LAUTERBACH A

OS Awareness Manual
MicroC3/Compact

OS Awareness Manual MicroC3/Compact

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual MicroC3/Compactccccucemmiiismnnssminssnisssess s s s snsmssaas 1
L 1= (o 3

O oY = 3
Brief Overview of Documents for New Users 4
Supported Versions 4
L0704} T 11T = Lo o 5
Quick Configuration Guide 6
Hooks & Internals in MicroC3/Cmp 6
=Y 1 = 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Dynamic Task Performance Measurement 9
Task Runtime Statistics 9
Function Runtime Statistics 10
MicroC3/Cmp specific Menu 11
MicroC3/Cmp COMMANAScoiiiumriiimnisimsrsssmsesssmsssssasssssasssassms sasms s s s msssssms s e s smnasasmmseasannsasnmnnss 12
TASK.CYClic Display cyclic handlers 12
TASK.DaTaQueue Display data queues 12
TASK.FLaG Display event flags 13
TASK.MailBoX Display mailboxes 13
TASK.MemPoolF Display fixed memory pools 14
TASK.SEMaphore Display semaphores 14
TASK.TaSK Display tasks 15
MicroC3/Cmp PRACTICE FUNCHONSooiiieiiiiiiincn s s s s s snsmn s 16
TASK.CONFIG() OS Awareness configuration information 16
TASK.ADDR() Control block address of object ID 16
TASK.CADDR() Constant block address of object ID 16
©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact 2

OS Awareness Manual MicroC3/Compact

History

Version 06-Jun-2024

28-Aug-18
Manual <x>".

Overview

The title of the manual was changed from “RTOS Debugger for <x>" to “OS Awareness

A TRACE32 for pC3/Compact
File Edit View Var Break Run CPU Misc

MK (4| »u[E 2w

Trace Perf Cov S5TM32F2x uC3Cmp Window Help

s s @z P

(=[O sl

r — —
o B:TASKTasK [= (& | & B:TASKSEMaphore o [o B:TASKFLaG 'DFLAG" [= |[&][|
nd_|state Il LT id _ [count max__ |walt name —'JJ—'—'—1d attern waitname | = |

11. [waiting tmr 3. [ID_MAIN_TASK 15. /0. 1. TD_USARTS_T5em | | 18- (00000002 ID_FLAGZ -
12. waiting tmr 4, |ID_TaskLed 16. |0_ |1_ | ID_USART3_RSEM .
13. |dormant 0. |ID_Tasksnd - - attributes
14. |dormant 0. |ID_TaskRecv TFIFO WwMUL CLR
I] [T initial
% BiTASK.TaSK "ID_Taskled” | = |[= |[§ 0000000,
o [d_[state prio [name |,rl_| -

1Z. [waiting tmr [4. [ID_TaskLed ~

&% B:TASK.CYClic

[=][@][=]| '

attributes 1d cycle |[phaze [left status [name handler |
TA_HLNG 27. [10. 1. FFFFFFE? |[stop 20009A70 cyc_funcl .
28. [1z. 3. 00000003 |start 20009472 cyc_funcz
initial prio timeout
4. 000000CE] i b
counter activation wakeup Em
0. 0. 3 ol B:Trace CHART.TASK =n| Wl <
entry point extra info symbol [& seup...][iﬁ(}mpﬁ]m Qonfig... (Y Goto...|[#3Find... | 4» In |[p4.0ut|[MMFull
~0UUZI98 vobubbot Taskl 750ms -240.700ms -240.650ms -240.600ms -240.550ms
I o e range | I I I I I
stack size pointer Tunknown) &K I
Z000AD8E 00000080 2000ADS0 ID_MAIN_TASKRH -
o : ID_Taskled k) N
e e 0.4 T e——
none L L I
4 1 S 4 0m x4 2
o BrTASK.STack [o =] =]
name | low high =p % [lowest spare max [0 10 20 30 40 50 &0 7O |
ID_MAIN_TASK |2000AAB8 2000AESS 46% [2000AB14 0000008C 45% ~
ID_TasklLed (2000AD88 Z000AEOQS 93% |2000ADS94 0000000C 90%
ID_TaskSnd [2000ABE88 2000ACES 2000AC88 00000100 0% =
ID_TaskRcv (200084C8 20004648 20004648 00000180 0%
(other) 20008760
] 1 ¢
E::TASK.|
[Task | [sEMaphore| [FlaG | paTaQueud [MaiBoX | [MemPooF] [cycic | pravious
ST:20003450 || sample Glaball_kemel_ dispaii+ 0l 0. stopped MIX |UP

The OS Awareness for yC3/Compact contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual MicroC3/Compact | 3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently pC3/Compact is supported for the following versions:

. pC3/Compact v2 on ARM architecture.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “uc3cmp.t32” (directory
“~~/demo/<processor>/kernel/uc3cmp”). It contains all necessary extensions.

Automatic configuration tries to locate the pyC3/Cmp internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG uc3cmp

See also “Hooks & Internals” for details on the used symbols.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 5

Quick Configuration Guide

To get a quick access to the features of the yC3/Cmp OS Awareness with your application, follow the
following roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command “TASK.CONFIG ~~/demo/<cpu>/kernel/uc3cmp/uc3cmp.t32”
(See “Configuration”).

4. Execute the command “MENU . ReProgram ~~/demo/<cpu>/kernel/uc3cmp/uc3cmp.men”
(See “RTOS Specific Menu”).

5. Start your application.
Now you can access the uC3/Cmp extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in MicroC3/Cmp

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The pC3/Cmp kernel must be compiled with debug information.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 6

Features

The OS Awareness for yC3/Cmp supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
NORTi components can be displayed:

TASK.TaSK Tasks

TASK.SEMaphore Semaphores
TASK.FLaG Event flags
TASK.DaTaQueue Data queues
TASK.MailBoX Mailboxes
TASK.MemPoolF Fixed sized memory pools
TASKCYClic Cyclic handlers

For a description of the commands, refer to chapter “MicroC3/Cmp Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 8

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual MicroC3/Compact | 9

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 10

MicroC3/Cmp specific Menu

The menu file “uc3cmp.men” contains a menu with yC3/Cmp specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called uC3Cmp.
. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the uC3Cmp specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 11

MicroC3/Cmp Commands

TASK.CYClic Display cyclic handlers

Format: TASK.CYClic

Displays the table of installed cyclic handlers.

% BuTASK.CYClic o -E =]

1d cycle |[phaze [left status [name handler |
27. [10. 1. 00000000 [(stop ID_CYC1 20009A70 cyc_funcl ~
28. [1z. 3. 00000004 |start |ID_CYCZ 20009472 cyc_funcz

4 1 b

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

TASK.DaTaQueue Display data queues

Format: TASK.DaTaQueue [<queue>]

Displays the data queue table of yC3/Cmp or detailed information about one specific data queue.

Without any arguments, a table with all created data queues will be shown.
Specify a data queue ID or name to display detailed information on that data queue.

5?. B::TASK.DaTaQueue EI@
1d count |max waiting |name |
19. |0. 10. ID_USRDTQ1
21. |0. 8. rov: 25. |ID_USRDTQZ2

4 1 b

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 12

TASK.FLaG Display event flags

Format: TASK.FLaG [<flag>]

Displays the event flag table of uC3/Cmp or detailed information about one specific event flag.

Without any arguments, a table with all created event flags will be shown. Specify a flag ID or name to
display detailed information on that flag.

o BETASK.FLaG =N R

hd attern waitin name
17. |00000000 (24, ID_FLAGL
18. |00000002 ID_FLAGZ
o B:TASK.FLaG "ID_FLAG?" [= |[& |[=234]
1 LI} H hd attern |waiting [name
18. |00000002 ID_FLAGZ2

TFIFO WWUL CLR

(LN

4 1 b

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MailBoX Display mailboxes

Format: TASK.MailBoX [<mailbox>]

Displays the mailbox table of yC3/Cmp or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown.
Specify a mailbox ID or name to display detailed information on that mailbox.

o B:TASK.MailBoX =n| Wl <

hd message waiting |name |
23. |00000000 |21. TD_Mbx1 ~
24, |00000000 ID_Mbx2

4 1 b

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 13

TASK.MemPoolF Display fixed memory pools

Format: TASK.MemPoolF [<mempool]

Displays the fixed size memory pool table of uC3/Cmp or detailed information about one specific memory
pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a pool ID or name to display detailed information on that memory pool.

o B:TASK.MemPoolF El-@
1d blkcnt [blksize |blkfree waiting |[name

25. [10. 32. 10. ID_MPF1

26. |4, 64, 4. ID_MPFZ

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore [<semaphore>]

Displays the semaphore table of pC3/Cmp or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown. Specify a semaphore ID or
name to display detailed information on that semaphore.

o B:TASK.SEMaphore =n| Wl <

d count |max waiting |name |
1. 21. ID_USART3_TSEM ~
ID_USART3_RSEM

e o

i | & B:TASK.SEMaphore "ID_USART3_TSEM" E-@

1d count |max waiting |nam
i5. 0. 1. |21. [T USARTS _TSEM

FIFO

[

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 14

TASK.TaSK Display tasks

Format: TASK.TaSK [<task>]

Displays the task table of uC3/Cmp or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task ID or name to display detailed information on that task.

o B:TASK.TasK [= | @ |3 || o B:TASK.TaSK "ID_Taskled" | = |[= |[m23]
1d state prio [name | 1d state prio [name

11. [running 3. |[ID_MAIN_TASK ~ 1Z. [ready | 4. [ID_TaskLed L
12. |ready 4. |ID_TaskLed

13. |dormant 0. (ID_Tasksnd attributes

14. |dormant 0. |ID_TaskRecv TA_HLNG USR ACT

P m v initial prio timeout

4. [V

m

counter activation wakeup
0. 0.

entry point extra info symbo]
20009998 [V Taskl

stack size pointer
2000ADSS 00000080 2000AEQS

waiting object
none

4 I 2

The fields “id” and “entry” are mouse sensitive, double clicking on them opens appropriate windows. Right
clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 15

MicroC3/Cmp PRACTICE Functions

There are special definitions for yC3/Cmp specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.ADDR() Control block address of object ID

Syntax: TASK.ADDR(<id>)

Returns the control block address of the given object ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.CADDR() Constant block address of object ID

Syntax: TASK.CADDR(<id>)

Returns the constant block address of the given object ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Compact | 16

	OS Awareness Manual MicroC3/Compact
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in MicroC3/Cmp

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	MicroC3/Cmp specific Menu

	MicroC3/Cmp Commands
	TASK.CYClic Display cyclic handlers
	TASK.DaTaQueue Display data queues
	TASK.FLaG Display event flags
	TASK.MailBoX Display mailboxes
	TASK.MemPoolF Display fixed memory pools
	TASK.SEMaphore Display semaphores
	TASK.TaSK Display tasks

	MicroC3/Cmp PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.ADDR() Control block address of object ID
	TASK.CADDR() Constant block address of object ID

