LAUTERBACH A

OS Awareness Manual NetBSD

OS Awareness Manual NetBSD

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual NetBSDoiiiiceiriercccer e s s e s e smme s e s s smme s s s s e s e e smmmnneeas 1
0 Y= = 4
Terminology 4
Brief Overview of Documents for New Users 5
Supported Versions 5

L0 o3} T 11T = Lo o 6
Quick Configuration Guide 6
Hooks & Internals in NetBSD 6
== LT == 8
Display of Kernel Resources 8
Task-Related Breakpoints 8
Task Context Display 9
MMU Support 10
Space IDs 10
Scanning System and Processes 11
Dynamic Task Performance Measurement 11
Task Runtime Statistics 11
Function Runtime Statistics 12
NetBSD specific Menu 13
Debugging NetBSD Kernel and User ProCeSSesccccciuvmmmisssisssmmssessisssssssssssssssssssssnsnas 14
NetBSD Kernel 14
Downloading the NetBSD Image 14
Debugging the Kernel 14

User Processes 15
Debugging the Process 15

(V=30 ST 0 2 0o 3 1 1T T4 o £ 17
TASK.LWP Display LWPs 17
TASK.MMU.SCAN Scan process MMU space 17
TASK.Process Display processes 18
NetBSD PRACTICE FUNCHONScociiiiiiiecirrinemsn s s s ssms s s ssms s s ssmms s s smmen s 19
TASK.CONFIG() OS Awareness configuration information 19
©1989-2024 Lauterbach OS Awareness Manual NetBSD 2

TASK.PROC.SPACEID() Space ID of process 19

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 3

OS Awareness Manual NetBSD

Overview

Version 06-Jun-2024

A Simulator =R HoR ==
File Edit View Var Break Run CPU Misc Trace Perf Cov NetBSD Window Help
ME AL S e »n |2 D Bl esas @ 2
-
o || = | =]
name pid spaceld [state jwchan nlwp [Togin |command |
heTTo 15. [00OF |5 nanosleep L. |root |[hello o
mount_mfs 12. | 00OC Ss mfsidl 1 root |mount_mfs -s 16m swap /tmp
sh 6. | 0006 |Ss wait 1 root |-sh
aiodoned 5. | 000D |DK aiodoned |1 [aiodoned]
ioflush 4. | 0000 DK syncer 1. [ioflush]
pagedaemon 3. | DOOD DK pgdaemon |1 [pagedaemon]
cryptoret 2. | DOOD DK crypto_wa |1 [cryptoret]
init 1. | 0001 |Ss wait 1 root |init -s
swapper 0. | 0000 |DKs |scheduler [1 [swapper]
v
>
-
[= || &][§ & BiFrame =R o
name 1id [pid [prio [state wchan —
heTlo:1 1.[15. | 10. | 5 nanos leep t. Up Dow Margs Lo
mount_mfs:1 1.|12. | 10. | s mfsidl —000[|[dosoftirq() ~
sh:l 1. 6. | 10. | 5 wait —001f||hdTelasm)
aiodoned:1 1. 5. [-18. | D aiodoned —002f||lmi_switch(1l = OxOBDG&9180,
ioflush:l 1. 4. 18. | D syncer -003| |1tsTeep(ident = Ox0, prior
pagedaemon:l 1. 3. [-18. | D pgdaemon -004 | |sched_sync{v = 0x0)
cryptoret:1 1. 2.0 14. | D crypto_wait | [-005| [fork_trampoline(asm)
init:l 1. 1. 10. |5 wait — |end of frame
swapper:1 1. 0. [-18. | D scheduler
v
> < >
B: :[TASK.|
Process Lwp PS MMU sYmbol Watch pravious
SPO000ONFE248 ||netbsdintr|_dosoftirg+0x ((other) system ready MD{ |UP

The OS Awareness for NetBSD contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

NetBSD uses the terms “processes” and “light weight processes” (LWPs). If not otherwise specified, the
TRACE32 term “task” corresponds to NetBSD LWPs.

©1989-2024 Lauterbach

OS Awareness Manual NetBSD |

4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently NetBSD is supported for the following versions:

o NetBSD 3.x and 4.x on ARM and PowerPC

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “netbsd.t32” (directory
“~~/demo/<processor>/kernel/netbsd”). It contains all necessary extensions.

Automatic configuration tries to locate the NetBSD internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used (see also “Hooks & Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG netbsd

Note that the kernel symbols from “procnto” must be loaded into the debugger. See Hooks & Internals for
details on the used symbols.

See also the example “~~/demo/<processor>/kernel/netbsd/netbsd.cmm”.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Carefully read the PRACTICE demo start-up script
(~~/demo/<processor>/kernel/netbsd/netbsd.cmm).

2. Make a copy of the PRACTICE script file “netbsd.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions.

Now you can access the NetBSD extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Hooks & Internals in NetBSD

No hooks are used in the kernel.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 6

For retrieving the kernel data structures, the OS Awareness uses the global symbols of the NetBSD kernel.
That means, you have to compile the kernel with debug information:

In the kernel configuration file (usr/src/sys/arch/<project>/conf/<board>) , includes the line:
makeoptions DEBUG="-g” # compile full symbol table

In ust/src/distrib/<project>/ramdisk/Makefile and in usr/src/distrib/<project>/ramdisk/ramdiskbin.mk change

DBG= -Os
to
DBG= -g

The compiled kernel with debug info should then be available in:
ustr/src/sys/arch/<project>/compile/<board>/netbsd.gdb.

Ensuer, that every time, when features of the OS Awareness are used, the symbols of “netbsd.gdb” are
available and accessible.

Please look at the demo startup script netbsd.cmm, how to load the system symbols and the symbols of
your application.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 7

Features

The OS Awareness for NetBSD supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following AMX
components can be displayed:

TASK.LWP LWPs
TASK.Process Processes

For a description of the commands, refer to chapter “NetBSD Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 8

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

U To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 9

&t BuFrame /TASK "hello:1" EI@

4. Up Down MArgs [iocals [caller Task: | "hello:1” ~|
~000][[switch_return{asm) ~
—001f||lmi_switch(1l = OxOBDE9300, newl = Ox0)

-002||[1tsTeep(ident = Ox0D, priority = 198628672, wmesg = Ox4, timo = 132, inter
-003| | |sys_nanosTleep{] = Ox1, v = Ox00100424, retval = Ox1)

-004| |syscall_plain{frame = Ox89EB8F58)

-005 | |e500_normal_exception(asm)

-006 |UP:0x0F :0x1942EF8(asm)

-007 |UP:0x0F : Ox1BFAELO(asm)

-008 |start{asm)

-009 |UP:0x0F : 0x18001C4 (asm)

— |end of frame

< >

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. Al MMU commands refer to this necessity.

Space IDs

Processes of NetBSD may reside virtually on the same address. To distinguish those addresses, the
Debugger uses an additional space ID that specifies to which virtual memory space the address refers. The
command SYStem.Option.MMUSPACES ON enables the additional space ID. For all processes using the
kernel address space, the space ID is zero. For processes using their own address space, the space ID
equals the process ID.

You may scan the whole system for space IDs using the command TRANSIation.ScaniID. Use
TRANSIation.ListID to get a list of all recognized space IDs.

The function task.proc.spaceid(“<process>") returns the space ID for a given process. If the space ID is
not equal to zero, load the symbols of a process to this space ID:

LOCAL &spaceid
&spaceid=task.proc.spaceid ("myProcess")
Data.LOAD myProcess &spaceid:0 /NoCODE /NoClear

See also chapter “Debugging User Processes”.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 10

Scanning System and Processes

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space ID. The command TRANSIation.COMMON defines those commonly used areas.

To scan the address translation of a specific space ID, use the command TASK.MMU.SCAN “<process>".
This command scans the space ID of the specified process. To scan the kernel space, use:

TASK.MMU.SCAN "swapper"
TRANSIation.List shows the address translation table for all space IDs.

See also chapter “Debugging NetBSD Kernel and User Processes”.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 11

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 12

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NetBSD specific Menu

The menu file “netbsd.men” contains a menu with NetBSD specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called NetBSD.

. The Display menu items launch the kernel resource display windows.

. The Process Debugging > Symbols menu items (if available) load and delete symbols of
processes.

. The Process Debugging > Watch Processes submenu opens a window to watch for process

starts and symbols.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only thread switches (if any) or thread switches together with the default display.

. The Perf menu contains additional submenus for thread runtime statistics, thread related function
runtime statistics or statistics on thread states.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 13

Debugging NetBSD Kernel and User Processes

NetBSD runs on virtual address spaces. The kernel uses a static address translation. Each user process
gets its own user address space when loaded, mapped to any physical RAM area, that is currently free. Due
to this address translations, debugging the NetBSD kernel and the user processes requires some settings to
the Debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself (swapper) is attached to the space ID zero. Each process that has
its own memory space gets a space ID that corresponds to its process ID.

See also chapter “MMU Support”.

NetBSD Kernel

The NetBSD system builder generates an ELF file, that contains the startup code and the kernel.

Additionally, the NetBSD Awareness needs the symbols of the NetBSD kernel. See “Hooks and Internals”
how to generate debug information to the kernel.

Downloading the NetBSD Image

If you start the NetBSD image from Flash, or if you download the image via NFS, do this as you are doing it
without debugging.

If you want to download the NetBSD image using the debugger, you have to watch about the file format. If
the image is in ELF format, simply download this to the target. If the image is in binary format, you have to
tell the debugger at which address to download it. Please check the example scripts, which version to use
and how to obtain the download address. Examples:

Data.Load.Elf netbsd-myboard ; downloading ELF
Data.Load.Binary netbsd.uImage 0x00800000 ; downloading binary

When downloading the kernel via the debugger, remember to set startup parameter, that the kernel require,
before booting the kernel. Usually the boot loader passes these parameters to the image.

Debugging the Kernel

For debugging the kernel itself, and for using the NetBSD awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The netbsd.gdb symbol file contains all addresses in virtual format,
so it's enough to simply load the file:

Data.Load.Elf netbsd.gdb /NoCODE

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 14

You have to inform the debugger about the kernel address translations. Scan the processor MMU right after
it is switched on:

MMU . SCAN

The kernel address space is visible to all processes, so specify the address range to be common to all
space IDs. Check the example scripts for the right addresses:

TRANSlation.COMMON 0x0--0x00FFFFFF

And switch on the debugger MMU translation:

TRANSlation.ON

User Processes

Each user process in NetBSD gets its own virtual memory space. To distinguish the different memory
spaces, the debugger assigns a “space ID”, which correlates to the process ID. Using this space ID, it is pos-
sible to address a unique memory location, even if several processes use the same virtual address.

Note that at every time the NetBSD awareness is used, it needs the kernel symbols. Please see the
chapters above on how to load them. Hence, load all process symbols with the option /NoClear, to
preserve the kernel symbols.

Debugging the Process

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID and to scan the process’ MMU settings.

Manually Load Process Symbols:
For example, if you've got a a process called “hello” with the space ID OxF:

Data.LOAD.E1f hello 0xF:0 /NoCODE /NoClear

The space ID of a process may also be calculated by using the PRACTICE function task.proc. spa-
ceid () (see chapter “NetBSD PRACTICE Functions”).

Additionally, you have to scan the MMU translation table of this process:

TASK.MMU.SCAN OxF ; scan MMU of process ID 15.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 15

It is possible, to scan the translation tables of all processes at once. On some processors, and depending on
your number of active processes, this may take a very long time. In this case use the scanning of single pro-
cesses, mentioned above. Scanning all processes:

TASK.MMU . SCAN ; scan MMU entries of all processes

Debugging a Process From Scratch, Using a Script:

If you want to debug your process right from the beginning (at “main()”), you have to load the symbols before
starting the process. This is a tricky thing because you have to know the process ID, which is assigned first
at the process start-up. Set a breakpoint into the process start handler of NetBSD, when the process is
already loaded but not yet startet. The function doexechooks() may serve as a good point. When the break-
point is hit, check if the process is already loaded. If so, extract the space ID, load the symbols and scan the
process MMU. Set a breakpoint to the main() routine of the process. As soon as the process is startet, the
breakpoint will be hit. The following script shows an example of how to do this:

if run()
Break

; Use conditional breakpoint to halt only, if “hello” is started

Break.Set doexechooks /CONDition task.proc.space("hello") !=0xffffffff
Go
wait !run/() ; wait for the breakpoint to be hit (process start)
Break.Delete doexechooks ; remove “helper” breakpoint
local &spaceid ; PRACTICE macro holding the space ID of the process
&spaceid=task.proc.spaceid("hello") ; get the space ID
TASK.MMU.SCAN &spaceid ; scan MMU pages of new process
Data.LOAD.El1f hello &spaceid:0 /NoCODE /NoClear ; load symbols
Break.Set main /Onchip ; set breakpoint on main entry point
Go ; let Linux start the process
wait !run/() ; will halt at main()

Break.Delete main

; Now scan the MMU for new (swapped in) pages
TASK.MMU.SCAN &spaceid

When finished debugging with a process, or if restarting the process, you have to delete the symbols and
restart the application debugging. Delete the symbols with this command:

sYmbol .Delete \\hello

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 16

NetBSD Commands

TASK.LWP Display LWPs

Format: TASK.LWP [</wp>]

Displays the LWP table of NetBSD or detailed information about one specific LWP.

Without any arguments, a table with all created LWPs will be shown.
Specify a LWP magic number to display detailed information on that LWP.

&% B:TASK Lwp [E=N =R
name Tid [p1d [prio [state [wchan |
heTTo:1 1. [15. | 10. [5 nanos leep o
mount_mfs:1 1.[12.|10.| 5 mfsidl
sh:l 1. 6. 10. | 5 wait
aiodoned:1 1. 5.(-18. | D aiodoned
ioflush:l 1. 4. 18. | D syncer
pagedaemon:l 1. 3. [-18. | D pgdasmon
cryptoret:l 1. 2.(14. | D crypto_wait
init:l 1. 1.[10.| s wait
swapper:1 1. 0. [-18. | D scheduler

v
>

“magic” is a unique ID, used by the OS Awareness to identify a specific LWP (address of the lwp structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.MMU.SCAN Scan process MMU space

Format: TASK.MMU.SCAN [<process>]

Scans the target MMU of the space ID, specified by the given process, and sets the Debugger MMU
appropriately, to cover the physical to logical address translation of this specific process.

The command walks through all page tables which are defined for the memory spaces of the process and
prepares the Debugger MMU to hold the physical to logical address translation of this process. This is
needed to provide full HLL support. If a process was loaded dynamically, you must set the Debugger MMU
to this process, otherwise the Debugger won’t know where the physical image of the process is placed.

To successfully execute this command, space IDs must be enabled (SYStem.Option.MMUSPACES ON).

<process> Specify a process magic, space ID or name
If no argument is specified, the command scans all current processes.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 17

Example:

; scan the memory space of the process "hello"
TASK.MMU.SCAN

See also MMU Support.

TASK.Process

"hello"

Display processes

Format:

TASK.Process [<process>]

Displays the process table of NetBSD or detailed information about one specific process.

Without any arguments, a table with all created processes will be shown.

Specify a process magic number to display detailed information on that process.

@?. B::TASK.Process

(o8)

name pid
1

spaceld [state jwchan

Twp [Togin [command

heTTo

sh
aiodoned
ioflush
pagedaemon
cryptoret
init
swapper

5.
mount_mfs 1z,

oHMwWwBRWO

000F
000C
0006
0000
0000
0000
o000
0001
oooo

nanos leep
mfsidl
wait
aiodoned
syncer
pgdasmon
crypto_wa
wait
scheduler

n
1
1
1
1
1.
1
1
1
1

root
root
root

root

helTo o
moﬁnt_mfs -5 16m swap /tmp
-5

[aiodoned]

[ioflush]

[pagedaemon]

[cryptoret]

init -s

[swapper]

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the process

structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual NetBSD | 18

NetBSD PRACTICE Functions

There are special definitions for NetBSD specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.PROC.SPACEID() Space ID of process

Syntax: TASK.PROC.SPACEID(" <process_name>")

Returns the MMU space ID of the specified process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual NetBSD | 19

	OS Awareness Manual NetBSD
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in NetBSD

	Features
	Display of Kernel Resources
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	Scanning System and Processes

	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	NetBSD specific Menu

	Debugging NetBSD Kernel and User Processes
	NetBSD Kernel
	Downloading the NetBSD Image
	Debugging the Kernel

	User Processes
	Debugging the Process

	NetBSD Commands
	TASK.LWP Display LWPs
	TASK.MMU.SCAN Scan process MMU space
	TASK.Process Display processes

	NetBSD PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.PROC.SPACEID() Space ID of process

