LAUTERBACH A

OS Awareness Manual QNX

OS Awareness Manual QNX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness and Run Mode Debugging for QNX ..o sssseseas —
OS Awareness Manual QNXcccciiiiiirscmmrrrrr s s s s s s s sssssssmmssss s s s ssssssssssssnnnmmssnnsnns 1
[T o 5
L0 =T T 6
Terminology 6
Brief Overview of Documents for New Users 7
Supported Versions 7
(070 0T T - 110 o 8
Quick Configuration Guide 8
Hooks & Internals in QNX 8
Requirements for Debugging 9
Requirements for Tracing 9
Requirements for QNX Hypervisor 10
Debug Features ... s s 11
Display of Kernel Resources 11
Task Stack Coverage 11
Task-Related Breakpoints 12
Task Context Display 14
MMU Support 16
Space IDs 16
MMU Declaration 16
Scanning System and Processes 19
Symbol Autoloader 20
SMP Support 22
Dynamic Task Performance Measurement 23
QNX specific Menu 24
Trace FeatUres ... s s m s e e s e e e s 26
Task Runtime Statistics 26
Task State Analysis 27
Function Runtime Statistics 28
QNX specific Menu for Tracing 30

©1989-2024 Lauterbach OS Awareness Manual QNX | 2

Debugging QNX COMPONENEScccceriiiiimmmrrinismmsrrssssmss s sssssmss s sssss s ssmss s s sassamssssssssnsnsnnnas 31
Initial Program Loader (IPL) 31
QNX Kernel 31

Downloading the QNX Image 32
Debugging the Kernel Startup 32
Debugging the Kernel 33
User Processes 33
Debugging the Process 34
Debugging into Shared Libraries 35
Debugging QNX Threads 36
Trapping Segmentation Violation 36

QNX COMMANAS ceciiirmnrnssmrrisssrrssasrsssmssssmssssasssassmsssssmssassmsssssnsssssannsssnnssssanssssanessnsnnnsssnness 38
TASK.ASINFO Display address space information 38
TASK.IFS Display directory of IFS 38
TASK.MMU.SCAN Scan process MMU space 39
TASK.Option Set awareness options 40
TASK.PIDIN Display “pidin” like information 40
TASK.Process Display processes 41
TASK.QVM Display VMs 42
TASK.SHMEM Display contents of shmem 42
TASK.SLOGGER2 Display contents of slogger2 buffers 43
TASK.sYmbol Process symbol management 44
TASK.sYmbol.DELete Unload process symbols and MMU 44
TASK.sYmbol.DELeteLib Unload library symbols 45
TASK.sYmbol.LOAD Load process symbols and MMU 45
TASK.sYmbol.LOADLIib Load library symbols 46
TASK.sYmbol.Option Set symbol management options 46
TASK.Thread Display threads 48
TASK.TLOGger Display tracelogger buffer 49
TASK.TLOGger.VMLOGger Copy tracelogger buffer to LOGGER 50
TASK.Watch Watch processes 51
TASK.Watch.ADD Add process to watch list 51
TASK.Watch.DELete Remove process from watch list 51
TASK.Watch.DISable Disable watch system 52
TASK.Watch.DISableBP Disable process creation breakpoints 52
TASK.Watch.ENable Enable watch system 52
TASK.Watch.ENableBP Enable process creation breakpoints 53
TASK.Watch.View Show watched processes 53

QNX PRACTICE FUNCHONSeciiieiriimmrsssnssssssssssmsssssassssssssssssn s ssssmsssssnsssssmsssssmessssnssnssmnnes 56
TASK.ASINFO.SIZE() Size of address space 56
TASK.ASINFO.STARTY() Start of address space 56
TASK.CONFIG() OS Awareness configuration information 57
TASK.CORE.ASSIGN() Core assignment 57

©1989-2024 Lauterbach OS Awareness Manual QNX 3

TASK.CURRENT()
TASK.LIB.ADDRESS()
TASK.PROC.ID()
TASK.PROC.MAGIC()
TASK.PROC.NAME()
TASK.PROC.SID2MAGIC()
TASK.PROC.SPACE()
TASK.PROC.THREADS()
TASK.PROC.TTB()
TASK.QVM.FORMAT()
TASK.QVM.MAGIC()
TASK.QVM.MID()
TASK.QVM.NAME()
TASK.QVM.VMLIST()

Appendix
Appendix A: Kernel debug information

Current process or thread
Address of library
Process ID

Magic number of process
Name of process
Process of space ID
Space ID of process

List of threads

TTB of process

Machine ID of VM

Magic number of VM
Machine ID of VM

Name of VM

List of VMs

57

59
59
59
59
60
60
60
61
61
61
61
62

63
63

©1989-2024 Lauterbach

OS Awareness Manual QNX

4

OS Awareness Manual QNX

History

Version 06-Jun-2024

07-Feb-2024
04-Apr-2022
04-Apr-2022

11-Mar-2022

11-Mar-2022

10-Mar-2022

New functions: TASK.QVM.NAME() and TASK.QVM.VMLISTY().

Split the “Features” chapter into two chapters, “Debug Features” and “Trace Features”.

Updated “Hooks & Internals in QNX” chapter.

New functions: TASK.CORE.ASSIGN(), TASK.PROC.ID(), TASK.PROC.TTB),
TASK.ASINFO.START(), TASK.ASINFO.SIZE().

New functions: TASK.QVM.MAGIC(), TASK.QVM.MID(), and TASK.QVM.FORMAT().

New commands: TASK.IFS, TASK.SHMEM, TASK.SLOGGER2, and TASK.QVM.
New option /TTBHV for the command TASK.Option.

©1989-2024 Lauterbach OS Awareness Manual QNX

5

Overview

/A TRACE32 PowerView for ARM 1 [SIM @] (=R =R
File Edit View Var Break Run CPU Misc Trace Pedf Cov OMAP4430app OQMNX Window Help
(MR s eernE 2R O] DB dalE @ Lo
=] [BuList PlotPaint] |E &% BuTASK. Process (===
(M Step |[W Over || ¥ Next || # Retum| € Up || » Go]m Al]LN';IM %}%Eom D'lg sggggm “T; g:rgs;bnot;procnto—smpﬂnstr—ZO I
addr /1in CUdg UtPUWl?bE] MNEMon c comment EFFDFZ7C 4098, | 0002 1. pruc;:buut;:devc—semmap -
EFFDF4ES8 4099, | 0003 1. |proc/boot/sTogger
- T T -) T S EFFDF754 4100. | 0004 3. |proc/boot/pipe
seinchicusinchiiaforicnlatesh hefonndc o ool W ierroroco | 4101 | 0005 1. [proc/boot /1 2c-omap35x-omapd
- - - - 5 EFFDFC2C 4102. | 0006 1. |proc/boot/i2c-omap35xx-omap4
508 ‘{’md PlotPoint(int xpt, int ypt) EFFFECI0 | 4103. | 0007 1. |proc/boot /1 2 c-omap35 xx-omapd
. . an 1 . 4 EFFFE27C 4104. | 0008 1. |proc/boot,/12c-omap35xx-omapd
BRSO PRLE] = 2000 lothoant: s Fr il EFFFE4ES | 16393. | 0009 7. |proc/boot /devb-mmcsd-blaze
NSR:0015 :00101A700 (E BO0OOD add EFFFE754 16394 000A 2 b P =
NSR:0015 :00101474 | |E2400044 sub - - [proc/boot/spi-master F
CARANAN EFFFESCO 16395. | 000B 2. |proc/boot/spi-master
N5R:0015 :00101A78| (E50E0040 str . s
- . . boot/io-usb
NSR:0015 :00101A7C | [£5051044 str EFFFEC2C | 16396. | 000C 8. |proc/boot/1
Tong double x EFF62010 | 20493. | 000D 4. |proc/boot/io-pkt-v4
. . B 9 o EFF6227C 24590. | 000E 1. |usr/sbin/dhcp. client
N5R: 0015 :00101A80| |[EDIFTESD vidr EFFG24ES 32783 000F 1 "hoot /d +
NSR:0015 :00101A84 | |EDOB7BOF vstr . + [Proc/paok/eve gty
Tong double y EFFG62754 36880. | 0010 3. prog;bqot{qconn
NSR:0015 :00101a88| |EpoE7EsE Sl EFF629CO | 32785. | 0011 1. |usr/sbin/inetd |4
RerbooiEorioiecl cooeoEon R EFF62C2C | 36882. | 0012 1. |bin/sh
. " i Tong double)’mew S EFF3127C 36883. | 0014 2. |proc/boot/tracelogger
NSR:0015 :00101A30| |EDor7ESC vidr 0x101CC8 EFF314E8™ | 40980. | 0015 3. |bin/sieve_g a
NSR:0015 :00101434 | (EDOETEODE vstr ,#-0%2C] "
Tong double ynew 3 ... Y i
NSR:0015 :00101498| |ED9E7E84 vidr o BiTASK.Process "sieve g (=] s ||
NSR : 0015 :00101A3C| |EDOETEDD vstr EQ'IC pid |spaceid [#thr [name |
float precalcx, pcXx; EFF314E3* | 40980. | 0015 | 3. bin/s1eve_g .
float precalcY, pcYy; = .
J¢ I m » 1ags arguments |
|| [pocooooo
&% B:TASK Thread [&][] |2 threads: num: |3. max: B. free: 5.
— magic tid name
magic name pid tid [prio [state bTocked [cpu Jowner EFES29E8 T, 51335_9
EFF45010 |gconn 36850, 1 10.r [sigwaitinfo 0. [EFF62754 qgconn EFF32680 7 sieve_g:2
EFF45988 |gconn:2 36880, 2 10.r |condvar BOFFOL100 1. [EFF62754 qgconn EFF30010 3. sieve g:i3
EFF32010 |gconn:3 36880, 3 10.r |receive 1. 0. EFF62754 gconn relationship
EFF45348 |inetd 32785. 1. | 10.r |sigwaitinfo 0. |[EFF629C0 inetd
EFF45680 |sh 36882, 1. | 10.r |sigsuspend 1. [EFFB2C2C =h =
EFF32348 |tracelogger 36883. 1. | 10.r |receive 1. 0. |[EFF3127C tracelogger 255 name
EFFFCOL0 |tracelogger:2 |36883. 2. | 10.r |sigwaitinfo 1. [EFF3127C tracelogger 00100000
EFF32968 |sieve g 40980, 1. | 10.r |running 1. [EFF314E8 sieve g 01000000 Tibc.so.3
EFF32680 |sieve g:2 40980, 2 10.r |ready 0. EFF314EE sieve g 78000000 Tibsocket.so.3
EFF30010 |sieve_g:3 40980, 3 10.r |reply 1. 1. |[EFF314E8 sieve_g 78030000 Tiblibrico_g.so.1
01000000 Tibc.so.3 i
(] LU L [T b
B::TASK.|
[Process |[Thread |[PDIN][mMMu | [sYmbol | [Watch |[Option | [TLOGger | [TASKState pravioss
NSR:0015:FE04AFCS \\procnto-smp-instr-201007091524\Global\ClockCycles+0x44 proct-smg-rner-201007091524 0 [system ready MIX |UP

The OS Awareness for QNX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

Terminology

QNX uses the terms “processes” and “threads”. If not otherwise specified, the TRACES32 term “task”
corresponds to QNX threads.

©1989-2024 Lauterbach OS Awareness Manual QNX | 6

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently QNX is supported for the following versions:
. QNX 6.1 to 6.6:
“armle” on ARM architectures,
- “ppcbe” on PowerPC,
“shle” on SH4,
“x86” on Intel x86 architectures (32bit implementation)
. QNX 7.0, 7.1 and 8.0:
- “armle-v7” on ARM32 architectures,
- “aarch64le” on ARM64 architectures,
- “x86” on Intel x86 architectures (32bit implementation)

- “x86_64" on Intel x86 architectures (64bit implementation)

©1989-2024 Lauterbach OS Awareness Manual QNX |

7

Configuration

The TASK.CONFIG command loads an extension definition file called “qnx.t32” (directory
“~~/demo/<processor>/kernel/qnx”). It contains all necessary extensions.

Automatic configuration tries to locate the QNX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used (see also “Hooks & Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG ~~/demo/<cpu>/kernel/qnx/qnx.t32

(Note: “~~” refers to the TRACES32 installation directory)

Note that the kernel symbols from “procnto” must be loaded into the debugger. See Hooks & Internals for
details on the used symbols.

See also the examples in the demo directories “~~/demo/<cpu>/kernel/gnx”.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:
1. Carefully read the demo start-up scripts (~~/demo/<cpu>/kernel/gnx).
2. Make a copy of the PRACTICE script “gnx.cmm”. Modify the file according to your application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Now you can access the QNX extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Hooks & Internals in QNX

No hooks are used in the kernel.

©1989-2024 Lauterbach OS Awareness Manual QNX | 8

There are some requirements to do a successful debugging and tracing with QNX. In case of problems,
please check carefully these items.

Requirements for Debugging

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols of “procnto”.
This means that every time, when features of the OS Awareness are used, the symbols of “procnto” must be
available and accessible.

The system builder generates a linked symbol file called “procnto.sym” in the workspace’s “Images”
directory, which needs to be loaded into the debugger.

QNX 6.2: To create the symbol file in your image directory, you need to add a line “[+keeplinked]” to
your system build file.

QNX 6.3/6.4: To create the symbol file in your image directory, change in the System Builder Project
(project.bld) the property “System -> Procnto/Startup Symbol Files” to “Yes”.

QNX 6.5: To create the symbol files in your image directory, open the System Builder Project (project.bld)
and set the “System” properties “Create startup sym file?” and “Create proc sym file?” to “Yes”.

QNX 6.6/7.0: To create the symbol file in your image directory, you need to add a line “[+keeplinked]”to
your system build file.

Please look at the demo startup script gnx.cmm, how to load the system symbols and the symbols of your
application.

NOTE: In QNX version 6.5 and 6.6, the standard installation does not include debug
information of the kernel, i.e. you will not be able to see the internal structures of
a process or thread. The QNX awareness does not need this, so it’s sufficient to
use the standard kernel. However, if you want access to these internal
structures, you have to install and use the debug version - see Appendix A.

Requirements for Tracing

Tracing with QNX requires that the on-chip trace generation logic can generate process and/or thread
information. For details refer to “OS-aware Tracing” (glossary.pdf).

On Arm architectures, QNX serves the ContextID register with the address space ID (ASID) of the process.
This allows tracking the program flow of the processes and evaluation of the process switches. But it does
not provide trace information of threads.

To allow tracing of QNX threads, the context ID must contain the thread ID. See Task Runtime Analysis for
an appropriate patch.

©1989-2024 Lauterbach OS Awareness Manual QNX | 9

Requirements for QNX Hypervisor

TRACES2 can be used to debug both, the QNX hypervisor host and any guest running as virtual machine
(VM) within the hypervisor. In QNX, a VM is bound to a special QNX host process, called “qgvm”. To be able
to debug guests, the following requirements must be met:

. TRACES32 must be set up as a hypervisor debug environment.
. The QNX awareness for the QNX host must be set up completely.
J The symbols of the “qum” process must be loaded. If there is more than one qvm process, it is

enough to load the symbols of only one qvm.

J To be able to work with several qum processes, the QNX host must not use ASLR, Ensure to
start procnto with the switch “-m~r” to switch off address space layout randomization.

©1989-2024 Lauterbach OS Awareness Manual QNX | 10

Debug Features

The OS Awareness for QNX supports the following debug features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following QNX
components can be displayed:

TASK.Process Processes

TASK.Thread Threads

TASK.PIDIN pidin

TASK.ASINFO address space information
TASK.IFS IFS directory
TASK.SHMEM shmem
TASK.SLOGGER2 slogger2

TASK.TLOGger tracelogger

TASK.QVM VMs

For a description of the commands, refer to chapter “QNX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual QNX | 11

b BuTASK.STack o -E =]

name | low high =p % [lowest spare max [0 10 20 30 40
p-1nstr-201007091524 [EFFD5108 EFFD53438 FO 15% [EFFD52F0 QO0001ES 15%

io-usb:2 [000O7EQO0 OOO7FOOO 3% |0007ECBC 0Q0000CEBC 20%

usb_resmgr (00044000 00045000 4% |00044B1C 00000B1C 30%

io0-pkt#0x00 (00070000 0007FOO0 2% |0007D6D4 00000604 TEH

usbdi_event_handler |0004F000 00050000

qconn:2 |0007EQOO QO07FOO0

tracelogger:2 |0007EQQ0D QOO7FOO0Q

sieve_g |000FADOO 00100000

sieve_g:2 |0007EQQ0 0007F000

sieve_g:3 (00050000 0005E000 78

(other) EFFEAFGE

m| e

6% [0004FAB4 00000AB4 34%
3% [0007EDOC 00000DOC 18%
3% [0007EDO4 00000D04 18%
1% [000FACCC 00000CCC 86%
3% [0007EDOO 00000DOD 18%
3% [0D05DF38 O0000F38 4%

4 T b

NOTE: The stack coverage only evaluates the stack area that is currently mapped into the
MMU of the process. While running, QNX may map additional pages to the stack.
QNX usually does not initialize the stack before use. Thus the maximum stack
usage may show wrong results.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual QNX | 12

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual QNX | 13

Example for a task-related breakpoint, equivalent to the Break.Set <function> /TASK <task> command:

Task Context Display

a B::Break.5et EI@
dd i .
E:Jlotr::n):: S [l name of function
i breakpoint is set on

type options method
@ Program [EXclude [] Temporary
*) ReadWrite [CINOMARK [[Ip1sable action
*) Read [T p1sableHIT stop -
- Write DATA click on “advanced”
- defalt l)| | (A stancontl to get more options
[ok] [Add | [Delete | [cancel |

memory / reqgister / var
*) ProgramPass P HLL
_ ProgramFail

| - TASK COUNT name of thread
MINEE related to this breakpoint
CONDition
[FIHLL
cMD
+ [VIRs=E
W B::Break List (&[]

(3% Delete Al Disabe All [@ Enable au]L@ Init Ma 1 pl...

@ Store..] & Loa ﬁ et.

address

NR:0015: 00101738
NR: 0015 : 001015814

Ly
}
el

SOFT
SOFT

S'I eve_g 3

pes
Program
"sieve_g:2"

Program

HeTper
Mandel

You can switch the whole viewing context to a task that is currently not being executed. This means that all

register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<fask>]

Display task context.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task>

Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

©1989-2024 Lauterbach

OS Awareness Manual QNX |

14

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

@ B:Frame ftask "sieve_g" EI
"% Downl [@Args [Clocals [@caler | Task: “sieve_g” -

-000[[[caTc_circTe(radius = 5)

-
-001]|main(argc = 1, argv = O0x000FFE34)
}

J/iF(SNDOP == 3)
DCC_Write{ (unsigned int)SWING);

m..|

/*Should be Tocated in a shared Tib for QNX demo=/
calc_circlel Random(25) J;
-002|||start(asm)

— |end of frame v
4 3

©1989-2024 Lauterbach OS Awareness Manual QNX | 15

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU and TRANSIation commands refer to this necessity.

Space IDs

Different processes of QNX may use identical virtual addresses. To distinguish those addresses, the
debugger uses an additional identifier, the so-called space ID (memory space ID) that specifies, to which
virtual memory space the address refers to. The command SYStem.Option.MMUSPACES ON enables the
use of the space ID. For all processes using the kernel address space, the space ID is zero. For processes
using their own address space, the space ID corresponds to the process ID (but is not equal to). Threads of
a particular process use the memory space of the invoking parent process. Consequently threads have the
same space ID as the parent process.

You may scan the whole system for space IDs using the command TRANSIation.ScanID. Use
TRANSIation.ListID to get a list of all recognized space IDs.

The function task.proc.space(“<process>") returns the space ID for a given process.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range> Define MMU
<physical_kernel_address>]) table structure

©1989-2024 Lauterbach OS Awareness Manual QNX | 16

<format> Options for ARM:

<format>

Description

QNX.PLAIN

QNX format using the ARM FCSE translation. Use this format only if the
kernel address range starts at a lower addresses than OxFC000000. Other
than format QNX.fcse, page table entries in the range 0x02000000 <= VA
< 0xFC000000 are not hidden, but MMU.List.PageTable shows valid
translations between 0x02000000 and the begin of the kernel address
space which are actually not used by the OS. */

QNX.fcse

Standard QNX format using the ARM FCSE translation, assuming a
kernel address range of OxFC000000--OxFFFFFFFF. Page table entries
for 0x02000000 <= VA < 0xFC000000 are hidden because these are
neither process nor kernel specific addresses. */

STD

Standard format defined by the CPU

TINY

MMU format using a tiny page size of only 1024 bytes

<format> Options for PowerPC:

<format> Description

QNX QNX standard format

QNXBIG QNX format with 64-bit table entries
(QNX 6.4/6.5 at booke and 900 cores). Covers 32-bit virtual address
range.

STD Standard format defined by the CPU

©1989-2024 Lauterbach

OS Awareness Manual QNX | 17

<format> Options for RISC-V:

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

Sv48 48-bit page table format (for SV64 targets only)

Sv48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

<format> Options for SH4:

<format>

Description

QNX

QNX standard format

<format> Options for x86:

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAEG4L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

©1989-2024 Lauterbach

OS Awareness Manual QNX

18

<base_address>

<base_address> is currently unused. Specify zero.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range. Typically the kernel has a 1:1 translation.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

When declaring the MMU layout, you should also create the kernel translation manually with
TRANSIation.Create.

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space ID. Use the command TRANSIation.COMMON to define the complete address range that is
addressed by the kernel as commonly used area.

Enable the debugger’s table walk with TRANSIation.TableWalk ON, and switch on the debugger's MMU
translation with TRANSIation.ON.

Setting up the MMU declaration is highly architecture and system dependent, please see the example
scripts in the ~~/demo directory.

Scanning System and Processes

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. You can either scan the MMU tables and place a copy of them into the
debugger’s address translation table, or you can use a table walk, where the debugger walks through the
MMU tables each time it accesses a virtual address.

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCAN ALL to go through all space IDs and scan their MMU settings. Note that on some
systems, this may take a long time. In this case you may scan single processes (see below).

The MMU of the SH4 has an address translation that cannot be scanned fully automatically. However, the
current used memory areas can be scanned with MMU.SCAN UTLB and MMU.SCAN ITLB.

To scan the address translation of a specific process, use the command MMU.SCAN TaskPageTable
<process>. This command scans the space ID of the specified process. To scan the kernel space, use:

MMU.SCAN TaskPageTable "procnto"

TRANSIation.List shows the address translation table for all scanned space IDs.

If you set TRANSIation.TableWalk ON, the debugger tries first to look up the address translation in it's own
table (TRANSIation.List). If this fails, it walks through the target MMU tables to find the translation for a
specific address. This feature eliminates the need of scanning the MMU each time it changed, but walking

©1989-2024 Lauterbach OS Awareness Manual QNX | 19

through the tables for each address may result in a very slow reading of the target. The address translations
found with the table walk are only temporarily valid (i.e. not stored in TRANSIation.List), and are invalidated
at each Go or Step.

See also chapter “Debugging QNX Kernel and User Processes”.

Symbol Autoloader

The OS Awareness for QNX contains a “Symbol Autoloader”, which automatically loads symbol files
corresponding to executed processes or libraries. The autoloader maintains a list of address ranges,
corresponding to QNX components and the appropriate load command. Whenever the user accesses an
address within an address range specified in the autoloader (e.g. via Data.List), the debugger invokes the
command necessary to load the corresponding symbols to the appropriate addresses (including relocation).
This is usually done via a PRACTICE script.

In order to load symbol files, the debugger needs to be aware of the currently loaded components. This
information is available in the kernel data structures and can be interpreted by the debugger. The command
sYmbol.AutoLOAD.CHECK defines, when these kernel data structures are read by the debugger (only on
demand or after each program execution).

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

The loaded components can change over time, when processes are started and stopped and libraries are
loaded or unloaded. The command sYmbol.AutoLOAD.CHECK configures the strategy, when to “check”
the kernel data structures for changes in order to keep the debugger’s information regarding the
components up-to-date.

Without parameters, the sYmbol.AutoLOAD.CHECK command immediately updates the component
information by reading the kernel data structures. This information includes the component name, the load
address and the space ID and is used to fill the autoloader list (shown via sYmbol.AutoLOAD.List).

With sYmbol.AutoLOAD.CHECK ON, the debugger automatically reads the component information each
time the target stops executing (even after assembly steps), having to assume that the component
information might have changed. This significantly slows down the debugger which is inconvenient and often
superfluous, e.g. when stepping through code that does not load or unload components.

With the parameter ONGO, the debugger checks for changed component info like with ON, but not when
performing single steps.

With sYmbol.AutoLOAD.CHECK OFF, no automatic read is performed. In this case, the update has to be
triggered manually when considered necessary by the user.

NOTE: The autoloader covers only components that are already started. Components that are not in the
current process or library table are not covered.

©1989-2024 Lauterbach OS Awareness Manual QNX | 20

The command TASK.sYmbol.Option AutoLoad configures which types of components the autoloader
shall consider:

o Processes,
J All libraries, or
. Libraries of the current process.

It is recommended to restrict the components to the minimal set of interest (rather than all components),
because it makes the autoloader checks much faster. By default, only processes are checked by the
autoloader.

When configuring the OS Awareness for QNX, set up the symbol autoloader with the following command:

Format: sYmbol.AutoLOAD.CHECKQNX "<action>"

<action>: action to take for symbol load, e.g.: "do autoload"

The command sYmbol.AutoLOAD.CHECKQNX is used to define which action is to be taken, for loading
the symbols corresponding to a specific address. The action defined is invoked with specific parameters
(see below). With QnX, the pre-defined action is to call the script ~~/demo/<cpu>/kernel/qnx/autoload.cmm.

Note: the action parameter needs to be written with quotation marks (for the parser it is a string).

Note that defining this action, does not cause its execution. The action is executed on demand, i.e. when the
address is actually accessed by the debugger e.g. in the Data.List or Trace.List window. In this case the
autoloader executes the <action> appending parameters indicating the name of the component, its type
(process, library), the load address and space ID.

©1989-2024 Lauterbach OS Awareness Manual QNX | 21

For checking the currently active components use the command sYmbol.AutoLOAD.List. Together with the

component name, it shows details like the load address, the space ID, and the command that will be

executed to load the corresponding object files with symbol information. Only components shown in this list
are handled by the autoloader.

& Bus¥mbol AutoLoad.List EI@
X Delete Al || @ Check
ddress to name dyn [load [cmd |
C:0000:FEDLADDD--FED9ES BF [{procnto) W y |[do ~—/demo/arm/kernel/qnx/autoToad " (procnto)™
C:0002 :00100000--0010F273 |devc-seromap W do ~~/demo/arm/kernel /gnx/autoload "devc-seroma
C:0003:00100000--00102353 |sTogger W do ~/demo/arm/kernel /gnx/autoload "slogger™ Ox
C: 0004 : 00100000--00103DEE |pipe W do ~/demo/arm/kernel /gnx/autoload "pipe” Ox1 0O
C:0005 :00100000--00105007 |12c-omap35xx-omapd W do ~~/demo/arm/kernel /gnx/autoload "i2c-omap35x
C:0006:00100000--00105007 |i2c-omap35xx-omapd W do ~/demo/arm/kernel /gnx/autoload "i2c-omap35x
C:0007 :00100000--00105007 |i2c-omap35xx-omapd W do ~/demo/arm/kernel /gnx/autoload "i2c-omap35x
C: 0008 :00100000--00105007 |i2c-omap35xx-omapd W do ~/demo/arm/kernel /gnx/autoload "i2c-omap35x
C:0009:00100000--0010C6CE |devb-mmcsd-blaze W do ~/demo/arm/kernel /gnx/autoload “devb-mmcsd-
C:0004:00100000--0010249E |spi-master W do ~/demo/arm/kernel /gnx/autoload “spi-master™
C:000B : 00100000--0010249E |spi-master W do ~/demo/arm/kernel /gnx/autoload “spi-master”
C:000C : 00100000--0011A44E [1o-usb W do ~/demo/arm/kernel /gnx/autoload "jo-usb” Ox1
C:000D:00100000--0018882F |io-pkt-vd W do ~/demo/arm/kernel /gnx/autoload "jo-pkt-v4"
C :000E : 00100000--0010D5CF |dhcp. client W do ~/demo/arm/kernel /gnx/autoload “dhcp.client
C : 000F : 00100000--0010E96F |devc-pty W do ~/demo/arm/kernel /gnx/autoload “devc-pty™ 0O
C:0010:00100000--0011F43E |gconn W do ~/demo/arm/kernel /gnx/autoload “gconn™ Ox1
C:0012 :00100000--0013FDEF |sh W do ~/demo/arm/kernel /gnx/autoload "sh™ Ox1 Ox1
C:0014 :00100000--001041BE |tracelogger W do ~~/demo/arm/kernel /gnx/autoload "tracelogger
C:0015 : 00100000--00101F7F |sieve_g W y |do ~/demo/arm/kernel /gnx/autoload “sieve_g” Ox
J 4 m 3

NOTE: The GNU compiler generates different code if an application is built with debug info
(option “-g”), even if the optimization level is the same. Ensure that you always use
the debug version on both sides, the target where you start the application, and the
debugger where you load the symbol file.
SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.

Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set

up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the

debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches

the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application

actually runs.

©1989-2024 Lauterbach

OS Awareness Manual QNX

22

1 |system ready

In SMP systems, the TASK.Thread command contains a “cpu” column that shows at which core the task is
running, or was running the last time.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

£ B:PERF ListTASK =n| Wl <

(& cetw... |[28 Qonfig... |V Goto...|[EE] Detaied |[€& view |[] Profile || € Init |[C> DISable|| @& Arm |
core: O runtime: 55.802%

name ratio 1% 2% 5% 10% 20% 50% 100 |

z1Eeve_g 32.886% ~

sieve_g:2 30.537%

procnto-smp-instr- | 18.624%
procnto-smp-instr- B.893%
procnto-smp-instr- 7.215%

tracelogger 1.678% |e—
procnto-smp-instr- 0.168% |+
(other) 0. 000%
sieve_g:3 0. 000%

qconn 4 0. 000%

tracelogger:2 0. 000% -

©1989-2024 Lauterbach OS Awareness Manual QNX | 23

QNX specific Menu

The menu file “gnx.men” contains a menu with QNX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called QNX.

E=]]
app Window Help
e Display Processes
T Display Threads
pidin >
Library Debugging > Delete Symbols...
‘Watch Processzes 4
s ’ Scan Process MMU Pages...
Help QNX Awareness Scan All MMU Tables
J The Display menu items launch the kernel resource display windows. See chapter “Display of
Kernel Resources”.
J Process Debugging refers to actions related to process based debugging.

See also chapter “Debugging the Process”.

- Use Load Symbols and Delete Symbols to load rsp. delete the symbols of a specific
process. See also TASK.sYmbol.

- Debug Process on main allows you to start debugging a process on it’'s main() function.
Select this prior to starting the process. Specify the name of the process you want to debug.
Then start the process in your terminal. The debugger will load the symbols and halt at
main(). See also the demo script “app_debug.cmm”.

- Watch Processes opens a process watch window or adds or removes processes from the
process watch window. Specify a process name. See TASK.Watch for details.

- Scan Process MMU Pages scans the MMU pages of the specified process.

- Scan All MMU Tables performs a scan over all target side kernel and process MMU pages.
See also chapter “Scanning System and Processes”.

. “Library Debugging” refers to actions related to library based debugging.
See also chapter “Debugging into Shared Libraries”.

- Use Load Symbols and Delete Symbols to load rsp. delete the symbols of a specific library.
Please specify the library name and the process name that uses this library. You may select a
symbol file on the host with the Browse button. See also TASK.sYmbol.

- Scan Process MMU Pages scans the MMU pages of the specified process. Specify the
name of the process that uses the library you want to debug.
Scan All MMU Tables performs a scan over all target side kernel and process MMU pages.
See also chapter “Scanning System and Processes”.

. Use the Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

©1989-2024 Lauterbach OS Awareness Manual QNX | 24

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

- Use Set Components Checked to specify, which QNX components should be managed by
the autoloader. See also TASK.sYmbol.Option AutoLOAD.

J The Stack Coverage submenu starts and resets the QNX specific stack coverage and provides
an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only thread switches (if any) or thread switches together with the default display.

The Perf menu contains additional submenus for task runtime statistics, task-related function runtime
statistics or statistics on task states, if a trace is available. See also chapter “Task Runtime Statistics”.

©1989-2024 Lauterbach OS Awareness Manual QNX | 25

Trace Features

The OS Awareness for QNX supports the following trace features.

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the thread switch are added to the calling thread.
If a process or thread terminates before the trace is evaluated, the debugger cannot assign a correct name
to it. Instead the debugger will show a hex value for this process/thread.

On ARM architectures, QNX serves the ContextID register with the address space ID (ASID) of the process.
This allows tracking the program flow of the processes and evaluation of the process switches. But it does
not provide performance information of threads.

To allow a detailed performance analysis on QNX threads, the context ID must contain the thread ID. Set the
lower 8 bit of the context ID register with the process’ ASID, and set the upper 24 bit with the lower 24bit of
the address of the thread entry, i.e. “(thread << 8) | ASID".

©1989-2024 Lauterbach OS Awareness Manual QNX | 26

The QNX awareness needs to be informed about the changed format of the context ID:
TASK.Option THRCTX ON

To implement the above context ID setting, either patch the kernel or implement a
“kerop_microaccount_hook”. Ask Lauterbach for support if you need assistance.

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
J All accesses to the status words of all tasks

o Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual QNX | 27

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

If a process or thread terminates before the trace is evaluated, the debugger cannot assign a correct name
to it. Instead the debugger will show a hex value for this process/thread. Additionally, if the process
terminated, the debugger may no longe have access to the code and cannot decode the program flow of this
process.

On ARM architectures, QNX serves the ContextID register with the address space ID (ASID) of the process.
This allows tracking the program flow of the processes and evaluation of the process switches. But it does
not provide performance information of threads.

©1989-2024 Lauterbach OS Awareness Manual QNX | 28

To allow a detailed performance analysis on QNX threads, the context ID must contain the thread ID. See
Task Runtime Analysis for an appropriate patch.

©1989-2024 Lauterbach OS Awareness Manual QNX | 29

QNX specific Menu for Tracing

The menu entries specific to tracing are already described in the menu for debug features.

©1989-2024 Lauterbach OS Awareness Manual QNX | 30

Debugging QNX Components

QNX runs on virtual address spaces. The kernel uses a static address translation. Each user process gets
its own user address space when loaded, mapped to any physical RAM area that is currently free. Due to
this address translations, debugging the QNX kernel and the user processes requires some settings to the
debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself (procnto) is attached to the space ID zero. Each process that has its
own memory space, gets a space ID that corresponds (but is not equal to) its process ID. QNX threads get
the space ID of the parent process.

See also chapter “MMU Support”.

Initial Program Loader (IPL)

The IPL usually resides in Flash on the target to allow reloading of the system image via any target interface.
If you're using an IPL, and you want to debug it, simply load the symbols of the appropriate IPL image into
the debugger. The image is located in the QNX SDK directory target/qnx6/<arch>/boot/sys.

Example:

Data.LOAD.El1f ipl-sengine /NoCODE

QNX Kernel

The QNX system builder generates an image (IFS) that contains the startup code, the kernel and any given
application. The file format of the IFS depends on the target system, usually it is in ELF or binary format.

Additionally, the QNX Awareness needs the symbols of the procnto kernel. Please see section “Hooks &
Internals” how to generate the symbol files of the kernel.

©1989-2024 Lauterbach OS Awareness Manual QNX | 31

Downloading the QNX Image

If you start the QNX image from Flash, or if you download the image using the IPL, do this as you are doing
it without debugging.

If you want to download the QNX image using the debugger, you have to watch about the file IFS format. If
the IFS is in ELF format, simply download this to the target. If the IFS is in binary format, you have to tell the
debugger at which address to download it. Please check the example scripts, which version to use and how
to obtain the download address.

Examples:
Data.Load.Elf mbx800.ifs ; downloading ELF IFS
Data.Load.Binary pxa250tmdp.ifs 0xa0800000 ; downloading binary IFS

To create the IFS in ELF format (in QNX 6.3 and up), change in the System Builder Project (project.bld) the
property “System -> Boot File” to “elf”.

When downloading the kernel via the debugger, remember to set startup parameters that the kernel
requires, before booting the kernel. Usually the IPL passes these parameters to the image.

Debugging the Kernel Startup

3

The kernel image starts with a special startup routine, called “startup-<board>”. If you want to debug this
(tiny) startup sequence, you have to load the symbols of this module. If you generated the procnto symbol
file, the system builder also preserved the symbol file of the startup image.

Example:

Data.LOAD.ELF startup-pxa250tmdp.sym /NoCODE

As soon as the startup sequence ended, you have to load the kernel symbols. See the next chapter on how
to debug the kernel in the virtual address space.

©1989-2024 Lauterbach OS Awareness Manual QNX | 32

Debugging the Kernel

For debugging the kernel itself, and for using the QNX awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The procnto symbol file contains all addresses in virtual format, so

it's enough to simply load the file:

Data.Load.Elf procnto.sym /NoCODE

User Processes

Each user process in QNX gets its own virtual memory space. To distinguish the different memory spaces,
the debugger assigns a “space ID”, which correlates (but is not equal) to the process ID. Using this space ID,
it is possible to address a unique memory location, even if several processes use the same virtual address.

Note that at every time the QNX awareness is used, it needs the kernel symbols. Please see the chapters
above on how to load them. Hence, load all process symbols with the option /NoClear to preserve the

kernel symbols.

NOTE: Debug Builds:
By default, the QNX IDE builds two binaries for the process, one with
optimization (e.g. “hello”), and one with debug information, usually with the
suffix “_g” (e.g. “hello_g”). Those files contain different code, do not mix them!
To be able to debug the process, use the debug variant on both sides, i.e. start
“hello_g” on the target system, and load the symbol file “hello_g” into the
debugger.

NOTE: Regarding ASLR:

If you use address space layout randomization (ASLR) with “position independent
executable” (PIE) code, then use the symbol autoloader to load the symbols of
processes and libraries. Each time you invoke a process or a library, it will be
loaded onto a different address, making it almost impossible to load the symbols
manually. The symbol autoloader takes care of the dynamic loading and loads the
symbols to the appropriate locations.

©1989-2024 Lauterbach

OS Awareness Manual QNX | 33

Debugging the Process

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID.

Manually Load Process Symbols:

For example, if you've got a a process called “hello” with the space ID 12 (the dot specifies a decimal
numberl):

Data.LOAD.E1lf hello 12.:0 /NoCODE /NoClear

The space ID of a process may also be calculated by using the PRACTICE function
task.proc.spaceid() (see chapter “QNX PRACTICE Functions”).

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

TASK.sYmbol .LOAD "hello" ; load symbols of "hello"

This command loads the symbols of “hello”. See TASK.sYmbol.LOAD for more information.
Using the Symbol Autoloader:
If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be

automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

s¥Ymbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "hello"

Using the Menus:

Select the menu item “QNX” -> “Process Debugging” -> “Load Symbols” to load the symbols of a specific
process. Alternatively, select “Display Processes”, right click on the “magic” of a process, and select “Load
Symbols”.

©1989-2024 Lauterbach OS Awareness Manual QNX | 34

Debugging a Process From Scratch, Using a Script:
If you want to debug your process right from the beginning (at “main()”), you have to load the symbols before
starting the process. This is a tricky thing because you have to know the process ID, which is assigned first

at the process start-up. The demo directory contains a script “app_debug.cmm” that assists you for this
purpose. Call the script with the process name as argument before the process is started:

DO ~~/demo/<cpu>/kernel/gnx/app_debug.cmm hello

Then, start the process in QNX. The debugger should automatically halt at the entry point of the process.
You can also use the menu item “QNX” -> “Process Debugging” -> “Debug Process on main..”, which does
essentially the same within a dialog. See also chapter “QNX Specific Menu”.

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

Debugging into Shared Libraries

If the process uses shared libraries, QNX loads them into the address space of the process. The process
itself contains no symbols of the libraries. If you want to debug those libraries, you have to load the
corresponding symbols into the debugger.

Manually Load Library Symbols:

1. Start your process and open a TASK.Process window.
2. Double-click the magic value of the process that uses the library.
3. Expand the “libraries” tree (if available).

A list will appear that shows the loaded libraries and the corresponding load addresses.
4. Load the symbols to this address and into the space ID of the process.

E.g. if the process has the space ID 12., the library is called “lib.s0.2” and it is loaded on address
0x01000000, then use the command:

Data.LOAD.E1f lib.so.2 12.:0x01000000 /NoCODE /NoClear

You can also use PRACTICE functions to automatically load the symbols of a library with a script. E.g.:

local &spaceid &magic &address
&spaceid=task.proc.space("hello")
&magic=task.proc.magic("hello")

&address=task.lib.address("lib.so.2", &magic)

Data.LOAD.El1f mylib &spaceid:&address /NoCODE /NoClear

©1989-2024 Lauterbach OS Awareness Manual QNX | 35

Of course, this library must be compiled with debugging information.
Automatically Load Library Symbols:

If a library name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command:

TASK.sYmbol .LOADLib "hello" "libc.so.2"

This command loads the symbols of the library “libc.s0”, used by the process “hello”. See
TASK.sYmbol.LOADL.ib for more information.

Using the Symbol Autoloader:
If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the library. You can also force the loading of the

symbols of a library with:

sYmbol . AutoLOAD.CHECK
sYmbol .AutoLOAD.TOUCH "libc.so.2"

Using the Menus:

Select the menu item “QNX” -> “Llbrary Debugging” -> “Load Symbols” to load the symbols of a specific
library. Alternatively, select “Display Processes”, double click on the “magic” of the process, expand the
“libraries” section, right click on the “magic” of a library and select “Load Symbols”.

Debugging QNX Threads

QNX threads share the same virtual memory of the parent process. The OS Awareness for QNX assigns
one space ID for all threads that belong to a specific process. It is sufficient, to load the debug information of
this process only once (onto its space ID) to debug all threads of this process. See chapter “Debugging the
Process” for loading the process’ symbols.

The TASK.Thread window shows which thread is currently running (“running”).

Trapping Segmentation Violation

“Segmentation Violation” happens, if the code tries to access a memory location that cannot be mapped in
an appropriate way. E.g. if a process tries to write to a read-only area, or if the kernel tries to read from a
non-existent address. A user segmentation violation is detected inside the kernel routine “usr_fault()”, if the
mapping of page fails.

©1989-2024 Lauterbach OS Awareness Manual QNX | 36

To trap segmentation violations, set a breakpoint onto the label “usr_fault”. This function is called with three
parameters:

e “code_signo” that specifies the signal codes delivered to the thread;
e ‘“thread” specifies, which thread caused the fault;

e “fault_addr” is the address that caused the fault.

On ARM systems these parameters are stored in RO, R1 and R2.
On PowerPC systems these parameters are stored in R3, R4 and R5.

When halted at “usr_fault”, you may load the temporary register set of TRACE32 with the values that are
stored in the thread structure of the faulting thread. See the example script “segv.cmm” in the ~~/demo
directory.

Use Data.List, Var.Local etc. then to analyze the fault.

As soon as debugging is continued (e.g. Step, Go, ...), the original register settings at “bad_area” are
restored.

©1989-2024 Lauterbach OS Awareness Manual QNX | 37

QNX Commands

TASK.ASINFO Display address space information

Format: TASK.ASINFO

Displays information about the QNX address spaces, similar to the “pidin syspage=asinfo” command of
QNX. This command is available, even if “pidin” is not included in your image.

o B:TASKASINFO = =R
oftset [start end owner attr |[pric |name

0000 0000000000000000 |DO00OFFFFFFFFFFFF |- k 100. |[/memory

0020 0000000000000000 |OOD00000FFFFFFFE (0000 |k 100. |/memory/belowdG

0040 0000000040000000 |000000007FFFFFFF 0020 |rwck |100. |/memory/belowdG/ram

0060 0000000600000000 |000000063FFFFFFF 0000 |rwck |100. |/memory/ram

0080 00000000F1010000 |00000000FLOL0FFF (0000 |rw 100. |/memory/gicd

O0AD 00000000F1020000 |00000000FLOZ20FFF (0000 |rw 100. |/memory/gicc

00Co 000000004000F000 |(000000004000F7FF (0000 |rwc 100. |/memory/hypervisor_vector
O0ED 00000000458124068 |00000000491A1FEY (0000 |rc 100. |/memory/imagefs

0100 0000000048100FE4 |00000000481240B7 (0000 |rwc 100. |/memory/startup

0120 00000000458124068 |00000000491A1FE7 (0000 |rwc 100. |/memory/bootram

0140 0000000000000000 |00000000FFFFFFFF |- k 100. |/wirtual

0160 FFFFFF8060028000 |FFFFFFB0G00EFATE (0140 100. |/wirtual/vboot

0180 0000000040000000 |(0000000040007FFF (0040 |rwc 100. |/memory/belowdG/ram/sysram
01A0 0000000040010000 |(000000004000FFFF (0040 |rwc 100. |/memory/belowdG/ram/sysram
01C0 0000000040012000 |0000000043EFFFFF (0040 |rwc 100. |/memory/belowdG/ram/sysram
01ED 0000000047EQ0QOO0 |(0O000000480FFFFF (0040 |rwc 100. |/memory/belowdG/ram/sysram
0200 00000000491A2000 |000000007FFFFFFF (0040 |rwc 100. |/memory/belowdG/ram/sysram
0220 0000000600000000 |000000063EFECFFF (0060 |rwc 100. |/memory/ram/sysram

TASK.IFS Display directory of IFS

Format: TASK.IFS [<process>]

Displays the directory contents of the Image File System (IFS).

This command shows only the directories and files that are available within the IFS. It does not show
directories and files on a different file system, even if it is linked into the IFS.

<process> Specify a process magic or name to show the root file system of this

process.

If left empty, the root file system of the kernel is shown.

©1989-2024 Lauterbach OS Awareness Manual QNX | 38

o BuTASKIFS = =R

tvpe directory contents
server [/ (procnto-smp-instr) A
= usr

= Tib
Tink ldgnx-64.50.2
server |E proc
server config

= vm
server stats

= dev

server profiler
server ptyp?
server ttyp? b

TASK.MMU.SCAN Scan process MMU space

Format: TASK.MMU.SCAN [<process>]

Scans the target MMU of the space ID, specified by the given process, and sets the Debugger MMU
appropriately, to cover the physical to logical address translation of this specific process.

The command walks through all page tables which are defined for the memory spaces of the process and
prepares the Debugger MMU to hold the physical to logical address translation of this process. This is
needed to provide full HLL support. If a process was loaded dynamically, you must set the Debugger MMU
to this process, otherwise the Debugger won’t know where the physical image of the process is placed.

To successfully execute this command, space IDs must be enabled (SYStem.Option.MMUSPACES ON).

<process> Specify a process magic, space ID or name.
If no argument is specified, the command scans all current processes.

Example:

; scan the memory space of the process "hello"
TASK.MMU.SCAN "hello"

See also MMU Support.

©1989-2024 Lauterbach OS Awareness Manual QNX | 39

TASK.Option

Set awareness options

Format:

<option>:

TASK.Option <option>

THRCTX [ON | OFF]

TTBHV <address>

Set various options to the awareness.

THRCTX

TTBHV

Set the context ID type that is recorded with the real-time trace (e.g. ETM).

If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

If QNX is used as a hypervisor, this command sets the translation table base
address of the hypervisor. This is necessary to allow the awareness access to

the hypervisor internals, even if currently a guest is active.

TASK.PIDIN

Display “pidin” like information

Format:

TASK.PIDIN [FAm | FLags | PMEM | MEM]

Displays information like the “pidin” command of QNX without using “pidin” itself or any other kernel

resources. This command is available, even if “pidin” is not included in your image.

o B:TASK.PIDIN =n| Wl <
pid [tid |name prio |state blocked
16396 7 |proc/boot/7o-ush 10r [receive 13 L
16396 8 |proc/boot/io0-ushb 21r |receive 13
20493 1 |proc/boot/io-pkt-v4 21r |sigwaitinfo
20493 2 |proc/boot/io-pkt-v4 21r |receive 1
20493 3 |proc/boot/io-pkt-v4 21r |reply 163
20493 4 |proc/boot/1o-pkt-v4 10r |receive 14
24590 1 |usr/sbin/dhcp.client 10r |sigwaitinfo
32783 1 |proc/boot/devc-pty 10r |receive 1
36880 1 |proc/boot/qconn 10r |sigwaitinfo
36880 2 |proc/boot/qconn 10r |condvar
36880 3 |proc/boot/qconn 10r |receive 1
32785 1 E;rfsﬁinffnetd 10r |sigwaitinfo
36882 1 in/s 10r |sigsuspen
36883 1 |proc/boot/tracelogger 10r |receive 5?. B:: TASK.PIDIM FAM EI@
36883 2 |proc/boot/tracelogger 10r |sigwaitin
10980 1 |binssi - pid [name sid [pgrp ppid [sibling | child
fs1eve_g 10r |running B
40980 2 |binfsieve_g 10r |ready 1 proc/ ootﬂprocnto—smp—1nstr— 1 1 36882 L
40980 3 |bin/sieve_g 10r |reply 4098 |proc/boot/devc-seromap 1 | 409 1
4099 |proc/boot/sTogger 1 | 409 1 4098
4100 |proc/boot/pipe 1 | 410 1 4099
< L] 4101 |proc/boot/12c-omap35xx-omapd 1 | 410 1 4100 =
4102 |proc/boot/12c-omap35xx-omapd 1 | 410 1 4101
4103 |proc/boot/12c-omap35xx-omapd 1 | 410 1 4102
4104 |proc/boot/12c-omap35xx-omapd 1 | 410 1 4103
16393 |proc/boot/devb-mmcsd-blaze 1 163 1 4104
16394 |proc/boot/spi-master 1 163 1 16393
16395 |proc/boot/spi-master 1 163 1 16394
16396 |proc/boot/io-usb 1 163 1 16395
20493 |proc/boot/io-pkt-vd 1 204 1 16396
24590 |usr/sbin/dhcp.client 1 245 1 20493
32783 |proc/boot/devc-pty 1 327 1 24590
36880 |proc/boot/qconn 1 368 1 32785
32785 |usr/sbin/inetd 327 327 1 32783
36882 |bin/sh 368 368 1 36880 40980
36883 |proc/boot/tracelogger 368 368 36882
40980 |bin/sieve_g 368 409 36882 36883
4 m 3

©1989-2024 Lauterbach

OS Awareness Manual QNX |

40

TASK.Process

Display processes

Format:

TASK.Process [<process>]

Displays the process table of QNX or detailed information about one specific process.

Without any arguments, a table with all created processes will be shown.
Specify a process magic number to display detailed information on that process.

5?. B::TASK.Process EI@
magic pid [spaceid [#thr [name
EFFDFO10 1. | oooo 13. [proc/boot/procnto-smp-instr-201007091524 ~
EFFDF27C 4098. | 0002 1. |proc/boot/devc-seromap
EFFDF4ES 4099. | 0003 1. |proc/boot/sTogger
EFFDF754 4100. | 0004 3. |proc/boot/pipe
EFFDF3CO 4101. | 0005 1. |proc/boot/12c-omap35xx-omapd
EFFDFC2C 4102. | 0006 1. |proc/boot/12c-omap35xx-omapd
EFFFEOLD 4103. | 0007 1. pr‘oc;’ﬁoot;’i2c—0map35xx—oman4
EFFFEZ7C 4104, | 0008 1. [proc/boot,/12c-omap35xx-o0 X
EFFFE4ES | 16393. | 0009 7. pr‘oc;'goot;'deyb—mmcsd—b'la o B TASK.Process "sieve_g" /Open =n| Wl <
EFFFE754 16394, | 000A 2. pr‘oc.{ oot,f:sp'l_—master‘ == 1d |spaceid [#Ehr |name
EFFFE9CO | 16395. | 0008 2. |proc/boot /spi-master |ﬁ§314E8,_.| T0950- T oot | 5 binr=Teves |
EFFFEC2C 16396. | 000C 8. |proc/boot/10-ush i
EFF62010 | 20493, | 000D 4. |proc/boot/1o-pkt-v4 Flags arguments
EFF6227C 24590. | 0DOE 1. |usr/sbin/dhcp. client 00000000 —
EFFG24ES 32783. | 00DOF 1. pr‘oc;’ﬁoot;’devc—p‘ty
EFF62754 36880. | 0010 3. |proc/boot/qconn eade - o e Fraa:
EFF629C0 | 32785. | 0011 1. |usr/shin/inetd Ehreads: nup: 3. max: 8. free: 5.
EFF62C2C | 36882. | 0012 1. bin/sh £rrs598s T —sieveg
EFF3127C 36883. | 0014 2. |proc/boot/tracelogger EFF32680 2' sieve_g:2
EFF314E8* | 40980. | 0015 3. |bin/sieve g EFF30010 5. cieve_g:s
parp parent =ibling child
1 m 40380, sh tracelogger -
ize data addr/size TTB
00001F80 O0O0102F30 O0O000FC30 BFF24000
name
01000000 Tibc.so.3
78000000 Tibsocket.so.3
78030000 T1iblibrico_g.so.1
01000000 Tibc.so.3
] 1 ¢

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the PCB).

The fields “magic

U

, “paren

t”, “sibling” and “child” are mouse sensitive, double clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual QNX | 41

TASK.QVM Display VMs

Format: TASK.QVM [<vm>]

If QNX is used as a hypervisor, this command displays a table of VMs or detailed information about one
specific VM.

Without any arguments, a table with all created VMs will be shown. Specify a VM magic, name or ID to

display detailed information about that VM.
o BiTASK.QUM = =R

magic name mid [state #vcpu [format
FFFFFFB086AG3E00 [Tinux.gvmcont 1. [running 1. [Tinuxg4
FFFFFFB0864A973C0 |gnx7-arm-guest | 2. |running 1. |elfe4

b BTASKL.QVM "linux” EI@
magic name mid [state #vcpu [format |
FFFFFFB086AG3E00 [Tinux.qgvmcont [1. [running [1. [Tinux&4 A

vtth vter vaddr
00010007 2AF3A000 80043559 000000C0080080000

Tlags
started debug debug_alT have_memory

commandline

console=ttyAMADLear lycon=p 011, 0x1c090000udebuguuser_debug=31.loglevel=9

vepu idx core
0oo0000010108910 0. 1. (1nactive) W
NOTE: This feature is only available if at least one qvm process is running, and if the

symbol information of the process "qvm" is loaded.

TASK.SHMEM Display contents of shmem

Format: TASK.SHMEM <shmem_file_path>

Displays the contents of the physical address pages of the given shared memory file.

<shmem_file_path> Specify a fully qualified path name to the shmem file.

©1989-2024 Lauterbach OS Awareness Manual QNX | 42

Example:

; show the contents of shared memory named “myshmem”

TASK.SHMEM “/dev/shmem/myshmem”

b BTASK.SHMEM "/dev/shmem/slogger2/random.6"

address contents

000000087 8E5F000 |39 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 ... 905
0000000878F5A000 [CF BD 34 00 00 00 00 00 08 00 28 00 01 00 00 00 ... §

0000000878F57000 (00 00 00 00 GO 0O 00 00 OO 0O 0O 00 0D 00 00 00 ... %
0000000878F52000 (00 00 00 00 GO 00 00 00 OO 0O 0O 00 OO 00 00 00 ... % :
0000000878F51000 |00 00 00 00 OO 00 00 00 OO 0O 00 00 00 00 00 00 ... HHNNNESNEESNssss

TASK.SLOGGER2 Display contents of slogger2 buffers

Format: TASK.SLOGGER2 <slogger2_buffer_name>

Displays the contents of buffers created by slogger2.

<slogger2_buffer_name> Specify a slogger 2 buffer name.

NOTE: This feature heavily depends on the used QNX version and slogger2 daemon.

Contact Lauterbach support if you see inconsistencies in the buffer display.

Example:

; show the contents of slogger2 buffer named "random.6"

TASK.SLOGGER2 "random.6"

% B:TASK.SLOGGER2 "random.6" = =R
timestamp shm_name butt name |code [content |
0000000000000039 |random. & slog 0. [random: SeTecting timer as entropy source ,
0000000000000039 |random. 6 slog 0. [random: A1l ready, registering path names
0000000000000039 |random. 6 slog 0. [random: Daemonizing the process

v

©1989-2024 Lauterbach OS Awareness Manual QNX | 43

TASK.sYmbol Process symbol management

The TASK.sYmbol command group helps to load and unload symbols of a given process or library. In
particular the commands are:

TASK.sYmbol.LOAD Load process symbols and MMU
TASK.sYmbol.LOAD Unload process symbols and MMU
TASK.sYmbol.LOADLib Load library symbols
TASK.sYmbol.DELeteLib Unload library symbols
TASK.sYmbol.Option Set symbol management options
TASK.sYmbol.DELete Unload process symbols and MMU
Format: TASK.sYmbol.DELete <process>

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols and MMU entries. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process.

<process> Specify the process name (in quotes) or magic to unload the symbols of this
process.

©1989-2024 Lauterbach OS Awareness Manual QNX | 44

TASK.sYmbol.DELeteLib Unload library symbols

Format: TASK.sYmbol.DELeteLib <process> <library>

When debugging of a library is finished, or if the library is removed from the kernel, you should remove
loaded library symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified library.

<process> Specify the process to which the desired library belongs (name in quotes
or magic).
<library> Specify the library name in quotes. The library name must match the

name as shown in TASK.Process <process>, "libraries”.

Example:

TASK.sYmbol .DELeteLib “hello" "libc-2.2.1.so"

See also chapter “Debugging Into Shared Libraries”.

TASK.sYmbol.LOAD Load process symbols and MMU

Format: TASK.sYmbol.LOAD <process>

Specify the process name (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process (see chapter “Debugging
User Processes”).

This command retrieves the appropriate space ID and loads the symbol file of an existing process. Note that
this command works only with processes that are already loaded in QNX (i.e. processes that show up in the
TASK.Process window).

The actual command used for loading the symbols can be changed with TASK.sYmbol.Option
LOADCMD.

©1989-2024 Lauterbach OS Awareness Manual QNX | 45

TASK.sYmbol.LOADLib Load library symbols

Format: TASK.sYmbol.LOADLIib <process> <library>

As first parameter, specify the process to which the desired library belongs (name in quotes or magic).
Specify the library name in quotes as second parameter. The library name must match the name as shown
in TASK.Process <process>, "libraries”.

In order to debug a library, the debugger needs the symbols of this library, relocated to the correct addresses
where QNX linked this library. This command retrieves the appropriate load addresses and loads the .so
symbol file of an existing library. Note that this command works only with libraries that are already loaded in
QNX (i.e. libraries that show up in the TASK.Process <process> window).

Example:

TASK.sYmbol .LOADLib "hello" "libc-2.2.1.s0"

See also chapter “Debugging Into Shared Libraries”.

TASK.sYmbol.Option Set symbol management options
Format: TASK.sYmbol.Option <option>
<option>: LOADCMD <command>

LOADLCMD <command>
MMUSCAN [ON | OFF]
Autoload <option>

Set a specific option to the symbol management.
LOADCMD:
This setting is only active, if the symbol autoloader for processes is off.

TASK.sYmbol.LOAD uses a default load command to load the symbol file of the process. This loading
command can be customized using this option with the command enclosed in quotes. Two parameters are
passed to the command in a fixed order:

%S Name of the process

YoX Space ID of the process

©1989-2024 Lauterbach OS Awareness Manual QNX | 46

Examples:

TASK.sYmbol.Option LOADCMD "Data.LOAD.Elf %s 0x%x:0 /NoCODE /NoClear"

TASK.sYmbol.Option LOADCMD "DO myloadscript %s 0x%x"

LOADLCMD:
This setting is only active, if the symbol autoloader for libraries is off.
TASK.sYmbol.LOADLIib uses a default load command to load the symbol file of the library. This loading

command can be customized using this option with the command enclosed in quotes. Three parameters are
passed to the command in a fixed order:

%S name of the library

YoX space ID of the library

YoX load address of the library.
Examples:

TASK.sYmbol.Option LOADLCMD "D.LOAD.Elf %s 0x%x:0x%x /NoCODE /NoClear"

TASK.sYmbol.Option LOADLCMD "DO myloadlscript %s 0x%x 0x%x"

MMUSCAN:

This option controls, if the symbol loading mechanisms of TASK.sYmbol scan the MMU page tables of the
loaded components, too. When using TRANSIation.TableWalk, then switch this off.

AutolLoad:

This option controls, which components are checked and managed by the symbol autoloader:

Process Check processes

Library Check all libraries of all processes
CurrLib Check only libraries of current process
ALL Check processes, and all libraries
NoProcess Don’t check processes

NoLibrary Don’t check libraries

NONE Check nothing.

The options are set *additionally*, not removing previous settings.

©1989-2024 Lauterbach OS Awareness Manual QNX | 47

TASK.Thread Display threads

Format: TASK.Thread [<thread>]

Displays the thread table of QNX or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread magic number to display detailed information on that thread.

o BuTASK Thread [=] =]

agic name pid tid [prio state blocked Cpu owner |
EFF729E8 [1o-ush:2 16396. Z Z24.r [receive 7 1. [EFFFECZC 1o-ushb 7
EFF649B8 [irg_handler_1 16396. 3 21.r |receive 10. 0. |[EFFFEC2C io-usb

EFF63010 |event_handler 16396. 4. | 21.r |receive 1. 1. [EFFFEC2C jo-usb

EFF63348 |usb_resmgr 16396. 5 21.r |receive 13. 1. |[EFFFEC2C io-usb

EFF63680 |port_change_enum_hdl [16396. 6. | 10.r |nanosleep 0. |[EFFFEC2C io-usb

EFF639B8 |usb_resmgr 16396. 7 10.r |receive 13. 1. |[EFFFEC2C 1io-usb

EFF50348 |usb_resmgr 16396. 3 21.r |receive 13. 0. |[EFFFEC2C 1io-usb

EFFS5E0LD |jo-pktumain 20493, 1 21.r |sigwaitinfo 0. [EFF62010 io-pkt-v4

EFFS5EGB0 |io-pkt#0x00 20493, 2. | 21.r |receive 1. 1. [EFF62010 io-pkt-v4

EFF50010 |usbdi_event_handler (20493, 3. | 21.r |reply 163. 0. [EFF62010 io-pkt-v4

EFF50680 |jo-pkt-v4:4 20493, 4 10.r |receive 14. 1. [EFF62010 io-pkt-v4

EFFS5E3BE |dhcp.client 24590, 1 10.r |sigwaitinfo 1. [EFF6227C dhcp.client

EFF509B8 |devc-pty 32783. 1 10.r |receive 1. 0. |[EFF624E8 devc-pty
EFF45010 |gconn 36880. 1 10.r |sigwaitinfo 0. |[EFF62754 qgconn
EFF459E8 |gconn:2 36880. 2 10.r |condvar BOFFO100 1. |[EFF62754 qgconn
EFF32010 |gconn:3 36880, 3 10.r |receive 1. 0. |[EFF62754 qgconn
EFF45348 |inetd 32785, 1 10.r |sigwaitinfo 0. |EFF629C0 inetd
EFF45680 |[sh 36882, 1 10.r |sigsuspend 1. [EFF62C2C =h -
EFF32348 |tracelogger 36883, 1 10.r |receive 1. 0. |[EFF3127C tracelogger
EFFFC0O10 |[tracelogger:2 36883, 2 10.r |sigwaitinfo 1. [EFF3127C tracelogger
EFF329B8 |[sieve_ g 40980, 1. | 10.r |running 1. |EFF314E8 sieve_g
EFF32680 |sieve_g:2 40980 10 r |rear 0. |[FEE314FR =iewe n
EFF30010 |siewv 13

& o B:TASK Thread 0xEFF32680 ==
4 m@g1c name pid tid |prio state blocked Cpu owner
EFF32680 [sieve_g:2 [40980. [2. 10.r [ready [0. [EFF314E8 sieve_g .
=tack address mapped

s size
0015 :0005E000 = A:BFICEQOO 00021000 (00001000

O007EF7C 01039504

4 I 2

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the TCB).

The fields “magic” and “owner” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual QNX | 48

TASK.TLOGger

Display tracelogger buffer

Format: TASK.TLOGger [<option> [/<option> [...]]]

Reverse
Filter Control | Kercall | Int | Process | Thread | coMm

<option>:

TASK.TLOGger displays the kernel internal buffer of the kernel tracelogger feature.

b Butaskitlogger e[Sl
time cpu [class event datal dataz data3 |
662A1463 1. [control buffer sequence: 1352. | L
662A1463 1. |control time time: Ox00000000662A1445

66241463 1. |comm snd_pulse_exe coid: 3. (side) pid: proc/boot/tracelogger
662A14BA | 1. |thread ready pid: proc/boot/tr [tid: 1. =
662A154C 0. |control time time: Ox00000000662A152F

662A154C 0. |ker_call |sync_mutex_lock sync: 0x0010314C |owner: Ox20140001

662A15A1 0. |thread mutex pid: bin/sieve_g [tid: 2

66241502 0. |thread running pid: proc/boot/tr [tid: 1.

66241689 0. |comm rec_pulse coid: 3. (side) pid: proc/boot/tracelogger
662A16B9 0. |ker_exit |msg_receivepulsev |rcvid: O rmsg: 0x00000000

662416CA | 1. |ker_call |sync_mutex_unlock |sync: Ox0010314C |owner: OxA0140001

66241742 1. |thread ready pid: bin/sieve_g [tid: 2

66241770 | 1. |ker_exit |sync_mutex_unlock |retwal: 0.

662A170DF 0. |ker_call |msg_receivepulsev |chid: 1 rparts: 0x00000001

662A1818 0. |thread receive pid: proc/boot/tr [tid: 1

662A1B4E 0. |thread running pid: bin/sieve_g |tid: 2.

662A190F 0. |ker_exit |sync_mutex_lock retval: 0.

662A191C 1. |ker_call |sync_mutex_lock sync: 0x0010314C |owner: O0x20140002

66241983 1. |ker_exit |sync_mutex_lock retval: 0.

66241906 0. |ker_call |sync_mutex_lock sync: 0x0010314C |owner: Ox20140001

66241424 0. |thread mutex pid: bin/sieve_g [tid: 2

662A1A52 0. |thread running pid: proc/boot/pr [tid: 1.

662A1A6C 1. |ker_call |sync_mutex_unlock |[sync: Ox0010314C |owner: OxA0140001

662A14C6 | 1. |thread ready pid: bin/sieve_g [tid: 2

662A1AFE 1. |ker_exit |sync_mutex_unlock |retval: 0.

662A1B56 | 0. |ker_call |nop

662A1B8D | 0. |ker_exit |nop -
4 M 3

See QNX documentation for tracelogger. “tracelogger” is only available in intrumented QNX kernels and
must be started in QNX to fill the kernel buffers

TASK.TLOGger only displays the kernel buffers. As soon as they are flushed to the file, they're gone from
the kernel buffers. l.e. TASK.TLOGger shows only data as long as "tracelogger" is still active.

Reverse Displays the most recent entries first.
Filter Filter the given class of event. You can specify this option several
times to filter several classes.
Example:

; display tracelogger buffer in reverse order and
; do not display kernel call events and control events
TASK.TLOGger /Reverse /Filter Kercall /Filter Control

©1989-2024 Lauterbach

OS Awareness Manual QNX | 49

TASK.TLOGger.VMLOGger Copy tracelogger buffer to LOGGER

Format: TASK.TLOGger.VMLOGger [<cpu>]

TASK.TLOGger.VMLOGger copies the thread state entries of the kernel internal tracelogger buffer to a
debugger-internal buffer in virtual memory (VM:), using the LOGGER structure layout.
In SMP systems, specify the cpu number of the events to copy.

See QNX documentation for tracelogger. “tracelogger” is only available in intrumented QNX kernels and
must be started in QNX to fill the kernel buffers

TASK.TLOGger.VMLOGger only copies the kernel buffers. As soon as they are flushed to the file, they're
gone from the kernel buffers. |.e. TASK.TLOGger.VMLOGger works only as long as "tracelogger" is still
active.

Activate the LOGGER and copy the buffers with:

Trace.METHOD Logger
Logger.RESet

Logger .ADDRESS AVM:0x1000
Logger.TimeStamp Up
Logger.TimeStamp.Rate 100000.
Logger.Init
TASK.TLOGger . VMLOGger

Logger .ARM

Logger.OFF

After this, you can use the Logger contents for Task Runtime Statistics and Task State Analysis.

£l B:Trace.Chart. TASKSTATE =n| Wl <
[&<t || &% Gonfi.. (% Goto...|[#3 Find...][] chart |[4p In][»40u [OM Full
100.000ms -50.000ms 0.000us
rFangesx 1 1 1 |
Cunknown)
Cunknown)

sieve_g:2 [-
tracelogger &
instr-201007091524 &

sieve_g FH
= | B:Trace STAT.TASK =n| Wl <
[& setup... |1 Goups.. || 38 Gonfig... | | Detaiied | [E] Mesting|[il chart || B Profile |
tasks: 5. total: 106.250ms
range total min max avr count ratio® 1% 2% 5% |
Cunknown) 4590, 000us | 4390.000us [490.000us [450.000us 0. 0.461% [+
tracelogger 6. 360ms 6. 360ms 6. 360ms 6. 360ms 1. 5.985%
sieve_g:2 70.590ms 4.570ms 10.520ms 8. 824ms 8. 66.437%
[instr-201007091524 28.810ms 4., 050ms 4, 270ms 3.601ms 8. 27.115%
(unknown) 106. 250ms - 106.250ms | 106.250ms 0. 100. 000%
4 1 [3

©1989-2024 Lauterbach OS Awareness Manual QNX | 50

TASK.Watch Watch processes

The TASK.Watch command group builds a watch system that watches your QNX target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the watch commands are:

TASK.Watch.View Activate watch system and show watched processes
TASK.Watch.ADD Add process to watch list
TASK.Watch.DELete Remove process from watch list
TASK.Watch.DISable Disable watch system
TASK.Watch.ENable Enable watch system
TASK.Watch.DISableBP Disable process creation breakpoints
TASK.Watch.ENableBP Enable process creation breakpoints
TASK.Watch.ADD Add process to watch list
Format: TASK.Watch.ADD <process>

Adds a process to the watch list.

<process> Specify the process name (in quotes) or magic.

Please see TASK.Watch.View for details.

TASK.Watch.DELete Remove process from watch list

Format: TASK.Watch.DELete <process>

Removes a process from the watch list.

<process> Specify the process name (in quotes) or magic.

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual QNX | 51

TASK.Watch.DISable Disable watch system

Format: TASK.Watch.DISable

Disables the complete watch system. The watched processes list is no longer checked against the target
and is not updated. You'll see the TASK.Watch.View window grayed out.

This feature is useful if you want to keep process symbols in the debugger, even if the process terminated.

TASK.Watch.DISableBP Disable process creation breakpoints

Format: TASK.Watch.DISableBP

Prevents the debugger from setting on-chip breakpoints for the detection of process creation. After executing
this command, the target will run in real-time. However, the watch system can no longer detect process
creation. Automatic loading of process symbols will still work.

This feature is useful if you'd like to use the on-chip breakpoints for other purposes.

Please see TASK.Watch.View for details.

TASK.Watch.ENable Enable watch system

Format: TASK.Watch.ENable

Enables the previously disabled watch system. It enables the automatic loading of process symbols as well
as the detection of process creation.

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual QNX | 52

TASK.Watch.ENableBP Enable process creation breakpoints

Format: TASK.Watch.ENable

Enables the previously disabled on-chip breakpoints for detection of process creation.

Please see TASK.Watch.View for details.

TASK.Watch.View Show watched processes

Format: TASK.Watch.View [<process>]

Activates the watch system for processes and shows a table of the watched processes.

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.
o B:TASK Watch View "ping" = =R
spaceid state entry |
‘6. Toaded main ~
- no process -
1 no symbols -
v
>
<process> Specify a process name for the initial process to be watched.

Description of Columns in the TASK.Watch.View Window

process The name of the process to be watched.

spaceid The current space ID of the watched process.
If grayed, the debugger is currently not able to determine the space ID of the
process (e.g. the target is running).

©1989-2024 Lauterbach OS Awareness Manual QNX | 53

state The current watch state of the process.

If grayed, the debugger is currently not able to determine the watch state.

no process: The debugger couldn’t find the process in the current QNX process
list.

no symbols: The debugger found the process and loaded the MMU settings of the
process but couldn’t load the symbols of the process (most likely because the
corresponding symbol files were missing).

loaded: The debugger found the process and loaded the process’s MMU settings
and symbols.

entry The process entry point, which is main ().

If grayed, the debugger is currently not able to detect the entry point or is unable
to set the process entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).

The watch system for processes is able to automatically load and unload the symbols of a process,
depending on their state in the target. Additionally, the watch system can detect the creation of a process
and halts the process at its entry point.

TASK.Watch.ADD Adds processes to the watch list.

TASK.Watch.DELete Removes processes from the watch list.

The watch system for processes is active as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Automatic Loading and Unloading of Process Symbols

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be grayed
out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system loads the
appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process.

If a watched process was previously loaded but is no longer found on the QNX process list, the watch
system unloads the symbols. The watch system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded and is now found with another space ID (e.g. if the process terminated
and started again), the watch system first removes the process symbols and reloads them to the appropriate
space ID.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

©1989-2024 Lauterbach OS Awareness Manual QNX | 54

Detection of Process Creation

To halt a process at its main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets an on-chip breakpoint on a kernel function that is
called upon creation of processes. Every time the breakpoint is hit, the debugger checks if a watched

process is started. If not, it simply resumes the target application. If the debugger detects the start of a newly
created (and watched) process, it sets an on-chip breakpoint onto the main entry point of the process

(main ()) and resumes the target application. A short while after this, the main breakpoint will hit and halt

the target at the entry point of the process. The process is now ready to be debugged.

NOTE:

This feature uses one permanent on-chip breakpoint and one temporary on-chip
breakpoint when a process is created. Please ensure that at least those two
on-chip breakpoints are available when using this feature.

Upon every process creation, the target application is halted for a short time and
resumed after searching for the watched processes. This impacts the real-time
behavior of your target.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.Watch.DISableBP. Of course, detection of process creation won’t work then.

©1989-2024 Lauterbach

OS Awareness Manual QNX |

55

QNX PRACTICE Functions

There are special definitions for QNX specific PRACTICE functions.

TASK.ASINFO.SIZE() Size of address space

Syntax: TASK.ASINFO.SIZE(" <asinfo_name>",<index>)

Returns the size of a QNX address space specified by the address space name and index.

Parameter and Description:

<asinfo_name> Parameter Type: String.
Name of the QNX address space

<index> Parameter Type: Decimal or hex or binary value.

Index of the entry for the given address space, if an address space covers
several ranges.

Returns -1 if the index is bigger than available address ranges.

Return Value Type: Hex value.

TASK.ASINFO.START() Start of address space

Syntax: TASK.ASINFO.START(" <asinfo_name>",<index>)

Returns the start address of a QNX address space specified by the address space name and index.

Parameter and Description:

<asinfo_name> Parameter Type: String.
Name of the QNX address space

<index> Parameter Type: Decimal or hex or binary value.

Index of the entry for the given address space, if an address space covers
several ranges.

Returns -1 if the index is bigger than available address ranges.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual QNX | 56

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.CORE.ASSIGN() Core assignment

X86/x64

Syntax: TASK.CORE.ASSIGN()

Returns the core assignment of the specified process.

QNX may change the order of the cores between different runs. This means, core number 1 in QNX may be
assigned to different physical cores when rebooting.

This function returns the actual used core assignment string to be used with CORE.ASSIGN.

Return Value Type: String.

TASK.CURRENTY() Current process or thread

Syntax: TASK.CURRENT(process | thread | spaceid)

Return the current process, thread or space ID.
Parameter Type: String (without quotation marks).

Parameter and Description:

process Returns the current process magic number.
thread Returns the current thread magic number.
spaceid Returns the current space ID.

©1989-2024 Lauterbach OS Awareness Manual QNX | 57

Return Value Type: Hex value.

TASK.LIB.ADDRESS() Address of library

Syntax: TASK.LIB.ADDRESS(" <library_name>",<process_magic>)

Returns the start address of the given library used by the specified process.

Parameter and Description:

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual QNX | 58

TASK.PROC.ID() Process ID

Syntax: TASK.PROC.ID(<process_magic>)

Returns the PID of the specified process.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PROC.MAGIC() Magic number of process

Syntax: TASK.PROC.MAGIC(" <process_name>")

Returns the magic number of the specified process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.NAME() Name of process

Syntax: TASK.PROC.NAME(<process_magic>)

Returns the name of the specified process.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.PROC.SID2MAGIC() Process of space ID

Syntax: TASK.PROC.SID2MAGIC(<space_id>)

Returns the magic number of a process with the given space ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual QNX | 59

TASK.PROC.SPACE() Space ID of process

Syntax: TASK.PROC.SPACE("<process_name>")

Returns the debugger MMU space ID of the specified process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.THREADS() List of threads

Syntax: TASK.PROC.THREADS(<process_magic>,<thread_magic>)

Returns the next magic in the thread list of the specified process.

Parameter and Description:

<process_magic> Parameter Type: Decimal or hex or binary value.

<thread_magic> Parameter Type: Decimal or hex or binary value.
Use zero as <thread _magic> for the first thread.

Return Value Type: Hex value.

Return Value and Description:

-1 Returns -1 if no further thread available.
<thread_magic> Returns the next magic in list.
TASK.PROC.TTB() TTB of process
Syntax: TASK.PROC.TTB(<process_magic>)

Returns the translation table base address of the specified process.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual QNX | 60

TASK.QVM.FORMAT()

Machine ID of VM

Syntax: TASK.QVM.FORMAT(<qvm_magic>)

Returns the (QNX internal) format of a VM as value.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QVM.MAGIC()

Magic number of VM

Syntax: TASK.QVM.MAGIC(<qvm_name>)

Returns the magic number of the specified VM.
Parameter Type: String.

Return Value Type: Hex value.

TASK.QVM.MID()

Machine ID of VM

Syntax: TASK.QVM.MID(<qvm_magic>)

Returns the machine ID of the specified VM.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QVM.NAME()

Name of VM

Syntax: TASK.QVM.NAME(<qvm_magic>)

Returns the name of the specified VM.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach

OS Awareness Manual QNX | 61

TASK.QVM.VMLIST() List of VMs

Syntax: TASK.QVM.VMLIST(<qvm_magic>)

Returns the first or next magic in the VM list.

Parameter and Description:

<qvm_magic> Parameter Type: Decimal or hex or binary value.
Use zero as <qvm_magic> to get the magic of the first VM.

Return Value and Description:

<qvm_magic> Returns the next magic in the VM list.

0 Returns 0 if no further VM available.

©1989-2024 Lauterbach OS Awareness Manual QNX | 62

Appendix

Appendix A: Kernel debug information

In QNX version 6.5 and 6.6, the standard installation does not include debug information of the kernel, i.e.
you will not be able to see the internal structures of a process or thread. The QNX awareness does not need
this, so it's sufficient to use the standard kernel. However, if you want access to these internal structures, you
have to install and use the debug version. Please follow this sequence to create kernel symbol files:

1. Locate the debug info files in the QNX SDP installation media, in the subdirectory
“debugging_info”, or download "QNX Software Development Platform 6.x.x [Build xxxxxxxxxxxx]
- Full Installation Debug Info Tar [For Reduced DVD]" from the QNX developer network download

site.
2. Extract your target architecture’s (e.g. “armle”) debug files to a temporary directory.
3. Copy the <arch>/boot/sys/procnto*-xxxxxxxxxxxx.sym files to the QNX installation directory

target/qnx6/<arch>/boot/sys/ and remove the .sym extension from these files.

4, Open your system builder project (project.bld) and set the “System” properties “Create startup
sym file?” to “Yes”, “Create proc sym file?” to “Yes” and for “Procnto” select the “procnto*-
XXXXXXXXXXXX” file.

5. Rebuild the image.

©1989-2024 Lauterbach OS Awareness Manual QNX | 63

	OS Awareness Manual QNX
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in QNX
	Requirements for Debugging
	Requirements for Tracing
	Requirements for QNX Hypervisor

	Debug Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	SMP Support
	Dynamic Task Performance Measurement
	QNX specific Menu

	Trace Features
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	QNX specific Menu for Tracing

	Debugging QNX Components
	Initial Program Loader (IPL)
	QNX Kernel
	Downloading the QNX Image
	Debugging the Kernel Startup
	Debugging the Kernel

	User Processes
	Debugging the Process
	Debugging into Shared Libraries
	Debugging QNX Threads

	Trapping Segmentation Violation

	QNX Commands
	TASK.ASINFO Display address space information
	TASK.IFS Display directory of IFS
	TASK.MMU.SCAN Scan process MMU space
	TASK.Option Set awareness options
	TASK.PIDIN Display “pidin” like information
	TASK.Process Display processes
	TASK.QVM Display VMs
	TASK.SHMEM Display contents of shmem
	TASK.SLOGGER2 Display contents of slogger2 buffers
	TASK.sYmbol Process symbol management
	TASK.sYmbol.DELete Unload process symbols and MMU
	TASK.sYmbol.DELeteLib Unload library symbols
	TASK.sYmbol.LOAD Load process symbols and MMU
	TASK.sYmbol.LOADLib Load library symbols
	TASK.sYmbol.Option Set symbol management options
	TASK.Thread Display threads
	TASK.TLOGger Display tracelogger buffer
	TASK.TLOGger.VMLOGger Copy tracelogger buffer to LOGGER
	TASK.Watch Watch processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.View Show watched processes

	QNX PRACTICE Functions
	TASK.ASINFO.SIZE() Size of address space
	TASK.ASINFO.START() Start of address space
	TASK.CONFIG() OS Awareness configuration information
	TASK.CORE.ASSIGN() Core assignment
	TASK.CURRENT() Current process or thread
	TASK.LIB.ADDRESS() Address of library
	TASK.PROC.ID() Process ID
	TASK.PROC.MAGIC() Magic number of process
	TASK.PROC.NAME() Name of process
	TASK.PROC.SID2MAGIC() Process of space ID
	TASK.PROC.SPACE() Space ID of process
	TASK.PROC.THREADS() List of threads
	TASK.PROC.TTB() TTB of process
	TASK.QVM.FORMAT() Machine ID of VM
	TASK.QVM.MAGIC() Magic number of VM
	TASK.QVM.MID() Machine ID of VM
	TASK.QVM.NAME() Name of VM
	TASK.QVM.VMLIST() List of VMs

	Appendix
	Appendix A: Kernel debug information

