LAUTERBACH A

OS Awareness Manual RTEMS

OS Awareness Manual RTEMS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual RTEMSiiiirirrcccrrressssme s rsss e s s e smme s e e s ssmes s e s smme s e e s smmmnneeas 1
0 Y= = 4
Terminology 4
Brief Overview of Documents for New Users 5
Supported Versions 5

L0 o3} T 11T = Lo o 6
Quick Configuration Guide 6
Hooks & Internals in RTEMS 7
== LT == 8
Display of Kernel Resources 8
Task Stack Coverage 8
Task-Related Breakpoints 9
Dynamic Task Performance Measurement 10
Task Runtime Statistics 11
Task State Analysis 12
Function Runtime Statistics 13
RTEMS specific Menu 15
RTEMS COMMANAS eeeiiriiiicecrrrrsssmcerrsssssmmeressssssesssssssmmesnsassmmessesssammsseasssnmessesssanmnssesssanmnnnens 16
TASK.INFO Display API information 16
TASK.INTernal.Mutex Display internal mutexes 16
TASK.INTernal.Thread Display internal threads 17
TASK.Posix.CondVar Display POSIX condition variables 17
TASK.Posix.Mutex Display POSIX mutexes 18
TASK.CLassic.Extension Display RTEMS extensions 18
TASK.CLassic.MsgQueue Display RTEMS message queues 19
TASK.CLassic.Partition Display RTEMS partitions 19
TASK.CLassic.PEriod Display RTEMS periods 20
TASK.CLassic.POrt Display RTEMS ports 20
TASK.CLassic.Region Display RTEMS regions 21
TASK.CLassic.Semaphore Display RTEMS semaphores 21
TASK.CLassic.Task Display RTEMS tasks 22
TASK.CLassic.TImer Display RTEMS timers 23
©1989-2024 Lauterbach OS Awareness Manual RTEMS 2

TASK.Thread Display all threads 23

RTEMS PRACTICE FUNCHIONSooiieeiiiiiietsrininess s s ssssssss s smss s s s ssmms s sammn s e 25
TASK.CONFIG() OS Awareness configuration information 25
TASK.CLassic. TASKMAX() Max. number of tasks 25
TASK.CLassic. TASKLIST() RTEMS task list 25
TASK.CLassic. TASKNAME() Name of RTEMS task 26
©1989-2024 Lauterbach OS Awareness Manual RTEMS | 3

OS Awareness Manual RTEMS

Overview

Version 06-Jun-2024

_iSimuIator Elg
File Edit View Var Break Run CPU Misc Trace Perf Cov MPCE5XX/CorlQ RTEMS Window Help
MR A de| P2 @ snEasas @12 sunisdas @ 25|
&) =R =R e || = | =
HeTTo, world! object 1d [name Attributes |count waiting holder
14010001 [LEIO PR:BI:IN 0. 0. (ne A
RTEMS Shell on /dev/console. Use 'help' to list commands. 00050C38 |1A010002 |TRmi PR:BI:IN |0, 0. C)
/121 00050C88 [1A010003 [TRia P IN 0. 0. 0004F3A8 SHLL
00050CD8 [1A010004 [TRoa PR:BI:IN 0. 0. ()]
il TRxa SB 0. 0.
& = = |2 || |sEMA DEFAULT 0. 2. (none)
MUTX PR:BI:IN 0. 2. 0004DF28 TSKA W
name [Tow high sp % [lowest spare max 0 10 20 "
IDLE [00054F60 00056F58 |00056EAS 2% |000560D8 OO0OOLETS A% |— A
UI1 (000570B8 000590B0 EFOQ 5% |00058C88 00001BDO 13%
TSKA (00059890 0005B888 8% |0005B550 00001LCCO 105 |se— 3 p..
TSKC [0005F8AQ 00061898 5% |00061628 00001DBSE T | oa BXTASKINFO EIIE
TSKD (000618A8 000638A0 6% |00063618 00001070 T | Igp‘l objects max
S e aas = = = * = internal [threads 1. A
L] mutexes 2.
= == =] = classic |tasks 8.
magic object 1d [name state prio api entry | timers 8.
00040458 [09010001 |[IDLE running 255. [intern [00001478 _Thread_Tdle_body . semaphores 15.
0004DA0E |0ADLO00L1 |UI1l. wevent 2. [RTEMS |00001664 Init message queues 8.
0004DF28 |DADLOODODZ |TSEA wsemaphore 1. |RTEMS |00001558 task_a par‘t'lt'l ons 8.
O004E448 |DADLOD03 |TSKC wmutex 1. |RTEMS |00001A14 task_c regions 8_.)
0004E968 |DADLOOO04 |TSED wmutex 1. [RTEMS |0000147C task_d ports {not present)
O004EESS |DAOLOOO5 |TSKE suspended 1. [RTEMS |DDOOL15EC task_e N (periods 8.
0004F3A8 |DAOLOO06 |SHLL wtime 3. [RTEMS |0OOLE350 rtems_shell_task extensions 0.
00051FF8 |0BO10001 |taskub wmutex 1. |POSIX |000014AC task_b POSIX W
BE:: TASK.|
INFO Thread INTernal CLassic Paosix pravions
IDLE stopped MIX |UP
The OS Awareness for RTEMS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
RTEMS uses the terms “tasks” and “threads”. If not otherwise specified, the TRACES32 term “task”
corresponds to both, RTEMS tasks and threads.
OS Awareness Manual RTEMS | 4

©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently RTEMS is supported for the following versions:

o RTEMS 4.6 to 5.3 on ARM, ColdFire, NIOS-Il, PowerPC and RISC-V

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “rtems.t32” (directory
“~~/demo/<processor>/kernel/rtems”). It contains all necessary extensions.

I TASK.CONFIG ~~/demo/<arch>/kernel/rtems/rtems.t32

The configuration tries to locate the RTEMS internals automatically. For this purpose, the kernel symbols
must be loaded and accessible at any time the OS Awareness is used (see also “Hooks & Internals”).

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. Enable SYStem.MemAccess or SYStem.CpuAccess (CPU
dependent).

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for RTEMS with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command:

TASK.CONFIG ~~/demo/<arch>/kernel/rtems/rtems.t32

See “Configuration”.

4, Execute the command:

MENU.ReProgram ~~/demo/<arch>/kernel/rtems/rtems.t32

See “RTEMS Specific Menu”.

5. Start your application.
Now you can access the RTEMS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

©1989-2024 Lauterbach OS Awareness Manual RTEMS |

Hooks & Internals in RTEMS

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS

Awareness are used.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 7

Features

The OS Awareness for RTEMS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
RTEMS components can be displayed:

TASK.CLassic.Extension
TASK.CLassic.MsgQueue
TASK.CLassic.Partition
TASK.CLassic.PEriod
TASK.CLassic.POrt
TASK.CLassic.Region
TASK.CLassic.Semaphore
TASK.CLassic.Task
TASK.CLassic.Timer
TASK.INFO
TASK.INTernal.Mutex
TASK.INTernal.Thread
TASK.Posix.CondVar
TASK.Posix.Mutex
TASK.Thread

RTEMS extensions
RTEMS message queues
RTEMS partitions
RTEMS periods

RTEMS ports

RTEMS regions

RTEMS semaphores
RTEMS tasks

RTEMS timers

API information

Internal mutexes

Internal threads

POSIX condition variables
POSIX mutexes

All threads

For a description of the commands, refer to chapter “RTEMS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

©1989-2024 Lauterbach

OS Awareness Manual RTEMS |

8

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

% BuTASK.STacK.view = 5

name |low high sp % [lowest spare max [0 10 |
IDLE [0OFEBAES OO7EAABS |O07EAASS 0% |00O7EAASS OO00LFAL 1% |+
UI1 |(00O7EGS08 OOFEBS08 1% |0O7E8B01 0O0OOLEFS 3% |m
5T1 |DO7E43C8 007EG3CE 1% |00O7EG2ZFS 00001F31 2% |m
5T2 |DO7E1ESS OO7E3ESS 1% |0O7E3DDS 00001F51 2% |m
5T3 |DO7DFS948 007ELS948 1% |00O7E1BA1 0O0001F59 2% |m
MQT1 (007DD408 007DF408 2% |007DF331 00001F29 2% |m
MQTZ2 (007DAECE 007DCECS 2% |007DCOFL 00001F29 2% |m

< >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 9

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@

3K Delete Al | O Disable Al @ Enabie Al @ Init || Method... |52 Store... | 52 Load... | Ed Set...
method |[task |

C:000005E8 [Program SOFT "ST1T y & | rtems_event_send
C:000005E8 |Program SOFT "sT2" y [&f | rtems_event_receive
C:0000A788 |Program SOFT y [| _Thread_Idle_body

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 10

& BuPERF.ListTASK

(o8 [

runtime: 100%

& e, | 28 tvig.| (Y Goto...|| B0 etaied | O, View| | Profie|| @ Init || O Disadle|| @ Arm

name ratio 1% 2% 5% 10% 205 50%
IDLE 58.626%
SHLL 41.374%
UT1 0. 000%
SKA 0. 000%
SKC 0. 000%
SKD 0. 000%
SKE 0. 000%

<

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual RTEMS | 11

! B:Trace, CHART. TASKSTATE = =R
B senp.. || 38 @nfig... | 1 Goto... | #3Find... | i Chart || @ In || »0¢ Out||EH Ful
-3.000ms -2.500ms -2.000ms -1.500ms -1.000ms -500.000us 0.0
range [y | 1 1 1 | |
B T ——— —a
UTL - | e, -
st2q | ——— -
MoTige o =
morEe o "
o il B Trace. Chart. TASK = =R
2 senp... || §if Goups... | 38 Gonfig... | A Goto...|| A Goto...|| #3Find... | 0 In |[»0¢ Out| &3 Ful
Oms -3.000ms -2.000ms -1.000ms 0.000u
rangehy |
TDLE 4 "
UI1 [y
STLRH
ST2RM
ST3RM
MQTLAH
MQT2 k¥ v
Task State Analysis
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated

statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

o Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs

are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently

limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic.TASKState
Trace.Chart. TASKState

Display task state statistic

Display task state timechart

©1989-2024 Lauterbach

OS Awareness Manual RTEMS

12

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

e B:Trace. CHART. TASKSTATE EI@

B senp.. || 38 @nfig... | 1 Goto... | #3Find... | i Chart || @ In || »0¢ Out||EH Ful
-3.000ms -2.500ms -2.000ms -1.500ms -1.000ms -500.000us 0.0

4 1 1 1 1 1 i
4 - el A

<m » < >

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 13

Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func

Trace.Chart.sYmbol /SplitTASK

Display flat runtime analysis
Display function timechart

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

| B:Trace.STAT.TREE task tree total min max avr count ibar EI@
2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart
funcs: 303. total: 3.779ms 70 workarounds
range: -37851..-66
task tree total min max avr count 1% |
ST1 (root) 355.400us - 355.400us - + ~
5T2 (root) 262.900us - 262.900us - - +
ST3 = (root) 377.700us - 377.700us - +
5T3 L— _RTEMS_tasks_Switch_extension 0.800us 0.800us 0.800us 0.800us 1. +
ST3 = _Thread_Handler 361. 800us - 361.800us - 1.(0/1) |+
5T3 _CPU_ISR_Set_level 1.700us 1.700us 1.700us 1.700us 1. +
ST3 _User_extensions_Thread_begin 6. 700us 6. 700us 6. 700us 6. 700us 1. +
ST3 _Thread_Enable_dispatch 9. 600us 9. 600us 9. 600us 9. 600us 1. +
ST3 =) semtask3 339.400us - 339.400us - 1.(0/1) |+
ST3 t rtems_semaphore_release 314.000us 22.600us 59.400us 52.333us 6. +
ST3 # rtems_task_suspend 22.000us - 22.000us - 1.(0/1) |+
gT1 = (root) 358. 800us - 358. 800us - +
aTl L— _RTEMS_tasks_Switch_extension 0. 800us 0. 800us 0. 800us 0. 800us 1. +
aTl = _Thread_Handler 342.900us - 342.900us - 1.(0/1) |+
gT1 _CPU_ISR_Set_level 1.700us 1.700us 1.700us 1.700us 1. +
aTl _User_extensions_Thread_begin 6. 700us 6. 700us 6. 700us 6. 700us 1. +
aTl _Thread_Enable_dispatch 9. 600us 9. 600us 9. 600us 9. 600us 1. +
aTl = msgqtaskl 320.500us - 320.500us - 1.(0/1) |+
gT1 rtems_message_queue_create 96.400us 48. 200us 48, 200us 48, 200us 2. +
aT1 [# rtems message gueue send 129.400us 28,100us 56.100us 43.133us 3. +
Tl
QTl | % BiTrace.Chart FUNC = =R
QT2 == =
| < B senp... || §if Goups... | 28 Confi... | Goto...| () Goto...|| F4Find... || O In || 0« Out||E0 Ful
Oms -1.000ms -900.000us -800.000us -700.000us
range i 1 1 1 1 I
[semaphore_return_code BR il o A
eize_interrupt_trylock CE | M. L 11 S DR N I A 1 I
ize_interrupt_blocking o I oo |. | ||
—CORE_mutex_Surrender HHl B . . B L
core_mutex_return_code HE e 3 b I F | P IR I A
core_mutex_return_code HE[b L T U I A
rtems_task_suspend R —
_Thread_get R T
_Thread_Suspend R N U I
rtems_task_suspend R
_Thread_get R o o0
_Thread_Suspend R ‘- o0
rtems_task_suspend R H———
_Thread_get WM L
_Thread_Suspend R m
(root) R Cam
asks_Switch_extension L I v
£ 0 >» € >
©1989-2024 Lauterbach OS Awareness Manual RTEMS | 14

RTEMS specific Menu

The menu file “rtems.men” contains a menu with RTEMS specific menu items. Load this menu with the

MENU.ReProgram command.

You will find a new menu called RTEMS.

. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the RTEMS specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

/A TRACE32 for RTEMS
File Edit View Var

Break Run
ME A »rn | 28 a0

- O

CPU Misc Trace Perf Cov MPCxx RTEMS Window Help

i

w5 o &

P

Display APl Information
Display All Threads
Display Internal Objects

*

3

object id name state Display Tasks Display Classic Objects 4
09010001 [IDLE runni
0A0L0001 [UIl. suspe Display Timers Display POSIX Objects 4
0ADLOOOZ [STL Suspe Display S h
0A010003 |ST2 suspe \splay semaphares Stack Coverage »
OAQ10004 |5T3 Suspe Display Message Queues
04010005 [(MQTL SuUspe X . gataskl
0ADLO006 |MQTZ suspe Display Partitions gatask2 b4
Display Regions
Display Ports
B: :[TASK.| Display Periods
Display Extensions
INFO Thread INTernal Classe PUS STEUK previous
SPO0NATES || samplelreadidlebody|_Tr | IDLE stopped at breakpoint MIX up

©1989-2024 Lauterbach

OS Awareness Manual RTEMS | 15

RTEMS Commands

TASK.INFO Display API information

Format: TASK.INFO[.INTernal | .CLassic | .Posix | .ltron]

Displays the RTEMS API information tables.

Without any argument, a tree with all available API information will be shown.
Specify an API to show the configured objects for this API.

Without any arguments, a table with all created processes will be shown.
Specify a process name, ID or magic number to display detailed information on that process.

& B:TASKINFO =R o
Igp'l objects max |
= internal [threads 1. ~
mutexes 1.
= classic |tasks 8.
s_eme_lpﬁor‘es 12,))
message queues 3.
r:t;g'I:DI:IS) 1.)
extensions 1.
POSIX
ITRON

The fields “api” and “objects” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.INTernal.Mutex Display internal mutexes

Format: TASK.INTernal.Mutex [<mutex>]

Displays a table with all mutexes of the internal API or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex name, ID or magic number to display detailed information on that mutex.

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 16

The fields “magic” and “holder” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

o B:TASKINTernal Mutex EI-@
mag c object 1d [name ha‘lt'ln_g ho'lder‘
00040820 (11010001 A
F{MDS‘JC 11010002 | 0 :
TASK.INTernal.Thread Display internal threads
Format: TASK.INTernal.Thread [<thread>]

Displays the thread table with all threads of the internal API or detailed information about one specific thread.

The display is identical to TASK.Thread, but shows only internal threads.

&% B:TASK.INTernal. Thread EI@
’m;ECJ.ES |09018001d ESJITE |?E:ﬁ1eng lg;;o |1an;|:er‘n |00§0§?88 _Thread_TdTe_body AI
TASK.Posix.CondVar Display POSIX condition variables
Format: TASK.Posix.CondVar [<cond_var>]

Displays the condition variable table with all condition variables of the POSIX API or detailed information
about one specific condition variable.

Without any arguments, a table with all created condition variables will be shown.
Specify a condvar name, ID or magic number to display detailed information on that condition variable.
“magic” is a unique ID, used by the OS Awareness to identify a specific condition variable (address of the

condition variable control structure).

The fields “magic” and “mutex id” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 17

TASK.Posix.Mutex Display POSIX mutexes

Format: TASK.Posix.Mutex [<mutex>]

Displays the mutex table with all mutexes of the POSIX API or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex name, ID or magic number to display detailed information on that mutex.

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

The fields “magic” and “holder” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

&% BuTASK.Posix.Mutex [rolE-]
magic object 1d [name waiting holder |
’mgsssm [3301000T | 2. [0DD4E9I0 TSKC :
TASK.CLassic.Extension Display RTEMS extensions
Format: TASK.CLassic.Extension [<extension>]

Displays the extension table with all extensions of the RTEMS API or detailed information about one specific
extension.

Without any arguments, a table with all created extensions will be shown.
Specify a extension name, ID or magic number to display detailed information on that extension.

@?. B::TASK.CLassic.Extension EI@
magic object 1d [name switch callouts |
007EACTO [4A010001 | |- [create start deTete &

v

“magic” is a unique ID, used by the OS Awareness to identify a specific extension (address of the extension
control structure).

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 18

The fields “magic” and “callouts” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.MsgQueue Display RTEMS message queues

Format: TASK.CLassic.MsgQueue [<queue>]

Displays the message queue table with all message queues of the RTEMS API or detailed information about
one specific message queue.

Without any arguments, a table with all created message queues will be shown.
Specify a message queue name, ID or magic number to display detailed information on that message
queue.

A% BuTASK.Classic. MsgQueue EI-@

magic object 1d [name qtype num max msgsize ha‘lt'ln
007EBE490 22010001 I'-'ISQ FIFO 16.
O07EB518 |22010002 I'-'ISQ FIFO 16.

“magic” is a unique ID, used by the OS Awareness to identify a specific message queues (address of the
message queues control structure).

The fields “magic” and “threads” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Partition Display RTEMS partitions

Format: TASK.CLassic.Partition [<partition>]

Displays the partition table with all partitions of the RTEMS API or detailed information about one specific
partition.

Without any arguments, a table with all created partitions will be shown.
Specify a partition name, ID or magic number to display detailed information on that partition.

“magic” is a unique ID, used by the OS Awareness to identify a specific partition (address of the partition
control structure).

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 19

The fields “magic” and “address” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

% B:TASK.CLassic Partition = =R

magic object 1d [name used max butfsize address
00051660 [2AD10001 |PART 0. |16. |12a. [00D4BFBO a

v

TASK.CLassic.PEriod Display RTEMS periods

Format: TASK.CLassic.PEriod [<period>]

Displays the period table with all rate monotonic periods of the RTEMS API or detailed information about
one specific period.

Without any arguments, a table with all created periods will be shown.
Specify a period name, ID or magic number to display detailed information on that period.

“magic” is a unique ID, used by the OS Awareness to identify a specific period (address of the rate
monotonic control structure).

The fields “magic” and “owner” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

% B:TASK.CLassic.PEriod = =R
magic object 1d [name state Tength owner |
’mgsmco [#2010001 [RATE [fncactive 00000000 |0D04DEBD UIl. ~
TASK.CLassic.POrt Display RTEMS ports
Format: TASK.CLassic.POrt [<port>]

Displays the port table with all dual ported memories of the RTEMS API or detailed information about one
specific dual ported memory.

Without any arguments, a table with all created ports will be shown.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 20

Specify a port name, ID or magic number to display detailed information on that port.

“magic” is a unique ID, used by the OS Awareness to identify a specific port (address of the dual ported
memory control structure).

The fields “magic” and “internal” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Region Display RTEMS regions

Format: TASK.CLassic.Region [<region>]

Displays the region table with all regions of the RTEMS API or detailed information about one specific
region.

Without any arguments, a table with all created regions will be shown.
Specify a region name, ID or magic number to display detailed information on that region.

@?. Bu:TASK.rtems.Classic.Region Ox?EACFO EI@

l@g ject 1d [name ength pagesize |used |address [gtype [waiting |
007EACFO |32010001 [HEAP |00?ABC00 [00000008 [10. |00022C00 |FIFO | 0. .
D]ect a cond var 1d ode 1d ap

32010001 1. 1. RTEMS

“magic” is a unique ID, used by the OS Awareness to identify a specific region (address of the region control
structure).

The fields “magic” and “address” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Semaphore Display RTEMS semaphores

Format: TASK.CLassic.Semaphore [<semaphore>]

Displays the semaphore table with all semaphores of the RTEMS API or detailed information about one
specific semaphore.

Without any arguments, a table with all created semaphores will be shown.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 21

Specify a semaphore name, ID or magic number to display detailed information on that semaphore.

@?. B:TASK.CLassic.5emaphore EI@

object 1d [name type gtype count waiting holder |

1A010001 |[LEIO binary INHERIT |O. 0. .none) A

1A010002 |TRmi binary INHERIT |0 0.

1A010003 |[LBI binary INHERIT |0 0.

1A010004 |TRia binary INHERIT |O. 0.

1A010005 (TRoa binary INHERIT |O. 0.

1A010006 (TRxa simple FIFO 1 0. IDLE

1A010007 |LBI% binary INHERIT |0 0.

1A010008 |LBI% binary INHERIT |0 0. [=3

1A010009 |[SEM1 counting [FIFQ 0. 0.

1A01000A |[SEMZ binary FIF|

1A01000B |[SEM3 simple |FIF @?. B:TASK.rtemns.Classic.5emaphore "SEM3" EI@
mag c object 1d [name type qtype count waiting holder
007EB310 [1ADLO00B |SEM3 [simpTe |FIFO T. | o. 007EB938 512 A
object id cond var id node id api
1AQD1O00B 11. 1. RTEMS
locked cked behaviour

bTocks

only owner release
no
Threads waiting

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The fields “magic” and “threads” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.CLassic.Task Display RTEMS tasks

Format: TASK.CLassic.Task [<fask>]

Displays the task table with all tasks of the RTEMS API or detailed information about one specific task.
The display is identical to TASK.Thread, but shows only RTEMS tasks.

Without any arguments, a table with all created tasks will be shown.
Specify a task name, ID or magic number to display detailed information on that task.

o B:TASK.Classic. Task = =R
object 1d [name state entry |
0AD1D00L [UI1. suspended 000003A0 Init
0ADLD002 [ST1 suspended 0000008C semtaskl
0AD1D003 [ST2 suspended 00000188 semtask2
0ADLD004 [ST3 suspended 000001ES semtask3
0ADLD005 (MQTL suspended 00000260 msgqtaskl
0ADLD00G [(MQT2 suspended 00000328 msgqtask2

v

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the thread control
structure).

The fields “magic” and “entry” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 22

TASK.CLassic.TImer Display RTEMS timers

Format: TASK.CLassic.TImer [<timer>]

Displays the timer table with all timers of the RTEMS API or detailed information about one specific timer.

Without any arguments, a table with all created timers will be shown.
Specify a timer name, ID or magic number to display detailed information on that timer.

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the timer control
structure).

The fields “magic” and “routine” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

% B:TASK.CLassic. Timer = =R
magic object 1d [name state routine |
’mﬁs 0C10 [12010001 [TIMR [Tnactive [00010CBC _Timer_Routine_adaptor a
TASK.Thread Display all threads
Format: TASK.Thread [<thread>]

Displays the thread table with all threads of all APIs or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 23

Specify a thread name, ID or magic number to display detailed information on that thread.

&% B:TASK.Thread

(o8)

object 1d [name state prio [api entry |
09010001 |[IDLE running 255. [intern [0000A7858 _Thread_TIdle_body ,
0AQ10001 |UIl. suspended 1. |RTEMS |000003A0 Init

0ADLD002 [ST1 suspended 2. [RTEMS |00000D0BC semtaskl

0AD1D003 [ST2 suspended 3. [RTEMS |00000188 semtask2

0ADLD004 [ST3 suspended 4. |RTEMS |000Q0O1ES semtask3

OAQLO005 (MOTL suspended 5. |RTEMS

0ADLD00G [(MQT2 suspended 6. |[RTEMS @% Bu:TASK. rtems. Thread "MOT2"

(o8)

pag'lc object 1d [name state prio [api entry |
007EBD58 [0ADLO006 [MQTZ [suspended | 6. |ﬁ'Er'Er-15 [00000328 msgotaskz .
object id cond var id node id api
OADLO00E 6. 1. RTEMS
prio: current real initial

6. 6. 6.
Waiting for: none

resource count
0.

ticks executed
2.

timer: initial start stop delta routine
inactive
stack: address size sp pc
007DAECO 00002008 O0O0O7DCELS O000AGCS hd

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the thread control

structure).

The fields “magic” and “entry” are mouse sensitive. Double-clicking on them opens appropriate windows.

Right clicking on them will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual RTEMS |

24

RTEMS PRACTICE Functions

There are special definitions for RTEMS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.CLassic.TASKMAX() Max. number of tasks

Syntax: TASK.CLassic. TASKMAX()

Returns the maximum number of RTEMS tasks.

Return Value Type: Hex value.

TASK.CLassic.TASKLIST() RTEMS task list

Syntax: TASK.CLassic.TASKLIST(<task_magic>)

Returns the task magic number of the first task if <task_magic> is zero. Returns the next task magic number
in the RTEMS task list. Returns zero if there are no more tasks in the list.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 25

TASK.CLassic. TASKNAME() Name of RTEMS task

Syntax: TASK.CLassic. TASKNAME(<task_magic>)

Returns the task name for the specified RTEMS task magic nhumber.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual RTEMS | 26

	OS Awareness Manual RTEMS
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in RTEMS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	RTEMS specific Menu

	RTEMS Commands
	TASK.INFO Display API information
	TASK.INTernal.Mutex Display internal mutexes
	TASK.INTernal.Thread Display internal threads
	TASK.Posix.CondVar Display POSIX condition variables
	TASK.Posix.Mutex Display POSIX mutexes
	TASK.CLassic.Extension Display RTEMS extensions
	TASK.CLassic.MsgQueue Display RTEMS message queues
	TASK.CLassic.Partition Display RTEMS partitions
	TASK.CLassic.PEriod Display RTEMS periods
	TASK.CLassic.POrt Display RTEMS ports
	TASK.CLassic.Region Display RTEMS regions
	TASK.CLassic.Semaphore Display RTEMS semaphores
	TASK.CLassic.Task Display RTEMS tasks
	TASK.CLassic.TImer Display RTEMS timers
	TASK.Thread Display all threads

	RTEMS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.CLassic.TASKMAX() Max. number of tasks
	TASK.CLassic.TASKLIST() RTEMS task list
	TASK.CLassic.TASKNAME() Name of RTEMS task

