZE4 COL77Fa0 1. (unused)

£ >

“magic” is a unique ID, used by the OS Awareness to identify a module (address of the module struct).
“code addr” and “data addr” specify the address of the .text segment rsp. the .data segment.

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.MAPS Display process maps

Format: TASK.MAPS <process>

Display the mapped memory regions and their access permissions similar to the /proc/[pid)/maps file.

TASK.NET Display network devices

Format: TASK.NET

Display network devices.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 25

TASK.Option

Set awareness options

Format:

<option>:

TASK.Option <option>

Threading <threading> [ON | OFF]
NameMode [comm | TaskName | ARGO | ARGOCOMM)]
THRCTX [ON | OFF]

Sets various options to the awareness.

Threading Set the Threading type used by Linux.
TGROUP: threads are organized by the thread_group list.
See also chapter “Debugging Threads”.

NameMode Set the mode how the task names are evaluated.
comm: use the “comm” field in the task structure (default).
TaskName: use the name evaluated by TASK.NAME and “comm” (allows
renaming of the tasks with TASK.NAME.Set).
ARGO: use the arg[0] statement of the process call.
ARGOCOMM: use arg[0] as process name and “comm” as thread name
(suitable for Android)

THRCTX Set the context ID type that is recorded with the real-time trace (e.g.
ETM).
If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

TASK.PS Display “ps” output
Format: TASK.PS <items>
<items>: pid | ppid | uid | sid | pgid | cmd | pri | flags | tty | time | stat | nice | stackp |

tmout | alarm | pending | blocked | vsz | rss | start | majflt | minflt | trs | drs
| rss | count | nswap | ttb

Displays the process table of uCLinux.

©1989-2024 Lauterbach

OS Awareness Manual uClinux | 26

The display is similar to the output of the “ps” shell command.

&% B:TASK.PS pid ppid uid tty flags time nice count stat cmd EI
|[conFG.... |
id id |uid [tty nice |[count |state command =
0. 0. 0. [- 20. [-100. [running |[[swapper] L
1. 0. 0. | - 0. 9. [sTeeping |[1nit —
2. 1. 0. | - 0. 9. [sTeeping |[keventd]
3. 0. 0. | - 19, 1. |sTeeping |[ksoftirqd_CPUD]
4. 0. 0. | - 0. 9. [sTeeping |[kswapd] =
5. 0. 0. | - 0. 7. |sTeeping |[bdflush]
6. 0. 0. | - 0. 7. |sTeeping |[kupdated]
14, 1. 0. [ttys0 0. 4. running |[/bin/sh
17. 14, 0. [ttys0 0. 5. [current |hello
[1] +

©1989-2024 Lauterbach

OS Awareness Manual uClinux

27

TASK.sYmbol Process/Module symbol management

The TASK.sYmbol command group helps to load and unload symbols of a given process or kernel module.
In particular the commands are:

TASK.sYmbol.LOAD Load process symbols
TASK.sYmbol.DELete Unload process symbols
TASK.sYmbol.LOADMod Load module symbols
TASK.sYmbol.DELeteMod Unload module symbols
TASK.sYmbol.LOADLib Load library symbols
TASK.sYmbol.DELeteLib Unload library symbols

TASK.sYmbol.Option Set symbol management options
TASK.sYmbol.DELete Unload process symbols
Format: TASK.sYmbol.DELete <process>

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process.

<process> Specify the process name or path (in quotes) or magic to unload the
symbols of this process.

Example: When deleting the above loaded symbols with the command:

TASK.sYmbol .DELete "hello"

the debugger will internally execute the commands:

sYmbol .Delete \\hello

©1989-2024 Lauterbach OS Awareness Manual uClinux | 28

TASK.sYmbol.DELeteLib Unload library symbols

Format: TASK.sYmbol.DELeteLib <process> <library>

As first parameter, specify the process to which the desired library belongs (name in quotes or magic).
Specify the library name in quotes as second parameter. The library name must match the name as shown
in TASK.DTASK <process>, “code files”.

When debugging of a library is finished, or if the library is removed from the kernel, you should remove
loaded library symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified library.

Example:

TASK.sYmbol .DELeteLib "hello" "libc-2.2.1.so"

See also chapter “Debugging Into Shared Libraries”

TASK.sYmbol.DELeteMod Unload module symbols

Format: TASK.sYmbol.DELeteMod <module>

Specify the module name (in quotes) or magic to unload the symbols of this kernel module.

When debugging of a module is finished, or if the module is removed from the kernel, you should remove
loaded module symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified module.

Example:

TASK.sYmbol .DELeteMod "pcmcia_core"

See also chapter “Debugging Kernel Modules”

©1989-2024 Lauterbach OS Awareness Manual uClinux | 29

TASK.sYmbol.LOAD Load process symbols

Format: TASK.sYmbol.LOAD <process>

Specify the process name or path (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process (see chapter “Debugging
User Processes”).

This command retrieves the appropriate addresses, loads the symbol file of an existing process and
relocates the symbol information. Note that this command works only with processes that are already
loaded in uCLinux (i.e. processes that show up in the TASK.DTask window).

Example:
If the TASK.DTask window shows the entry:

magic | command_ | state |uid |pid |tty| flags |nice_ |
80044000 |hello |current | 0. 24.] 0 [00000000] 0.

the command:

TASK.sYmbol .LOAD "hello"

will internally execute the commands:

Data.LOAD.E1f hello /GNU /NoCODE /NoClear /RELOC .text at O0x..

If the symbol file is not within the current directory, specify the path to the ELF file. E.g.:

TASK.sYmbol.LOAD "C:\mypath\hello"

Loads the ELF file “C:\mypath\hello” of the process “hello”. Note that the process name must equal to the
filename of the ELF file.

TASK.sYmbol.LOADLIib Load library symbols

Format: TASK.sYmbol.LOADLIib <process> <library>

As first parameter, specify the process to which the desired library belongs (name in quotes or magic).

©1989-2024 Lauterbach OS Awareness Manual uClinux | 30

Specify the library name in quotes as second parameter. The library name must match the name as shown
in TASK.DTASK <process>, “code files”.

In order to debug a library, the debugger needs the symbols of this library, relocated to the correct addresses
where Linux linked this library. This command retrieves the appropriate load addresses and loads the .so
symbol file of an existing library. Note that this command works only with libraries that are already loaded in
Linux (i.e. libraries that show up in the TASK.DTASK <process> window).

Example:

TASK.sYmbol .LOADLib "hello" "libc-2.2.1.so0"

See also chapter “Debugging Into Shared Libraries”

TASK.sYmbol.LOADMod Load module symbols

Format: TASK.sYmbol.LOADMod <module>

Specify the module name (in quotes) or magic to load the symbols of this module.
In order to debug a kernel module, the debugger needs the symbols of this module (see chapter “Debugging
Kernel Modules”).

This command retrieves the appropriate load addresses and loads the .0/.ko symbol file of an existing
module. Note that this command works only with modules that are already loaded in uCLinux (i.e. modules
that show up in the TASK.MODule window).

Example:

TASK.sYmbol . LOADMod "pcmcia_core"

See also chapter “Debugging Kernel Modules”

©1989-2024 Lauterbach OS Awareness Manual uClinux | 31

TASK.sYmbol.Option Set symbol management options

Format: TASK.sYmbol.Option <option>

<option>: LOADCMD <command>
LOADMCMD <command>
LOADLCMD <command>
AutoLoad <option>

Sets a specific option to the symbol management.

LOADCMD:

This setting is only active, if the symbol autoloader for processes is off.

TASK.sYmbol.LOAD uses a default load command to load the symbol file of the process. This loading
command can be customized using this option with the command enclosed in quotes. Two parameters are
passed to the command in a fixed order:

%S name of the process
YoV space ID of the process
Examples:

TASK.sYmbol .Option LOADCMD "data.load.elf %$s 0x%x:0 /NoCODE /NoClear"

TASK.sYmbol .Option LOADCMD "do myloadscript %s 0x%x"

LOADMCMD:

This setting is only active, if the symbol autoloader for kernel modules is off.

TASK.sYmbol.LOADMod uses a default load command to load the symbol file of the module. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters are
passed to the command in a fixed order:

Examples:

TASK.sYmbol .Option LOADMCMD "data.load.elf %s /NoCODE /NoClear /gcc3
/reloc .text at 0x%x /reloc .data at 0x%x /reloc .bss after .data"

TASK.sYmbol .Option LOADMCMD "do myloadmscript %s 0x%x 0x%x"

%S name of the module
YoX start (=code) address of the module
YoX data address of the module (if applicable)

©1989-2024 Lauterbach OS Awareness Manual uClinux | 32

LOADLCMD:

This setting is only active, if the symbol autoloader for libraries is off.

TASK.sYmbol.LOADLIb uses a default load command to load the symbol file of the library. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters are

passed to the command in a fixed order:

%S name of the library

YoX space ID of the library

YoX oad address of the library
Examples:

TASK.sYmbol.Option LOADLCMD "D.LOAD.Elf %s 0x%x:0x%x /NoCODE /NoClear"

TASK.sYmbol.Option LOADMCMD "do myloadlscript %s 0x%x 0x%x"

Autoload:
This option controls, which components are checked and managed by the AutoLoader:

Process check processes

Library check all libraries of all processes

Module check kernel modules

CurrLib check only libraries of current process

ALL check processes, libraries and kernel modules
NoProcess don’t check processes

NolLibrary don’t check libraries

NoModule don’t check modules

NONE check nothing.

The options are set *additionally*, not removing previous settings.
Example:

; check processes and kernel modules
TASK.sYmbol.Option AutoLoad Process
TASK.sYmbol .Option AutoLoad Module

©1989-2024 Lauterbach OS Awareness Manual uClinux | 33

TASK.VMAINFO Display vmalloced areas

Format: TASK.VMAINFO

©1989-2024 Lauterbach OS Awareness Manual uClinux | 34

TASK.Watch

Watch processes

(Not available for all processors!)

The TASK.Watch command group build a watch system that watches your uClinux target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the watch commands are:

TASK.Watch.View
TASK.Watch.ADD
TASK.Watch.DELete
TASK.Watch.DISable
TASK.Watch.ENable
TASK.Watch.DISableBP
TASK.Watch.ENableBP
TASK.Watch.Option

Activate watch system and show watched processes
Add process to watch list

Remove process from watch list

Disable watch system

Enable watch system

Disable process creation breakpoints

Enable process creation breakpoints

Set watch system options

©1989-2024 Lauterbach

OS Awareness Manual uClinux | 35

TASK.Watch.ADD Add process to watch list

Format: TASK.Watch.ADD <process>

Adds a process to the watch list.

<process> Specify the process name (in quotes) or magic.

Please see TASK.Watch.View for details.

TASK.Watch.DELete Remove process from watch list

Format: TASK.Watch.DELete <process>

Removes a process from the watch list.

<process> Specify the process name (in quotes) or magic.

Please see TASK.Watch.View for details.

TASK.Watch.DISable Disable watch system

Format: TASK.Watch.DISable

Disables the complete watch system. The watched processes list is no longer checked against the target
and is not updated. You'll see the TASK.Watch.View window grayed out.

This feature is useful if you want to keep process symbols in the debugger, even if the process terminated.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 36

TASK.Watch.DISableBP Disable process creation breakpoints

Format: TASK.Watch.DISableBP

Prevents the debugger from setting on-chip breakpoints for the detection of process creation. After executing
this command, the target will run in real time. However, the watch system can no longer detect process
creation. Automatic loading of process symbols will still work.

This feature is useful if you'd like to use the on-chip breakpoints for other purposes.

Please see TASK.Watch.View for details.

TASK.Watch.ENable Enable watch system

Format: TASK.Watch.ENable

Enables the previously disabled watch system. It enables the automatic loading of process symbols as well
as the detection of process creation.

Please see TASK.Watch.View for details.

TASK.Watch.ENableBP Enable process creation breakpoints

Format: TASK.Watch.ENable

Enables the previously disabled on-chip breakpoints for detection of process creation.

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 37

TASK.Watch.Option Set watch system options

Format: TASK.Watch.Option <option>

<option>: BreakFunC <function>

Set various options to the watch system.

BreakFunC Set the breakpoint location for process creation detection.

Depending on the target CPU, this may be “start_thread” or “set_binfmt”.
Example:

TASK.Watch.Option BreakFunC set_binfmt

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 38

TASK.Watch.View

Show watched processes

Format:

TASK.Watch.View [<process>]

Activates the watch system for processes and shows a table of the watched processes.

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.
&% B:TASKWatch\View =N R <"
[Enable || DiSable || EnableBP || DISablesP |
process spaceid |state entry i
heTToToop 0066 [Toaded main i
s51eve - no process -
busybox 0063 |no symbols | —-
;
<process> Specify a process name for the initial process to be watched.

Description of Columns in the TASK.Watch.View Window

process

The name of the process to be watched.

state

The current watch state of the process.

If grayed, the debugger is currently not able to determine the watch state.

no process: The debugger couldn’t find the process in the current uClinux process
list.

no symbols: The debugger found the process but couldn’t load the symbols of the
process (most likely because the corresponding symbol files were missing).
loaded: The debugger found the process and loaded the symbols of the process.

entry The process entry point, which is main ().
If grayed, the debugger is currently not able to detect the entry point or is unable
to set the process entry breakpoint (e.g. because it is disabled with

TASK.Watch.DISableBP).

The watch system for processes is able to automatically load and unload the symbols of a process,
depending on their state in the target. Additionally, the watch system can detect the creation of a process
and halts the process at its entry point.

TASK.Watch.ADD
TASK.Watch.DELete

Adds processes to the watch list.

Removes processes from the watch list.

The watch system for processes is active as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 39

Automatic Loading and Unloading of Process Symbols

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be grayed
out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system loads the
appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process.

If a watched process was previously loaded but is no longer found on the Linux process list, the watch
system unloads the symbols. The watch system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded and is now found with another process ID (e.g. if the process
terminated and started again), the watch system first removes the process symbols and reloads them.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

Detection of Process Creation

To halt a process at its main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets an on-chip breakpoint on a kernel function that is
called upon creation of processes. Every time the breakpoint is hit, the debugger checks if a watched
process is started. If not, it simply resumes the target application. If the debugger detects the start of a newly
created (and watched) process, it sets an on-chip breakpoint onto the main entry point of the process
(main ()) and resumes the target application. A short while after this, the main breakpoint will hit and halt
the target at the entry point of the process. The process is now ready to be debugged.

NOTE: This feature uses one permanent on-chip breakpoint and one temporary on-chip
breakpoint when a process is created. Please ensure that at least those two
on-chip breakpoints are available when using this feature.

Upon every process creation, the target application is halted for a short time and
resumed after searching for the watched processes. This impacts the real-time
behavior of your target.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.Watch.DISableBP. Of course, detection of process creation won’t work then.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 40

uCLinux PRACTICE Functions

There are special definitions for uCLinux specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.ERROR.CODE() Error code

Syntax: TASK.ERROR.CODE()

Checks for Awareness errors and returns the error code.
Return Value Type: Hex value.

Return Value and Description:

0 No error.

1 Failed to detect kernel symbols.

2 Failed to detect kernel structures.

4 Failed to detect kernel structure members.
8 Pointer size does not fit.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 41

TASK.ERROR.HELP() Error help ID

Syntax: TASK.ERROR.HELP()

Checks for Awareness errors and returns the error help ID.

Return Value Type: String.

TASK.LIB.ADDRESS() Load address of library

Syntax: TASK.LIB.ADDRESS("<library_name>", <process_magic>)

Returns the load address of the library, loaded by the specified process.

Parameter and Description:

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.LIB.CODESIZE() Code size of library

Syntax: TASK.LIB.CODESIZE(" <library_name>", <process_magic>)

Returns the code size of the library, loaded by the specified process.

Parameter and Description:

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.MOD.CODEADDR() Code start address of module

Syntax: TASK.MOD.CODEADDR(<module_name>)

Returns the code start address of the module.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 42

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.MOD.DATAADDR() Data start address of module

Syntax: TASK.MOD.DATAADDR(<module_name>)

Returns the data start address of the module.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.MOD.MAGIC() Magic value of module

Syntax: TASK.MOD.MAGIC(<module_name>)

Returns the “magic” value of the module.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.MOD.NAME() Name of module magic

Syntax: TASK.MOD.NAME(<module_magic>)

Returns the name of the given module magic.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 43

TASK.MOD.SECTION() Address of module

Syntax: TASK.MOD.SECTION(" <section_name>","<module_magic>")

Returns the address of the section of the specified module.

Parameter and Description:

<section_name> Parameter Type: String (with quotation marks).

<module_magic> Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.CODEADDR) Code start address of process

Syntax: TASK.PROC.CODEADDR(" <process_name>")

Returns the code start address of the process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.CODESIZE() Code size of process

Syntax: TASK.PROC.CODESIZE(" <process_name>")

Returns the code size of the process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 44

TASK.PROC.DATAADDR() Data start address of process

Syntax: TASK.PROC.DATAADDR(" <process_name>")

Returns the data start address of the process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.DATASIZE() Data size of process

Syntax: TASK.PROC.DATASIZE(" <process_name>")

Returns the data size of the process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.MAGIC() Magic value of process

Syntax: TASK.PROC.MAGIC("<process_name>")

Returns the “magic” value of the process.
Parameter Type:String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.NAME() Name of process

Syntax: TASK.PROC.NAME(<process_magic>)

Returns the name of the specified process.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 45

TASK.PROC.PSID() Process ID of process

Syntax: TASK.PROC.PSID("<process_name>")

Returns the process ID of the specified process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual uClinux | 46

	OS Awareness Manual uClinux
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in uCLinux

	Features
	Terminal Emulation
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Symbol Autoloader
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	uCLinux specific Menu

	Debugging uCLinux Kernel and User Processes
	uCLinux Kernel
	Downloading the Kernel
	Debugging the Kernel

	User Processes
	Debugging the Process
	Debugging into Shared Libraries
	Debugging uCLinux Threads

	Kernel Modules

	uCLinux Commands
	TASK.DMESG Display the kernel ring buffer
	TASK.DTask Display tasks
	TASK.DTB Display the device tree blob
	TASK.DTS Display the device tree source
	TASK.FS Display file system internals
	TASK.FS.MountDevs Display mounted devices
	TASK.FS.PROC Display /proc file system
	TASK.FS.Types Display file system types
	TASK.MODule Display kernel modules
	TASK.MAPS Display process maps
	TASK.NET Display network devices
	TASK.Option Set awareness options
	TASK.PS Display “ps” output
	TASK.sYmbol Process/Module symbol management
	TASK.sYmbol.DELete Unload process symbols
	TASK.sYmbol.DELeteLib Unload library symbols
	TASK.sYmbol.DELeteMod Unload module symbols
	TASK.sYmbol.LOAD Load process symbols
	TASK.sYmbol.LOADLib Load library symbols
	TASK.sYmbol.LOADMod Load module symbols
	TASK.sYmbol.Option Set symbol management options
	TASK.VMAINFO Display vmalloced areas
	TASK.Watch Watch processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.Option Set watch system options
	TASK.Watch.View Show watched processes

	uCLinux PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.ERROR.CODE() Error code
	TASK.ERROR.HELP() Error help ID
	TASK.LIB.ADDRESS() Load address of library
	TASK.LIB.CODESIZE() Code size of library
	TASK.MOD.CODEADDR() Code start address of module
	TASK.MOD.DATAADDR() Data start address of module
	TASK.MOD.MAGIC() Magic value of module
	TASK.MOD.NAME() Name of module magic
	TASK.MOD.SECTION() Address of module
	TASK.PROC.CODEADDR() Code start address of process
	TASK.PROC.CODESIZE() Code size of process
	TASK.PROC.DATAADDR() Data start address of process
	TASK.PROC.DATASIZE() Data size of process
	TASK.PROC.MAGIC() Magic value of process
	TASK.PROC.NAME() Name of process
	TASK.PROC.PSID() Process ID of process

