
MANUAL

OS Awareness Manual RTEMS

OS Awareness Manual RTEMS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual RTEMS ... 1

 Overview .. 4

 Terminology 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Quick Configuration Guide 6

 Hooks & Internals in RTEMS 7

 Features ... 8

 Display of Kernel Resources 8

 Task Stack Coverage 8

 Task-Related Breakpoints 9

 Dynamic Task Performance Measurement 10

 Task Runtime Statistics 11

 Task State Analysis 12

 Function Runtime Statistics 13

 RTEMS specific Menu 15

 RTEMS Commands ... 16

 TASK.INFO Display API information 16

 TASK.INTernal.Mutex Display internal mutexes 16

 TASK.INTernal.Thread Display internal threads 17

 TASK.Posix.CondVar Display POSIX condition variables 17

 TASK.Posix.Mutex Display POSIX mutexes 18

 TASK.CLassic.Extension Display RTEMS extensions 18

 TASK.CLassic.MsgQueue Display RTEMS message queues 19

 TASK.CLassic.Partition Display RTEMS partitions 19

 TASK.CLassic.PEriod Display RTEMS periods 20

 TASK.CLassic.POrt Display RTEMS ports 20

 TASK.CLassic.Region Display RTEMS regions 21

 TASK.CLassic.Semaphore Display RTEMS semaphores 21

 TASK.CLassic.Task Display RTEMS tasks 22

 TASK.CLassic.TImer Display RTEMS timers 23
OS Awareness Manual RTEMS | 2©1989-2024 Lauterbach

 TASK.Thread Display all threads 23

 RTEMS PRACTICE Functions .. 25

 TASK.CONFIG() OS Awareness configuration information 25

 TASK.CLassic.TASKMAX() Max. number of tasks 25

 TASK.CLassic.TASKLIST() RTEMS task list 25

 TASK.CLassic.TASKNAME() Name of RTEMS task 26

OS Awareness Manual RTEMS | 3©1989-2024 Lauterbach

OS Awareness Manual RTEMS

Version 06-Jun-2024

Overview

The OS Awareness for RTEMS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

RTEMS uses the terms “tasks” and “threads”. If not otherwise specified, the TRACE32 term “task”
corresponds to both, RTEMS tasks and threads.
OS Awareness Manual RTEMS | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently RTEMS is supported for the following versions:

• RTEMS 4.6 to 5.3 on ARM, ColdFire, NIOS-II, PowerPC and RISC-V
OS Awareness Manual RTEMS | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “rtems.t32” (directory
“~~/demo/<processor>/kernel/rtems”). It contains all necessary extensions.

The configuration tries to locate the RTEMS internals automatically. For this purpose, the kernel symbols
must be loaded and accessible at any time the OS Awareness is used (see also “Hooks & Internals”).

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. Enable SYStem.MemAccess or SYStem.CpuAccess (CPU
dependent).

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for RTEMS with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.

2. Load your application as normal.

3. Execute the command:

See “Configuration”.

4. Execute the command:

See “RTEMS Specific Menu”.

5. Start your application.

Now you can access the RTEMS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

TASK.CONFIG ~~/demo/<arch>/kernel/rtems/rtems.t32

TASK.CONFIG ~~/demo/<arch>/kernel/rtems/rtems.t32

MENU.ReProgram ~~/demo/<arch>/kernel/rtems/rtems.t32
OS Awareness Manual RTEMS | 6©1989-2024 Lauterbach

Hooks & Internals in RTEMS

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.
OS Awareness Manual RTEMS | 7©1989-2024 Lauterbach

Features

The OS Awareness for RTEMS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
RTEMS components can be displayed:

For a description of the commands, refer to chapter “RTEMS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

TASK.CLassic.Extension RTEMS extensions

TASK.CLassic.MsgQueue RTEMS message queues

TASK.CLassic.Partition RTEMS partitions

TASK.CLassic.PEriod RTEMS periods

TASK.CLassic.POrt RTEMS ports

TASK.CLassic.Region RTEMS regions

TASK.CLassic.Semaphore RTEMS semaphores

TASK.CLassic.Task RTEMS tasks

TASK.CLassic.TImer RTEMS timers

TASK.INFO API information

TASK.INTernal.Mutex Internal mutexes

TASK.INTernal.Thread Internal threads

TASK.Posix.CondVar POSIX condition variables

TASK.Posix.Mutex POSIX mutexes

TASK.Thread All threads
OS Awareness Manual RTEMS | 8©1989-2024 Lauterbach

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual RTEMS | 9©1989-2024 Lauterbach

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual RTEMS | 10©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual RTEMS | 11©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual RTEMS | 12©1989-2024 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree
OS Awareness Manual RTEMS | 13©1989-2024 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual RTEMS | 14©1989-2024 Lauterbach

RTEMS specific Menu

The menu file “rtems.men” contains a menu with RTEMS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called RTEMS.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the RTEMS specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

• The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

OS Awareness Manual RTEMS | 15©1989-2024 Lauterbach

RTEMS Commands

TASK.INFO Display API information

Displays the RTEMS API information tables.

Without any argument, a tree with all available API information will be shown.
Specify an API to show the configured objects for this API.

Without any arguments, a table with all created processes will be shown.
Specify a process name, ID or magic number to display detailed information on that process.

The fields “api” and “objects” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.INTernal.Mutex Display internal mutexes

Displays a table with all mutexes of the internal API or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex name, ID or magic number to display detailed information on that mutex.

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

Format: TASK.INFO[.INTernal | .CLassic | .Posix | .Itron]

Format: TASK.INTernal.Mutex [<mutex>]
OS Awareness Manual RTEMS | 16©1989-2024 Lauterbach

The fields “magic” and “holder” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.INTernal.Thread Display internal threads

Displays the thread table with all threads of the internal API or detailed information about one specific thread.

The display is identical to TASK.Thread, but shows only internal threads.

TASK.Posix.CondVar Display POSIX condition variables

Displays the condition variable table with all condition variables of the POSIX API or detailed information
about one specific condition variable.

Without any arguments, a table with all created condition variables will be shown.
Specify a condvar name, ID or magic number to display detailed information on that condition variable.

“magic” is a unique ID, used by the OS Awareness to identify a specific condition variable (address of the
condition variable control structure).

The fields “magic” and “mutex id” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

Format: TASK.INTernal.Thread [<thread>]

Format: TASK.Posix.CondVar [<cond_var>]
OS Awareness Manual RTEMS | 17©1989-2024 Lauterbach

TASK.Posix.Mutex Display POSIX mutexes

Displays the mutex table with all mutexes of the POSIX API or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex name, ID or magic number to display detailed information on that mutex.

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

The fields “magic” and “holder” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Extension Display RTEMS extensions

Displays the extension table with all extensions of the RTEMS API or detailed information about one specific
extension.

Without any arguments, a table with all created extensions will be shown.
Specify a extension name, ID or magic number to display detailed information on that extension.

“magic” is a unique ID, used by the OS Awareness to identify a specific extension (address of the extension
control structure).

Format: TASK.Posix.Mutex [<mutex>]

Format: TASK.CLassic.Extension [<extension>]
OS Awareness Manual RTEMS | 18©1989-2024 Lauterbach

The fields “magic” and “callouts” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.MsgQueue Display RTEMS message queues

Displays the message queue table with all message queues of the RTEMS API or detailed information about
one specific message queue.

Without any arguments, a table with all created message queues will be shown.
Specify a message queue name, ID or magic number to display detailed information on that message
queue.

“magic” is a unique ID, used by the OS Awareness to identify a specific message queues (address of the
message queues control structure).

The fields “magic” and “threads” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Partition Display RTEMS partitions

Displays the partition table with all partitions of the RTEMS API or detailed information about one specific
partition.

Without any arguments, a table with all created partitions will be shown.
Specify a partition name, ID or magic number to display detailed information on that partition.

“magic” is a unique ID, used by the OS Awareness to identify a specific partition (address of the partition
control structure).

Format: TASK.CLassic.MsgQueue [<queue>]

Format: TASK.CLassic.Partition [<partition>]
OS Awareness Manual RTEMS | 19©1989-2024 Lauterbach

The fields “magic” and “address” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.PEriod Display RTEMS periods

Displays the period table with all rate monotonic periods of the RTEMS API or detailed information about
one specific period.

Without any arguments, a table with all created periods will be shown.
Specify a period name, ID or magic number to display detailed information on that period.

“magic” is a unique ID, used by the OS Awareness to identify a specific period (address of the rate
monotonic control structure).

The fields “magic” and “owner” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.POrt Display RTEMS ports

Displays the port table with all dual ported memories of the RTEMS API or detailed information about one
specific dual ported memory.

Without any arguments, a table with all created ports will be shown.

Format: TASK.CLassic.PEriod [<period>]

Format: TASK.CLassic.POrt [<port>]
OS Awareness Manual RTEMS | 20©1989-2024 Lauterbach

Specify a port name, ID or magic number to display detailed information on that port.

“magic” is a unique ID, used by the OS Awareness to identify a specific port (address of the dual ported
memory control structure).

The fields “magic” and “internal” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Region Display RTEMS regions

Displays the region table with all regions of the RTEMS API or detailed information about one specific
region.

Without any arguments, a table with all created regions will be shown.
Specify a region name, ID or magic number to display detailed information on that region.

“magic” is a unique ID, used by the OS Awareness to identify a specific region (address of the region control
structure).

The fields “magic” and “address” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Semaphore Display RTEMS semaphores

Displays the semaphore table with all semaphores of the RTEMS API or detailed information about one
specific semaphore.

Without any arguments, a table with all created semaphores will be shown.

Format: TASK.CLassic.Region [<region>]

Format: TASK.CLassic.Semaphore [<semaphore>]
OS Awareness Manual RTEMS | 21©1989-2024 Lauterbach

Specify a semaphore name, ID or magic number to display detailed information on that semaphore.

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The fields “magic” and “threads” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Task Display RTEMS tasks

Displays the task table with all tasks of the RTEMS API or detailed information about one specific task.

The display is identical to TASK.Thread, but shows only RTEMS tasks.

Without any arguments, a table with all created tasks will be shown.
Specify a task name, ID or magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the thread control
structure).

The fields “magic” and “entry” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

Format: TASK.CLassic.Task [<task>]
OS Awareness Manual RTEMS | 22©1989-2024 Lauterbach

TASK.CLassic.TImer Display RTEMS timers

Displays the timer table with all timers of the RTEMS API or detailed information about one specific timer.

Without any arguments, a table with all created timers will be shown.
Specify a timer name, ID or magic number to display detailed information on that timer.

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the timer control
structure).

The fields “magic” and “routine” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.Thread Display all threads

Displays the thread table with all threads of all APIs or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.

Format: TASK.CLassic.TImer [<timer>]

Format: TASK.Thread [<thread>]
OS Awareness Manual RTEMS | 23©1989-2024 Lauterbach

Specify a thread name, ID or magic number to display detailed information on that thread.

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the thread control
structure).

The fields “magic” and “entry” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.
OS Awareness Manual RTEMS | 24©1989-2024 Lauterbach

RTEMS PRACTICE Functions

There are special definitions for RTEMS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.CLassic.TASKMAX() Max. number of tasks

Returns the maximum number of RTEMS tasks.

Return Value Type: Hex value.

TASK.CLassic.TASKLIST() RTEMS task list

Returns the task magic number of the first task if <task_magic> is zero. Returns the next task magic number
in the RTEMS task list. Returns zero if there are no more tasks in the list.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.CLassic.TASKMAX()

Syntax: TASK.CLassic.TASKLIST(<task_magic>)
OS Awareness Manual RTEMS | 25©1989-2024 Lauterbach

TASK.CLassic.TASKNAME() Name of RTEMS task

Returns the task name for the specified RTEMS task magic number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: TASK.CLassic.TASKNAME(<task_magic>)
OS Awareness Manual RTEMS | 26©1989-2024 Lauterbach

	OS Awareness Manual RTEMS
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in RTEMS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	RTEMS specific Menu

	RTEMS Commands
	TASK.INFO Display API information
	TASK.INTernal.Mutex Display internal mutexes
	TASK.INTernal.Thread Display internal threads
	TASK.Posix.CondVar Display POSIX condition variables
	TASK.Posix.Mutex Display POSIX mutexes
	TASK.CLassic.Extension Display RTEMS extensions
	TASK.CLassic.MsgQueue Display RTEMS message queues
	TASK.CLassic.Partition Display RTEMS partitions
	TASK.CLassic.PEriod Display RTEMS periods
	TASK.CLassic.POrt Display RTEMS ports
	TASK.CLassic.Region Display RTEMS regions
	TASK.CLassic.Semaphore Display RTEMS semaphores
	TASK.CLassic.Task Display RTEMS tasks
	TASK.CLassic.TImer Display RTEMS timers
	TASK.Thread Display all threads

	RTEMS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.CLassic.TASKMAX() Max. number of tasks
	TASK.CLassic.TASKLIST() RTEMS task list
	TASK.CLassic.TASKNAME() Name of RTEMS task

