LAUTERBACH A

OS Awareness Manual
FreeRTOS

OS Awareness Manual FreeRTOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual FreeRTOS ... iiiriccerrrrrsmce s s e e e s rs s ssme s s s me e s e smmme s e e s smmnnnens 1
0 Y= = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
ConfiguIration ... 6
Manual Configuration 6
Automatic Configuration 7
Quick Configuration Guide 7
Hooks & Internals in FreeRTOS 8
== T == 9
Display of Kernel Resources 9
Task Stack Coverage 9
Task-Related Breakpoints 11
Task Context Display 12
SMP Support 13
Dynamic Task Performance Measurement 13
Task Runtime Statistics 14
Task State Analysis 15
Function Runtime Statistics 16
FreeRTOS specific Menu 18
FreeRTOS COMMANAS ccciiiiiiememmcinrrnssissssssssssmssmmssssssnssessssssssssmsmmssnsssnssssssssssssnmmnmsssnsssnssnnsnns 19
TASK.EvtGrp Display event groups 19
TASK.MsgBuf Display message buffers 19
TASK.Option Set awareness options 20
TASK.Queue Display queues 20
TASK.Semaphore Display semaphores 21
TASK.StrBuf Display stream buffers 21
TASK.TaskList Display tasks 22
TASK. TIimer Display timers 23
FreeRTOS PRACTICE FUNCHIONSooiiiiiieiiiiissnnnsssssssssmssn s ssms s s s s s ssmss s ssssssmssnsnas 24
TASK.AVAIL() Availability of FreeRTOS objects 24
©1989-2024 Lauterbach OS Awareness Manual FreeRTOS 2

TASK.CONFIG() OS Awareness configuration information 24
TASK.STRUCTY() Structure names 25

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 3

OS Awareness Manual FreeRTOS

Version 06-Jun-2024

Overview

_iSimuIator
File Edit View Var Break Run CPU Misc Trace Perf Cov FreeRTOS Window Help

(MK dvePn|HRD SN GEE DO
&% B:TASK TaskList (== =] aga::msp(,queue [= |[==]
magic name A [prio [state | 1 1temsize msgs |waiting |
ZO0O0BS70 |BTestl 3. [bTocked . | |20007CD8 _ _ 2. 0. -
2000BCCO |BTest2 2. |suspended 20008408 |Counting_5 (1. 0. 1.
20008BB0 |B1kSEM1 0. [ready 20008B38 |Counting_5 (1. 0. 1.
20008F00 |B1kSEM2 0. [ready = 20009250 |Suspended_ (1. 4. 0.
2000C0ED |[CNT1 0. [ready 2000B8F8 |Block_Time [5. 4. 0. Rowv: BTestl
2000C430 [CNT2 0. [ready 2000C010 |Counting_5 (200. 0. 200.
20009268 |[CNT_INC 0. [ready 2000C078 |Counting_5 (200. 0. 0.
2000F1E0 |COMRx 2. |blocked 2000C780 . 4. 0.
2000EE90 |COMTx 1. |blocked 2000CE48 0. 1.
2000F390 |CREATOR 3. [blocked 20000590 |QPeek_Test 5 4. 0. Rcv: PeekH2, PeekHl, PeskM ~
20009958 |C_CTRL 0. |ready < o D
2000F530 |Check 5. [blocked
2000C7F8 |GenQ 0. r‘eagy
2000FCDO | IDLE 0. [ready = | B:Trace.STATistic. TASK total min max ratio bar
20007988 |IntMath 0. [running - J EI-@
] I b [& setup... | 71 Groups... || 28 Config.. || = | Detailed |[] Nesting|| ffchart |[BProfie
tasks: 17. total: 2 0lims
range: -4971507..-4952322
M Bu:Trace.CHART.TASK range |total min max ratio® [|1% 2% |
= o = — Cunknown) 49,100us [49.100us | 49.100us 7. 441 | — n
[& setwp... | §ii Gougs... [&8 @nfig... |4 Goto.... [#3Find... BTestl | 96.900us | 96.900us | 96.900us | 4.515% ——————
= 544 .300ms 544 MuH1igh 29.000us 29.000us 29.000us 1. 442% | m—
rangehy 1 | PeekH2 80. 200us 80. 200us 80. 200us 3. 985% | —————
ETestL {| - CREATOR | 64.100us | 64.100us | 64.100us | 3.157% |—)
MuHigh Ry [' X X QConsBl | 91.200us | 91.200us | 91.200us | 4.535% |— | =
PeekHz2 i N) i i QConsB4 | 111.900us | 111.900us | 111.900us | 5.564% |——
CREATORGH) [])) BTest2 | 29.000us | 29.000us | 29.000us | 1.442% e
QConsB1 K ') I . MuMed | 28.700us | 28.700us | 28.700us | 1.427% (s
QConsB4 Ry ' . i [PeekH1 81.100us 81.100us 81.100us | 4.033%
BETest2 [y ' ' ') Recl| 59.800us | 59.800us | 59.800us | 2.973% |o—
MuMed &H ' ' ' ' COMRx | 99.900us | 99.900us | 99.900us | 4.968% |—————to——
PeekH1 55) i i i LIM_INC | 29.000us | 29.000us | 29.000us | 1.442% s -
4 [mr o« Jf 1 ¢

B:: TASK.

m [Queve | previoss

T:-(4255818 -5 450ms | G- +663570ms | scale 100000 IntMath stopped MIX |UP

The OS Awareness for FreeRTOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently FreeRTOS is supported for the following version:

. FreeRTOS V4.x to V11.x on ARC, ARM, ARM64, AVR32, Beyond, ColdFire, H8S, HC12,
MicroBlaze, MIPS, Nios Il, PowerPC, STRed, TMS320C2/6/7xxx, TriCore, and Xtensa.

o SafeRTOS V5.x to V9.x on ARM, PowerPC, TMS320C6/7xxx and TriCore

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 5

Configuration

The TASK.CONFIG command loads an extension definition file called ’freertos.t32’ (directory
'~~/demo/<arch>/kernel/freertos’). ‘freertos.t32’ contains all necessary extensions.

Automatic configuration tries to locate the FreeRTOS internals automatically. For this purpose all symbol
tables have to be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument has to be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to

memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

Manual configuration for the OS Awareness for FreeRTOS can be used to explicitly define some operational
values.

Format: TASK.CONFIG ~~/demo/<arch>/kernel/freertos/freertos.t32
<magic_address> <stack_size>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at “pxCurrentTCB”. Either use this label or specify 0
to detect it automatically.

<stack_size> Some FreeRTOS versions do not provide the stack size in a running system.
To do a stack coverage analysis, the debugger needs to know the stack
size. In this case, specify the stack size in bytes as second parameter.
Calculate it by
configMINIMAL_STACK_SIZE * sizeof (portSTACK_TYPE)
(see your FreeRTOSConfig.h file). If your FreeRTOS version provides the
stack size, use automatic configuration instead.

The stack size can also be set using the command TASK.Option
STacKSIZE.

Example:

; application uses 256 words for stack size:
TASK.CONFIG freertos.t32 0 256.*4

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 6

See Hooks & Internals for details.

Automatic Configuration

For system resource display and trace functionality you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

I TASK.CONFIG ~~/demo/<arch>/kernel/freertos/freertos.t32

If a system symbol is not available or if another address should be used for a specific system variable, or if
your FreeRTOS version doesn’t provide the stack sizes of the tasks, then the corresponding argument has to
be set manually with the appropriate value (see ’Manual Configuration’).

See also the example “~~/demo/<arch>/kernel/freertos/freertos.cmm”.

Refer to "Hooks & Internals’ for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for FreeRTOS with your application,
follow this roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command:

TASK.CONFIG ~~/demo/<arch>/kernel/freertos/freertos.t32

See “Automatic Configuration”.

4. Execute the command:

MENU.ReProgram ~~/demo/<arch>/kernel/freertos/freertos.men

See “ThreadX Specific Menu’”.

5. Start your application.
Now you can access the FreeRTOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 7

Hooks & Internals in FreeRTOS

No hooks are used in the kernel.
For detecting the current running task, the kernel symbol 'pxCurrentTCB’ is used.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

For automatic detection of stack sizes, the OS Awareness uses either the “usStackDepth” or the
“pxEndOfStack” member variable of the “t skTCB” structure. When using FreeRTOS version 10 or above,
set configRECORD_STACK_HIGH_ADDRESS to 1 to get a full stack coverage. If automatic detection of
stack sizes is available, use Automatic configuration. If it is not available, TASK.Option STacKSIZE or
use Manual configuration and provide the stack size manually.

FreeRTOS allows queues and semaphores to be “registered”. If you configured FreeRTOS co contain a
queue registry (conf igQUEUE_REGISTRY_SIZE), TASK.Queue and TASK.Semaphore without
parameters will show all queues registered with vQueueAddToRegistry(). Otherwise you have to specify a
queue or semaphore handle as parameter.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 8

Features

The OS Awareness for FreeRTOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following Fre-
eRTOS components can be displayed:

TASK.TaskList Tasks
TASK.Queue Queues
TASK.Semaphore Semaphores
TASK.TImer Timers
TASK.EvtGrp Event Groups
TASK.StrBuf Stream Buffers
TASK.MsgBuf Message Buffers

For a description of the commands, refer to chapter “FreeRTOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 9

B, B:TASK.STacK view =l e =]

name | low high % [lowest spare max [0 10 20 30 40 |
IntMath [00D0070CE 00007208 10% |00007280 O00001ES 14% |—
COMTx |00007414 00007614 25% |0000757C 00000168 29%
COMRx 00007670 00007870 35% |000077BC 0000014C 35%
28% |00007A3SC 00000170 28%
28% |00007CS8 00000170 28%
28% |DO00YEF4 00000170 28%
25% |000081D0 0000017C 25%
26% |00008428 00000178 26%
Mathl |0000850C 0000870C 14% |000086C4 Q00001EE 14% |——
Math2 |00008768 00008968 20 14% (00008920 000001ES 14% |se—— 52
4 m 3

LEDx (000078CC 00007ACC
LEDx (00007E28 00007DZE
LEDx (00007084 00007FE4
QConsNE 00008054 00008254
QProdNE (000082B0 000084B0

NOTE: When using a FreeRTOS version 10 and above, configure your system with
#define configRECORD_STACK_HIGH_ ADDRESS 1
#define configCHECK_FOR_STACK_OVERFLOW 2
to get a full stack coverage. Use TASK.STacK.PATtern to set the stack fill
pattern as defined in task.c: tskSTACK_FILI_BYTE.

When using a FreeRTOS version 5 to 9, FreeRTOS does not provide
information about the stack sizes. You need to specify the stack size in the
configuration of the OS Awareness. See Hooks & Internals and Manual
Configuration for details.

The manual configuration only allows to set one stack size for all tasks (usually the minimal stack size). If you
want to override the stack characteristics of one task, you can use a small script to do so.
Example to set the stack size of the “IDLE” task to 1024 bytes:

; Adapt stack characteristics of a task

; Specify the task name, e.g. the IDLE task:
&task="IDLE"

; Specify the new task size in bytes for this task, e.g. 1024 bytes:
&stacksize=0x400

; Open standard stack view and ensure a display update
TASK.STacK.view

SCREEN

; Calculate task “magic” and stack start address
&magic=task.magic ("IDLE")
&stackstart=var.value (((tskTCB*) &magic) ->pxStack)

; Remove the standard stack calculation for this task
TASK.STacK.ReMove &magic

; And add the custom one:

TASK.STacK.ADD &magic &stackstart++ (&stacksize-1)

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 10

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 11

0 BuBreak List o[-l
"xmlete.l\lﬂoawe I][@ el | © Inic |£?Imp| [G2 soe... |52 Load...| [Kl Set... |

addre

impl
SOFT

T
R 00004AED | Pﬁggram QProa z" xQueueSend
R: 00004E14JProgram SOFT "QConsE&" xQueueReceive 1
2
Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
@ B::Frame /Task "LIM_INC" EI@

t.Up.| "% Down | Args V| Locals Caller Task: "LIM_INC"

-000[[vTaskSuspend(i
¥ pxTaskToSuspend = 0x0)
+ pxTCE = Ox20009608
vLimitedIncrementTask(
+ pvParameters = 0x20018E18)
pulCounter = Ox20018E18
—002||SR : OxAAAAAAAA (asm)
— |end of frame v

m

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 12

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

In SMP systems, the TASK.TaskList command shows at which core a task is running, if it is in the running
state.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 13

£ B:PERF ListTASK =N Eoh(

(& setup...| 28 onfig..)[Y Goto... || 5] Detailed] [€3, View |y Profile][€ Init |[C Disable|| @ Arm

name ratio 1% 2% 5% 10% 20% 50% 100 |

BETKSEML 23.013% ~

LEDx 11.297%

COMTx 10.460% =

IntMath 2.510% (e————

COMRx 1.255% |

QProdNB 1.255% |

LEDx 0.837% |+

QConsEBE4 0.837% |+

Check 0.837% |+ 57
}

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 14

= | B:Trace STATistic. TASK =n| Wl <
[& setup... || 71 Groups... || 22 Gonfig... |[= | Detaiied | [Nesting][v{Chart || BProfie |
tasks: 17. total: 2.011ms
range: -4971507..-4952322
range total min max avr count ratio® [|1% 2% 5% 10% |
ETestl 96. 900us 96. 900us 96. 900us 96. 900us 1. 4, B1E% | — L
MuH1igh 29.000us 29.000us 29.000us 29.000us 1. 1. 442% | m—
PeekH2 80. 200us 80. 200us 80. 200us 80. 200us 1. 3. 985% | —————
CREATOR &4.,100us &4.,100us &4.,100us &4.,100us 1. 3.167% | e————
QConsBl 91. 200us 91. 200us 91. 200us 91. 200us 1. 4,535% [n—
QConsB4 | 111.900us | 111.900us | 111.900us | 111, 900us 1. 5. 564% | e—
BETest2 29, 000us 29, 000us 29, 000us 29, 000us 1. 1.442% |—
MuMed 28.700us 28.700us 28.700us 28.700us 1. 1.427% |we—
PeekH1 81.100us 81.100us 81.100us 81.100us 1. 4.033% =
Recl 59.800us 59.800us 59.800us 59.800us 1. 2. 973% | ——
COMRx 99, 900us 99, 900us 99, 900us 99, 900us 1. 4, 968%
LII‘-'I_IuC 29, 000us 29, 000us 29, 000us 29 mns— = S—taans
PeekM 82.000us 82.000us 82.000us 82
Rec2 | 89.600us | B89.600us | B89.600us | §o| ¥ Bifiace.Chart.TASK [r=E
oot | 791.600us | 701.600us | 701.600us | 700 || @ seup... || fif Gous..|| 88 Gonfiy... | Goto...|| A Goto....| #3Find... || O In |0« Ot [E Ful
P -4.000ms -3.500ms -3.000ms
range iy 1 1 P
CNT_INCEy -
CNTLAH
CNT2 A
MuL ow iy
MuH1gh ¥
MuMed &y)))
SUSP_RX (|
IDLERM . . .n
QProdB2 iy . . | . .
QConsBLAY . . . | .
QConsB3§H - . .
QProdB4 gy — .)
QProdB5 &y I . . .
PolSEM1EH} . .
PolSEM2 [.
<lm > <
.
Task State Analysis
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

J All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 15

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 16

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func
Trace.Chart.sYmbol /SplitTASK

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

Display function nesting

Display function runtime statistic
Display functions as call tree
Display flat runtime analysis
Display function timechart

Display flat runtime timechart

=8 He

-543.320ms
L i

H(”
unknown)”.
= | B::Trace STATistic. TASKTREE tree task total min max avr count intemnalratio internalbar ===
Setup... || £l Groups... || 28 Gonfig.. [Goto... || = |Detaied ||] Nesting|[= Chart
funcs: 338. total: 2.011ms
range: -4371507..-4952322
[tree task total min max avr count intern® 1% 2% 5 1
= (root) Rec2 B89.600us - B89.600us 39.600us - 0.174% [+ .
vTaskSwitchContext Rec? 0.200us - 0.200us 0.200us 1.(1/0) 0.009% |+
= prvRecursiveMutexBlockingT.. Rec2 85.900us - 85.900us | 85.900us 1.(0/1) | 0.049% |+
& xQueueTakeMutexRecursive |Rec? 84.900us - 84.900us B84.900us 1.(0/1) 0.094% |+
= (root) (COMTx 701. 600us - 701.600us | 701.600us - 0.174% |+
vTaskSwitchContext (COMTx 0.200us - 0.200us 0.200us 1.(1/0) 0.009% |+
= vComTxTask (COMTx 6397.900us - 697.900us | 697.900us .(0/1) 2. 829% | e——
= xSerialPutChar (COMTx 451. 800us 18.700us 19.200us 18.825us 24. 3. 342% | e—
@& xQueueGenericSend (COMTx 3B84.600us 15.900us 16.400us 16.025us 24. AL TTAY | —
= vParTestToggleLED (COMTx 139.200us 5.800us 5.800us 5.800us 24. 1.312% |m—
@ LED_Toagle (COMTx 112. 800us 4.700us 4.700us 4.700us 24, 3. 342% | e—
= vParTestSetLED (COMTx 5.500us 5.500us 5.500us 5.500us 1. 0.094% |+
@ LED_Clear (COMTx 3.600us 3.600us 3.600us 3.600us 1. 0.144% +
xTaskGetTickCount (COMTx 5.800us 5.800us 5.800us 5.800us 1. 0.069% |+
vTaskDelay (COMTx 38.700us - 38.700us 38.700us 1.(0/1) 0.412% |+
= (root) IntMath 2B87.600us - 287.600us | 287.600us - 0.174% |+
vTaskSwitchContext IntMath 0
=) vCompeteingIntMathTask IntMath 283 »
vPortEnterCritical Tnthath 3o A =EREEC e
vPortExitCritical IntMath 471 | & setup...)il Goups... || 58 Gonfy... || 3 Goto...][#3Find...][4k In][»4 0ut][MiFul
J g -543.380ms -543.360ms -543.340ms
range i n n
_GetOutputDataStatus 4
PIO_Set
vParTest5etLED
ED_Clear
xTaskGetTickCount
VTaskDelay
VTasksuspendall

vListRemove
rentTaskToDelayedList
vListInsert
xTaskResumeAll
vTaskSwitchContext
root)
mpeteingIntMathTask
vPortEnterCritical
vPortExitCritical

“Jt v <

©1989-2024 Lauterbach

OS Awareness Manual FreeRTOS

17

FreeRTOS specific Menu

The menu file “freertos.men” contains a menu with FreeRTOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called FreeRTOS.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

/A TRACE32 for FreeRTOS - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov Kinetis K60 FreeRTOS Window Help
MW A+ | [28D =G &G Dispaylsks
= Display Queues

a5 = || 2 | Display Semaphores
imagic name A lnum__|prio |state runcount | Display Tirmers
1FFF1498 |BTestl 7. 2. [bTocked . A X -

1FFF1670 |BTest2 8. 1. |[suspended 0. Display Event Group...
1FFF1CF8 |BTkSEM1 11. 1. [blocked 11. Display St Buff
1FFFLEDO |B1kSEM2 12. | 1. |blocked 10. 1Splay JtrEam BuUTTer...
1FFF3E2ZE |CNTL 26. 0. [ready 2044, Display Message Buffer...
1FFF4000 [CNTZ 27. 0. [ready 2050. -

1FFF4238 |CNT_INC 28. 0. [ready 6. v
1FFF5108 |CREATOR 34. | 3. |blocked 0. Stack Coverage
1FFF45E8 |C_CTRL 30. 0. [blocked 0.

AFFF2118 |Ger) 13.| 0. |running 1927.

1FFF52ZED |IDLE 35. 0. [ready 0.

1FFF4410 |LIM_INC 29. 1. |[suspended 1.

1FFF26F8 |MuHigh 16. 3. [suspended 10.

1FFF2348 |MuLow 14. 0. |[ready 25.

1FFF2520 |MuMed 15. 2. |suspended 1. W

B: :|TASK.

The Display menu items launch the kernel resource display windows.

The Stack Coverage submenu starts and resets the FreeRTOS specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

The Trace menu is extended. In the List submenu, you can choose if you want a trace list window

to show only task switches (if any) or task switches together with default display.

The Perf menu contains additional submenus for task runtime statistics and statistics on task

states.

©1989-2024 Lauterbach

OS Awareness Manual FreeRTOS

18

FreeRTOS Commands

TASK.EvtGrp Display event groups

Format: TASK.EvtGrp <evigrp>

Displays detailed information about one specific event group. Specify an event group handle as parameter.

@) Bu:TASK.EvtGrp varvalue(myEventGroup) EI-@

mag c bits waiting
1FFF4ADD [DD0050 [EvEiGrpl

’'magic’ is a unique ID, used by the OS Awareness to identify a specific event group (address of the
EventGroup_t structure).

The field ‘'magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will
show a local menu.

TASK.MsgBuf Display message buffers

Format: TASK.MsgBuf <msgbuf>

Displays detailed information about one specific message buffer. Specify a message buffer handle as

parameter.
@) Bu:TASK.MsgBuf var.value(myMessageBuffer) EI-@
magic size avall |num msgs waiting
1FFFSEO8 [4097. |4082. [1. T .
lFFFSEZC lFFFSESB
size tent
11. ?4 65 ?3 74 20 64 61 74 ... testudata.l

‘'magic’ is a unique ID, used by the OS Awareness to identify a specific message buffer (address of the
StreamBulffer_t structure).

The field ‘'magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 19

TASK.Option Set awareness options

Format: TASK.Option <option>

<option>: STacKSIZE <size>

Sets options to the awareness.

STacKSIZE Some FreeRTOS versions do not provide the stack size in a running
<size> system.

To do a stack coverage analysis, the debugger needs to know the stack
size. In this case, specify the stack size in bytes as second parameter.
Calculate it by
configMINIMAL_STACK_SIZE * sizeof (portSTACK_TYPE)
(see your FreeRTOSConfig.h file)
See Hooks & Internals for details.

TASK.Queue Display queues

Format: TASK.Queue [<queue>]

Displays the registered queue table or detailed information about one specific queue.

FreeRTOS allows queues to be “registered”. If you configured FreeRTOS to contain a queue registry
(configQUEUE_REGISTRY_SIZE), TASK.Queue without parameters will show all queues registered with
vQueueAddToRegistry(). Otherwise you have to specify a queue handle as parameter, to display information
on that queue.

&% B:TASK.Queue EI@
magi i

name length [1temsize msgs waitin

TmrQ 10. 1z. 0. Rcv: Tmr Svc A
Block_Time_Queue 5.
Gen_Queue_Test 5.
QPeek_Test_Queue 5.
Pol1_Test_Queue 10.
Suspended_Test_Queue [1.

Rcv: PeekH2, PeekHl, PeekM

&% B:TASK.Queue "Gen_Queue_Test" EI@
magic name length [1temsize msgs waitin
1FFF1F38 [Gen_Queue_Test 5. 4. 2. ~

messages queued:

B I o o
-

address content asc
IFFFLFO0 E2 01 00 00 Sy
1FFF1F94 02 00 00 0O FL

< >

‘'magic’ is a unique ID, used by the OS Awareness to identify a specific queue (address of the xXQUEUE
object).

The field ‘'magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 20

Note: “Queue Sets” in FreeRTOS are internally organized as normal queues. There is no way to detect a
queue set as such.

TASK.Semaphore Display semaphores

Format: TASK.Semaphore [<semaphore>]

Displays the registered semaphore table or detailed information about one specific semaphore.

FreeRTOS allows semaphores to be “registered”. If you configured FreeRTOS to contain a queue registry
(configQUEUE_REGISTRY_SIZE), TASK.Semaphore without parameters will show all semaphores
registered with vQueueAddToRegistry(). Otherwise you have to specify a semaphore handle as parameter,
to display information on that semaphore.

@?. B:TASK.5emaphore EI@
name type max count waiting |
PoTTing_sem Bin 1. 1. o
Blocking_Sem bin 1. 1.

Gen_Queue_Mutex |mutex |[1. 1.
Recursive_Mutex |mutex |1. 0. Rcv: RecZ

Counting_Sem_1 count |200. 174,
Counting_Sem_2 count |200. 132,

‘'magic’ is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the xQUEUE
object).

The field ‘'magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will
show a local menu.

TASK.StrBuf Display stream buffers

Format: TASK.StrBuf <strbuf>

Displays detailed information about one specific stream buffer. Specify a stream buffer handle as parameter.

@) B TASK.5trBuf varvalue(myStreamBuffer) EI-@

mag c size avail [trglvl [waiting
1FFF4C00 [4097. |4083. [20. |

Ll

TFFFaces TFFFACSE

?4 &5 ?3 74 20 64 61 74 testudat
61 20 31 20 2D 20 aulu-u

‘magic’ is a unique ID, used by the OS Awareness to identify a specific stream buffer (address of the
StreamBulffer_t structure).

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 21

The field ‘'magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will

show a local menu.

TASK.TaskList

Display tasks

Format:

TASK.TaskList [<task>]

Displays the task table of FreeRTOS or detailed information about one specific task.

The display is similar to the FreeRTOS API function 'vTaskList()'.

TASK.TaskList without parameters will show all tasks. Specify a task name in quotes, or a task magic to see
detailed information about this task.

&% BiTASK TaskList

(o8)

imagic name A lnum__|prio |state runcount |

1FFF1498 |BTestl 7. 1. [bTocked 0.

1FFF1670 |BTest2 B. 1. [suspended 0.

1FFF1CF8 B}tsEI‘-‘Il 11. 1. g}octeﬂ 6.

1FFF1EDD [BTkSEM2 1z. 1. ocke 5. Lo ot "

1FFF3E28 |CNTL 26. | 0. |ready 400, | o BuTASK Tasklist "EvtGrp1 [=][&S]
1FFF4000 |CNT2 27, 0. [runmng 390. | magic num_|prio [state runcount |
1FFF4238 |CNT_INC 28. | 0. |ready 2. | IFFF4B98 [EvtGrpl [33.| 0. |ready T 0. .
1FFF5108 |[CREATOR 34. 3. |blocked 0.

1FFF45E8 |[C_CTRL 30. | 0. |blocked 0. | |stack ptr base S

1FFF2118 |GenQ 13. 0. |ready 343, | [LFFF4EB18 00000160

1FFF52E0 |IDLE 35. | 0. |ready 0. o .

1FFF4410 [LIM_INC 29, 1. [suspended 0. | Jnotification value and state

1FFF26F8 |MuHigh 16. 3. |suspended 5. | [oOODOOOO

1FFF2348 [MuLow 14. 0. |ready 2. o i .

1FFF2520 |MuMed 15. 2. |suspended 0. | waiting on event bits and object

1FFF2CF0 |PeekHl 19. 2. |suspended 0. | [DDOODA alT

1FFFZECE |PeeskH2 20. 3. [suspended 1. A
1FFF2340 |PeekL 17. 0. |blocked 0.

1FFF2BE18 |PeeskM 18. 1. [suspended 1.

1FFF18C8 |PolSEML 9. 0. |ready 19.

1FFF1AAQ |PolSEM2 10. 0. |ready 9.

1FFFO7F0 |QConsBl 1. 2. |blocked 0.

1FFFOC30 |QConsB3 3. 0. |[ready 1.

1FFF1250 |QConsB& 6. 0. [ready 6.

1FFF39C8 [QConsNB 24, 1. |blocked 0.

1FFFO9CE |QProdB2 2. 0. [ready 0.

1FFFOEO8 |QProdB4 4. 2. |blocked 1.

1FFF1078 |QProdB5 5. 0. |blocked 8.

1FFF3BAQ0 |QProdNB 25. 1. |blocked 0.

1FFF30F8 |Recl 21. 2. |blocked 0.

1FFF32D0 |Rec2 22. 1. |blocked 0.

1FFF34A8 |Rec3 23. 0. |ready 400.

1FFF4998 |[SUSP_RX 32. 0. |ready 390.

1FFF47C0 [SUSP_TX 31. 0. |blocked 0.

1FFF5620 |Tmr Svc 36. 2. [blocked 1.

1FFF4E40 |uIP 33. 2. |blocked 0.

You can sort the window to the entries of a column by clicking on the column header.

‘'magic’ is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

The field ‘'magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will

show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual FreeRTOS

22

TASK.TImer

Display timers

Format:

TASK.Timer [<timers>]

Displays the software timer table or detailed information about one specific timer.

TASK.TImer without parameters will show all software timers created, Specify a timer handle as parameter
to display information on that timer.

% B:TASK Timer = =R
imagic name timeout [period re [1d |callback

1FFF35E8 [FRo.Timer 1. v |3. |00D15A30 prvAutoReloadTimerCallback
1FFF3548 |FRu.Timer 1. 100. v [1. |00015A30 prvAutoReloadTimerCallback
1FFF3510 |FRuTimer 1. 50. v |0. |00015A30 prvAutoReloadTimerCallback
1FFFO580 |LEDLTimer 17. 200. v (0. |00012EDC prvLEDTimerCallback
1FFF35F0 |FRu.Timer 51. 250. v |4. |00015A30 prvAutoReloadTimerCallback
1FFF3628 |FR.Timer 101. 300. v |5. |00015A30 prvAutoReloadTimerCallback
1FFF3580 |FRu.Timer 101. 150. v |2. |00015A30 prvAutoReloadTimerCallback
1FFF3660 |FR.Timer 151. 350. v |6. |00015A30 prvAutoReloadTimerCallback
1FFF3698 |FR.Timer 201. 400. v |7. |00015A30 prvAutoReloadTimerCallback
1FFF36D0 |FRu.Timer 251. 450, v |8. |00015A30 prvAutoReloadTimerCallback
1FFF3708 |FRu.Timer 301. 500. v |9. |00015A30 prvAutoReloadTimerCallback
1FFF5740 |PeriodicTimer 301. 500. v |1. |000183B0 prvUIPTimerCallback
1FFFOSBS |LEDZ2Timer 422, 600. v |1. |00012EDC prvLEDTimerCallback
1FFF0548 |CheckTimer 2812. 3000. |y |0. |DO0L12EO0C prvCheckTimerCallback
1FFF5708 |ARPTimer 9801. 10000. |y |0. |000L183B0 prvUIPTimerCallback
1FFF37B0 |ISRLOS 65486. |65535. |n |0. |00015AA4 prvISROneShotTimerCallback

‘magic’ is a unique ID, used by the OS Awareness to identify a specific timer (address of the xTIMER object).

The field ‘'magic’ is mouse sensitive, double clicking on it opens appropriate windows. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual FreeRTOS | 23

FreeRTOS PRACTICE Functions

There are special definitions for FreeRTOS specific PRACTICE functions.

TASK.AVAIL() Availability of FreeRTOS objects

Syntax: TASK.AVAIL(greg)

Reports the availability of FreeRTOS objects.

Parameter and Description:

qreg Parameter Type: String (without quotation marks).
Returns 1 if FreeRTOS has a queue registry.

Return Value Type: Hex value.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 24

TASK.STRUCT() Structure names

Syntax: TASK.STRUCT(queue | tcb | timer)

Reports the structure names of FreeRTOS objects.

Parameter and Description:

queue Parameter Type: String (without quotation marks).
Returns the structure name of queues.

tcb Parameter Type: String (without quotation marks).
Returns the structure name of the TCB.

timer Parameter Type: String (without quotation marks).
Returns the structure name of software timers.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual FreeRTOS | 25

	OS Awareness Manual FreeRTOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in FreeRTOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	FreeRTOS specific Menu

	FreeRTOS Commands
	TASK.EvtGrp Display event groups
	TASK.MsgBuf Display message buffers
	TASK.Option Set awareness options
	TASK.Queue Display queues
	TASK.Semaphore Display semaphores
	TASK.StrBuf Display stream buffers
	TASK.TaskList Display tasks
	TASK.TImer Display timers

	FreeRTOS PRACTICE Functions
	TASK.AVAIL() Availability of FreeRTOS objects
	TASK.CONFIG() OS Awareness configuration information
	TASK.STRUCT() Structure names

