
MANUAL                                                       

OS Awareness Manual 
FreeRTOS



OS Awareness Manual FreeRTOS

TRACE32 Online Help  

TRACE32 Directory  

TRACE32 Index  

TRACE32 Documents  ...................................................................................................................... 

   OS Awareness Manuals  ................................................................................................................ 

      OS Awareness Manual FreeRTOS  ............................................................................................ 1

         Overview  .................................................................................................................................. 4

            Brief Overview of Documents for New Users 5

            Supported Versions 5

         Configuration  ........................................................................................................................... 6

            Manual Configuration 6

            Automatic Configuration 7

            Quick Configuration Guide 7

            Hooks & Internals in FreeRTOS 8

         Features  ................................................................................................................................... 9

            Display of Kernel Resources 9

            Task Stack Coverage 9

            Task-Related Breakpoints 11

            Task Context Display 12

            SMP Support 13

            Dynamic Task Performance Measurement 13

            Task Runtime Statistics 14

            Task State Analysis 15

            Function Runtime Statistics 16

            FreeRTOS specific Menu 18

         FreeRTOS Commands  ............................................................................................................ 19

            TASK.EvtGrp Display event groups 19

            TASK.MsgBuf Display message buffers 19

            TASK.Option Set awareness options 20

            TASK.Queue Display queues 20

            TASK.Semaphore Display semaphores 21

            TASK.StrBuf Display stream buffers 21

            TASK.TaskList Display tasks 22

            TASK.TImer Display timers 23

         FreeRTOS PRACTICE Functions  ........................................................................................... 24

            TASK.AVAIL() Availability of FreeRTOS objects 24
OS Awareness Manual FreeRTOS     |    2©1989-2024   Lauterbach                                                        



            TASK.CONFIG() OS Awareness configuration information 24

            TASK.STRUCT() Structure names 25
OS Awareness Manual FreeRTOS     |    3©1989-2024   Lauterbach                                                        



OS Awareness Manual FreeRTOS

Version 06-Jun-2024

Overview

The OS Awareness for FreeRTOS contains special extensions to the TRACE32 Debugger. This manual 
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual FreeRTOS     |    4©1989-2024   Lauterbach                                                        



Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a 
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances 
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the 
processor architecture supported by your Debug Cable. To access the manual for your processor 
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating 
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the 
OS-aware debugging. 

Supported Versions

Currently FreeRTOS is supported for the following version:

• FreeRTOS V4.x to V11.x on ARC, ARM, ARM64, AVR32, Beyond, ColdFire, H8S, HC12, 
MicroBlaze, MIPS, Nios II, PowerPC, STRed, TMS320C2/6/7xxx, TriCore, and Xtensa.

• SafeRTOS V5.x to V9.x on ARM, PowerPC, TMS320C6/7xxx and TriCore
OS Awareness Manual FreeRTOS     |    5©1989-2024   Lauterbach                                                        



Configuration

The TASK.CONFIG command loads an extension definition file called ’freertos.t32’ (directory 
’~~/demo/<arch>/kernel/freertos’). ’freertos.t32’ contains all necessary extensions.

Automatic configuration tries to locate the FreeRTOS internals automatically. For this purpose all symbol 
tables have to be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then 
the corresponding argument has to be set manually with the appropriate address. In this case, use the 
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to 
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or 
SYStem.CpuAccess (CPU dependent). 

Manual Configuration

Manual configuration for the OS Awareness for FreeRTOS can be used to explicitly define some operational 
values. 

Example:

Format: TASK.CONFIG ~~/demo/<arch>/kernel/freertos/freertos.t32 
<magic_address> <stack_size>

<magic_address> Specifies a memory location that contains the current running task. This 
address can be found at “pxCurrentTCB”. Either use this label or specify 0 
to detect it automatically.

<stack_size> Some FreeRTOS versions do not provide the stack size in a running system. 
To do a stack coverage analysis, the debugger needs to know the stack 
size. In this case, specify the stack size in bytes as second parameter. 
Calculate it by
 configMINIMAL_STACK_SIZE * sizeof(portSTACK_TYPE) 
(see your FreeRTOSConfig.h file). If your FreeRTOS version provides the 
stack size, use automatic configuration instead.

The stack size can also be set using the command TASK.Option 
STacKSIZE.

; application uses 256 words for stack size:
TASK.CONFIG freertos.t32 0 256.*4
OS Awareness Manual FreeRTOS     |    6©1989-2024   Lauterbach                                                        



See Hooks & Internals for details.

Automatic Configuration

For system resource display and trace functionality you can do an automatic configuration of the OS 
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at 
any time the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which 
means that this argument will be searched and configured automatically. For a fully automatic configuration 
omit all arguments:

If a system symbol is not available or if another address should be used for a specific system variable, or if 
your FreeRTOS version doesn’t provide the stack sizes of the tasks, then the corresponding argument has to 
be set manually with the appropriate value (see ’Manual Configuration’).

See also the example “~~/demo/<arch>/kernel/freertos/freertos.cmm”.

Refer to ’Hooks & Internals’ for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for FreeRTOS with your application, 
follow this roadmap:

1. Start the TRACE32 Debugger.

2. Load your application as normal.

3. Execute the command: 

See “Automatic Configuration”.

4. Execute the command: 

See “ThreadX Specific Menu”.

5. Start your application.

Now you can access the FreeRTOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

TASK.CONFIG ~~/demo/<arch>/kernel/freertos/freertos.t32

TASK.CONFIG ~~/demo/<arch>/kernel/freertos/freertos.t32

MENU.ReProgram ~~/demo/<arch>/kernel/freertos/freertos.men 
OS Awareness Manual FreeRTOS     |    7©1989-2024   Lauterbach                                                        



Hooks & Internals in FreeRTOS

No hooks are used in the kernel.

For detecting the current running task, the kernel symbol ’pxCurrentTCB’ is used.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and 
structure definitions. Ensure that access to those structures is possible every time when features of the OS 
Awareness are used.

For automatic detection of stack sizes, the OS Awareness uses either the “usStackDepth” or the 
“pxEndOfStack” member variable of the “tskTCB” structure. When using FreeRTOS version 10 or above, 
set configRECORD_STACK_HIGH_ADDRESS to 1 to get a full stack coverage. If automatic detection of 
stack sizes is available, use Automatic configuration. If it is not available, TASK.Option STacKSIZE or 
use Manual configuration and provide the stack size manually.

FreeRTOS allows queues and semaphores to be “registered”. If you configured FreeRTOS co contain a 
queue registry (configQUEUE_REGISTRY_SIZE), TASK.Queue and TASK.Semaphore without 
parameters will show all queues registered with vQueueAddToRegistry(). Otherwise you have to specify a 
queue or semaphore handle as parameter.
OS Awareness Manual FreeRTOS     |    8©1989-2024   Lauterbach                                                        



Features

The OS Awareness for FreeRTOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following Fre-
eRTOS components can be displayed:

For a description of the commands, refer to chapter “FreeRTOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On 
The Fly”, i.e. while the application is running, without any intrusion to the application. 

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this 
command will open a window displaying with all active tasks. If you specify only a task magic number as 
parameter, the stack area of this task will be automatically calculated. 

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command 
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or 
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and 
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack 
space is very time consuming and slows down the debugger display.

TASK.TaskList Tasks

TASK.Queue Queues

TASK.Semaphore Semaphores

TASK.TImer Timers

TASK.EvtGrp Event Groups

TASK.StrBuf Stream Buffers

TASK.MsgBuf Message Buffers
OS Awareness Manual FreeRTOS     |    9©1989-2024   Lauterbach                                                        



The manual configuration only allows to set one stack size for all tasks (usually the minimal stack size). If you 
want to override the stack characteristics of one task, you can use a small script to do so. 
Example to set the stack size of the “IDLE” task to 1024 bytes:

NOTE: When using a FreeRTOS version 10 and above, configure your system with
#define configRECORD_STACK_HIGH_ADDRESS 1
#define configCHECK_FOR_STACK_OVERFLOW  2

to get a full stack coverage. Use TASK.STacK.PATtern to set the stack fill 
pattern as defined in task.c: tskSTACK_FILL_BYTE.

When using a FreeRTOS version 5 to 9, FreeRTOS does not provide 
information about the stack sizes. You need to specify the stack size in the 
configuration of the OS Awareness. See Hooks & Internals and Manual 
Configuration for details.

; Adapt stack characteristics of a task
; Specify the task name, e.g. the IDLE task:
&task="IDLE"
; Specify the new task size in bytes for this task, e.g. 1024 bytes:
&stacksize=0x400
; Open standard stack view and ensure a display update
TASK.STacK.view
SCREEN
; Calculate task “magic” and stack start address
&magic=task.magic("IDLE")
&stackstart=var.value(((tskTCB*)&magic)->pxStack)
; Remove the standard stack calculation for this task
TASK.STacK.ReMove &magic
; And add the custom one:
TASK.STacK.ADD &magic &stackstart++(&stacksize-1)
OS Awareness Manual FreeRTOS     |    10©1989-2024   Lauterbach                                                        



Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is 
especially useful when debugging code which is shared between several tasks. To set a task-related 
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see 
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger. 
This means that the target will always halt at that breakpoint, but the debugger immediately resumes 
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that 
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses 
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the 
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints: 

When single stepping, the debugger halts at the next instruction, regardless of which task hits this 
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and 
coming back to the same place - but with a different task. If you want to restrict debugging to the current task, 
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single 
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same 
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use 
the Break.SetTask command.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the 
debugger will use this ID for comparison. Without the trace ID, 
it uses the magic number (magic column) for comparison.
OS Awareness Manual FreeRTOS     |    11©1989-2024   Lauterbach                                                        



Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all 
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer 
to this task. Be aware that this is only for displaying information. When you continue debugging the 
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see 
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window. 

2. Double-click the line showing the OS service call.

Frame.TASK  [<task>] Display task context.

Frame /Task  <task> Display call stack of a task.
OS Awareness Manual FreeRTOS     |    12©1989-2024   Lauterbach                                                        



SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that 
are ready to execute on any of the available cores, so that several threads may execute in parallel. 
Consequently an application may run on any available core. Moreover, the core at which the application runs 
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI 
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set 
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the 
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go 
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches 
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores 
simultaneously. This means, the breakpoint will always hit independently on which core the application 
actually runs.

In SMP systems, the TASK.TaskList command shows at which core a task is running, if it is in the running 
state.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in 
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm, 
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (= 
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the 
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems 
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide 
P” (general_ref_p.pdf).
OS Awareness Manual FreeRTOS     |    13©1989-2024   Lauterbach                                                        



Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in 
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as 
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task 
switches (program flow trace is not sufficient). It requires either an on-chip trace 
logic that is able to generate task information (eg. data trace), or a software 
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or 
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals 
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as 
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic” 
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual FreeRTOS     |    14©1989-2024   Lauterbach                                                        



    

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated 
statistically or displayed graphically. 

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address) 

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs 
are located (plus the current task pointer).

NOTE: This feature is only available, if your debug environment is able to trace task 
switches and data accesses (program flow trace is not sufficient). It requires 
either an on-chip trace logic that is able to generate a data trace, or a software 
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or 
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual FreeRTOS     |    15©1989-2024   Lauterbach                                                        



Example: This script assumes that the TCBs are located in an array named TCB_array and consequently 
limits the tracing to data write accesses on the TCBs and the task switch. 

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as 
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The 
function timings will be calculated dependent on the task that called this function. To do this, in addition to the 
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following 
command:  

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following 
command:  

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task 
switches (program flow trace is not sufficient). It requires either an on-chip trace 
logic that is able to generate task information (eg. data trace), or a software 
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or 
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32
OS Awareness Manual FreeRTOS     |    16©1989-2024   Lauterbach                                                        



To evaluate the contents of the trace buffer, use these commands:  

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as 
“(unknown)”.

    

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual FreeRTOS     |    17©1989-2024   Lauterbach                                                        



FreeRTOS specific Menu

The menu file “freertos.men” contains a menu with FreeRTOS specific menu items. Load this menu with the 
MENU.ReProgram command.

You will find a new menu called FreeRTOS. 

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the FreeRTOS specific stack coverage and 
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window 
to show only task switches (if any) or task switches together with default display. 

• The Perf menu contains additional submenus for task runtime statistics and statistics on task 
states.
OS Awareness Manual FreeRTOS     |    18©1989-2024   Lauterbach                                                        



FreeRTOS Commands

TASK.EvtGrp     Display event groups

Displays detailed information about one specific event group. Specify an event group handle as parameter.

’magic’ is a unique ID, used by the OS Awareness to identify a specific event group (address of the 
EventGroup_t structure).

The field ’magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will 
show a local menu.

TASK.MsgBuf     Display message buffers

Displays detailed information about one specific message buffer. Specify a message buffer handle as 
parameter.

’magic’ is a unique ID, used by the OS Awareness to identify a specific message buffer (address of the 
StreamBuffer_t structure).

The field ’magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will 
show a local menu.

Format: TASK.EvtGrp <evtgrp>

Format: TASK.MsgBuf <msgbuf>
OS Awareness Manual FreeRTOS     |    19©1989-2024   Lauterbach                                                        



TASK.Option     Set awareness options

Sets options to the awareness.

TASK.Queue     Display queues

Displays the registered queue table or detailed information about one specific queue.

FreeRTOS allows queues to be “registered”. If you configured FreeRTOS to contain a queue registry 
(configQUEUE_REGISTRY_SIZE), TASK.Queue without parameters will show all queues registered with 
vQueueAddToRegistry(). Otherwise you have to specify a queue handle as parameter, to display information 
on that queue.

’magic’ is a unique ID, used by the OS Awareness to identify a specific queue (address of the xQUEUE 
object).

The field ’magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will 
show a local menu.

Format: TASK.Option <option>

<option>: STacKSIZE <size> 

STacKSIZE
    <size>

Some FreeRTOS versions do not provide the stack size in a running 
system.
To do a stack coverage analysis, the debugger needs to know the stack
size. In this case, specify the stack size in bytes as second parameter.
Calculate it by
configMINIMAL_STACK_SIZE * sizeof(portSTACK_TYPE)
(see your FreeRTOSConfig.h file)
See Hooks & Internals for details.

Format: TASK.Queue [<queue>]
OS Awareness Manual FreeRTOS     |    20©1989-2024   Lauterbach                                                        



Note: “Queue Sets” in FreeRTOS are internally organized as normal queues. There is no way to detect a 
queue set as such.

TASK.Semaphore     Display semaphores

Displays the registered semaphore table or detailed information about one specific semaphore.

FreeRTOS allows semaphores to be “registered”. If you configured FreeRTOS to contain a queue registry 
(configQUEUE_REGISTRY_SIZE), TASK.Semaphore without parameters will show all semaphores 
registered with vQueueAddToRegistry(). Otherwise you have to specify a semaphore handle as parameter, 
to display information on that semaphore.

’magic’ is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the xQUEUE 
object).

The field ’magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will 
show a local menu.

TASK.StrBuf     Display stream buffers

Displays detailed information about one specific stream buffer. Specify a stream buffer handle as parameter.

’magic’ is a unique ID, used by the OS Awareness to identify a specific stream buffer (address of the 
StreamBuffer_t structure).

Format: TASK.Semaphore [<semaphore>]

Format: TASK.StrBuf <strbuf>
OS Awareness Manual FreeRTOS     |    21©1989-2024   Lauterbach                                                        



The field ’magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will 
show a local menu.

TASK.TaskList     Display tasks

Displays the task table of FreeRTOS or detailed information about one specific task.
The display is similar to the FreeRTOS API function ’vTaskList()’.

TASK.TaskList without parameters will show all tasks. Specify a task name in quotes, or a task magic to see 
detailed information about this task.

You can sort the window to the entries of a column by clicking on the column header. 

’magic’ is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

The field ’magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will 
show a local menu.

Format: TASK.TaskList [<task>]
OS Awareness Manual FreeRTOS     |    22©1989-2024   Lauterbach                                                        



TASK.TImer     Display timers

Displays the software timer table or detailed information about one specific timer.

TASK.TImer without parameters will show all software timers created, Specify a timer handle as parameter 
to display information on that timer.

’magic’ is a unique ID, used by the OS Awareness to identify a specific timer (address of the xTIMER object).

The field ’magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will 
show a local menu.

Format: TASK.TImer [<timer>]
OS Awareness Manual FreeRTOS     |    23©1989-2024   Lauterbach                                                        



FreeRTOS PRACTICE Functions

There are special definitions for FreeRTOS specific PRACTICE functions.

TASK.AVAIL()     Availability of FreeRTOS objects

Reports the availability of FreeRTOS objects.

Parameter and Description: 

Return Value Type: Hex value.

TASK.CONFIG()     OS Awareness configuration information

Parameter and Description: 

Return Value Type: Hex value.

Syntax: TASK.AVAIL(qreg)

qreg Parameter Type: String (without quotation marks).
Returns 1 if FreeRTOS has a queue registry.

Syntax: TASK.CONFIG(magic | magicsize) 

magic Parameter Type: String (without quotation marks). 
Returns the magic address, which is the location that contains the 
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks). 
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual FreeRTOS     |    24©1989-2024   Lauterbach                                                        



TASK.STRUCT()     Structure names

Reports the structure names of FreeRTOS objects.

Parameter and Description: 

Return Value Type: Hex value.

Syntax: TASK.STRUCT(queue | tcb | timer)

queue Parameter Type: String (without quotation marks).
Returns the structure name of queues.

tcb Parameter Type: String (without quotation marks).
Returns the structure name of the TCB.

timer Parameter Type: String (without quotation marks).
Returns the structure name of software timers.
OS Awareness Manual FreeRTOS     |    25©1989-2024   Lauterbach                                                        


	OS Awareness Manual FreeRTOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in FreeRTOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	FreeRTOS specific Menu

	FreeRTOS Commands
	TASK.EvtGrp      Display event groups
	TASK.MsgBuf      Display message buffers
	TASK.Option      Set awareness options
	TASK.Queue      Display queues
	TASK.Semaphore      Display semaphores
	TASK.StrBuf      Display stream buffers
	TASK.TaskList      Display tasks
	TASK.TImer      Display timers

	FreeRTOS PRACTICE Functions
	TASK.AVAIL()      Availability of FreeRTOS objects
	TASK.CONFIG()      OS Awareness configuration information
	TASK.STRUCT()      Structure names



