LAUTERBACH A

Run Mode Debugging Manual
Linux

Run Mode Debugging Manual Linux

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
OS Awareness ManUAISccccriiimiisssmiiiris s s e e n s s e e n e e e e nnnnn =
OS Awareness and Run Mode Debugging for LINUXccccecmiimminsmmnssesnissnssssess s ssssesnns —~
Run Mode Debugging Manual LINUXcccccrmmiiimmmmmismssmmmsssssmsssssssssssssssssssssssssssssssnas 1

Debugging Modes for Embedded LiNUXcccccciiiiiimminnnsmnnnnseesss s s s sssssmssnns 3
Run Mode Debugging with TRACE32 as GDB Front-end 3
Stop Mode Debugging 3

Integrated Run & Stop Mode Debugging via JTAG 4

5
5
5
6

5= T3 3 0o Y o 1o =Y o
Ethernet as Communication Interface to the gdbserver
DCC as Communication Interface to the t32server
The Space ID for Run Mode Debugging
Process Debugging 8

Switching between Run & Stop Mode Debuggingccccociriminrcmmnisnnnss s s 10
Commands for Run Mode DebUuggingcccccceerrmiismmmmmmisssssmmssssssssssss s ssssssssssssssssssssnsssas 13

Breakpoint CoONVENtIONSeeeiiiiiiiiicccisiescccie e r s r e smmsm s s e s s s s s s s smmmmnmn e e e e s e nesnnnnas 14

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 2

Run Mode Debugging Manual Linux

Version 06-Jun-2024

Debugging Modes for Embedded Linux

TRACE32 provides 3 modes for debugging embedded Linux:
. Run Mode Debugging

. Stop Mode Debugging

. Integrated Run & Stop Mode Debugging.

Run Mode Debugging with TRACE32 as GDB Front-end

The TRACE32 GDB Front-end is a pure software debugger i.e. no TRACE32 hardware is required. The
TRACE32 software is licensed in this case with a floating license via RLM (Reprise License Manager). a
gdbserver or gdbstub has to be running on the target.

When debugging a Linux process using a gdbserver, the TRACE32 GDB Front-end works in Run Mode
debugging: at a breakpoint only the selected process is stopped, while the kernel and all other processes
continue to run. When debugging a virtual target (e.g. QEMU), the TRACE32 GDB Font-end operates
however in Stop Mode.

Please refer for more information about the TRACE32 GDB Front-end to the document “TRACE32 as GDB
Front-End” (frontend_gdb.pdf). The document also includes a list of processor architectures supported
by the TRACE32 GDB Front-end.

Stop Mode Debugging

When debugging in Stop Mode, the whole system is halted at a breakpoint and not a single process. This is
e.g. the case when debugging via JTAG.

The main advantages of Stop Mode debugging are:
. Debugging can start at the reset vector.

J Debugging of the kernel and beyond process boundaries is possible.

Stop Mode debugging is described in the document “OS Awareness Manual Linux” (rtos_linux_stop.pdf).

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 3

Integrated Run & Stop Mode Debugging via JTAG

Integrated Run & Stop Mode debugging requires a TRACE32 JTAG debugger hardware.

If debugging is performed via the JTAG interface, TRACE32 can be configured:
. To allow Stop Mode debugging via JTAG.

J To allow Run Mode debugging via the t32server or gdbserver running as debug agent on
the target.

Switching between both modes is also possible.

TRACE32 communicates with:
J The gdbserver via Ethernet for all supported architectures or

. The t32server via DCC (Debug Communication Channel) for the ARM architecture.

Integrated Run & Stop Mode debugging is supported for the following architectures:
. ARM over Ethernet or DCC

. Intel x86 via Ethernet

. MIPS32 via Ethernet

. PowerPC via Ethernet

o SH4 via Ethernet

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 4

Basic Concepts

For Integrated Run & Stop Mode debugging, Stop Mode debugging via the JTAG interface is extended by:
. t32server or gdbserver as debug agent on the target.

. A communication interface between TRACES32 and the debug agent (Ethernet or DCC).

Ethernet as Communication Interface to the gdbserver

TRACE32 communicates in this case with the gdbserver via Ethernet using the GDB Remote Serial
Protocol. The version 7.1 or newer of the gdbserver is recommended. This means that, additionally to
JTAG, an Ethernet connection is needed between the target and the host PC where TRACE32 PowerView
is executed.

The JTAG communication with the target should be established before switching to Run Mode. The following
steps are then needed:

1. Start the gdbserver on the target. To allow multi-process debugging, the gdbserver has to be
started in Multi-process mode, also called target extended-remote mode. The --multi
command line option has to be used:

gdbserver --multi :2345

2. Inform TRACES32 about the IP address of the target and the port number used by the gdbserver
using the command SYStem.PORT e.g.

SYStem.PORT 10.1.2.99:2345
3. Switch to Run Mode using the command Go.MONitor.

After the communication is configured, debugging can be performed completely via the TRACE32
PowerView user interface.

DCC as Communication Interface to the t32server

The JTAG interface of the ARM architecture includes a Debug Communication Channel (DCC). Information
exchange via DCC is possible between TRACE32 and a target application.

The t32server is a Linux application provided by Lauterbach that can be used as an extension to the
gdbserver. Compared to the gdbserver the t32server allows debugging over DCC for the ARM
architecture. The t32server starts a gdbserver for debugging. The gdbserver has to be in the /bin
directory of the Linux file system. The t32server communicates with the gdbserver via localhost
(TCP/IP).

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 5

The source code of the t32server is available in the TRACE32 installation under
~~/demo/arm/etc/t32server.

In order to provide Integrated Run & Stop Mode debugging the t32server has to be started as a Linux
process on the target via the terminal window e.g.:

./t32server ; Communication wvia DCC

On an SMP system, the debugger only communicates with the DCC registers of the first core. Thus, the
t32server should always run on this core. For details about DCC refer to your ARM Technical Reference
Manual.

After TRACES32 was started and configured for Stop Mode debugging switching to Run Mode is performed
as follows:

SYStem.MemAccess GdbMON

Go .MONitor

SYStem.MemAccess GdbMON Configure DCC as communcation interface to t32server

Go.MONitor Switch to Run Mode Debugging

After the communication is configured, debugging can be performed completely via the TRACE32
PowerView user interface.

The Space ID for Run Mode Debugging

Processes of Linux may reside virtually on the same addresses. To distinguish those addresses, the
debugger uses an additional identifier called space ID that specifies to which virtual memory space an
address refers. In Run Mode debugging the space ID is equal to the process ID.

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 6

The command SYStem.Option.MMUSPACES ON enables the additional space ID in TRACE32.

A source code listing for the process sieve is displayed as follows:

EBX

M Step || B Over || 4 Mewt || o Betum|| ¢ Up B Go || Il Break Find: _
conment

addr/1ine code label mnemonic

main: noy riz,ri3 ~
: 4___“"‘“"*ﬁ5tmdb———n13l;itll:flgifliigfi______
SR:@A91:@PARE3DC [F24CBARA suh ril,ri2,Hexd — g D
SR:@A91:APARE3ER [F24DDARC sub ri3,ri3,#8x6C pace

#include <stdio.h>

int main(int argc, char ®argvl1)

14 |{
SR :0@91 :AAAAG3ES |ESHBAR1A str ré, [r11,#-0x181
SR :0@91 :AAAAG3ES |EShB1014 str ri,[ri1,#-0x14]1
int i;
¥,
| ¥

For details on the space ID for Stop Mode Debugging, refer to “Training Linux Debugging”
(training_rtos_linux.pdf).

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 7

Process Debugging

1. Start the t32server or the gdbserver in multi-process mode.
2. Switch to Run Mode debugging as previously described.

3. Check if the process is already running.
I TASK.List.tasks List all running processes

TASK.List.tasks
4. Load the process for debugging.

TASK.RUN <process> Load <process>
(process not running)

TASK.select <id> Attach to the process
(process already running)

If the process is not running, the command TASK.RUN can be used to load the process for
debugging.

; Load process sieve from the Linux file system and prepare it for
; debugging

TASK.RUN /bin/sieve
If the process is already running, the command TASK.select can be used to attach to it.
TASK.select /bin/sieve
5. Load the symbol and debug information for the process.

I Data.LOAD.<file_format> <file> <space_id>:0 INOCODE /NoClear

Since processes of Linux may reside virtually on the same addresses, the symbol and debug
information has to be loaded for the address space of the process by using the <space_id>.

/NOCODE - load only symbol information.

/NoClear - obtain the symbol information loaded for other processes.

Data.LOAD.El1f sieve.elf 0x91:0 /NOCODE /NoClear

; Stop sieve at main and display source listing
Go main
List

TASK.PROC.SPACEID(<process>) This function returns the <space_id> of a process. This
is required for PRACTICE scripts.

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 8

Example for a PRACTICE script:

LOCAL &sid
&si1d=TASK.PROC.SPACEID("sieve")

TASK.RUN /bin/sieve

Data.LOAD.E1f sieve.elf &sid:0 /NOCODE /NoClear /NOREG

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 9

Switching between Run & Stop Mode Debugging

o

A 2d> (PrOCesS m
& Of

2
T pRUN <Proces,

TASK SELect <id> (Process runp;
in

o

No process Selected m Selected
selected process stopped process running

Run Mode Run IVIo_de ‘\@‘/ Run Mode

Debugging Debugging Debugging

Break.SetMONitor OFF

G .
CPU stopped Initialization CPU stopped m CPU running
Stop Mode Stop Mode W Stop Mode
Debugging Debugging fea Debugging

The graphic above shows a simple schema of the switching between Run Mode and Stop Mode debugging.

Not all transitions are covered.
The following commands are used to switch between Run & Stop Mode Debugging:
Go.MONitor

Switch to Run Mode debugging.

Break.MONitor
CPU.

Break.SetMONitor ON Switch to Run Mode debugging with the next Go.

Break.SetMONitor OFF Switch to Stop Mode debugging.

CPU stays running in Stop Mode.

Mode.

If the CPU is stopped, the program execution is started.

In Run Mode debugging no process is selected for debugging.

In Run Mode debugging no process is selected for debugging.

If the selected process was stopped, the CPU is stopped in Stop

Switch to Stop Mode debugging and stop the program execution on

If the selected process was running or no process was selected, the

©1989-2024 Lauterbach

Run Mode Debugging Manual Linux

10

If Run Mode Debugging is active, a green M is displayed in the state line of TRACE32 PowerView.

The following states are possible in Run Mode Debugging:

1. Run Mode debugging active (green M), no process selected (see TASK.List.tasks).

" TRACE32 ARM
File Edit WYiew Yar Break Run CPU Misc Trace Perf Cov OMAPS91Z2 Linux Window Help

HE & r B 2N Elmm see @z
a7 Bi:TASK.List E]

magic nane i sel
init: BxPAR1
ksoftirqd/a: BxP0082
events/A: Bx00083
lkhelper: B804
I thread : BxA085
kb lockd/8: BxPABE
pdf lush: Bx0034
pdf lush: BxP035
kswapdd : BxP036
aio/B: BxBa37
sh: BxB2B6
T3Z2server: BxB2B7

[ermilate][trigger][devices][trace][Drata][War][FERF][other][previons
urning M | Mix P
2. Run Mode debugging active (green M), selected process (sieve) stopped.

** TRACE32 ARM
File Edit WYiew Yar Break Run CPU Misc Trace Perf Cov OMAPS91Z2 Linux Window Help

ME & » 1 7M Hamaess @z

o B::TASK.List

magic nane
init:
ksoftirqd/a:
events/A:
kkhelper:
I thread :
kb lockd/8:
pdflush:
pdflush:
kswapdd :
aiosA:
sh:
T3Z2server:
ndbserver:
sieve:

Axpea1
AxAaa2
Axaa3
AxAaas
AxAaas
AxAAAE
AxAa34
AxAa35
AxPAA36
AxAa37
AxBAZB6
Ax@2R7
AxAZEB
Bx@ZBC

[ermilate][trigger][devices][trace][Drata][War][FERF][other][previons
® SR:02BC:400026E0 (Esieve: stopped M bl UFP

©1989-2024 Lauterbach Run Mode Debugging Manual Linux

11

3. Run Mode debugging active (green M), selected process (sieve) running.

" TRACE32 ARM
File Edit WYiew Yar Break Run CPU Misc Trace Perf Cov OMAPS91Z Linux Window Help

ME & » 1 7M Hamass @z

a7 B::TASK.List

magic nane i sel
init: BxPAR1
ksoftirqd/a: BxP0082
events/A: Bx00083
kkhelper: B804
I thread : BxA085
kb lockd/8: BxPABE
pdflush: Bx0034
pdflush: BxP035
kswapdd : BxP036
aio/B: BxBa37
sh: BxB2B6
T3Z2server: BxB2B7
ndbserver: BxAZEB
sieve: Bx@ZBC

[ermilate][trigger][devices][trace][Drata][War][FERF][other][previons

' g M | Mix P

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 12

Commands for Run Mode Debugging

TASK.List.tasks List all running processes

TASK.RUN <process> Load a process for debugging

If the command TASK.RUN is used to load a process for debugging, the
process is stopped by the gdbserver at its entry point.

o) To start process debugging, load the symbol information for the process first
and then type Go main.

I TASK.select <id> Select a process for debugging

If the selected process has been started with TASK.RUN, it will be selected as current process. Otherwise a
gdbserver will be started and the selected process will be attached.

I TASK.KILL <id> Request GDB agent to end the process
Only processes that have been started with a TASK.RUN or that have been attached with TASK.select can
be killed.

TASK.COPYUP <src> <dest> Copy a file from the target into the host

TASK.COPYDOWN <src> <dest> Copy a file from the host into the target

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 13

Breakpoint Conventions

For Integrated Run & Stop Mode debugging please keep the following breakpoint convention:

J Use on-chip breakpoints for Stop Mode debugging

If an on-chip breakpoint is hit in Run Mode debugging, the CPU is stopped in Stop Mode
debugging (only for ARM).

. Use software breakpoints for Run Mode debugging
Examples for Stop Mode debugging:

; Break.Set <space_id>:<address> /Program /Onchip
Break.Set 0x0:0x4578 /Program /Onchip

Break.Set error /Program /Onchip

Examples for Run Mode debugging:

; Break.Set <space_id>:<address> /Program /SOFT
Break.Set 0x2bc:0x0xd0065789 /Program /SOFT

Break.Set Ox2bc:main /Program /SOFT

©1989-2024 Lauterbach Run Mode Debugging Manual Linux | 14

	Run Mode Debugging Manual Linux
	Debugging Modes for Embedded Linux
	Run Mode Debugging with TRACE32 as GDB Front-end
	Stop Mode Debugging
	Integrated Run & Stop Mode Debugging via JTAG

	Basic Concepts
	Ethernet as Communication Interface to the gdbserver
	DCC as Communication Interface to the t32server
	The Space ID for Run Mode Debugging
	Process Debugging

	Switching between Run & Stop Mode Debugging
	Commands for Run Mode Debugging
	Breakpoint Conventions

