LAUTERBACH A

OS Awareness Manual OSEck

OS Awareness Manual OSEck

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTESuiiiiiiiiiieiiiiissseseennnanenmsnssssssssssssssssssesesesemmsnsnsnsmsmsmsmssssssssssssssssssssessensnsnnnnnnnn r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual OSECKcccccccerrrrremmmrrnssscerrssssmssssssssmmesssssssmmesesssssmssssssssnmessesssmmssseas 1
OVEIVICW ..iiiiiiiiiieeeeieiciccecesessssssss s asasse e e e s e s s e e s e s s s s s nssnmmmsmssssssssssssssssssssseeserenerenssnnnnnnnnnnnnnnnnnnnnss 3
Terminology 3

Brief Overview of Documents for New Users 4
Supported Versions 4

L0 o3} T 11T = Lo o 5
Quick Configuration Guide 6
Hooks & Internals in OSEck 6
== LT == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Dynamic Task Performance Measurement 9

Task Runtime Statistics 10
Task State Analysis 11
Function Runtime Statistics 12
OSEck specific Menu 13

L@ 37 0o [0o 111 4T 14 Lo £ 14
TASK.PooL Display pools 14
TASK.Process Display processes 15
TASK.Syslnfo Display system information 16
OSECK PRACTICE FUNCHONS ooiiiiciiiicen s smss s s s ssmm s s s smms s s ssmms s s ssmmn s 17
TASK.CONFIG() OS Awareness configuration information 17
©1989-2024 Lauterbach OS Awareness Manual OSEck | 2

OS Awareness Manual OSEck

Overview

Version 06-Jun-2024

A TRACE32 for OSEck (=R
File Edit View Var Break Run CPU Misc Trace Perf Cov MPC3X¥X OSEck Window Help
(MR A+ e v 2R DB ses @ 2 Tl eS| @ 22
[=] =] =N IERIES
wor name pid |type [status |prio[in_g [entr 1
M step | M Over | A Diegel ¢ Retwn| & Up | b Go |11 Break| I Mode b5 T deFauTt_7dTe_p (0000 [TOLE |ready [255. 0. 00151094 defauTt_idTe_pro n
addr/Tine [source | ose_sysd 0001 |PRIO |receive| 2. | 0. |00184B14 ose_sys
static 05_PROCESS(morse) ~ ticker 0002 [INT |ready | 20.| 0. 00186470 bsp_krntimer_int
122} . . morse 0003 [PRIO |running | 30. | 0. |00180D54 morse
1t a second before starting the message. primes_server (0004 |PRIO |receive| 27.| 0. [D0180FIC primes_server
primes_client |0005 |[PRIO |receive| 22.| 0. 00181284 primes_client
125 delay(MS_TO_TICKS(1000)); v
while (1) {
128 char const * ch = msg; H = ieErzl
while (*ch 1= 0) { name [Tow high =p % Towest _spare max [0 10 20 30 40
131 int i = 0; defauTt_idTe_pr 40001860 40001C60 40001839 00000209 25%
const char *code; ose_sysd [40001CCE 400020C8 40001F69 000002AL
ticker
morse [4000264C 40002A4C [4D002A10 5% 40002989 0000033D 19%
/* The morse word space is 7 dots (3 1 primes_server [40002EDC 4000320C 40003149 00000260 3%%
* a letter space below. primes_client [4000376C 40003B6C 400039E9 00000270 37%
. v
= [a @ |[=] [o]@E ||[=]
s, || fif Goups... || 53 confi... || A Goto... Nesting | %= Chart |
[Funcs: 127. total: 13.107ms OSEck ppcs5wx
R331
[task min max intern® (1% 2% 5% { 0sppc55xx_R331_BPSHEB77
ose_sy=d ooty B = 122.500us | 0.106% |+ - yes
primes_client root) . - 151.500us | 0.106% [+ ves
primes_client |- odo_process_entry . - 137.500us | 0.014% [+ ves
primes_client @ primes_client . - 135.600us | 0.174% [+
imes_client alloc . 8.400us | 9.600us | 0.201% [+
primes_client hunt . 49.600us | 49.600us | 0.056% [+
primes_client receive . 9.100us | 16.400us | 0.102% [+ 32
primes_client sender . 1.600us | 1.600us | 0.012% |+ 2
primes_client free_buf . 6.700us | 6.700us | 0.051%le 4
primes_client current_process . 0.600us | 0.600us | 0.0
primes_client tstimer_get . 0. 800us 0.800us | 0.0] i B:Trace.CHART.TASK \El
primes_client tstimer_set . 0.100us | 0.100us | <0.0 o= = =
primes_server |3 (root) . z 35.800us | 0.1 &SEM: i1 Goups... | 28 Gonfig... | (¥ Goto...| [} Goto... | #1Find... | 40r In | W0« Out | 3 Ful
primes_server | odo_process_entry . 21.800us | 0.0 500.000us -400.000us -300.000us -200.000us -100.000us 0.
primes_server 3 primes_server . - 19.900us | 0.0 range: i i 0 ’ 0 =
primes_server {— bsp_Teds_clear . 0.200us | 0.500us | 0.0 N 7
primes_server receive . - 16.400us | 0.0] | default_idle_pr .| —— ———
morse = (root) . - 15.900us 0.1 ose_sysd L
morse —= odo_process_entry 1. - 1.900us | 0.0 primes_client]
morse — morse 0.000us - - 0. 0 primes_servery —
morseks - v
1l < <>« >
B::ftask.|
SysInfo Process PooL pravious
SP:00180D54 \\example_axiom\app_morse\morse morse stopped at breakpoint HLL UP

The OS Awareness for OSEck contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

OSEck uses the term “process” instead of “task”. If not otherwise specified, the TRACE32 term “task”
corresponds to OSEck processes.

©1989-2024 Lauterbach OS Awareness Manual OSEck |

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OSEck is supported for the following versions:
o OSEck 3.x on PowerPC 55xx, StarCore and TMS320C55xx.
. For OSEK/ORTI 2.x please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf)

©1989-2024 Lauterbach OS Awareness Manual OSEck | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “oseck.t32” (directory
“~~/demo/<processor>/kernel/oseck”). It contains all necessary extensions.

Automatic configuration tries to locate the OSEck internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG oseck

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/oseck/oseck.cmm”.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for OSEck with your application, follow the
following roadmap:

1. Copy the files “oseck. t32” and “oseck.men” to your project directory
(from TRACES2 directory “~~/demo/<processor>/kernel/oseck”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command “TASK.CONFIG oseck”
(See “Configuration”).

5. Execute the command “MENU . ReProgram oseck”
(See “OSEck Specific Menu”).

6. Start your application.
Now you can access the OSEck extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in OSEck

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses global kernel symbols. Ensure that the
application is compiled with debug information and that access to the kernel symbols is possible every time
when features of the OS Awareness are used.

Used symbols:
odo_debug_info (i/a), odo_config, odo_sys, odo_pcb_list, odo_pool_list,
odo_max_valid_pid, ose_version, err_msg

©1989-2024 Lauterbach OS Awareness Manual OSEck | 6

Features

The OS Awareness for OSEck supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
OSEck components can be displayed:

TASK.PooL Pools
TASK.Process Processes
TASK.SyslInfo System information

For a description of the commands, refer to chapter “OSEck Commands”.

If your target CPU provides memory access while running (SYStem.MemAccess Enable), these resources
can be displayed “On The Fly”, i.e. while the target application is running, without any intrusion to the
application.

If your target doesn’t support this memory access, the information will only be displayed if the target
application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 7

&b BTASK.STacK =N =R)

name |low high sp % [lowest spare max [0 10 20 30 40 |
defauTt_idTe_pr [400015860 40001C60 40001639 00000209 25% |e— A
ose_sysd [40001CCE 400020C8 40001F6S O0000ZAL1 34% |ee——
ticker
morse [4000264C 4000244C
primes_server [40002EDC 400032DC
primes_client [4000376C 40003B6C

40002410 5% (40002989 00000330 19% |ee——
40003149 00000260 39%

400039E9 00000270 37%

< >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 8

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

= B:PERF.ListTASK = =R
& setp.. || 38 anfig... | (A Goto... | B Detsled | O, View || i/ Profile || @ mit || Disable| @ Amm

runtime: 100%
name ratio 1% 2% 5% 10% 20% 50% |

efauTt_idle_pr 53.253%
primes_server 46.404%
primes_client 0.342% |+
ose_sysd 0. 000%
icker 0.000%
morse 0. 000% A

©1989-2024 Lauterbach OS Awareness Manual OSEck | 9

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace

logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

1 ”
(unknown)”.
| B:Trace STATistic. TASK = =R
2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
tasks: 7. total: 13.107ms
range [total min max avr count ratio¥ [1% 2% |
0. 0.400us 0.400us 0.400us 0.400us 1. 0.003% |+ A
default_idle_pr | 466.700us | 466.700us | 466.700us | 466.700us 1. 3.560%
ose_sysd | 122.300us | 122.300us | 122.300us | 122.300us 1. 0.933% |+
primes_client | 151.500us | 151.500us | 151.500us | 151.500us 1. 1.155% |mm
primes_server 35.800us 35.800us 35.800us 35.800us 1. 0.273% |+
morse 15. 900us - 15. 900us 15. 900us 1. 0.121% |+ A
£
il B Trace, CHART.TASK = =R
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
00us -600.000us -400.000us -200.000us 0.0
range | 1 1 1 1 I
default_idle_pr | N E . |
ose_sysdfy | X |
primes_clienthy . | |
primes_serwver iy . .
morse [y .V
£ b 4 >

©1989-2024 Lauterbach

OS Awareness Manual OSEck | 10

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 11

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 12

OSEck specific Menu

The menu file “oseck.men” contains a menu with OSEck specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called OSEck.

. The Display menu items launch the kernel resource display windows.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 13

OSEck Commands

TASK.PoolL Display pools

Format: TASK.PooL [<poo/>]

Displays the pool table of OSEck or detailed information about one specific pool.

Without any arguments, a table with all created pools will be shown.
Specify a pool magic number to display detailed information on that pool.

o8 B:TASK.Pool 0x400017BC EI@

mag c 1d start end size free used |
[400017EC | 0. [400017F4 [4000A060 [DO00B56C [0000609C [DO00ZVD0

index b

T YT Py
[=R=R=R===l=E

tion:
pch @ stacks @& empty other

address type ze index buff ze owner
40001858 signal [2ZAD0

MD001E38 signal] 0000 ticker

MO00LF70 signal o oooo hd
£ >

“magic” is the ID of the pool, used by the OS Awareness to identify a specific pool.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 14

TASK.Process

Display processes

Format:

TASK.Process [<process>]

Displays the process table of OSEck or detailed information about one specific process.

Without any arguments, a table with all created processes will be shown.
Specify a process name or magic number to display detailed information on that process.

@?. B::TASK.Process

=R o
type |[status |[prio[in q entry

ose_sysd
ticker

morse
primes_server
primes_client

dE?Eu]t idTe_pr 0000

“magic” is the ID of the task, used by the OS Awareness to identify a specific task (address of the PCB).
“in_q” specifies the number of signals in queue to be received by this process.

|
IDLE [ready [255. 00181094 defauTt_idle_pr. .
PRIO |receive| 2. 00184B14 ose_sysd
INT |ready 20. 00186470 bsp_krntimer_int
PRIO |running | 30. 00180054 morse
PRIO |receive | 27. 00180F1C primes_server
PRIO |receive | 22. 00181284 primes_client

DDDDDD

&% B:TASK.Process (x40002E74

(o8)

magic name pid [type [status [prio[in. q entr

V¥
[40002ZE74 [primes_server |0004 [PRIO |receive| 27. [0. [00180F1C

|
primes_server

T0002EDC 00000400 2A 0000

size sender content

“entry” specifies the entry address.

The fields “magic” and “entry” are mouse sensitive, double clicking on them opens appropriate windows.

Right clicking on them will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual OSEck

15

TASK.SysInfo

Display system information

Format:

TASK.SysInfo

Displays information about the OSEck system.

o8 BTASK.Sysinfo

(o8)

system information

05 release

static os_information

target : OSEck ppc55xx

os "sion : R331

id string : osppc55xx_R331_BPSHBETY
buffer ckeck : yes

parameter ckeck: wyes

stack ckeck : yes

debug hooks : yes

max number of procs :
no. of static pro
max number of
Tink handler
error handler

running os information

32
2

none configured
00180B3C pfm_error_handl

current cess pid : 3

system ¢ counter : 0O

last error message (bogus if no error)
err_s id : 0
err_msg.used_called : ©
err_ . error_code O0x 00000000
err_msg.extra 0x 00000000

©1989-2024 Lauterbach

OS Awareness Manual OSEck | 16

OSEck PRACTICE Functions

There are special definitions for OSEck specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual OSEck | 17

	OS Awareness Manual OSEck
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in OSEck

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	OSEck specific Menu

	OSEck Commands
	TASK.PooL Display pools
	TASK.Process Display processes
	TASK.SysInfo Display system information

	OSEck PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

