LAUTERBACH A

OS Awareness Manual REALOS

OS Awareness Manual REALOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual REALOSiiicrirrrrcerrrssssme s ssss s s s sssssmme s eessssmme s essssmmsssessssmmenness 1
0 Y= = 3
Brief Overview of Documents for New Users 4
Supported Versions 4
ConfiguIration ... 5
Quick Configuration Guide 6
Hooks & Internals in REALOS 6
== T == 7
Display of Kernel Resources 7
Task-Related Breakpoints 8
Task Stack Coverage 9
Task Context Display 9
Dynamic Task Performance Measurement 10
Task Runtime Statistics 10
Function Runtime Statistics 12
REALOS specific Menu 13
REALOS COMMANAScooiiiiiiiiisinnmmmmmnsnnsissssssssssssssmmssssssssessssssssssnsmmssssssnssssssssssssnnnnmnssnnssnssnssans 14
TASK.ALarM Display alarm handlers 14
TASK.CYClic Display cyclic handlers 14
TASK.DaTaQueue Display data queues 15
TASK.FLaG Display event flags 15
TASK.MailBoX Display mailboxes 16
TASK.MemPoolF Display fixed memory pools 16
TASK.MemPoolL Display variable memory pools 17
TASK.MsgBuFfer Display message buffers 17
TASK.MuTeX Display mutexes 18
TASK.SEMaphore Display semaphores 19
TASK.TaSK Display tasks 19
REALOS PRACTICE FUNCLIONSceeeieirercecerrsnsssmenrrsssssesssssssmsssesssssmesnessssmmssessssnmnssessssnmnnnens 20
TASK.CONFIG() OS Awareness configuration information 20
©1989-2024 Lauterbach OS Awareness Manual REALOS 2

OS Awareness Manual REALOS

Version 06-Jun-2024

Overview

A TRACE32 for Real0S =n| Wl <
File Edit View Var Break Run CPU Misc Trace Pef Cov Cortex-A9 |RealOS | Window Help
IR A - A Display Tasks
= Display Semaphores
= [BList taskl] = || E Display Event Flags SK.SEMaphore EI@
[M step || # Over |[AaDiverge|[¢F Retum|[¢ up |[B Go |[M Break|[} Display Data Queues Ot o ‘f‘_ﬂETn ;A
addr/line |source Display Mailboxes 10. none
vold task1(VP_INT exinf) X
89 Display Mutexes -
=Y 11:(?:1:1:(1' DA Display Message Buffers LI} +
92 wai_sem(SAMPLE_SEMID); Display Fixed MemPools

Display Var MemPools SK.MsgBuFfer | o || @ || 22 |

1ze free |msgsize waitin

=) e Sﬁ11£ E?f”ef:: ot Display Cyclic Handlers 256. 4 |ncn—: A
97 wai_sem(SAMPLE_SEMID); Display Alarms 384. none
¥ Stack Coverage L4 Lt L

else
101 ext_tsk();
}

(==

% [lowest spare max [0 10 20

o B TASK.STack
name | low high =

0. [COOLCES0 COO1DESO |C 1% [COO1DEOC OQOOOOFED 1% |+ ~
J] 1 1. |COO1DE&O COOLlEE&D E 2% |COOLEBS0 OQO000CFD 19% |s—
2, ICOO1EE7O COOL1FETO (COOLFE3C 1% |COOLFCCO QO000ESD 105 |se—
-~ [O001FES0 COOZ0ESBO |C E13 2% |CO0Z0E18 00O000F98 2% |m
e BrTASK.TasK (=== -
1d state prio [entry 1|t m [
0. [ready 33. [CODOLF40 _kernel_idTe_task .
1. [waiting sem 1. [COO0O5SCE taskl — —
2. |running 2. |CO0005CE taskl .. || i Gougs... || 28 Gonfg... |13 Goto... [#3Find... |[4 In][p4.0ut][MMFull
3. |ready 3. |CO000SFS task2 il i -9.500ms -9.800ms -3.700ms -3.
range iy L 1 1 1 -
1 L1} L3 ‘1le’1<>,

| B:Trace STATistic. TASK

[& seup...]["'Goups [28 Qonfig... || = |etaied][Nesting] | b L [
tasks: 4. total: 13 700ms
range total min max avr count ratio® [|1% 2% 5% 10% 20% |
Cunknown) 26. 800us 26. 800us 26. 800us 26. 800us 0. 0.195% [+ P
3. 6.508ms 37.200us 37.600us 37.400us 174. 47.501%
1. 3.584ms 41. 200us 41. 200us 41. 200us B87. 26.164%
2. 3.581ms 41. 200us 41. 200us 41.160us B7. 26.138%
4 I 2
B:: TASK.
[Task | [sEMaphore| [FlaG | paTaQueud [MaiBoX | [MuTeX | (MsgBuFfer| [MemPoolF| [MemPooll| [cyclic |[AlaM | [previous
MNSR:C0005510 \\smpsys\Global_kernel x_dsp_main+0x20 2. stopped HLL |UP

The OS Awareness for REALOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently REALOS is supported for the following versions:
J REALOS v1 on ARM architecture.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “realos.t32” (directory
“~~/demo/<arch>/kernel/realos”). It contains all necessary extensions.

Automatic configuration tries to locate the REALOS internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG realos

See also “Hooks & Internals” for details on the used symbols.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for REALOS with your application, follow the
following roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command
TASK.CONFIG ~~/demo/<arch>/kernel/uc3std/realos.t32
(See “Configuration”).

4. Execute the command

MENU.ReProgram ~~/demo/<arch>/kernel/uc3std/realos.men
(See “RTOS Specific Menu”).

5. Start your application.
Now you can access the REALOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in REALOS

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The REALOS kernel must be compiled with debug information.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 6

Features

The OS Awareness for REALOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
REALOS components can be displayed:

TASK.TaSK Tasks

TASK.SEMaphore Semaphores

TASK.FLaG Event flags
TASK.DaTaQueue Data queues
TASK.MailBoX Mailboxes
TASK.MsgBuFfer Message buffers
TASK.MuTeX Mutexes
TASK.MemPoolF Fixed sized memory pools
TASK.MemPoolL Variable sized memory pools
TASK.CYClic Cyclic handlers
TASK.ALarM Alarm handlers

For a description of the commands, refer to chapter “REALOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 8

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

o B:TASK.STack =n| Wl <
name | low high =p % [lowest spare max [0 10 20

0. [COO1CES0 COOLDESO
1. [CO01DEBD COOLEEGD
2. [COO1EE7O COOLFE7O
3. [COO1FEB0 COOZOESD

""" 1%
2%
1%
CO0Z0ELS 2%

CO01DEOD OCOOOFED 1% [+ ~
COOLEES0 OO000CFD 19% |ee—
COOLFCCO OO000ESD 105 |se—

CO0Z0ELS OO0O0OF9E 2% |m

4 M 3

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 9

69} BuFrame o[-l
L. Up | ["¥ Down V| Args V|Locals |V Caller Task: 1.
~000[[kerneT_x_dispatch(asm) ~

-001||wai_sem(asm)

—002|task1(
7)

m

while (1) {
wai_sem{SAMPLE_SEMID);
-003|(kernel_x_task_startup(asm)

— [end of frame

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

£ B:PERF ListTASK =n| Wl <
(& Setup. || 28 G| Goto...|[B Detaied [€3, Views iy Profile][€ Init][O Disabke|[@ Arm

name ratio 1% 2% 5% 10% 20% 50% 100 |
3. 44, 944%

1. 29.213%

2. 25.843%

0. 0. 000% i

J h }

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 10

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.
M B:Trace. PROfileChart. TASK =n| Wl <
[setup... |(11 Goups... [88 Confiy...]LGoto Jl 1-3F|n_][@) Ncn [KNFuII][£ In |[X 0u)[= Full[_Fine |[Coarse]
10.000us [l Cunknown) [3
-3.800ms -3. ?Oﬂﬂs -3. SOOﬂs -3.500ms -3.400ms -3.30
ratio 1 1 | | 1 1 |
100.0 ;
c0.0 ol B:Trace CHART.TASK =nEoR<
[& setup... || 71 Groups... || 28 Gonfig... [Goto....|[#3Find... || 4»In | p40ut][MMFul]
50.0 |—10.000ﬂs -9.9500ms -9.800ms -9.700ms -9.
range ¥
10.0 L. @ .. .
¢
= | B:Trace STATistic. TASK =n| Wl <
[& seup...][m(}mps]L{bnﬂg |[= |petaiied | [Nesting #{Chart || Bl Profile
tasks: 4. total: 13 700ms
range total min max avr count ratio® [|1% 2% 5% 10% 20% |
(unknown) 26. 800us 26. 800us 26. 800us 26. 800us 0. 0.195% [+ "
3. 6.508ms 37.200us 37.600us 37.400us 174. 47.501%
1. 3.584ms 41. 200us 41. 200us 41. 200us B87. 26.164%
2. 3.581ms 41. 200us 41. 200us 41.160us B7. 26.138%
] I] b

©1989-2024 Lauterbach OS Awareness Manual REALOS | 11

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 12

REALOS specific Menu

The menu file “realos.men” contains a menu with REALOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called RealOS.

. The Display menu items launch the kernel resource display windows.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 13

REALOS Commands

TASK.ALarM Display alarm handlers

Format: TASK.ALarM

Displays the table of installed alarm handlers or detailed information about one specific alarm handler.

Without any arguments, a table with all installed alarm handlers will be shown.
Specify a alarm handler ID to display detailed information on that alarm handler.

o B:TASK.ALarM ===

hd time |handler
1. |0, COO0DD4EC almhdrl
2. |0, CO0004C0 almhdr2

4 1 b

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

TASK.CYClic Display cyclic handlers

Format: TASK.CYClic

Displays the table of installed cyclic handlers or detailed information about one specific cyclic handler.

Without any arguments, a table with all installed cyclic handlers will be shown.
Specify a cyclic handler ID to display detailed information on that cyclic handler.

s BETASK.CYClic =N R

1d cycle |phase |handler
1. [1000. |[500. COD0D4E4 cychdrl
2. |1500. |[300. COO0DD4E8 cychdr2

4 1 2

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 14

TASK.DaTaQueue Display data queues

Format: TASK.DaTaQueue [<queue>]

Displays the data queue table of REALOS or detailed information about one specific data queue.

Without any arguments, a table with all created data queues will be shown.
Specify a data queue ID to display detailed information on that data queue.

o B:TASK.DaTaQueue El-@

1d count |waiting
1z. none T
2. [25. none

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.FLaG Display event flags

Format: TASK.FLaG [<flag>]

Displays the event flag table of REALOS or detailed information about one specific event flag.

Without any arguments, a table with all created event flags will be shown.
Specify a flag ID to display detailed information on that flag.

o BTASKFLaG [= | & |[=23)

1d pattern |waiting |
|55555555 ‘C‘i ~

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 15

TASK.MailBoX Display mailboxes

Format: TASK.MailBoX [<mailbox>]

Displays the mailbox table of REALOS or detailed information about one specific mailbox.
Without any arguments, a table with all created mailboxes will be shown.
Specify a mailbox ID to display detailed information on that mailbox.

o BTASKMailBeX [= | & |[=23]

hd message |waiting |
1 none

. -
2. none

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MemPoolF Display fixed memory pools

Format: TASK.MemPoolF [<mempool]

Displays the fixed size memory pool table of REALOS or detailed information about one specific memory
pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a pool ID to display detailed information on that memory pool.

b B:TASK.MemPoolF [= || = |[ma]
[id blksize [waiting I

1. |64, n
80.

oo

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 16

TASK.MemPoolL Display variable memory pools

Format: TASK.MemPoolL [<mempool]

Displays the variable size memory pool table of REALOS or detailed information about one specific memory
pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a pool ID to display detailed information on that memory pool.

o B:TASK.MemPooll El-@
hd =ize |waiting
ﬁB..TASK.MemPoou. =n| Wl <
|

1d =ize |waiting
< i .~ |864. |none

oo

O

LUUUEUGO 00000360

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MsgBuFfer Display message buffers

Format: TASK.MsgBuFfer [<msgbuffers]

Displays the message buffer table of REALOS or detailed information about one specific message buffer.
Without any arguments, a table with all created message buffers will be shown.
Specify a message buffer ID to display detailed information on that message buffer.

50. B:TASK.MsgBuFfer =n| Wl <

size free |msgsize ma‘ltmg |

. |258. [256. 4 | .
384. |334. ‘C‘i
o B:TASK.MsgBuFfer 2. =n| Wl <
1 LI} id size |[free msgs‘lze ha‘lt'lng |
Z. [384. [384. [50. T

TPRI

LUUUFE(U

4 1 2

The “waiting” column shows the task IDs waiting.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 17

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MuTeX Display mutexes

Format: TASK.MuTeX [<mutex>]

Displays the mutex table of REALOS or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex ID to display detailed information on that mutex.

B BTASKMUTeX [o || =)][]

1d hold |waiting |
. none ~
2. none

4 i 3

“hold” shows the task ID that locked this mutex.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 18

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore [<semaphore>]

Displays the semaphore table of REALOS or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown.
Specify a semaphore ID to display detailed information on that semaphore.

o B:TASK.SEMaphore | = |[& |[z23]

1d count |max waiting |
1. |0. 1z27. |2, 1. ~
2. [5. 10. none

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.TaSK Display tasks

Format: TASK.TaSK [<task>]

Displays the task table of REALOS or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task magic or ID to display detailed information on that task.

o B:TASK.TasK =n| Wl <
1d state prio [entry |
0. [ready 33. [CODOLF40 _kernel_idTe_task .
1. [running 1. [COO0O5SCE taskl
2. |waiting sem 2. [CO0O0O5SCE taskl o
3. |ready 3. |CODOOSF8 task2 ofb BATASKTaSK2. o[-
id [state rio [entr
P m 2. |[waiting sem 2. [CO0DDSCE taskl ~
FALNG ACT
2. 2. FFFFFRFF
ount activation wakeup suspended |-
0. 0. 0. 3
C00005CE 00000002 Taskl
stack size pointer
CO0O1EEFO 00001000 COO1FELD
=) object
4 M b

The fields “id” and “entry” are mouse sensitive, double clicking on them opens appropriate windows. Right
clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 19

REALOS PRACTICE Functions

There are special definitions for REALOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual REALOS | 20

	OS Awareness Manual REALOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in REALOS

	Features
	Display of Kernel Resources
	Task-Related Breakpoints
	Task Stack Coverage
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	REALOS specific Menu

	REALOS Commands
	TASK.ALarM Display alarm handlers
	TASK.CYClic Display cyclic handlers
	TASK.DaTaQueue Display data queues
	TASK.FLaG Display event flags
	TASK.MailBoX Display mailboxes
	TASK.MemPoolF Display fixed memory pools
	TASK.MemPoolL Display variable memory pools
	TASK.MsgBuFfer Display message buffers
	TASK.MuTeX Display mutexes
	TASK.SEMaphore Display semaphores
	TASK.TaSK Display tasks

	REALOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

