
MANUAL

OS Awareness Manual CMX

OS Awareness Manual CMX

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual CMX .. 1

 Overview .. 3

 Brief Overview of Documents for New Users 4

 Supported Versions 4

 Configuration ... 5

 Quick Configuration Guide 5

 Hooks & Internals in CMX 5

 Features ... 6

 CMXBug Terminal Emulation 6

 Display of Kernel Resources 6

 Task Stack Coverage 6

 Task-Related Breakpoints 7

 Dynamic Task Performance Measurement 8

 Task Runtime Statistics 8

 Task State Analysis 9

 Function Runtime Statistics 10

 CMX specific Menu 12

 CMX Commands .. 13

 TASK.DCyclic Display cyclic timers 13

 TASK.DMailbox Display mailboxes 13

 TASK.DQueue Display queues 14

 TASK.DRes Display resources 14

 TASK.DSema Display semaphores 15

 TASK.DTask Display tasks 15

 CMX PRACTICE Functions ... 16

 TASK.CONFIG() OS Awareness configuration information 16

 TASK.STACK() Stack information of a task 16
OS Awareness Manual CMX | 2©1989-2024 Lauterbach

OS Awareness Manual CMX

Version 06-Jun-2024

Overview

The OS Awareness for CMX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

NOTE: This manual contains a TRACE32 specific CMX-RTX awareness that is
outdated and no longer maintained. Instead, CMX supports the OSEK-
ORTI standard to provide OS Awareness in debuggers.
Please see http://www.cmx.com/cmxkaware.htm.
In TRACE32, please use the ORTI awareness for CMX-RTX. See the
document in the TRACE32 installation folder, pdf/rtos_orti.pdf.
OS Awareness Manual CMX | 3©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently CMX is supported for the following versions:

• CMX-RTX 4.0 on Infineon 8051, C16x and Zilog Z180/64180

• CMX-RTX 5.3 on Infineon C16x, Renesas H8/300H, H8, SH and NEC V850

• CMX-RTXS 1.0 on Infineon C166/C167
OS Awareness Manual CMX | 4©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “cmxrtx.t32” (directory
“~~/demo/<processor>/kernel/cmx_rtx”). It contains all necessary extensions.

Automatic configuration tries to locate the CMX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation memory to the address space of all used system tables.

For system resource display and analyzer functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible.
Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will be
searched and configured automatically. For a fully automatic configuration omit all arguments:

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Run the demo script (~~/demo/<processor>/kernel/cmx_rtx/cmx.cmm). Start the demo with “do
cmx” and “go”. The result should be a list of tasks, which continuously change their state.

2. Make a copy of the “cmx.cmm” PRACTICE script file. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the analyzer functions.

Hooks & Internals in CMX

No hooks are used in the kernel.
For detecting the running task, the variable 'activetcb' is used.

Format: TASK.CONFIG cmxrtx
OS Awareness Manual CMX | 5©1989-2024 Lauterbach

Features

The OS Awareness for CMX supports the following features.

CMXBug Terminal Emulation

The terminal emulation window can be used to communicate with the target resident CMX debugger, called
CMXBug. The communication via two memory cells requires no external interface. See the TERM
command group for a description of the terminal emulation. On request we can provide you with the source
code for the target interface routine.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
CMX components can be displayed:

For a description of the commands, refer to chapter “CMX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

TASK.DCyclic Cyclic timers

TASK.DMailbox Mailboxes

TASK.DQueue Queues

TASK.DRes Resources

TASK.DSema Semaphores

TASK.DTask Tasks
OS Awareness Manual CMX | 6©1989-2024 Lauterbach

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual CMX | 7©1989-2024 Lauterbach

you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual CMX | 8©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual CMX | 9©1989-2024 Lauterbach

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData
OS Awareness Manual CMX | 10©1989-2024 Lauterbach

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual CMX | 11©1989-2024 Lauterbach

CMX specific Menu

The menu file “cmx.men” contains a menu with CMX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called CMX.

• The CMXBug Terminal menu item (if available) brings up a terminal emulation window, which
communicates with the preconfigured CMXBug debugger.

• Break to CMXBug activates CMXBug.

• The Display menu item launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the CMX specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches and defaults.

• The Perf menu contains the additional submenus for task runtime statistics, task-related function
runtime statistics and statistics on task states.
OS Awareness Manual CMX | 12©1989-2024 Lauterbach

CMX Commands

TASK.DCyclic Display cyclic timers

Displays information about all cyclic timers.

The display is similar to the CMXBug 'CYCLIC TIMER' dump.

For an explanation of the items, see the CMXBug manual, CYCLIC TIMERS function.

A corresponding task is displayed with its name, if available. Otherwise the task ID is displayed.

TASK.DMailbox Display mailboxes

Displays a table with all CMX mailboxes or one specific mailbox in detail.

The display of this table is similar to the CMXBug 'MAILBOX' dump

For an explanation of the items, see the CMXBug manual, MAILBOXES function.

The task are displayed with their names, if available. Otherwise the task IDs are displayed.

The 'magic' field is mouse sensitive, a double click on it will give you detailed information about this specific
mailbox.

Format: TASK.DCyclic

Format: TASK.DMailbox <mailbox>
OS Awareness Manual CMX | 13©1989-2024 Lauterbach

For a detailed information you can also specify a magic of a mailbox as argument to this function. You will get
a list with all messages in this mailbox.

The message address is mouse sensitive. Double clicking on it shows a memory dump of this address.

TASK.DQueue Display queues

Displays a table with all CMX queues.

The display is similar to the CMXBug 'QUEUE' dump.

For an explanation of the items, see the CMXBug manual, QUEUE function.

The 'address' field is mouse sensitive. Double clicking on it shows you a 'dump' window of this address.

TASK.DRes Display resources

Displays all resources specified in CMX.

The display is similar to the CMXBug 'RESOURCE' dump

The task are displayed with their names, if available. Otherwise the task IDs are displayed.

A maximum number of five waiting tasks will be shown. An ending 'more…' will indicate that there are more
than five waiting tasks.

Format: TASK.DQueue

Format: TASK.DRes
OS Awareness Manual CMX | 14©1989-2024 Lauterbach

TASK.DSema Display semaphores

Displays a table with all CMX semaphores.

For an explanation of the items, see the CMXBug manual, SEMAPHORE function.

TASK.DTask Display tasks

Displays the task table of MQX.

The display is similar to the CMXBug 'TASK' dump.

The magic specifies the value, with which the OS Awareness identifies a specific task.
The task name is only displayed, if the task was named with the 'cxtname' function.
The stack column shows the stack bottom (high) address; this field is mouse sensitive.
For an explanation of the other items, see the CMXBug manual, TASKS function.

The fields “magic”, “addr” and “stack” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

Format: TASK.DSema

Format: TASK.DTask
OS Awareness Manual CMX | 15©1989-2024 Lauterbach

CMX PRACTICE Functions

There are special definitions for CMX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.STACK() Stack information of a task

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.STACK(bottom | pointer, <task_magic>)

<task_magic> Parameter Type: Decimal or hex or binary value.
Magic number of the task to query the information.

bottom Parameter Type: String (without quotation marks).
Returns the stack bottom (upper) address.

pointer Parameter Type: String (without quotation marks).
Returns the stack pointer of the task.
OS Awareness Manual CMX | 16©1989-2024 Lauterbach

	OS Awareness Manual CMX
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in CMX

	Features
	CMXBug Terminal Emulation
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	CMX specific Menu

	CMX Commands
	TASK.DCyclic Display cyclic timers
	TASK.DMailbox Display mailboxes
	TASK.DQueue Display queues
	TASK.DRes Display resources
	TASK.DSema Display semaphores
	TASK.DTask Display tasks

	CMX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.STACK() Stack information of a task

