LAUTERBACH A

OS Awareness Manual NuttX

OS Awareness Manual NuttX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTESuiiiiiiiiiieiiiiissseseennnanenmsnssssssssssssssssssesesesemmsnsnsnsmsmsmsmssssssssssssssssssssessensnsnnnnnnnn r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual NULEX ... s s rsssssce s e e s s e s e smme s e s smme e e e e n s 1
OVEIVICW ..iiiiiiiiiieeeeieiciccecesessssssss s asasse e e e s e s s e e s e s s s s s nssnmmmsmssssssssssssssssssssseeserenerenssnnnnnnnnnnnnnnnnnnnnss 3
Brief Overview of Documents for New Users 3
Supported Versions 4
ConfiguIration ... 5
Quick Configuration Guide 6
Hooks & Internals in NuttX 6
== T == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Task Context Display 9
Dynamic Task Performance Measurement 9
Task Runtime Statistics 10
Function Runtime Statistics 11
NuttX specific Menu 12
NUEX COMMANAScciiiiiiiiiiiiirecrcecccceceeee s s s s s s s se s e s e s e s e s e s s e s s nnmnmmmsmsssssssssssssssssssenssennnrnnnnnnnn 13
TASK.Task Display tasks 13
TASK.BUIiLTinAPP Display built-in applications 13
NuttX PRACTICE FUNCHONScoiiiiiiiriniinr s s s s ssms s s ssms s s ssmss s s smmn s s sammn s s 14
TASK.CONFIG() OS Awareness configuration information 14
©1989-2024 Lauterbach OS Awareness Manual NuttX | 2

OS Awareness Manual NuttX

Overview

Version 06-Jun-2024

% BuTASK Task

state

prio

(=[O el

wait_sig

wait_sem
runming

M

readytorun

0.
100.
100.
100.

-

5% B:TASK.Buil TinApp

name

stacksize main addr |

Ttdc
nxlines
nx

0801D22C

4

priority
100.

100.
100.
100.

M

00000800
00000800
00000800
00000800

0800B329 |[heTToxx_main L
0800BEED |Ttdc_main

0800CFID |nxlines_main

0800D0ED |nx_main

The OS Awareness for NuttX contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

©1989-2024 Lauterbach

OS Awareness Manual NuttX | 3

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently NuttX is supported for the following versions:

o All NuttX versions on ARM/Cortex.

©1989-2024 Lauterbach OS Awareness Manual NuttX |

4

Configuration

The TASK.CONFIG command loads an extension definition file called “nuttx.t32” (directory
“~~/demo/<processor>/kernel/nuttx”). It contains all necessary extensions.

Automatic configuration tries to locate the NuttX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

I TASK.CONFIG nuttx.t32

©1989-2024 Lauterbach OS Awareness Manual NuttX | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for NuttX with your application, follow
this roadmap:

1. Copy the files “nuttx.t32” and “nuttx.men” to your project directory.
(from TRACE32 directory “~~/demo/<processor>/kernel/nuttx”).

2. Start the TRACE32 Debugger.

3. Load your application as usual.

4, Execute the command:

TASK.CONFIG nuttx.t32

See “Configuration”.

5. Execute the command:

MENU.ReProgram nuttx.men

See “NuttX Specific Menu’.

6. Start your application.
Now you can access the NuttX extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in NuttX

No hooks are used in the kernel.
For detecting the current running task, the kernel symbol “g_readytorun” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

©1989-2024 Lauterbach OS Awareness Manual NuttX | 6

Features

The OS Awareness for NuttX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
NuttX components can be displayed:

TASK.Task Display tasks
TASK.BUiLTinApp Display the built-in application within NuttX image

For a detailed description of each command, refer to chapter “NuttX Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places where NuttX holds its tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual NuttX | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual NuttX | 8

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer

to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task>

Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

&f Bi:Frame /Task "init" EI@

1. Up Down MArgs [iocals [caller Task: | “init"

~ |

~000[[up_switchcontext(asm)

-001||up_block_task({tch = Ox1FFF1BDD, task_state = TSTATE_WAIT_SEM)
-002||sem_wait(sem = Ox1FFFOO1C)

-003||uart_takesem(sem = Ox1FFFO01C, errout = 1)

-004 |uart_read{filep = Ox1FFF1D1C, buffer = Ox1FFF26B3, buflen = 1)
-005 [file_read{filep = Ox1FFF1D1C, buf = Ox1FFF26B3, nbytes = 1)

-006 |read{fd = 3, buf = OxlFFFZGBB nbytes = 1)

-007 |readline_ getc(v‘tb'l = OxlFFFZ?O‘l)

-008 |readline_common(vth1 = Ox1FFF2704, buf = Ox1FFF2804, buflen = 64)

-010 [nsh_session{pstate = OxlFFFZ?AO)

-011 |nsh_consolemain(argc = 0, argv = 0x0)
-012 |nsh_main{argc = 1, argv = Ox1FFF1C9C)
-013 [task star‘t()

— |end of fram

<

Ll

-009 readline(buf = Ox1FFF2804, buflen = &4, instream = OxJ.FFFJ.DD(outstream =

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

©1989-2024 Lauterbach

OS Awareness Manual NuttX

9

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

©1989-2024 Lauterbach

OS Awareness Manual NuttX | 10

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

©1989-2024 Lauterbach OS Awareness Manual NuttX | 11

NuttX specific Menu

The menu file “nuttx.men” contains a menu with NuttX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called NuttX.
. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the NuttX specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

©1989-2024 Lauterbach OS Awareness Manual NuttX | 12

NuttX Commands

TASK.Task Display tasks

Format: TASK.Task

Displays detailed information about the tasks.

o B:TASK Task =N Eoh(
m; 1d state prio
0. readytorun 0. L
1. wait_sem 100.
2. wait_sig 100.
3. runming 100.

1 }

“magic” is a unique ID, used by the OS Awareness to identify the task.

TASK.BuiLTinAPP Display built-in applications

Format: TASK.BuUiLTinAPP

Displays the built-in applications within the NuttX image with detailed information.

o B:TASK.BuiLTinApp =n| Wl <
name priority |stacksize main addr

0801DIFC |helloxx 100. 00000800 [0B00B323 |[heTToxx_main L

0801D20C |Ttdc 100. 00000800 |0800BEED |Ttdc_main

0801D021C |nxTines 100. 00000800 |0800CFID |nxTines_main

0801D22C |nx 100. 00000800 |0800DOED |nx_main

4 m 3

©1989-2024 Lauterbach OS Awareness Manual NuttX | 13

NuttX PRACTICE Functions

There are special definitions for NuttX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual NuttX | 14

	OS Awareness Manual NuttX
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in NuttX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	NuttX specific Menu

	NuttX Commands
	TASK.Task Display tasks
	TASK.BuiLTinAPP Display built-in applications

	NuttX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

