LAUTERBACH A

OS Awareness Manual OS-9

OS Awareness Manual OS-9

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTESuiiiiiiiiiieiiiiissseseennnanenmsnssssssssssssssssssesesesemmsnsnsnsmsmsmsmssssssssssssssssssssessensnsnnnnnnnn r—
OS AWareness MaNUAISccoiiiiiiiiiiiiissceccerrirr e ssssssssssssmms e e s s rr e sessss s s ssmmmms s s s e e s esssssssssnnnmmnnnssnnssensnan =
OS Awareness Manual OS-9oiicccccririrrcrrrrrss s rrs s e s res s s s e e e e s ssmme s eesssmme s eesssmmnsnessssmmnnnens 1
OVEIVICW ..iiiiiiiiiieeeeieiciccecesessssssss s asasse e e e s e s s e e s e s s s s s nssnmmmsmssssssssssssssssssssseeserenerenssnnnnnnnnnnnnnnnnnnnnss 4
Brief Overview of Documents for New Users 5
Supported Versions 5
ConfiguIration ... 6
Hooks in OS-9 7
=Y 1 = 8
Display of Kernel Resources 8
Symbol Relocation 8
Task Runtime Analysis 9
Task State Analysis 9
Function Runtime Statistics 10
Task Selective Debugging 10
System Calls 10

L@ LTt TN 02105 1 3 =1 4 Lo [S 11
sYmbol.RELOCate.Auto Control automatic relocation 11
sYmbol.RELOCate.Base Define base address 11
sYmbol.RELOCate.List List relocation info 12
sYmbol.RELOCate.Magic Define program magic number 12
sYmbol.RELOCate.Passive Define passive base address 12
TASK.SYSGLOB Display time 13
TASK.PROCS Process table 13
TASK.PROCSL Extended process table 13
TASK.QUEUES Process queues 14
TASK.EVENTS Event table 14
TASK.ALARMS Alarm table 14
TASK.MDIR Module table 15
TASK.MFREE Free memory 15
TASK.DEVS Device table 15
TASK.IRQS Interrupt polling table 15
TASK.CCTL Cache control 16
TASK.EXIT Exit system call 16
©1989-2024 Lauterbach OS Awareness Manual OS-9 2

TASK.SEND Send signal 16

TASK.SysCall Generic system call 16
0S9 specific FUNCHONScooiiriiirir s s e 18
TASK.MDIR.ADDRESS() Program base address from module directory 18

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 3

OS Awareness Manual OS-9

Overview

Version 06-Jun-2024

A TRACE32 for 05-9

=)

==

Error #000:009:000:098 while initializing module override

File Edit View Var Break Run CPU Misc Trace Perf Cov ARMZ 0S-9 Window Help
Mk M+ ee 2RO s uEsas @ 2 & 2 &
&) B [= ==
agic S [module {
o 00ZESCO 08040000 kernel ~
5-9 Bootstrap for the ARM (Edition 63) OEEF910 w |0BO7A550 shell
0EEZ2110 * 08127478 dhry

BOOTING PROCEDURES AVAILABLE ------- <INPUT>
Boot embedded 05-9 in-place -------- <box
Copy embedded 05-9 to RAM and boot - <Irs b BTASKMDIR = =R
Enter system debugger - - <breaks mddress=ize Towner
'E perm [type |revs [ed# [Ink [name |
Restart the System --- - <g> 05040000 |87216. | 0.0 0555 [Sys |A000 | 167. | 1. |kernel 7
08002E30 | 1792. | 0.0 |0555 |Data [B0OD 7. | 1.|enfodata
Select a boot method from the above menu: ba 08023108 | 6256. | 0.0 0555 |Sys |a000 | 23.| 1. bootsys
. 080570A0 | 1408. | 0.1 |0555 |5 4000 1| 2. |abort
Now searching memory (S08000000 - SOBLFFFFf) for an 05-9 Kernel... Ds0B16ES | 4984, | 0.1 0333 |req |cool A Mt
080E2280 | 4080. | 0.1 |0555 |Prog |COOL 5. | 1. |activ
tin 05-9 kernel was found at 508040000 0BDBG1AD | 6600. | 0.1 0555 |Prog [coOl 39. | 1. |attr
i valid 05-9 bootfile was found. 0BODF428 [11864. | 0.0 0555 |Prog [c0OL1 27.| 1. |bootgen
[1]§ dhry 08060000 | 4784. | 0.0 0555 |Sys |A000 8. | 2.|cache
n 080DEG68 | 3520. | 0.1 |0555 |Prog (COOL | 24. | 1. |build
080E3270 | 3264. | 0.0 |0555 |Prog (COOL | 10. | 1. break
08003530 | 4088. | 0.0 |0555 [Sys |A000 | 16. | 1. |enfgfunc
08004528 | 4488. | 0.0 |0555 [Sys [A000 | 11.| 1. |excption
0800B670 | 2552. | 0.0 |0555 [Sys |A00D 9. | 1.|console
“— = || [0800C638 | 1064. | 0.0 (0555 [Sys |aoo0 9. | 1. |consenfg
[B |[%2] | losoocaso | 920, | 0.0 [0535 |sye |aooo 8. | 1. |commenfg
- 0800EDGO0 | 1328. | 0.0 |0555 [Sys [A000 | 35. | 1. |dbgentry
M step | M Over | A Diege |« Retun| € Up » Go | Il Brezk | ™ Mode | &= £ 0BDB3ADD 1106072 | 0.1 0555 |subr |coo3 | 27.| 2. |csl
addr/Tine jsource | loBoDBSDO [12440. | 0.1 |0555 |Prog |COOL | 54. | 1. |copy
~ | loBoE3F30 | 488s. | 0.1 0555 |Prog |coo1 | 23.| 1. |date v
B4 nain)
Edjmain,
main program, corresponds to procedures
Main and Proc_0 in the Ada version
{
One_Fifty Int_1_Loc; ~
REG One_Fifty Int_2_Loc;
One_Fifty Int_3_Loc;
REG char Ch_Index;
Enumeration Enum_Lac;
str_30 str_1_Loc; resetting. ..
5tr_30 str_z_Loc; initializing...
REG int Run_Tndex; loading 05-3 image. ..
REG int Number_Of_Runs; 1e 'X:\RTOSY059\TRACE32\arm\rom’ (Binary) loaded.
initializing PrKERNEL support...
Initializations load complete.
1e 'X:\RTOSY059\TRACE32\arm\dhry' (ROF) Toaded.
102 | Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type)); ¥ | [Please start dhry. v
| < >
:[TASK.|
PROCS MDIR previous
UR:08127EC4 \\dhry\Global\main 0xCOEE2110 stopped at breakpoint HLL UP

©1989-2024 Lauterbach

OS Awareness Manual 0OS-9 | 4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OS-9 is supported for the following versions:
. 0S-9 for ARM version 4.1

. OS-9 for PowerPC version 1.4

. OS-9 for 68K version 1.2

©1989-2024 Lauterbach OS Awareness Manual0S-9 | 5

Configuration

The PRACTICE script '~~/demo/m68k/kernel/os9/pos9.cmm’ patches the kernel and configures the OS
Awareness. The macros defined at the beginning of the file define the address of the kernel, the address of
the global system variables and the vectors which are used to enter the kernel (e.g. clock interrupt). These
values have to been checked and modified if necessary. The emulation memory has to mapped into the
address space used by OS-9 to access the information by dual-port memory.

Format: TASK.CONFIG 0s9 <magic_address> <sleep> <globals> <system_call_gate>
<magic_address> Specifies a memory location that contains the current running task.

<sleep> The argument for <sleep> is currently not used. Specify “0”.

<globals> This argument must be the address of the system-global variables, which is

used to display the tables.

<system_call_gate> This argument is the address of the system call entry point, which is used by
the command when executing system calls.

If the task selective debugging features are not used, the patching of the kernel is not required. The first two
arguments are then not required. The following PRACTICE script will configure the command for data table
display:

&global s=0cxxxx

TASK.CONFIG o0s9 0x0 0x0 &globals 0x0
TIP: The command SETUP.DIS can be used to display the OS-9 traps correctly in the disassembler
windows.

The PRACTICE script '~~/demo/m68k/kernel/os9/pos9.cmm' can make the required patches to OS/9 and
configure the display command:

DO pos9 nopatch ; configures only display functions
; no patches are made (TASK.OFF)

DO pos9 notask ; enables display and analyzer
; functions task selective debugging
; 1s off

DO pos9 ; patches VRTX32 for task selective
; debugging

©1989-2024 Lauterbach OS Awareness Manual0OS-9 | 6

The PRACTICE file must be modified according the software running on the target. The address of the
system globals the memory for patching must be defined.

Hooks in 0OS-9

When the task selective debugging is used the entry and exit of the kernel must lead to a multitask
breakpoint. To determine the entry of a task, patching the OS-9 kernel is required. All returns to the task
context (usually RTE instructions) are patched to pass control to the multitask monitor. The patch writes the
current executing process table address to the magic word of the OS Awareness and runs to a breakpoint.

The entries to OS-9 are patched directly in the vector table. The patches write the value 1 to the magic word
and run to a breakpoint.

The correct setting of the breakpoints can be checked as follows:
1. Boot OS-9

Break program with 'break’

Execute 'patchos9.cmm’

Continue with 'go'

Disable debugging for the kernel

Set 'write'-breakpoints to the 0s-9 global-variables

N o g M 0D

The program should continue without breaking or spotting

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 7

Features

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following OS9
components can be displayed:

TASK.SYSGLOB Globals and time
TASK.PROCS Processes
TASK.PROCSL Processes (extended)
TASK.QUEUES Event table
TASK.EVENTS Porcess queues
TASK.ALARMS Alarm table
TASK.MDIR Module directory
TASK.MFREE Free memory
TASK.DEVS Devices

TASK.IRQS IRQ table

Symbol Relocation

The processes of OS9 use position independent code and data. The symbols need to be relocated, when
they get a new address from OS9. The OS9 awareness provides a method to relocate the symbols
automatically when necessary. This method extracts a table from the target memory which defines the
locatio nof the position independent code and data sections. It will be called automatically after any program
break, or by manually execute the command sYmbol.RELOCate.Auto.

Programs that are not active can be relocated to an unused address, when the command
sYmbol.RELOCate.Passive is active. Without this command symbols of currently not used programs will
stay at the last known location. Correct relocation requires knowledge about the base address for position
independent data used by the linker. This address must be defined by the sYmbol.RELOCate.Base
command. The identification of programs can either be done by a unique number, defined by the
sYmbol.RELOCate.Magic command or based on an address in the code area of a program.

See the sYmbol.RELOCate commands in the 0S-9 Command section

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 8

Example for automatic relocation of symbols for OS/9 (partial program):

TASK.CONFIG o0s9 0x0 0x0 0x1000
sYmbol .RELOCate.Passive 0xO0f£££0000
sYmbol .RELOCate.Base O0x0ff££0000
sYmbol .RELOCate.Auto ON

Data.LOAD.ROF modull 0x18000 OxO0f£f££8000

Task Runtime Analysis

The time spend in a task can be analyzed by marking the access to a word holding a pointer to the current
tasks tcb. This can either be in the kernel or in the patch programs. In the first case the runtime in the kernel
will be added to the last task which called the kernel. If the 'magic’ word in the patch program is marked, the
kernel is treated like another task. Task selective debugging should not be used when statistics are made, as
this would cause an error in the measurements. The example script 'taskfunc.cmm' can be used to make the
measurement for this analysis.

Analyzer.STATistic.TASK Display task runtime statistic
Analyzer.Chart.TASK Display task runtime time chart
Task State Analysis

The time different tasks are is a certain state (running, ready, suspended or waiting) can be displayed as a
statistic or in graphical form. This feature is implemented by recording all accesses to the status byte of all
tasks. The example script 'taskstat.cmm' makes a task state analysis with the demo application. NOTE: The
analysis will only show task which were existent when the file is executed and after the measurement has

completed.
Analyzer.STATistic. TASKState Display task state statistic
Analyzer.Chart. TASKState Display task state time chart

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 9

Function Runtime Statistics

All function related statistic and time chart functions can be used with or without patching the kernel. The
difference is whether the kernel will be seen like another task or as part of the task who called the kernel.
Task selective debugging should not be used when statistics are made, as this would cause an error in the
measurements. The task switch can be displayed in the analyzer list with the List. TASK keyword. The
example script 'taskfunc.cmm' makes a task-selective performance analysis for the demo application.

Analyzer.STATistic. TASKFunc Display function runtime statistic
Analyzer.STATistic. TASKTREE Display functions as tree

Analyzer.Chart. TASKFunc Display function time chart

Analyzer.List List. TASK FUNC Display function nesting in analyzer

Task Selective Debugging

Task selective debugging allows to disable or enable the analyzer and the trigger system for specific tasks

and to stop one task while others continue to operate. This function has an impact on the response time of
the multitask kernel. The feature should not be used when making performance or time measurements or

with extremely time critical applications. Task selective debugging is currently not available on CPU32 and

CPU32+ processors.

System Calls

Manually executing system calls requires a small program on the target, which makes the system call and
stops execution after the call. Such a program is part of the standard patch procedure (pos9.cmm). The
memory at the system parameter buffer (a part of the patch area) must be mapped internal.

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 10

0S-9 Commands

sYmbol.RELOCate.Auto Control automatic relocation

Format: sYmbol.RELOCate.Auto [ON | OFF]

Enables or disables the automatic relocation process. Without argument the command forces an immediate
relocation base on the current values of the target. This manual triggered relocation is useful when the target
can not be stopped, but analyzer or breakpoint features will be used. It can also be useful when the read of
the relocation information structure of the target is time consuming and should not be performed after each
breakpoint or step.

sYmbol .RELOCate.Auto ; perform one single relocation

sYmbol .RELOCate.Auto ON ; turn automatic relocation on

See chapter Symbol Relocation.

sYmbol.RELOCate.Base Define base address

Format: sYmbol.RELOCate.Base <class>:<base>] [<symbol_path>|<range>]

Defines the current base address for one or more programs. The symbol path limits the definition to special
symbols of a module or a program. If an address range is given, only the symbols in this range will be set.
The memory class P: or D: defines which base address (program or data) is set. This program doesn't
relocate symbols. The command is used after loading the symbols, when the default base address in the
table doesn't match. The default program base is the first location of the program, the database is zero.

sYmbol .RELOCate.Base d:0x400000 ; assume all position independent
; data was linked to address 400000

’

See chapter Symbol Relocation.

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 11

sYmbol.RELOCate.List List relocation info

Format: sYmbol.RELOCate.List

Displays information about the automatic relocation of symbols.

The magic column displays is the identifier of a program, zero means that the program is identified by an
address inside the code area. The 'prog' and 'data’ columns show the current base address for code and
data. The 'active' field is set when the program is currently alive.

See chapter Symbol Relocation.

sYmbol.RELOCate.Magic Define program magic number

Format: sYmbol.RELOCate.Magic <program_magic> [<symbol_path>|<range>]

Defines the program magic number for one or more programs. The symbol path limits the definition to
special symbols of a module or a program. If an address range is given, only the symbols in this range will be
set. The magic number can be used to identify a program and get a relation between task numbers in the
target and program names. A magic number of zero (default) will use the program address as an identifier.

sYmbol .RELOCate.Magic 0x665f0 \\MODUL1 ; assignes the magic number
665f0 to the program MODUL1

7

See chapter Symbol Relocation.

sYmbol.RELOCate.Passive Define passive base address

Format: sYmbol.RELOCate.Passive <class>:<base>

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 12

When a program is currently not used in the target, the code or data symbols are relocate to the address
defined by this command. The memory class P: or D: defines which base address (program or data) is set.

A base address of zero (default) turns the relocation off. In this case the symbols of not used (passive)
programs stay where they are.

sYmbol .RELOCate.Passive d:0x0£f£££0000 ; unused data symbols will be

; relocated to address

; OE£££0000
See chapter Symbol Relocation.
TASK.SYSGLOB Display time
Format: TASK.SYSGLOB
Displays the current time and tick.
TASK.PROCS Process table
Format: TASK.PROCS
Displays the process table.
&3 BuTASK.PROCS =N SR
magic 1d pid [thd [grp.usr prior [sig [s |module |
0004CDFO 1. 0. 1. 0.0 B55. 0. 00150000 kernel A
O0FFS8850 2. 3. 1. 0.0 128. 0. |* |001D3D70 dhry
OOFF1090 3. 0. 1. 0.0 128. 0. |w |D0L76AT0 shell
TASK.PROCSL Extended process table
Format: TASK.PROCSL

Displays the process table in an extended format.

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 13

TASK.QUEUES Process queues

Format: TASK.QUEUES

TASK.EVENTS Event table
Format: TASK.EVENTS

TASK.ALARMS Alarm table
Format: TASK.ALARMS

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 14

TASK.MDIR Module table

Format: TASK.MDIR

% B:TASK.MDIR = =R
address s1ze |owner perm type |[revs |edZ [Ink [name |
00150000 |94976. 0.0 0555 |[Sys ADCD 199. 1. [kernel A
00167300 520. 0.0 0555 |Sys 8000 1. 2. |init

0017F420 |74216. 1.0 0555 |Subr |CO03 28. 2. |cs1

00195520 4954, 1.0 0555 |Prog |COO1 10. 1. |alias

0019B0CE 3728. 1.0 0555 |Prog |COO1 6. 1. |activ

00190200 3248. 0.0 0555 |Prog |COO1 10. 1. |break

00199E7 8 46885, 1.0 0555 |Prog |COO1 26. 1. |echo

0019DF80 4416. 1.0 0555 |Prog |COO1 23. 1. |date

0019F0CO 4368. 1.0 0555 |Prog |COO1 23. 1. |deiniz

001CB4F8 (17352, 1.0 0555 |Prog |COO1 38. 1. |dcheck

001LADLDO 5664, 1.0 0555 |Prog |COO1 9. 1. |delmdir

O01LAL7FO 4608. 1.0 0555 |Prog |COO1 16. 1. |devs

O0LAZSFD 8624, 1.0 0555 |Prog |COO1 42, 1. |dump

00103070 |42888. 0.0 0555 |Prog |8001 7. 2. |dhry

O01DE4FS 3688. 0.0 0555 |Data (8001 7. 1. |dhry.sth

O0LASDFO 4144, 1.0 0555 |Prog |COO1 7. 1. |events

O01LAGEZD 5056. 1.0 0555 |Prog |COO1 32. 1. |exbin

O01LABLED 3992. 1.0 0555 |Prog |COO1 13, 1. |help hd

TASK.MFREE Free memory

Format: TASK.MFREE

TASK.DEVS Device table

Format: TASK.DEVS

TASK.IRQS Interrupt polling table

Format: TASK.IRQS

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 15

TASK.CCTL Cache control

Format: TASK.CCTL <option_word>

Calls the F$Citl function. The meaning of the bits induced the option-word is described in the OS-9 manual.

TASK.EXIT Exit system call

Format: TASK.EXIT

The current process is terminated by an OS-9 F$EXxit call.

TASK.SEND Send signal

Format: TASK.SEND [<id>] [<signal>]

Sends a signal to one specific or all processes (F$Send).

task.send 5. 0. ; kill task 5.
TASK.SysCall Generic system call
Format: TASK.SysCall <code> [<d0> ... <d4> <a0> <al> <a2>]

Executes any OS-9 system call. If the system call hangs the kernel, you can try to break manually and use
the command Register.SWAP to restore the CPU registers in front of the system call. After the system call
has been executed the system register set contains the values returned by the system call. The values of

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 16

DO0..D4 and A0..A2 are displayed in the message line. This command if the most dangerous of the OS
Awareness, as wrong arguments may cause the kernel to crash down. Use this command if it's really
necessary only.

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 17

0S9 specific Functions

TASK.MDIR.ADDRESS() Program base address from module directory

Syntax: TASK.MDIR.ADDRESS(<module_name>)

Extracts the base address of a process from the module directory.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual 0S-9 | 18

	OS Awareness Manual OS-9
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Hooks in OS-9

	Features
	Display of Kernel Resources
	Symbol Relocation
	Task Runtime Analysis
	Task State Analysis
	Function Runtime Statistics
	Task Selective Debugging
	System Calls

	OS-9 Commands
	sYmbol.RELOCate.Auto Control automatic relocation
	sYmbol.RELOCate.Base Define base address
	sYmbol.RELOCate.List List relocation info
	sYmbol.RELOCate.Magic Define program magic number
	sYmbol.RELOCate.Passive Define passive base address
	TASK.SYSGLOB Display time
	TASK.PROCS Process table
	TASK.PROCSL Extended process table
	TASK.QUEUES Process queues
	TASK.EVENTS Event table
	TASK.ALARMS Alarm table
	TASK.MDIR Module table
	TASK.MFREE Free memory
	TASK.DEVS Device table
	TASK.IRQS Interrupt polling table
	TASK.CCTL Cache control
	TASK.EXIT Exit system call
	TASK.SEND Send signal
	TASK.SysCall Generic system call

	OS9 specific Functions
	TASK.MDIR.ADDRESS() Program base address from module directory

