
MANUAL

OS Awareness Manual AMX

OS Awareness Manual AMX

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual AMX .. 1

 History .. 4

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Manual Configuration 6

 Automatic Configuration 7

 Quick Configuration Guide 7

 Hooks & Internals of AMX 8

 Features ... 9

 Display of Kernel Resources 9

 Task Stack Coverage 9

 Task-Related Breakpoints 10

 Task Context Display 11

 Dynamic Task Performance Measurement 12

 Task Runtime Statistics 13

 Task State Analysis 14

 Function Runtime Statistics 15

 AMX specific Menu 17

 AMX Commands .. 18

 TASK.DBPool Display buffer pools 18

 TASK.DEVent Display event groups 18

 TASK.DEXChange Display message exchanges 18

 TASK.DMailBoX Display mailboxes 19

 TASK.DMPool Display memory pools 20

 TASK.DSEMaphore Display semaphores 21

 TASK.DSYStem Display system state 21

 TASK.DTask Display tasks 22

 TASK.DTIMer Display timers 23

 AMX PRACTICE Functions ... 24
OS Awareness Manual AMX | 2©1989-2024 Lauterbach

 TASK.CONFIG() OS Awareness configuration information 24
OS Awareness Manual AMX | 3©1989-2024 Lauterbach

OS Awareness Manual AMX

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for AMX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual AMX | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently AMX is supported for:

• AMX Version 3.04a on the Freescale Semiconductor 68332

• AMX on the ARM 7

• AMX on Freescale Semiconductor PowerPC
OS Awareness Manual AMX | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “amx.t32” (directory
“~~/demo/<processor>/kernel/amx”). It contains all necessary extensions.

Automatic configuration tries to locate the AMX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

Manual configuration for the OS Awareness for AMX can be used to explicitly define some memory
locations. It is recommended to use automatic configuration.

See Hooks & Internals for details on the used symbols.

Format: TASK.CONFIG amx.t32 <magic_address> <args>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at “cj_kdata+14”.

<args> The configuration requires one additional argument that specifies an AMX
internal pointer. Give the label “cj_kdatp”.

; manual configuration for AMX support
task.config amx.t32 cj_kdata+14 cj_kdatp
OS Awareness Manual AMX | 6©1989-2024 Lauterbach

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual Configura-
tion).

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for AMX with your application, follow the following
roadmap:

1. Copy the files “amx.t32” and “amx.men” to your project directory
(from TRACE32 directory “~~/demo/<processor>/kernel/amx”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command “TASK.CONFIG ~~/demo/<cpu>/kernel/amx/amx.t32”
(See “Automatic Configuration”).

5. Execute the command “MENU.ReProgram ~~/demo/<cpu>/kernel/amx.men”
(See “AMX Specific Menu”).

6. Start your application.

Now you can access the AMX extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Format: TASK.CONFIG amx.t32

; fully automatic configuration for AMX support
task.config amx
OS Awareness Manual AMX | 7©1989-2024 Lauterbach

Hooks & Internals of AMX

All kernel resources are accessed through the kernel data pointer “cj_kdatp”.
The magic location is calculated from “(*c_kdatp+0x14)”.
For detecting a message exchanger task, the entry point of that task is compared to the message exchanger
task entry point “cj_kpmxtask”). If this symbol is not available, the message exchanger tasks won’t be
detected.
In the statistics evaluations, the kernel state is derived from the location at “(*cj_kdatp)”.
OS Awareness Manual AMX | 8©1989-2024 Lauterbach

Features

The OS Awareness for AMX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following AMX
components can be displayed:

For a description of the commands, refer to chapter “AMX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.DSYStem system state

TASK.DTask Tasks

TASK.DTIMer Timer

TASK.DMailBoX Mailboxes

TASK.DESChange Message exchanges

TASK.DSEMaphor Semaphores

TASK.DEVent Event groups

TASK.DBPool Buffer pools

TASK.DMPool Memory pools
OS Awareness Manual AMX | 9©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual AMX | 10©1989-2024 Lauterbach

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual AMX | 11©1989-2024 Lauterbach

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).
OS Awareness Manual AMX | 12©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual AMX | 13©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual AMX | 14©1989-2024 Lauterbach

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32
OS Awareness Manual AMX | 15©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual AMX | 16©1989-2024 Lauterbach

AMX specific Menu

The menu file “amx.men” contains a menu with AMX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called AMX.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the AMX specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace -> List submenu is changed. You can additionally choose if you want a trace list
window to show only task switches (if any) or task switches and defaults.

• The Perf menu contains the additional submenus for task runtime statistics, task-related function
runtime statistics and statistics on task states. For the function runtime statistics, a PRACTICE
script file called “men_ptfp.cmm” is used. This script file must be adapted to your application.
OS Awareness Manual AMX | 17©1989-2024 Lauterbach

AMX Commands

TASK.DBPool Display buffer pools

Displays a table with all created AMX buffer pools.

TASK.DEVent Display event groups

Displays a table with all created AMX event groups.

TASK.DEXChange Display message exchanges

Displays a table with all created AMX message exchanges.

Format: TASK.DBPool

Format: TASK.DEVent

Format: TASK.DEXChange
OS Awareness Manual AMX | 18©1989-2024 Lauterbach

TASK.DMailBoX Display mailboxes

Displays a table with all created AMX mailboxes.

Format: TASK.DMailBoX
OS Awareness Manual AMX | 19©1989-2024 Lauterbach

TASK.DMPool Display memory pools

Displays a table with all created AMX memory pools.

Format: TASK.DMPool
OS Awareness Manual AMX | 20©1989-2024 Lauterbach

TASK.DSEMaphore Display semaphores

Displays a table with all created AMX semaphores.

TASK.DSYStem Display system state

Displays a system state summary for the current AMX system state.
.

Format: TASK.DSEMaphore

Format: TASK.DSYStem
OS Awareness Manual AMX | 21©1989-2024 Lauterbach

TASK.DTask Display tasks

Displays a table with all AMX tasks or one task in detail.

Without any parameters, a summary table of all created tasks is shown.
.

The magic number is a unique ID to the OS Awareness to specify a specific task. It is not equal to the AMX
task ID. A double click on the magic number or on the tag opens the detailed task window.

If you specify a task magic number, a task ID or a task tag as parameter, this task is shown in detailed.
Enclose a task tag in quotation marks. If a numerical parameter is detected to be a AMX task ID, this one will
be used. All other numerical parameters are supposed to be a task magic number and are not checked for
validation.

.

Format: TASK.DispTask [<task>]

<task>: <task_magic> | <task_id> | <task_name>
OS Awareness Manual AMX | 22©1989-2024 Lauterbach

TASK.DTIMer Display timers

Displays a table showing all defined AMX timers.

Double click on the parameter to see a dump window on this address. Double click on the procedure to see
a list window on this address.

Format: TASK.DTIMer
OS Awareness Manual AMX | 23©1989-2024 Lauterbach

AMX PRACTICE Functions

There are special definitions for AMX specific PRACTICE functions.

See also general TASK functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize | kdata)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

kdata Parameter Type: String (without quotation marks).
Returns the address of the kernel data area.
OS Awareness Manual AMX | 24©1989-2024 Lauterbach

	OS Awareness Manual AMX
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals of AMX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	AMX specific Menu

	AMX Commands
	TASK.DBPool Display buffer pools
	TASK.DEVent Display event groups
	TASK.DEXChange Display message exchanges
	TASK.DMailBoX Display mailboxes
	TASK.DMPool Display memory pools
	TASK.DSEMaphore Display semaphores
	TASK.DSYStem Display system state
	TASK.DTask Display tasks
	TASK.DTIMer Display timers

	AMX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

