LAUTERBACH A

OS Awareness Manual FAMOS

OS Awareness Manual FAMOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual FAMOSiiiicirirrssccnrrssssmss s sssssmme s sesssmme s eessssmns s essssmmsssesssammnsneas 1
0 Y= = 3
Terminology 3

Brief Overview of Documents for New Users 4
Supported Versions 4

L0 o3} T 11T = Lo o 5
Quick Configuration Guide 5
Hooks & Internals in FAMOS 6
== LT == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Task Context Display 9
Dynamic Task Performance Measurement 10
Task Runtime Statistics 11
Task State Analysis 12
Function Runtime Statistics 13
FAMOS Specific Menu 15
FAMOS COMMANAScereiiierirseinirnin s s sm e sa s s s e s m e e s nm e s mnnannna 16
TASK.Kernel Display kernel state 16
TASK.MailBox Display mailboxes 16
TASK.MailQueues Display mailqueues 17
TASK.Semaphore Display semaphores 17
TASK.Thread Display threads 18
TASK.TIMer Display timers 19
FAMOS PRACTICE FUNCHIONSccceeiiiiiieinninnsmss s ssssnsssssss s s s s s ssms s s s smmmn s s ssmmsn s nas 20
TASK.CONFIG() OS Awareness configuration information 20
©1989-2024 Lauterbach OS Awareness Manual FAMOS 2

OS Awareness Manual FAMOS

Overview

Version 06-Jun-2024

A TRACE32 for FAMOS = =R
File Edit View Var Break Run CPU Misc Trace Perf Cov ARMI176 FAMOS Window Help
Mk Al dee[rn|E 2RO snleoes @2 5uledas @2
& (=1 & (== =]
magic priority [name state ticks [stack [act] [kernel state |
Z1AAD1G0™ 0.0 [Tamos:idle [Running 0. 9% (1. Tdentity: FAMOS.vZ. 1. (ARM/RVDS) ~
OF0035F0 64.5 app:ir DelaywWait 101. 3% 1. kernel state: running
OF0034B0 64.5 app:shell DelaywWait 101. 2% 1. =ched lock: released
OF003730 96.7 app:scan DelaywWait 51. 3% 1. act thread: famos:idle
0F003550 96.7 app:handler DelaywWait 11. 3% 1. tick interval: 1 ms = 1000 ticks/s
0F003690 | 127.7 app:watchdog |DelayWait 1001 9% 1.
OF003370 | 241.12 |famos:print Suspended 0. 2% |0. @ Mo M= =
OF0032D0 | 242.11 [famos:report |EventWait -1. 2% |0. | o8 =
OF002460 | 243.11 |bsr:intlg Suspended 0. 3% |0, act |wait [1n1t [owner |
OF0030A0 | 243.12 |bsr:intld Suspended 0. 1% |0. 01 1. 0. 1. [famos:idle
OF003000 | 243.12 |bsr:int29 Suspended 0. 1% |0. 02 1. 0. 1. |famos:idle
OF002F60 | 243.12 |bsr:intls Suspended 0. 2% 0. 03 1. 0. 1. |famos:idle
OFO0ZECO | 243.12 |bsr:int28 Suspended 0. 2% |0. < >
OFO02E20 | 243.12 |bsr:int27 Suspended 0. 2% |0.
OFO02D80 | 243.12 |bsr:int26 Suspended 0. 2% |0. o —re1re
OF002CE0 | 243.12 |bsr:int2s Suspended 0. 1% [0. | o = || B
OF002C40 | 243.12 |bsr:int24 Suspended 0. 1% |0. | magic name act |wait |bytes [num 1
OFO02BAD | 243.12 |bsr:int20 Suspended 0. 1% |0. | [OF003280 |mque00l [~ 0. | 0. [256. [128. |~
OFO0ZB00 | 243.12 |bsr:int0é Suspended 0. 3% |0. ©
= (== =]
2 setp... || iif Goups... || 38 Gonfig... || =] Detaled Nesting | ¥ Chart || B Profile
tasks: 6. total: 9.815ms
range: 52917..160781
range total min max avr count ratio® [1% 2% 5% 10% 20% |
app:handTer [599.500us | 599.500us | 599.500us | 599.500us 1. B, 1075 | — o
app:scan | 581.600us | 581.600us | 581.600us | 581.600us 1. 5.925% (—
app:shell | 830.500us | 830.500us | 830.500us | 830.500us 1. B.461%
app:ir | 566.800us | 566.800us | 566.800us | 566.800us 1. 5. TTAE | ——
famos:idle 6.542ms - 6.542ms 6.542ms 1. 66. 656% v
il B Trace. Chart. TASK = =R
J2sep... || iifGous... | 38 Gnfig... | Goto... | A Goto... | #3Find... | «In | »0+0ut| ©Ful
s 7.000ms 8.000ms 9.000ms 10.000ms 11.000ms
rangeqy | | | |
app :watchdog | m . ~
app:handlergy
app:scaniy|
app:shellay|
app:irdy|
famos:idleqy|
BE:: TASK.|
Kernel Thread | Sermaphore | MaiBox | MaiQueue TIMer pravious
CT:+00079600 300300 | G2 +449%% | siale 1000005 famos:idle stopped MIX |UP

The OS Awareness for FAMOS contains special extensions to the TRACE32 Debugger. This manual

describes the additional features, such as additional commands and statistic evaluations.

Terminology

FAMOS uses the term “thread”. If not otherwise specified, the TRACE32 term “task” corresponds to FAMOS

threads.

©1989-2024 Lauterbach

OS Awareness Manual FAMOS

3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently FAMOS is supported for the following versions:

. FAMOS v2.1 (HDTV Release v1.2, v1.3, v1.4) on ARM

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “famos.t32” (directory
“~~/demo/<processor>/kernel/famos”). It contains all necessary extensions.

Automatic configuration tries to locate the FAMOS internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG famos

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for FAMOS with your application, follow the
following roadmap:

1. Copy the files “famos. £32” and “famos .men” to your project directory
(from TRACES32 directory “~~/demo/<processor>/kernel/famos”).

2. Start the TRACES32 debugger.
3. Load your application as normal.

4, Execute the command “TASK.CONFIG famos”
(See “Configuration”).

5. Execute the command “MENU.ReProgram famos”
(See “FAMOS Specific Menu”).

6. Start your application.
Now you can access the FAMOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 5

Hooks & Internals in FAMOS

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS

Awareness are used.

Be sure that your application and FAMOS is compiled and linked with debugging symbols switched on.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 6

Features

The OS Awareness for FAMOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
FAMOS components can be displayed:

TASK.Kernel Kernel state
TASK.MailBox Mailboxes
TASK.MailQueue Mailqueues
TASK.Thread Threads
TASK.TIMer Timers
TASK.Semaphore Semaphores

For a description of the commands, refer to chapter “FAMOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 7

&% BuTASK.STacKview =N =R)

name | low high sp % [lowest spare max [0 10 20 30
FTamos:idle [2213035C 22130758 |22130750 0% (22130700 000003A4 B | me—
app:ir (22135404 22136400 |2 4% (22136338 00000F34 A% | —

app:shell |21990CA8 21992CA4 (2 3% |21992B18 0QO0001ETO 4%
app:scan |21992CA8 21993CA4 |2 4% |21993BE0 O0000F38 4%
app:handler [21993CA8 21994CA4 |2 3% |21994C10 00000FGE 3%
app:watchdog [21994CA8 21995044 |2
famos :print (2213275C 22133B58 |2
famos :report |2213075C 22132758 |2
bsr:intl9 |2210005C 22101058 |2
bsr:intl4 |2212BD2C 2212FD28 |2
bsr:int29 |221277E4 2212B7EO (2

14% |21994F50 00000ZA8 33%
1% [22133B00 00001344 1% |+
2% (221326A0 00001F44 2% |m
2% (22101000 00000FA4 2% |m
0% [2212FCD0O O00DO03FA4 0%
0% (22126788 00003FA4 0%

bsr:intl8 |22124B9C 22126B98 |2 1% [22126EB40 00001FA4 1% |+
bsr:int28 |22121F54 22123F50 [22123EF5 1% [22123EF8 0O0001FA4 1% |+ A
£ >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 8

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@
K ekte Al O Dssbe Al @ Eabie Al @ it || L 1mpl... |52 Store...| o Load... | EdiSet...
address types impl task |
NR:21877824 |Program QONCHIP Tapp:handTer™ FAMOS_STeep
NR:218?86E4jPr‘ogr‘a.m SOFT "famos :print™ FAMOS_EnterCriticalSection
Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 9

& BVar.Frame /Locals /Caller /Task 0xF003550

(o] 8)

1. Up Down MArgs [Mlocals [caller Task: | "app:handler”

~ |

-000[[famosRunScheduTer

= from_interrupt = 0)
= cpu_status = 536870943
- delta_time = 0
= index = 8
-001||[FAMOS_STeep(

= msecs = 10)
= cpu_status = 536870943
act_thread = 0x0F003550
-002||RTOS_S1eep(
= msecs = 10)
-003||appVideoHandlerThreadFunction(

-004 [famosFinishThread()

—— |end of frame

Ll

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in

changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

= B:PERF.ListTASK = =R

.|| 28 i || Got..|| B et || C, view e[| @ it || O 15tk || @ Arm
runtime: 100%
ratio v |1% 2% 5% 10% |
99, 320% .
0.680% |+
0. 000%
0. 000%
0. 000% hd

©1989-2024 Lauterbach

OS Awareness Manual FAMOS

10

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.
| B:Trace STATistic. TASK = =R
Z2sep... || 1if Goups... || 38 Gonfig.. | = |Detailed || i Nesting| Al Chart || B Profile
tasks: 6. total: 6.428ms
range: 62147..126122
range [total min max avr count ratio¥ [1% 2% 5% 10% 20%
Cunknown) | 773.300us | 773.300us [773.300us - 0. 12.029%i
app:handler | 599.500us | 599.500us | 599.500us | 599.500us 1. 9.326%|
app:scan | 581.600us | 581.600us | 581.600us | 581.A00u L st
app:shell | 830.500us | 830.500us | 830.500us | B30.
app:ir | 566.800us | 566.800us | 566.800us | 566.| Fv BuTrace. CHART.TASK El@
famos:idle 3.077ms - 3.077ms 3. e T
J2sep... || iifGous... | 38 Gnfig... | Goto... | A Goto... | #3Find... | «In | »0+0ut| ©Ful
< 6. 000ms 8.000ms 10.000ms 12.000ms
range [y |
(unknoﬁﬁj<._
app:watchdoghy|
app:handler iy
app:scaniy|
app:shel gy

app:irky
famos :idleqs

©1989-2024 Lauterbach

OS Awareness Manual FAMOS | 11

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 12

! B:Trace, CHART. TASKSTATE = =R
&Seiup... == Gonfig... || I} Goto...|| #3Find... || #elChart || «OvIn || »0¢Out || 63 Ful
- 000ms 7.000ms 8.000ms 9.000ms 10.000ms
Fange k) 1 1 1 1 |
Camknown) & e e e
APP 2 SMET T [e oo
app:hand] er | m—S—_—_—_ - .
D T 1 e e
app :wat chdog i e—
app:scany =
famos:idleds| | | E/B:TraceSTATistic.TASKSTATE = =R
al D a 2 seup... || &8 @onfig... || A Goto.... || £ [Detaled || vl Chart
= tasks: 7. total: 44.997ms
task [total.und [total.run [total.rdy |total.wait [total.susp |
Cunknown) 0.000us | 773.300us 5.655ms 0.000us 0.000us
app:watchdog 7.100us 0.000us 0.000us 6.421ms 0.000us
app:handler | 773.300us 55.200us 0.000us 5. 600ms 0.000us
app:scan 1.373ms 22.700us 0. 000us 5.033ms 0. 000us
app:shell 1.954ms | 269.700us 0.000us 4. 204ms 0.000us
app:ir 2.785ms 36.300us 0. 000us 3.607ms 0. 000us
famos:idle 3.352ms 3.077ms 0.000us 0.000us 0.000us
< >
Function Runtime Statistics
NOTE: This feature is only available, if your debug environment is able to trace task

switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 13

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func
Trace.Chart.sYmbol /SplitTASK

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

Display function nesting

Display function runtime statistic
Display functions as call tree
Display flat runtime analysis
Display function timechart

Display flat runtime timechart

= BuTrace. STATistic. TASKTREE task tree total min max avr internalratio internalbar EI@
2 sep... || iif Gous... | 38 Gonfi... || Goto...|| =|Detsiied || §Nesting|| % Chart
funcs: 186. total: 6.428ms
range: 62147..126122
task tree total min max avr intern% 1% 2%
app:handTer [= (root) 599.500us - 599.500us - 0.000% ~
app:handler famosSaveContextAct+0xES 6. 800us - 6. 800us - 0.105% |+
app:handler = appVideoHandlerThreadFunct.. | 592.700us - 592.700us - 0.012% |+
app:handler =) VIDEO_Handler 35.500us 35.500us 35.500us 35.500us 0.015% |+
app:handler & videoHandler 34.500us 34.500us 34.500us 34.500us 0.048% |+
app:handler = RTOS_STeep 556.400us - 556.400us - 0.009% |+
app:handler —F FAMOS_Sleep 555.800us - 555.800us - 0.115% |+
app:scan = (root) 5581.600us - 5581.600us - 0. 000%
app:scan famosSaveContextAct+0xES 6. 800us - 6. 800us - 0.105% |+
app:scan = appScanThreadFunction 574.800us - 574.800us - 0.020% |+
app:scan SCAN_Task 2.500us 2.500us 2.500us 2.500us 0.038% |+
app:scan RTOS_Sleep 571.000us - 571.000us - 0.009% |+
app:shell = (root) 830.500us - 830.500us - 0. 000%
app:shell famosSaveContextAct+0xES 6. 800us - 6. 800us - 0.105% |+
app:shell = appShel1ThreadFunction 823.700us - 823.700us - 0.009% |+
app:shell = appInitialize 823.100us - 823.100us - 0.014% |+
app:shell & FAPI_AUDEC_Reboot 822.200us - 822.200us - 0.048% |+
app:ir = (root) SRR AN0L - SRR AN0L - 0000
app:ir
piir U2 | s BxTrace. CHART.TASKFUNC =N ==
app:ir TS o
piir | [@ | i Gows.. | 5 Qnfy.. | (3 Goto...| 3 Goto...| FIFnd... | O In | »Ie0s | EHFul
;aJnDS:iS}E 2 (r Oms 9.560ms 9.580ms 9.600ms 9.620ms 9.640ms
amos:idle rangeqy | | | | | |
Famos:idle |: FAMOS_STeep _g_‘ - - - - - - - - - - — A
J < famosRunScheduler H - - - — - e ——— - - -
famosGetTimerStamp HH . . . B .) . . .
FAPI_TIMER_GetTimeStamp W))) | — i)))
FAMOS_CheckThreadStacks 4K))))])))
famosRescheduleThreads HE |) . . .
famosReorderThreadInfo HH | | n) . . .
famosChangeThreadState e B 8 NN | . . .
famosSaveContextAct+0xE8 HH . . LI . .
(root) 4R ———
famosIdleThreadFunction HH I
£ b 4

©1989-2024 Lauterbach

OS Awareness Manual FAMOS

14

FAMOS Specific Menu

The menu file “famos.men” contains a menu with FAMOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called FAMOS.

/A TRACE32 for FAMOS - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov ARMI176 FAMOS Window Help
| Mo ﬂ| + ¢« ¢ | [1] | {‘_°_.| ? k°| | = {:H &% | Display Kernel
Display Threads
&% BuTASK.Kernel EI@ Display Semaphores
ke 1 stat T r
dentity: FAMOSv o (ARFRVDS) — Dy L s
kernel state: running Display Mailqueues
sched Tock: released . .
act thread: famos:idle Display Timers
tick interval: 1 ms = 1000 ticks/s
W Stack Coverage L4
< >
B: :|TASK.
Kernel Thread | Sermaphore | MaiBox | MaiQueue TIMer pravious
NSR21580604 ||av_demo-glfen famos:idle stopped MIX |UP
. The Display menu items launch the kernel resource display windows.
. The Stack Coverage submenu starts and resets the FAMOS specific stack coverage and

provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

J The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 15

FAMOS Commands

TASK.Kernel Display kernel state

Format: TASK.Kernel

Displays information about the current state of the kernel.

o B:TASK Kernel = =R
kernel state |
Tdentity: FAMOS.vZ. 1. (ARM/RVDS) ~
kernel state: running

sched Tock: released

act thread: famos:idle

tick interval: 1 ms = 1000 ticks/s

< >

TASK.MailBox Display mailboxes

Format: TASK.MailBox [<mailbox>]

Displays the mailbox table of FAMOS or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown.
Specify a mailbox magic or name to display detailed information on that mailbox.

“magic” is a unique ID, used by the OS Awareness to identify a specific mailbox (address of the mailbox
structure).

The field “magic” is mouse sensitive. Right-click on it to get a local menu. Double-clicking on it opens
appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 16

TASK.MailQueues Display mailqueues

Format: TASK.MailQueue [<mailqueue>]

Displays the mailqueue table of FAMOS or detailed information about one specific mailqueue.

Without any arguments, a table with all created mailqueues will be shown.
Specify a mailqueue magic or name to display detailed information on that mailqueue.

o8 B TASK.MailQueue EI@
magic name act walt |[bytes [num |
OF0D03Z80 [mou#00l [0, 7 0. [256. [128. | A

v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific mailqueue (address of the
mailqueue structure).

The field “magic” is mouse sensitive. Right-click on it to get a local menu. Double-clicking on it opens
appropriate windows.

TASK.Semaphore Display semaphores

Format: TASK.Semaphore [<semaphore>]

Displays the semaphore table of FAMOS or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown.
Specify a semaphore magic or name to display detailed information on that semaphore.

oh B:TASK.5emaphore EI@

name act walt [1nit |owner |
sem#037 ‘ 1. 0. 1. ‘famos:'ld'le ~

sem#038 1. |[famos:idle
sem#039
sem#040
sem#04l
sem#42

0. |[famos:idle
1. |[famos:idle
0. |[famos:idle
1. |[famos:idle v

Hoook
(=] o=l =]=]

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore structure).

The field “magic” is mouse sensitive. Right-click on it to get a local menu. Double-clicking on it opens
appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 17

TASK.Thread

Display threads

Format:

TASK.Thread [<thread>]

Displays the thread table of FAMOS or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread name or magic number to display detailed information on that thread.

“magic” is a unique ID used by the OS Awareness to identify a specific thread (address of the thread

structure).

% B:TASK.Thread = =R
magic priority [name state event ticks [stack [activated |
21AADLGD™ 0.0 Tamos:1dTe Running none 0. 1. ~
OF0035F0 64.5 app:ir DelayWait |none 101. 3% 1.
OF0034B0 64.5 app:shell DelaywWait 101. 2% 1.
OF003730 96.7 app:scan DelayWait |none 51. 3% 1.
0F003550 96.7 app:handler DelayWait |none 11. 3% 1.
0F003690 | 127.7 app:watchdog DelayWait |none 1001. 9% 1.
0F003370 | 241.12 |famos:print Suspended |none 0. 2% 0.
OF0032D0 242.11 famos :report EventWait |sem#041 |[-1. 2% (0.
OF002A60 | 243.11 bsr:intla Suspended |none 0. 3% |0,
OF0030A0 | 243.12 bsr:intld Suspended |none 0. 1% |0.
0F003000 | 243.12 bsr:int29 Suspended |none 0. 1% |0.
OFO02F60 | 243.12 bsr:intls Suspended |none 0. 2% |0.
OFQ0ZECD 243.12 lgsr‘:'[ntZS
OFQO0ZEZD 243.12 sriint2? Lo
OF002DB0 | 243.12 |bsriint26 ois B:TASK Thread 0:F003200 E=BEEE &
OFO02CED | 243.12 |bsr:int2s l@g'lc priority [name state event ticks [stack [activated |
OF002C40 | 243.12 |bsr:int24 OFD03ZD0 | 242.11 [Famos:report |[EventwWait [sem#04l [-1. | 2% 0. ~
OFO0ZBAD 243.12 bsr:int20 i
OF002B00 | 243.12 |bsr:int06 entry argument data function name
< Z1BBEDGEC 00001388 00000000 TamosReportlhreadrunction

last error

FAPI_OK

stack buffer entries sp peak top peak bottom

22130758 00000800 221326A0 22132700 22132750
v
£ >

The fields “magic” and “entry” are mouse sensitive. Right-click on them to get a local menu. Double-clicking
on them opens appropriate windows.

©1989-2024 Lauterbach

OS Awareness Manual FAMOS

18

TASK.TIMer Display timers

Format: TASK.TIMer [<timer>]

Displays the timer table of FAMOS or detailed information about one specific timer.

Without any arguments, a table with all created timers will be shown.
Specify a timer magic or name to display detailed information on that timer.

&b B TASK.TIMer [E=N Eo
magic name interval |state mode sema |
OF003238 [tmr#001 0. |stopped [continuous [sem#04l A

v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the timer structure).
The field “magic” is mouse sensitive. Right-click on it to get a local menu. Double-clicking on it opens
appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 19

FAMOS PRACTICE Functions

There are special definitions for FAMOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual FAMOS | 20

	OS Awareness Manual FAMOS
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in FAMOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	FAMOS Specific Menu

	FAMOS Commands
	TASK.Kernel Display kernel state
	TASK.MailBox Display mailboxes
	TASK.MailQueues Display mailqueues
	TASK.Semaphore Display semaphores
	TASK.Thread Display threads
	TASK.TIMer Display timers

	FAMOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

