LAUTERBACH A

OS Awareness Manual
DSP/BIOS

OS Awareness Manual DSP/BIOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual DSP/BIOSoooioccoirirrsccrrresssmesssssssmmessesssmms s eessssmssssssssmmessesssammsssens 1
0 Y= = 3
Brief Overview of Documents for New Users 4
Supported Versions 4
ConfiguIration ... 5
Quick Configuration Guide 6
Hooks & Internals in DSP/BIOS 6
== T == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Dynamic Task Performance Measurement 9
DSP/BIOS specific Menu 10
DSP/BIOS COMMANUScooiieiieecerrrassmcrrrssssammeressssmessessssnmsssssssammesessssammsssasssmenssssssnmnssesssanmnnnens 11
TASK.KerNeL Display kernel information 11
TASK.LOG.DISable Disable system log events 11
TASK.LOG.ENable Enable system log events 11
TASK.LOG.View Display logs 12
TASK.MailBoX Display mailboxes 13
TASK.MEMory Display memory segments 13
TASK.SEMaphore Display semaphores 14
TASK.SWI Display SWIs 14
TASK.TaSK Display tasks 15
DSP/BIOS PRACTICE FUNCHONS ...cccceeiiiiiieiirinssessnsssssss s s sssssmss s sssms s s ssmss s s smms s s sssssmmnnnas 16

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 2

OS Awareness Manual DSP/BIOS

Version 06-Jun-2024
A TRACE32 for DSP/BIOS = =R
File Edit View Var Break Run CPU Misc Trace Perf Cov DSP/BIOS Window Help
M LI e[rn|E2 0 50dedSs @ 12
a5 == | = || & = || = | = |
magic_|name state prio timeout || Imagic_|name active laddress [Tength [type segnum i
DAFO [TSK_1dTe [ready 0. 0. ~ | [20CE [LOG_system |yes [4000 2000 [circuTar [OO1E ”
0B50 |TSK1 running 1. 0.
OBBD |TSKZ ready 1. 0. lo
0C10 [TSK3 readﬁ 1. 0. se it
0C70 |TsK4 blocked 2. 0. 0002 TSK: ready TSk _idle (0x0AF0)
" v | 0004 TSK: ready TSKL (0x0B50)
o o= = 0006 TSK: ready TSK2 (0x0BEO)
S = 0008 TSK: ready TSK3 (0x0C10)
magic_|name state prio timeout (| [000A TSK: ready TSK4 (0x0C70)
0C70 [Tsk4 [bTocked [2. 0. | ~ | I000C SWI: begin (0x028D) -> _KNL_run
w | DOOE TSK: running TSK4 (0x0C70) v
< > < EY
i o | = @?. B:TASK.5EMaphore sem EI@
o'a = [0 magic_|name count [task pending |
magic | name state prio mailbox fxn handle function 21CC [sem [0, [1. ”
0248 [PRD_swi inactive | 2. [0000 00009080 [PRD_F_sw1 (0x0, Ox0)
0274 |KNL_swi inactive | 1. |0000 0000A580 |_KNL_run (0x0, 0x0) nding tasks:
" magic name
- 0C70 TsK4
=r w
name [low high sp % [lowest spare max |0 < >
TSK_idTe [00000CCE 0000I0CE (00001060 10% 00001028 00000360 15% |==
TSK1 |000010CE 000014CE (000014C0 0% |00001464 0000039C 9Y |
TSK2 |000014C8& 000018CE (00001860 10% (00001864 0000039C 9Y |
TSK3 |000018C8 00001CCE (0000 10% (00001C64 0000039C 9Y |
TSK4 |00001CCE 000020C8 (00002040 13% |00002048 00000380 12% |
v
< >
B::
components trace Data Var List FPERF SYStem Step Go other previous
P:00008544 \\slice\slice\task TSK1 stopped at breakpoint HLL UP

The OS Awareness for DSP/BIOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands.

©1989-2024 Lauterbach

OS Awareness Manual DSP/BIOS |

3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently DSP/BIOS is supported for the following versions:
J Code Composer Studio v2 on TMS320C55xx and TMS320C64xx DSP.

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “bios.t32” (directory
“~~/demo/<processor>/kernel/bios”). It contains all necessary extensions.

Automatic configuration tries to locate the DSP/BIOS internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

For system resource display, you can do an automatic configuration of the OS Awareness. For this purpose
it is necessary that all system internal symbols are loaded and accessible at any time, the OS Awareness is
used. Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will
be searched and configured automatically. For a fully automatic configuration omit all arguments:

Format: TASK.CONFIG bios

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/bios/bios.cmm”.

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for DSP/BIOS with your application, follow the
following roadmap:

1. Copy the files “bios.t32” and “bios.men” to your project directory
(from TRACE32 directory “~~/demo/<processor>/kernel/bios”).

2. Start the TRACES32 Debugger.

3. Load your application as normal.

4. Execute the command “TASK.CONFIG bios”
(See “Configuration”).

5. Execute the command “MENU . ReProgram bios”
(See “DSP/BIOS specific Menu”).

6. Start your application.
Now you can access the DSP/BIOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in DSP/BIOS

No hooks are used in the kernel.
For detecting the current running task, the kernel symbol “KNL_curtask” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Used symbols:
KNL_curtask, OBJ_table, KNL_swi, MEM_memtab

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 6

Features

The OS Awareness for DSP/BIOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
DSP/BIOS components can be displayed:

TASK.KerNeL Kernel information
TASK.TaSK Tasks
TASK.MailBoX Mailboxes
TASK.SEMaphore Semaphores
TASK.MEMory Memory segments
TASK.SWI SWis

For a description of the commands, refer to chapter “DSP/BIOS Commands”.

If your target CPU provides memory access while running (SYStem.MemAccess Enable), these resources
can be displayed “On The Fly”, i.e. while the target application is running, without any intrusion to the
application.

If your target doesn’t support this memory access, the information will only be displayed if the target
application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 7

o BiTASK STacK = =R

name | low high % [lowest spare max [0 10 20 |

TSK_idle [DODDOCCE 000010CS |0 10% |00001064 Q000039C 95 | — A
TSK1 (000010CE 000014C3 |0 10% |00001464 0000039C G5 | —
T5K2 (000014CE 000018CE |0 10% |00001864 0000039C G5 | —
T5K3 (000018CE 00001CCE |0 50 10% |00001C64 0000039C G5 | —
TSE4 (00001CCE 000020C8 |0 60 10% 00002064 0000039C G5 | —

(other)
v
= >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON
Break.CONFIG.MatchASID ON
TASK.List.tasks

Enables the comparison to the whole Context ID register.
Enables the comparison to the ASID part only.

If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

©1989-2024 Lauterbach

OS Awareness Manual DSP/BIOS | 8

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 9

DSP/BIOS specific Menu

The menu file “bios.men” contains a menu with DSP/BIOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called DSP/BIOS.

Cov | DSP/BIOS Window Help

kR Display Kernel

o I
Display Mailboxes
Display Semaphores
Display Memory

Display SWis
Log/Trace... 3
Stack Coverage L4
. The Display menu items launch the kernel resource display windows.
. The Log/Trace submenu allows to view the DSP/BIOS log and to enable/disable individual
events.
J The Stack Coverage submenu starts and resets the DSP/BIOS specific stack coverage, and

provide an easy way to add or remove tasks from the stack coverage window.

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 10

DSP/BIOS Commands

TASK.KerNeL

Display kernel information

Format:

TASK.KerNeL

Displays internal information about the current state of the kernel.
The display is similar to the “KNL” tab of the CCS Debugger.

% BuTASK Kerhel

(o8)

kernel information

Kerne 1a

|
1Zed: yes

. . Ll
application
0

start size peak
2920 0400 2CBS8

TASK.LOG.DISable

Disable system log events

Format:

TASK.LOG.DISable [all | SWIlog | PRDlog | CLKlog | TSKlog | SWIAcc |
PRDAcc | PIPAcc | HWIAcc | TSKAcc | User0 | User1 | User2]

Disables tracing of the specified event in the DSP/BIOS system log.

TASK.LOG.ENable

Enable system log events

Format:

TASK.LOG.ENable [all | SWIlog | PRDlog | CLKlog | TSKlog | SWIAcc |
PRDAcc | PIPAcc | HWIAcc | TSKAcc | User0 | User1 | User2]

Enables tracing of the specified event in the DSP/BIOS system log.

©1989-2024 Lauterbach

OS Awareness Manual DSP/BIOS | 11

TASK.LOG.View Display logs

Format: TASK.LOG.View [</og>]

Displays a table with all created Logs of DSP/BIOS.
The display is similar to the “SWI” tab of the CCS Debugger.

Without any arguments, a table with all created logs will be shown.
Specify a log name or magic number to display the content of this log.

& B:TASK.LOG.View = =R

magic_|name active laddress [Tength [type segnum

20C8 [LOG_system |yes |4000 |2000 |c1rcu1ar |0018 ~

20E0 [trace = 2 —— <
&% BrTASK.LOG View "trace” = =R

< agic_ |[name active laddress [Tength [type segnum
Z0ED [trace lyes [3000 1000 [circuTar [OOOE ~
logged events:

s egnum t

0002 Slice example——==—=Ti

000¢ Ezt ‘i_hgq o B:TASK.LOG.View "LOG_system” o[B]
0008 Task 1: ti{ magic |name active [address [length [type seqnum |
000A Task 1: ti| [20C8 |LOG_system |yes [4000 2000 [circuTar [OO1E ~
000C Task 1: ti
000E Task 2: ti
< 0002 : ready TSK_idle (0x0AF0)
0004 : ready TSKL (0x0B50)
0006 : ready TSK2 (0x0BEO)
0008 : ready TSK3 (0x0C10)
000A : ready TSK4 (0x0C70)
000C : begin (0x028D) -> _KNL_run (0x0000A580)
000E : running TSK4 (0x0C70)
0010 : end (0x028D) -> _KNL_run (0x0000A580)
0012 : begin (0x028D) -> _KNL_run (0x0000A580)
0014 : blocked TSK4 (0x0C70) on sem (0x21CC)
0016 : running TSKL (0x0B50)
0018 : end (0x028D) -> _KNL_run (0x0000A580)
W
< >

“magic” (= handle) is a unique ID, used by the OS Awareness to identify a specific log (address of the log
object).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 12

TASK.MailBoX Display mailboxes

Format: TASK.MailBoX [<mailbox>]

Displays the mailbox table of DSP/BIOS or detailed information about one specific mailbox.
The display is similar to the “MBX” tab of the CCS Debugger.

Without any arguments, a table with all created mailboxes will be shown.
Specify a mailbox name or magic number to display detailed information on that mailbox.

o B:TASK.MailBoX = =R
magic |name msgs max |s1ze pending posting segment
21CC [mbx [1.]10.| 4.] 1. J00. | oO. -

v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the mailbox
object).

The fields “magic” and “name” are mouse sensitive. Double-clicking on them opens appropriate windows.

TASK.MEMory Display memory segments

Format: TASK.MEMory

Displays a table with all created memory segments of DSP/BIOS.

The display is similar to the “SEM” tab of the CCS Debugger.
&% B:TASK.MEMory =N SR

magic_|name max_cont free |size [start end |used [segment i
0508 |_MEM_memtab |0000 [0000 [8000 |cDIC |4DIC [8000 J0001 | ~

W
<

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS |

13

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore [<semaphore>]

Displays the semaphore table of DSP/BIOS or detailed information about one specific semaphore.
The display is similar to the “SEM” tab of the CCS Debugger.

Without any arguments, a table with all created semaphores will be shown.
Specify a semaphore name or magic number to display detailed information on that port.

@?. B:TASK.5EMaphore "sem" EI@
magic_|name count [task pending
21CC [sem 0. [1. ”
pending tasks:
magic name
0C70 TSk4
W
< >
TASK.SWI Display SWis
Format: TASK.SWI

Displays a table with all created SWIs of DSP/BIOS.

The display is similar to the “SWI” tab of the CCS Debugger.

&b BTASK.SWI oo s
magic_|name state prio mailbox [fxn handle [function
0248 PRD_sw1 1nactive 2. |0000 00009D80 PRD_F_sw1 (0x0, O0x0) &
0274 |KNL_swi inactive | 1. |0000 0000A580 |_KNL_run (0x0, 0x0)

W
< >

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 14

TASK.TaSK

Display tasks

Format:

TASK.TaSK [<task>]

Displays the task table of DSP/BIOS or detailed information about one specific task.

The display is similar to the “TSK” tab of the CCS Debugger.

Without any arguments, a table with all created tasks will be shown.
Specify a task name or magic number to display detailed information on that task.

o BuTASK.TaSK = =R
name state prio [timeout
TSK_idle [ready 0. 0. ”
TSK1 running 1. 0.

TSK2 ready 1. 0.
TSK3 read 1. 0.
TSK4 b]ocﬁed 2.

(o] 8)

prio [timeout |
2. 0.

% B:TASK.TaSK "TSK4"

state

magic [name
0C70 [TSK4 [bTocked [[A
user stack: start size peak
1CC& 0400 2048
W
< >

“magic” (= handle) is a unique ID, used by the OS Awareness to identify a specific task (address of the task

object).

The fields “magic” and “name” are mouse sensitive, double clicking on them opens appropriate windows.

Right clicking on them will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual DSP/BIOS

15

DSP/BIOS PRACTICE Functions

Currently, there are no special definitions for DSP/BIOS specific PRACTICE functions.

See also general TASK functions.

©1989-2024 Lauterbach OS Awareness Manual DSP/BIOS | 16

	OS Awareness Manual DSP/BIOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in DSP/BIOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	DSP/BIOS specific Menu

	DSP/BIOS Commands
	TASK.KerNeL Display kernel information
	TASK.LOG.DISable Disable system log events
	TASK.LOG.ENable Enable system log events
	TASK.LOG.View Display logs
	TASK.MailBoX Display mailboxes
	TASK.MEMory Display memory segments
	TASK.SEMaphore Display semaphores
	TASK.SWI Display SWIs
	TASK.TaSK Display tasks

	DSP/BIOS PRACTICE Functions

