LAUTERBACH A

OS Awareness Manual
RTXC Quadros

OS Awareness Manual RTXC Quadros

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual RTXC QUAArOScccccceriiimmnssnninssmmsssssisssssssssssssssssssssmsssssssssssassnssasssas 1
0 Y= = 4
Terminology 4
Brief Overview of Documents for New Users 5
Supported Versions 5

L0 o3} T 11T = Lo o 6
Quick Configuration Guide 7
Hooks & Internals in RTXC Quadros 7
== LT == 8
Terminal Emulation 8
Display of Kernel Resources 8
Task Stack Coverage 9
Task-Related Breakpoints 9
Task Context Display 10
Dynamic Task Performance Measurement 11
Task Runtime Statistics 12
Task State Analysis 13
Function Runtime Statistics 14
RTXC Quadros specific Menu 16
RTXC Quadros COMMANAScccoeeeeirrrrssscerrrssssmmerrssssmseressssmmsssessssmmeseesssnmmssessssnmnssesssanmenneas 17
TASK.ALaRm Display alarms 17
TASK.CouNTer Display counters 18
TASK.EVenT Display event sources 19
TASK.EXCeption Display exceptions 19
TASK.LeVelL Display levels 20
TASK.MailBoX Display mailboxes 21
TASK.MuTeX Display mutex 21
TASK.PaRTition Display partitions 22
TASK.PIPe Display pipes 22
TASK.QUEue Display queues 23
TASK.SEMaphore Display semaphores 23
TASK.TaSK Display tasks 24
©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros 2

TASK.THRead Display threads 25
RTXC Quadros PRACTICE FUNCLIONSccccciieemmmrmnrinsiessssssscsmmn s s s s s ss s sssssmssmss s s s s sessnnnnes 26
TASK.CONFIG() OS Awareness configuration information 26
TASK.VERSION() Awareness information 26
TASK.TASK.LIST() Next task magic number in task list 27
TASK. TASK.NAME() Task name 27
TASK.TASK.ID2MAGIC() Task magic number of task ID 27
TASK. THREAD.LIST() Next thread magic number in the thread list 28
TASK.THREAD.NAME() Name of thread 28
TASK. THREAD.ID2MAGIC() Thread magic number of thread ID 28
TASK.SEMAPHORE.ID2MAGIC() Magic number of a given semaphore ID 28
TASK.SEMAPHORE.LIST() Next magic number in the semaphore list 29
TASK.SEMAPHORE.NAME() Name of semaphore 29
TASK.SEMAPHORE.STATE() State of semaphore 29
TASK.SEMAPHORE.COUNTY() Count of semaphore 29
TASK.SEMAPHORE.WAITERS.COUNT() Waiting tasks 30
TASK.SEMAPHORE.WAITERS.LIST() Next task magic number 30
TASK.MUTEX.LIST() Next mutex magic number in mutex list 30
TASK.MUTEX.NAME() Name of mutex 31
TASK.MUTEX.ID2MAGIC() Mutex magic number of mutex ID 31
TASK.MUTEX.WAITERS.COUNTY() Tasks waiting on mutex 31
TASK.MUTEX.WAITERS.LIST() Next task magic number 32
TASK.QUEUE.LIST() Next queue magic number in queue list 32
TASK.QUEUE.NAME() Name of queue 32
TASK.QUEUE.ID2MAGIC() Queue magic number of queue ID 33
TASK.QUEUE.WAITERS.COUNT() Tasks waiting on this queue 33
TASK.QUEUE.WAITERS.LIST() Next task magic number in waiting list 33
TASK.PIPE.LIST() Next pipe magic number in pipe list 34
TASK.PIPE.NAME() Name of pipe 34
TASK.PIPE.ID2MAGIC() Magic number of pipe ID 34
©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros 3

OS Awareness Manual RTXC Quadros

Overview

Version 06-Jun-2024

A TRACE32 for Quadros = =R
File Edit View Var Break Run CPU Misc Trace Perf Cov CQuadros Window Help
ME AL S e »n |2 D Bl esas @ 2
7 >
&) EEE
Example task 1: Awaking from 1 se NOT
Example tack 1: Awaking From 1 se M Step || ¥ Over || A Diverge | ¢ Return|| € Up b Go | Il Break % Mode & t.
Example task 4: addr/1ine [source _ |
Message from Example task 3 _ ~
Example task 5: waiting on a 5 se N enable Tx
Example task 1: Awaking from 1 se
Example task 1: Awaking from 1 se 406 MCF5282_UARTO_UCR = MCF5282_UART_UCR_TX_EMABLED;
Example task 4: .
Message from Example task 3 408 POPPPL (pp1);
Example task 1: Awaking from 1 se U .
Example task 1: Awaking from 1 se TRACE32 wait for ready
Example task 4: 411 while (TRACE320utChar);
Message Trom Example task 3 =
Example task 1: Awaking from 1 se [I 1 |
Example task 5: waiting on a 5 se = =] x
Example task 1: Awaking from 1 second sT¢ £ name currlvl baselvl jorder [runs entry |
Example task 4: 1. [THREADL] 1. 1. 120. [00020144 threadl ,
Message Trom Example task 3 2. [THREADZ 2 120. |0002015C threadz
Example task 1: Awaking from 1 second sl¢ 3. [THREAD3 1 1 3. 0. [0002016C thread3
Example task 1: Awaking from 1 second sT¢ 4. |THREAD4 2 2 1. 0. (00020174 thread4
Example task 4: 5. |THREADS 2 2 2 0. |0002017C threads
lessage Trom Example task 3 6. |[THREAD& 2 2 3 120. (00020184 threads v
Example task 1: Awaking from 1 second sT¢
| e &b B:TASK Task =R Io .
= magic £ name prio_|entry arg addr |state |
INFO: Floating license gets checked on first Go or 9 [004007EQ 1. [EXAMPLEL 5. [DODZ01AE [DOOO0DO0D [ready ~
resetting. 0040081C 2. |EXAMPLEZ 6. (00020254 (00000000 |alarm
1n1t1a11z1ng 00400858 3. |[EXAMPLE3 7. |000202DC |00000000 |acknowled
loadi ng sa.mp'le application. 00400894 4. [EXAMPLE4 8. |00020324 |00000000 |ready
file "X: \RTOS\Quadr‘os\TRACBZ\co'ld'F'lr‘e\quadr‘os dm. e] |004008D0 5. |[EXAMPLES 9. (00020384 (00000000 |alarm
initializing multitask support.. 0040090C 6. |[ECHOTASK | 10. |00020430 |00000000 |queue
'Ioad comp'lete 00400948 7. |[CONITASK 3. |00023808 |00000000 |semaphore
ng: Tile 5:\RTOS\RTXC\Quadros\Quadros\Source\Kq |00400984* 8. [CONOTASK 4. |00023634 |00000000 |current ¥
BE:: TASK.|
Task SEMaphore | MailBoX PaRTition QUEue MuTeX THRead LeVel EVenT othar pravions
SP:000236B6 \\quadros_dmrixcuart|conaotsk+0x82 CONOTASK stopped HLL UP

The OS Awareness for RTXC Quadros contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

RTXC Quadros uses the terms “threads” and “tasks”. If not otherwise specified, the TRACES32 term “task”
corresponds to RTXC Quadros (multi-stack) tasks.

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros | 4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently RTXC Quadros is supported for the following versions:

o RTXC Quadros (ms and ss) V1.0 on ARM, C167, ColdFire, PowerPC, StarCore and
TMS320C55xx.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “quadros.t32” (directory
“~~/demo/<processor>/kernel/quadros”). It contains all necessary extensions.

Automatic configuration tries to locate the RTXC Quadros internals automatically. For this purpose all
symbol tables must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

For system resource display, you can do an automatic configuration of the OS Awareness. For this purpose
it is necessary that all system internal symbols are loaded and accessible at any time, the OS Awareness is
used. Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will
be searched and configured automatically. For a fully automatic configuration omit all arguments:

Format: TASK.CONFIG quadros

See also “Hooks & Internals” for details on the used symbols.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 6

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for RTXC Quadros with your application, follow
the following roadmap:

1. Copy the files “quadros. t32” and “quadros .men” to your project directory
(from TRACE32 directory “~~/demo/<processor>/kernel/quadros”).

2. Start the TRACES32 Debugger.
3. Load your application as normal.

4, Execute the command “TASK.CONFIG quadros”
(See “Configuration”).

5. Execute the command “MENU . ReProgram quadros”
(See “RTXC Quadros Specific Menu”).

6. Start your application.
Now you can access the RTXC Quadros extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in RTXC Quadros

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The RTXC Quadros kernel must be compiled with debug information.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 7

Features

The OS Awareness for RTXC Quadros supports the following features.

Terminal Emulation

The terminal emulation window can be used to communicate with the target side terminal I/O. The
communication via two memory buffers requires no external interface. See the TERM command group for a
description of the terminal emulation. On request we can provide you with the source code for the target

interface routines for RTXC Quadros.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
RTXC Quadros components can be displayed:

TASK.ALaRm
TASK.CouNTer
TASK.EVenT
TASK.EXCeption
TASK.LeVeL
TASK.MailBoX
TASK.MuTeX
TASK.PaRTition
TASK.PIPe
TASK.QUEue
TASK.SEMaphore
TASK.TaSK
TASK.THRead

Alarms
Counters
Event sources
Exceptions
Levels
Mailboxes
Mutexes
Partitions
Pipes
Queues
Semaphores
Tasks
Threads

For a description of the commands, refer to chapter “RTXC Quadros Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where RTXC Quadros holds its

tables.

When working only with target memory, the information will only be displayed if the target application is

stopped.

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros | 8

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

&b BTASK.STacK

name |low high sp % |lowest spare max [0 10 20 30 40 50 &0 |

EXAMPLEL [00403634
EXAMPLEZ |00403184
EXAMPLES |00402F 84
EXAMPLE4 |00402D84
EXAMPLES |00402B84
ECHOTASK |00402984
CONITASK |00402584

00403830 |0C
00403630
00403180
00402F80
00402080
00402680
00402980 |00

0 44% 00403750 0000011C
20% |00403330 000001AC
44% |0040309C 00000118
34% |0040ZE98 00000114
47% |00402C90 0000010C
40% |00402AB4 00000130
_ 77% |004028BC 00000038

13%

64%
44%

45%

47%

40%
7T%

CONOTASK |00402784 00402880 |004 8 9% [004027AC 00000028 B84% A
£ >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros | 9

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@
3K Delete Al | O Disable Al @ Enabie Al @ it || & 1mpl... |52 Store...| 52 Load... | Ed Set...
address types impl task

"EXAMPLES ™
"CONITASK™

KS_ArmATarm
“SignalSema'K5_SignalSema

C:00028DFC (Program
C:00029194 |Program

SOFT
SOFT

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 10

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

& BuFrame /TASK "EXAMPLET" EI@

t. Up Down Margs Mlocls [Mcaler | Task: | "EXAMPLEL"

~ |

-000[[KS_PutQueueDataw(
= queue = 2,
data = 0x00400010)

-001||print1(
buffer = 0x0002C018,
= mutex = 0,

= queue = 2)

-00z
| # BufferToPrint = 0x0002C00C)

-003]|[exam

}
132 KS_SleepTask(TIMEBASE, CLKRATE); /* sleep 1 second *

— |end of frame

<

®p = (ksnum = 558, ksrc = RC_GOOD, queue = 2, data = Ox0002C017, counter = 1,

71 :/t/x{/{ﬁ/s/(//

183 ////{1/5/1/6//

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros | 11

= B:PERF.ListTASK = =R
& setp.. || 38 anfig... | (A Goto... | B Detsled | O, View || i/ Profile || @ mit || Disable| @ Amm
runtime: 100%

name ratio 1% 2% 5% 10% 20% 50% 100 |
0x004007 A4 80.219%

CONOTASK 19.781%

EXAMPLEL 0. 000%

EXAMPLEZ2 0. 000%

EXAMPLE3 0. 000%

EXAMPLE4 0. 000%

EXAMPLES 0. 000%

ECHOTASK 0. 000%

CONITASK 0. 000%

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 12

| B:Trace STATistic. TASK = =R
2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
tasks: 9. total: 4. 000ms
range [total min max avr count ratio® [1% 2% 5
COMODRV 34.300us 34.300us 34.300us 34.300us 1. 0.857% [+ A
EXAMPLEL 2.428ms 2.428ms 2.428ms 2.428ms 1. 60. 6I6H | —————s——
(idle) 1.320ms 52.800us 1.048ms | 219.983us 6. 32, 995% [——
EXAMPLE2 32.200us 32.200us 32.200us 32.200us 1. 0.805% |+
EXAMPLE3 24.200us 24.200us 24.200us 24.200us 1. 0.605% |+
EXAMPLE4 24.200us 24.200us 24.200us 24.200us 1. 0.605% |+
ECHOTASK_ 32.700us
COEIRY (32'900“5 ¥ B Trace.CHART.TASK [r=] B Sl
2 senp... || §if Goups... | 38 Gonfig... | A Goto...|| A Goto...|| #3Find... | 0 In |[»0¢ Out| &3 Ful
000us 1.000ms 2.000ms 3.000ms
range R L L L |
COMODRVEN ™ A
EXAMPLE L | o
Gdieyas 0 0 AEEE N EES——
EXAMPLEZ2 {jy
EXAMPLE3 Hy 1
EXAMPLES {y 1
ECHOTASK Hy 1
COMIDRVER . R
€0 > € >
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

o All accesses to the status words of all tasks

. Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array)
Break.Set TASK.CONFIG (magic)

/Write /TraceData
/Write /TraceData

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros

| 13

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic.TASKState
Trace.Chart. TASKState

Display task state statistic

Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

! B:Trace, CHART. TASKSTATE = =R
B senp... || 38 @nfig... | Goto...| #3Find... |l Chart || 0 In || v0« Out | &3 Ful
2.500ms 2.600ms 2.700ms 2.800ms 2.900ms 3.000ms 3.100ms|
range | 1 1 1 1 1 1 1 |

COMODRV 3|

Cidle) @y
EXAMPLEZ2RY .
EXAMPLE3RY
EXAMPLE4RY
ECHOTASKRY -
COMIDRW M
= | B:Trace STATistic. TASKSTATE = =R
2 ... || 38 Gonfi.. || (Y Goto...|| =|Detaed | Pl Chart
tasks: 8. total: 30.88lms
task [total.und [total.run [total.rdy |total.wait [total.susp |max.und max. run max. rdy max.wait Mmax. susp |
EXAMPLEL 2.38Bms 0.000us 0.000us 1.472ms 0.000us 2.38Bms 0.000us 0.000us 1.472ms 0.000us | 4
(idle) 2.3%ms 1.320ms | 146.200us 0.000us 0.000us 2.3%ms 1.048ms 32.900us 0.000us 0.000us
EXAMPLEZ2 2.437ms 26.400us 12.600us 1.384ms 0. 000us 2.437ms 26.400us 12.600us 1.384ms 0. 000us
EXAMPLE3 2.524ms 24, 200us 16.700us 1.295ms 0. 000us 2.524ms 24, 200us 12.600us 1.295ms 0. 000us
EXAMPLE4 2.601ms 24, 200us 16.700us 1.218ms 0. 000us 2.601ms 24, 200us 12.600us 1.218ms 0. 000us
ECHOTASK 2.678ms 26.900us 12.600us 1.143ms 0. 000us 2.678ms 26.900us 12.600us 1.143ms 0. 000us
COMIDRV 2.766ms 27.100us 12.600us 1.054ms 0. 000us 2.766ms 27.100us 12.600us 1.054ms 0.000us | ¥
£ >

Function Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following

command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros

| 14

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

1 ”
(unknown)”.
| BTrace STATistic. TASKTREE = =R
2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart
funcs: 68. total: 3.860ms 70 workarounds
range: 1399..40000
range tree total min max avr count intern® 1% 2%
(root) = (root) 1.320ms - 1.320ms - - 0.220% [+ ~
KS_ExecuteTask -2 KS_ExecuteTask 276. 700us 51.400us 54.300us 52.620us 6. 0.329% |+
—KS! = _ks 264. 000us 0. 300us 51.600us 31.388us 9. 1.590% |e—
RTXCProlog+0x50 = RTXCProlog+0x50 12.600us - 12.600us - 1. 0.056% |+
rtxc_ms = rtxc_ms 10.400us - 10.400us - 1. 0.077% |+
_K5_PutQueueData L — _KS_PutQueueData 7.400us - 7.400us - 1. 0.191% |+
rtxc_ms = rtxc_ms 190. 000us 35.900us 39.700us 38.000us 5. 1.373% |m—
_KS_ExecuteTask L— _KS_ExecuteTask 80.000us | 16.000us | 16.000us | 16.000us 5. 2. 072% |e—
rtxcnsrt = ritxcnsrt 57.000us 8. 800us 13.700us 11.400us 5. 1.404% | —
SignalTaskSema L— SignalTaskSema 2.800us 1.400us 1.400us 1.400us 2. 0.072% |+
testpt — testpt 1.035ms - 1.035ms - 1. | 26.805% |———————
(root) = (root) 32.200us - 32.200us - - 0. 000%
RTXCProlog+0x50 —= RTXCProlog+0x50 5.600us - 5.600us - 1. 0.056% |+
rtxc_ms = rtxc_ms 3.400us - 3.400us - 1. 0.051% |+
rtxcnsrt L— rtxcnsrt 1.400us - 1.400us - 1. 0.036% |+
example2 = example2 26. 600us - 26. 600us - 1. 0.010% |+
KS_TESt al LW Tact al Fu¥al Fu¥al 1 N NCAG |4
rtx| & BiTrace. CHART.TASKFUNC == =] | v
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
2.500ms 2.550ms 2.600ms 2.650ms 2.700ms .
rangeqs| | L | 1 1 1 I
rtxc_ms A —a - y 5 5 A
RTXCProlog+0x5 0 .) |)))
_ks dH— — - - -
KS_PutQueueDataw Al ——1 - - - - -
print] H—= - - - - -
|_K5_PutQueueData (- . . . - - -
KS_ReleaseMutx 4K)))
(root) - 5 5
K5_TestMutxi L
_K5_PutQueueData e . . I . i
rtxc_ms LI [} il 1 W - -
RTXCProlog+0x5 0 . . .
_ks T - | - .
KS_ExecuteTask]] - 10—
(root) | s e e H 4
_KS_ExecuteTask 12 I]
rtxensrt 12 I a—. . . .-
rixensrt 12 I LI . .
rtxc_ms - |
RTXCProlog+0x5 0 N . .
(root) ok
example2 =
K5_TestSemaw - - - - - - - - - - ; - e
£ 0 >» € >

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 15

RTXC Quadros specific Menu

The menu file “quadros.men” contains a menu with RTXC Quadros specific menu items. Load this menu

with the MENU.ReProgram command.

You will find a new menu called Quadros.

. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the RTXC Quadros specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.
. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.
/A TRACE32 for Quadros - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Quadros Window Help
(MR A+ [2 0 = Display Tasks
— Display Semaphores
=] Display Mailboxes
t dd tat i it
T. |E;J£I:PLE1 e |SSOE§1A8 30053000 F]:e: Epplayiatiton
2. [EXAMPLEZ 6. |00020254 00000000 |alarn Display Queues
o5 B:TASK THRead Display Mutexes
name currlvl [baselvl [order Display Threads
1. [THREADL 1. J. 1. Display Levels
2. [THREADZ 1 1. 2
3. |THREAD3 1 1. 3 Display Pipes
g ¥:EE§3§ g g é Display Event Socurces
6. |THREADG 2 2. 3 Display Counters
Display Alarms
B TASK. Display Exceptions
Stack Coverage L4
Task SEMaphore | MailBoX PaRTition QUEue MuTeX THRead LeVel EVenT othar pravions
[SP00020060 | quadros | fbgasm| 0ummyFn5+1G8 0x004007 A4 stopped MIX |UP

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros

16

RTXC Quadros Commands

TASK.ALaRm

Display alarms

Format:

TASK.ALaRm [<alarm>]

Displays the alarm table of RTXC Quadros or detailed information about one specific alarm.

Without any arguments, a table with all created alarms will be shown. Specify an alarm name, alarm ID or
alarm magic number to display detailed information on that alarm.

&% BuTASK.ALaRm

(o] 8)

magic # name state counter remain

initial [eyclic

waiters |action |

00401008 1. [SALARM1 active [COUNTERL 1le6l2. | Z0000. . 1. |<no action= A
00401118 2. |SALARMZ active (COUNTERL 11z. 500. 500. 0. |ScheduleThread
00401158 3. [SALARM3 active [COUNTERL 161z, 5000. 0. 1. |<no action>
W
o B:TASK.ALaRm "SALARM3" = =R
magic # |name state counter remain_[initial [cyclic |waiters [action |
00401158 | 3. [SALARM3 [active [COUNTERL | 1s1z. | 5000. | 0. 1. [<no action= ,

waiting tasks
00400800 EXAMPLES

“magic” is a unique ID, used by the OS Awareness to identify a specific alarm (address of the alarm control

structure).

The fields “magic” and “waiting tasks” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros | 17

TASK.CouNTer

Display counters

Format:

TASK.CouNTer [<counter>]

Displays the counter table of RTXC Quadros or detailed information about one specific counter.

Without any arguments, a table with all created counters will be shown. Specify a counter name, counter ID
or counter magic number to display detailed information on that counter.

o B:TASK.CouNTer = =R

magic £ name accumulator |event src [count moduTus |

0040100 1. [COUNTERL 28888. |EVNTSRCL 1 1. A

00401030 2. |COUNTERZ 14443, |EVNTSRC1 1. 2.

00401054 3. |COUNTER3 0. |EVNTSRCZ 1. 1.

00401078 4., |COUNTER4 0. |EVNTSRCZ 2 2

£
% B:TASK.CouNTer "COUNTERT" = =R
magic £ name accumulator |event src [count moduTus |
0040100C | 1. [COUNTERL | 28888. [EVNTSRCI | 1. | 1. [a
alarm object remain initial cyclic action waiters
00401118 SALARM2 11z, 500. 500. ScheduTeThread
00401158 SALARM3 1612. 5000. 0. <no actions
00401008 SALARML 16612. 20000. 0. <no action=

v

£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific counter (address of the counter

control structure).

The fields “magic” and “alarm” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual RTXC Quadros | 18

TASK.EVenT Display event sources

Format: TASK.EVenT [<event>]

Displays the event source table of RTXC Quadros or detailed information about one specific event source.

Without any arguments, a table with all created event sources will be shown. Specify a event source name,
event ID or event magic number to display detailed information on that event source.

b BATASK EVenT (o] 2 s

magic # name accumulator [

00400FA4 1. [EVNTSRCL 28BE8S8. A

00400FBD 2. [EVNTSRCZ 0.

00400FBC 3. |=not 1n usex=

< o B:TASK.EVenT "EVNTSRC2" = =R
magic # |name accumu lator |

00400FBD 2. [EVNTSRCZ

"~
00401054 COUNTERS
00401078 COUNTER4

=Y=115
ra R[S

1.
2.

“magic” is a unique ID, used by the OS Awareness to identify a specific event source (address of the event
source control structure).

The fields “magic” and “counter” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.EXCeption Display exceptions

Format: TASK.EXCeption

Displays a table with all created exceptions of RTXC Quadros.

% B:TASK.EXCeption = =R

mag c # name Tevel lvector |previous

1. [TMROISR 2. 119. [0000O0O00
00401290 2. |UARTOISR 1. 77. |00000000
0040129C 3. [<not in uses

v
< >

“magic” is a unique ID, used by the OS Awareness to identify a specific exception (address of the exception
control structure).

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 19

TASK.LeVeL Display levels

Format: TASK.LeVel [<level>]

Displays the level table of RTXC Quadros or detailed information about one specific level.

Without any arguments, a table with all created levels will be shown. Specify a level name, level ID or level
magic number to display detailed information on that level.

o BTASKLeVel IEI-IEI

magic £ name static |dynamic method

004005BC J. LEVEL1 3. 0. |priority .

00400508 LEVELZ2 3. 0. |priority

L")

o B:TASK.LeVel "LEVEL1" = =R
mag c £ name static |dynamic method |
0040056C | 1. |LEVELL | 3. | 0. [priority a

r thread : Tevel : order

scheduled threads : level : order

“magic” is a unique ID, used by the OS Awareness to identify a specific level (address of the level control
structure).

The fields “magic” and “thread” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 20

TASK.MailBoX Display mailboxes

Format: TASK.MailBoX [<mailbox>]

Displays the mailbox table of RTXC Quadros or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown. Specify a mailbox name, mailbox
ID or mailbox magic number to display detailed information on that mailbox.

o B:TASK.MailBoX = =R
magic # name current [order usage waiters |
00400C30 | 1. [sMBOXL | 0. Jprio | 15.] 0. [~
v
<
o B:TASK.MailBoX "SMBOX1" = =R
Imagic current [order lusage waiters [
00400C30 | 1 |SMBOX1 [~ 0. J[prio | 15.] 0. | A

“magic” is a unique ID, used by the OS Awareness to identify a specific mailbox (address of the mailbox
control structure).

VT

The fields “magic”, “address” and “waiting tasks” are mouse sensitive. Double-clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

TASK.MuTeX Display mutex

Format: TASK.MuTeX [<mutex>]

Displays the mutex table of RTXC Quadros or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex name, mutex ID or mutex magic number to display detailed information on that mutex.

& BiTASKMuTeX [=][&S]
1 £ name level order [1nvers jowner usage conflicts waiters |
T. [CONAMUTX | 0. Jprio [no _ [00000000 -1_o. I P
2. |CONBMUTX
31000 o] o BaTASKMuTeX "CONBMUTX! [=][&S]
5. lonot in u-e| magic Tevel jorder [invers [owner usage [conflicts waiters |
00400008 | z |CONBMUTX [0. |prioc | no _ |00000O00 0.] oO. T 0. [
v
‘(>

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 21

The fields “magic”, “owner” and “waiting tasks” are mouse sensitive. Double-clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

TASK.PaRTition Display partitions

Format: TASK.PaRTition [<partition>]

Displays the partition table of RTXC Quadros or detailed information about one specific partition.
Without any arguments, a table with all created partitions will be shown. Specify a partition name, partition

ID or partition magic number to display detailed information on that partition.

% B:TASK.PaRTition = =R
mag c name address |avail [total bsize order lusage worst waiters
00400C78 | J. [SPARTL [00400044 1. 2. |00000020 |prio 14. 1. 0. »
£

v
>

“magic” is a unique ID, used by the OS Awareness to identify a specific partition (address of the partition
control structure). The fields “magic”, “address” and “waiting tasks” are mouse sensitive. Double-clicking on
them opens appropriate windows. Right clicking on them will show a local menu.

TASK.PIPe Display pipes

Format: TASK.PIPe [<pipe>]

Displays the pipe table of RTXC Quadros or detailed information about one specific pipe.

Without any arguments, a table with all created pipes will be shown. Specify a pipe name, pipe ID or pipe
magic number to display detailed information on that pipe.

o B:TASK.PIPe = =R

mag c # name 'Fu'l'l e_pty nbu'Fs bs1ze hor‘st usa e

00401100 1. [SPIPEL

00401210 2. |SPIPEZ 0. 2. . 16 0

<
o B:TASK.PIPe "SPIPE1" = =R
Imagic full |empty nbufs [bsize |worst usage

0.1 2.1 2.] & 0.1 0.[n

00401100 | 1 |SF‘IF‘EJ. T

action: <no actions
action: <no actions

00400004 ——
004000DC

< >

“magic” is a unique ID, used by the OS Awareness to identify a specific pipe (address of the pipe control
structure).

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 22

The fields “magic”, “full buffers” and “free buffers” are mouse sensitive. Double-clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

TASK.QUEue Display queues

Format: TASK.QUEue [<queue>]

Displays the queue table of RTXC Quadros or detailed information about one specific queue.

Without any arguments, a table with all created queues will be shown.
Specify a queue name, queue ID or queue magic number to display detailed information on that queue.

A BTASKQUEve (o [®)

mag c # name address |current depth width jorder usage worst waiters |

00400CCC 1. [CONAIQ 00402770 0. 16. 1. [prio 0. 1. A

00400CFC 2. (CONAOQ 00402730 0. 64. 1. [prio |2706. 0. 1

00400D2C 3. [CONBIQ 00402720 0. 16. 1. [prio 0. 0. o

00400D5C 4. |CONBOQ 004026E0 0. 64. 1. [prio 0. 0. o

< &% BTASK.QUEue "CONAOQ" = E ==
mag c # name address |current depth width jorder usage worst waiters |
00400CFC | 2. [CONADQ |00402730] 0. | 64.] 1. |prio [2706.] 0.] 1. |

Ll

waiting tasks
‘00400984 CONOTASK

<

“magic” is a unique ID, used by the OS Awareness to identify a specific queue (address of the queue control
structure).

The fields “magic”, “address” and “waiting tasks” are mouse sensitive. Double-clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore [<semaphore>]

Displays the semaphore table of RTXC Quadros or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 23

Specify a semaphore name, semaphore ID or semaphore magic number to display detailed information on

that semaphore.
&b B:TASK SEMaphore [E=N =R
|name state count [s1g type |order usa_lge waiters |
1. [CONAISEM [wait 0. [singTe prio P
2. [CONADSEM |pend 0. [single prio 0.
3. [CONBISEM |pend 0. [single prio 0 0.
4. [CONBOSEM |[pend 0. [single prio 0 0.
5. |[EXAMSEMO |pend 0. [single prio 1 0.
6. [EXAMSEM1 |pend 0. [single prio 1 0.
7. |[EXAMSEMZ |pend 0. [single prio 0 0.
B. EXAI‘-'ISEI‘-B pend 0. [single prio 1 0.
9. |<not in use
10. in uses
% B:TASK.SEMaphore "CONAISEM" = =R
magic # ame state count [s1g type lorder [usage waiters |
004009E5 | 1. |CONAISEI‘-'I [wait | 0. [singTe [prio | 0. P
waiting tas
00400948 CONITASK
v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The fields “magic” and “waiting tasks” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

TASK.TaSK Display tasks

Format: TASK.TaSK [<task>]

Displays the task table of RTXC Quadros or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task name, task ID or task magic number to display detailed information on that task.

o BuTASK.TaSK = =R
mag1 £ name prio_|entry arg addr |state |

1. |[EXAMPLEL 5. |[00DZ01A8 [00000000 |[sTeep A

2. |EXAMPLEZ 6. (00020254 (00000000 |alarm

3. |EXAMPLE3 7. |000202DC [00000000 |acknowledge

4. |EXAMPLE4 8. (00020324 (00000000 (sleep

5. |EXAMPLES 9. (00020384 (00000000 |alarm

6. |ECHOTASK 10. (00020430 (00000000 |queue

7. |CONITASK 3. (00023608 (00000000 |semaphore

8. [CONOTASK | 4. |00023634 00000000 |queue

v

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task control
structure).

VAT

The fields “magic”, “entry” and “arg addr” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

Pressing the “context” button (if available) changes the register context to this task. “current” resets it to the
current context. See “Task Context Display”.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 24

TASK.THRead Display threads

Format: TASK.THRead [<thread>]

Displays the thread table of RTXC Quadros or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown. Specify a thread name, thread ID or
thread magic number to display detailed information on that thread.

% B:TASK.THRead = =R
£ name currlvl baselvl jorder [runs entry |
1. [THREADL 1. 1. 1. 57. [00020144 threadl ,
2. |THREADZ 1. 1 2. 57. [0002015C thread2
3. |THREAD3 1. 1 3. 0. |0002016C thread3
4. |THREAD4 2. 2 1. 0. |00020174 thread4
5. |THREADS 2. 2 2. 0. |0002017C threads
6. |THREADG 3
% B:TASK.THRead "THREAD1" = =R
agic £ name currlvl baselvl jorder [runs entry |
00400640 | 1. [THREADL | 1. | 1. | 1.] 57.[00020134 <threadl ,
argument addr environment addr
00000000 00000000
gate key preset
00000000 00000000
v

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the thread control
structure).

U3

The fields “magic”, “entry” and “addr’ are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 25

RTXC Quadros PRACTICE Functions

There are special definitions for RTXC Quadros specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicms | magicsize | magicss)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

If the application is a multi-stack or dual-mode system, the magic address
of multi-stack is returned, otherwise the magic address of single-stack is
returned.

magicms Returns the address of the magic number for the multi-stack scheduler
(= address of the current running task).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

magicss Parameter Type: String (without quotation marks).
Returns the address of the magic number for the single-stack scheduler
(= address of the current running thread).

Return Value Type: Hex value.

TASK.VERSION() Awareness information

Syntax: TASK.VERSION(<item> | cpufamily | date | rtos)

Parameter and Description:

<item> Parameter Type: String (without quotation marks).
Reports awareness version information.

cpufamily Parameter Type:
Returns the CPU family name this awareness is for.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 26

date Parameter Type: String (without quotation marks).
Returns the compile date of this awareness.

rtos Parameter Type: String (without quotation marks).
Returns the OS name this awareness is for.

Return Value Type: String.

TASK.TASK.LIST() Next task magic number in task list

Syntax: TASK.TASK.LIST(<task_magic>)

Returns the next task magic number in the task list. Specify zero for the first task. Returns zero if no
further task is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.TASK.NAME() Task name

Syntax: TASK.TASK.NAME(<task_magic>)

Returns the name of the specified task.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.TASK.ID2MAGIC() Task magic number of task ID

Syntax: TASK.TASK.ID2MAGIC(<task_id>)

Returns the task magic number of a given task ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 27

TASK.THREAD.LIST() Next thread magic number in the thread list

Syntax: TASK.THREAD.LIST(<task_magic>)

Returns the next thread magic number in the thread list. Specify zero for the first thread. Returns zero if
no further thread is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.THREAD.NAME() Name of thread

Syntax: TASK.THREAD.NAME(<thread_magic>)

Returns the name of the specified thread.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.THREAD.ID2MAGIC() Thread magic number of thread ID

Syntax: TASK.THREAD.ID2MAGIC(<thread_id>)

Returns the thread magic number of a given thread ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.SEMAPHORE.ID2MAGIC() Magic number of a given semaphore ID

Syntax: TASK.SEMAPHORE.ID2MAGIC(<semaphore_id>)

Returns the semaphore magic number of a given semaphore ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 28

TASK.SEMAPHORE.LIST() Next magic number in the semaphore list

Syntax: TASK.SEMAPHORE.LIST(<semaphore_magic>)

Returns the next semaphore magic number in the semaphore list. Specify zero for the first semaphore.
Returns zero if no further semaphore is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.SEMAPHORE.NAME() Name of semaphore

Syntax: TASK.SEMAPHORE.NAME(<semaphore_magic>)

Returns the semaphore name for the specified semaphore magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.SEMAPHORE.STATE() State of semaphore

Syntax: TASK.SEMAPHORE.STATE(<semaphore_magic>)

Returns the state of the semaphore.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.SEMAPHORE.COUNT() Count of semaphore

Syntax: TASK.SEMAPHORE.COUNT(<semaphore_magic>)

Returns the count of the semaphore.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 29

TASK.SEMAPHORE.WAITERS.COUNT() Waiting tasks

Syntax: TASK.SEMAPHORE.WAITERS.COUNT(<semaphore_magic>)

Returns the number of tasks waiting on this semaphore.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.SEMAPHORE.WAITERS.LIST() Next task magic number

Syntax: TASK.SEMAPHORE.WAITERS.LIST(<semaphore_magic>,<task_magic>)

Returns the next task magic number in the waiting list.

Parameter and Description:

<semaphore_magic> Parameter Type: Decimal or hex or binary value.

<task_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.MUTEX.LIST() Next mutex magic number in mutex list

Syntax: TASK.MUTEX.LIST(<mutex_magic>)

Returns the next mutex magic number in the mutex list. Specify zero for the first mutex. Returns zero if
no further mutex is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 30

TASK.MUTEX.NAME() Name of mutex

Syntax: TASK.MUTEX.NAME(<mutex_magic>)

Returns the mutex name for the specified mutex magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.MUTEX.ID2MAGIC() Mutex magic number of mutex ID

Syntax: TASK.MUTEX.ID2MAGIC(<mutex_id>)

Returns the mutex magic number for the specified mutex ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.MUTEX.WAITERS.COUNT() Tasks waiting on mutex

Syntax: TASK.MUTEX.WAITERS.COUNT(<mutex_magic>)

Returns the number of tasks waiting on this mutex.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 31

TASK.MUTEX.WAITERS.LIST() Next task magic number

Syntax: TASK.MUTEX.WAITERS.LIST(<mutex_magic>, <task_magic>)

Returns the next task magic number in the waiting list.

Parameter and Description:

<mutex_magic> Parameter Type: Decimal or hex or binary value.

<task_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QUEUE.LIST() Next queue magic number in queue list

Syntax: TASK.QUEUE.LIST(<queue_magic>)

Returns the next queue magic number in the queue list. Specify zero for the first queue. Returns zero if
no further queue is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QUEUE.NAME() Name of queue

Syntax: TASK.QUEUE.NAME(<queue_magic>)

Returns the queue name for the specified queue magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 32

TASK.QUEUE.ID2MAGIC() Queue magic number of queue ID

Syntax: TASK.QUEUE.ID2MAGIC(<queue_id>)

Returns the queue magic number for the specified queue ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QUEUE.WAITERS.COUNT() Tasks waiting on this queue

Syntax: TASK.QUEUE.WAITERS.COUNT(<queue_magic>)

Returns the number of tasks waiting on this queue.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QUEUE.WAITERS.LIST() Next task magic number in waiting list

Syntax: TASK.QUEUE.WAITERS.LIST(<queue_magic>, <task_magic>)

Returns the next task magic number in the waiting list.

Parameter and Description:

<queue_magic> Parameter Type: Decimal or hex or binary value.

<task_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 33

TASK.PIPE.LIST() Next pipe magic number in pipe list

Syntax: TASK.PIPE.LIST(<pipe_magic>)

Returns the next pipe magic number in the pipe list. Specify zero for the first pipe. Returns zero if no
further pipe is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PIPE.NAME() Name of pipe

Syntax: TASK.PIPE.NAME(<pipe_magic>)

Returns the pipe name for the specified pipe magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.PIPE.ID2MAGIC() Magic number of pipe ID

Syntax: TASK.PIPE.ID2MAGIC(<pipe_id>)

Returns the magic number of a given pipe ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual RTXC Quadros | 34

	OS Awareness Manual RTXC Quadros
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in RTXC Quadros

	Features
	Terminal Emulation
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	RTXC Quadros specific Menu

	RTXC Quadros Commands
	TASK.ALaRm Display alarms
	TASK.CouNTer Display counters
	TASK.EVenT Display event sources
	TASK.EXCeption Display exceptions
	TASK.LeVeL Display levels
	TASK.MailBoX Display mailboxes
	TASK.MuTeX Display mutex
	TASK.PaRTition Display partitions
	TASK.PIPe Display pipes
	TASK.QUEue Display queues
	TASK.SEMaphore Display semaphores
	TASK.TaSK Display tasks
	TASK.THRead Display threads

	RTXC Quadros PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.VERSION() Awareness information
	TASK.TASK.LIST() Next task magic number in task list
	TASK.TASK.NAME() Task name
	TASK.TASK.ID2MAGIC() Task magic number of task ID
	TASK.THREAD.LIST() Next thread magic number in the thread list
	TASK.THREAD.NAME() Name of thread
	TASK.THREAD.ID2MAGIC() Thread magic number of thread ID
	TASK.SEMAPHORE.ID2MAGIC() Magic number of a given semaphore ID
	TASK.SEMAPHORE.LIST() Next magic number in the semaphore list
	TASK.SEMAPHORE.NAME() Name of semaphore
	TASK.SEMAPHORE.STATE() State of semaphore
	TASK.SEMAPHORE.COUNT() Count of semaphore
	TASK.SEMAPHORE.WAITERS.COUNT() Waiting tasks
	TASK.SEMAPHORE.WAITERS.LIST() Next task magic number
	TASK.MUTEX.LIST() Next mutex magic number in mutex list
	TASK.MUTEX.NAME() Name of mutex
	TASK.MUTEX.ID2MAGIC() Mutex magic number of mutex ID
	TASK.MUTEX.WAITERS.COUNT() Tasks waiting on mutex
	TASK.MUTEX.WAITERS.LIST() Next task magic number
	TASK.QUEUE.LIST() Next queue magic number in queue list
	TASK.QUEUE.NAME() Name of queue
	TASK.QUEUE.ID2MAGIC() Queue magic number of queue ID
	TASK.QUEUE.WAITERS.COUNT() Tasks waiting on this queue
	TASK.QUEUE.WAITERS.LIST() Next task magic number in waiting list
	TASK.PIPE.LIST() Next pipe magic number in pipe list
	TASK.PIPE.NAME() Name of pipe
	TASK.PIPE.ID2MAGIC() Magic number of pipe ID

