
MANUAL

PowerProbe Trigger Unit
Programming Guide

PowerProbe Trigger Unit Programming Guide

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 PowerProbe ... 

 PowerProbe Trigger Unit Programming Guide ... 1

 PowerProbe Programming ... 4

 Program Structure ... 5

 Sample Trigger Program 6

 Declarations ... 7

 Data Selectors 7

 Event Counters 8

 Flags 8

 Time Counters 8

 Synchronous Counters 9

 Global Instructions .. 10

 Local Instructions ... 11

 Output Command Table 12

 Events ... 13

 Counter Events 13

 Data Selectors 13

 Flags 14

 Time Events 14

 Other Events 14

 Conditions .. 15

 Levels ... 17

 CONTinue 17

 GOTO 17

 TRIGGER, BREAK 18

 Programming Examples ... 19

 Selective Recording 19

 Stopping the PowerProbe 21

 Stimulating Output Lines 21

 Using the Internal Trigger Bus 21

 Time and Event Counters 23
PowerProbe Trigger Unit Programming Guide | 2©1989-2024 Lauterbach

 Using Flags 24

 Switching Trigger Levels 25

 Declaration Reference .. 26

 SELECTOR Data selectors 26

 EVENTCOUNTER Event counter 27

 EXTERNSYNCCOUNTER Synchronous counter 29

 FLAGS Flags 30

 TIMECOUNTER Time counter 30

 Instruction Reference ... 33

 BREAK PowerProbe stop 33

 Bus Bus trigger 33

 CONTinue Sequential level switching 34

 Counter Counter control 35

 Flag Flag control 38

 GOTO Level switching 39

 Out Output control 39

 Sample Recording control 40

 Trigger Trigger control 42

 PowerProbe Programming Language Syntax .. 44
PowerProbe Trigger Unit Programming Guide | 3©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide

Version 06-Jun-2024

PowerProbe Programming

The trigger unit of the PowerProbe is a powerful tool to find complex errors or to sample selective data for
advanced measurements. The trigger unit is programmed by an ASCII definition file. The command
Probe.Program is used to create a new trigger program. Writing the program is supported by softkeys and
online help. The command Probe.ReProgram can be used to load ready-to-run programs in the trigger unit.
The commands in this manual refer to the trigger program, unless otherwise mentioned.

 Hardware structure of trigger unit

Counter Counter Counter

Zero Counter Control

9th Mux Input

10th Mux Input

Trigger RAM

Flag 2

Flag 1

Control
Trace

Level

Flag
Control

Select

Select

Select

Select

4 Multiplexer

16 Inputs
PowerProbe Trigger Unit Programming Guide | 4©1989-2024 Lauterbach

Program Structure

A trigger program for the PowerProbe consists of the following parts:

Comments Are allowed anywhere in the trigger program. They begin with a "//" or “;“.

Declarations Define input events which need to be declared. Such events are flags,
data patterns or counters (see also declarations).

Instructions Instructions control the action taken by the trigger unit. Usually they are
only executed when a defined condition becomes true. A condition is the
combination of internal or external events of the PowerProbe. An event is
the occurrence of a specific internal trigger bus signal or a predefined
data pattern.

Levels The begin of a level is defined by the name of the level followed by a
colon ":". The end of a level is the begin of the next level or the end of the
trigger program. All commands within a level and the global commands
are valid while the level is active. Commands outside the level are not
active. Only one level can be active at any time. Usually the begin of a
trigger program is the first written level or the level with the name
"START:".

Global instructions They are located between declarations and the first label, i.e. the first
local instruction. They are valid in all used levels. A trigger program may
only consists of global instructions.

Local instructions Valid within one trigger level. All local instructions defined within a level
and all global instructions are checked simultaneously.
PowerProbe Trigger Unit Programming Guide | 5©1989-2024 Lauterbach

Sample Trigger Program

The following sample trigger programs gives an overview about the capabilities of the trigger unit. The
program is entered in a window generated by the Probe.Program command.

;----- declarations -----

EVENTCOUNTER max 20. event counter declaration

;----- global statements -----

Sample.Enable sample everything

;----- local statements -----

start: label

Counter.Increment max IF strobe counter increment

GOTO end IF max level control

end:

Trigger

;----- end of trigger program -----

SELECTOR strobe x.0 1 data selector declaration
PowerProbe Trigger Unit Programming Guide | 6©1989-2024 Lauterbach

Declarations

Declarations are used to assign events to independently selected names (flags, counter or time events). In
addition, the event value is specified in the declaration (e.g. counter value range, etc.).

Each declaration starts with one of the following keywords: EVENTCOUNTER, EXTERNSYNCCOUNTER,
FLAGS, TIMECOUNTER, SELECTOR. After the keyword the name for the event is defined.

Data Selectors

Data selectors are used to trigger on the occurrence of a specific data pattern on the input probes. A
declaration consists of a free definable name for the data selector and a pattern definition. The name is used
in conditions for the data event. The declaration

defines a data event named "high", which is true if the input signal on Pin 0 has a high level. Pattern
definitions may also refer to words, which were defined with the “name.word” command:

If there a several pattern definitions for different signals, the operation between the pattern definitions is a
logical AND. The definition

is only TRUE, if the “X.write” signal and the “X.cs” are high and the address sampled is “0x4”.

Data events can be used in trigger programs with postfix symbols:

SELECTOR high X.0 1

SELECTOR ascii Word.data 'A'--'Z'||'a'--'z'

SELECTOR write_sio_control Word.adr 0x4 eXt.ds 1 eXt.write 1

.df double false true on falling edge, suppresses low glitches

.ds double static true on high level, suppresses high glitches

.dt double true true on rising edge, suppresses high glitches

.fg false glitch true when low glitch is detected

.gf going false true on falling edge

.gt going true true on rising edge

.s state true on high level

.tf true false true on falling and rising edge

.tg true glitch true when high glitch is detected
PowerProbe Trigger Unit Programming Guide | 7©1989-2024 Lauterbach

An Example:

Event Counters

Counters can be used to monitor the n.th occurrence of an event. A counter is allocated by a counter event
declaration. The declaration

allocates a logical counter event named "minmax", which is true (as an input event) when the counter has a
value between 10 and 20. An event counter which is controlled by the “counter.increment” instruction, counts
the false-to-true transitions of the defined condition. Because of this it isn’t necessary to use the “.gt” suffix
for data events in the condition.

Flags

Flags are free usable flip-flops to store one bit of information. To allocate a flag only the keyword and the
name of the flag is required. The declaration

defines two flags having the names "reset_state" and "initialized".

Counters and flags may be displayed while the PowerProbe is armed.

Time Counters

To monitor time relations, it is possible to declare Time events. The resolution of the timer is 10 ns
(> 50 MHz) respectively 20 ns (50 MHz). The declaration

allocates one counter named "after_5ms", which is true after 5 milliseconds.

SELECTOR write_sio eXt.write 1 eXt.cssio 1
Trigger.TRACE IF write_sio.gf ; triggers on falling edge of write_sio

EVENTCOUNTER minmax 10.--20.

FLAGS reset_state, initialized

TIMECOUNTER after_5ms 5ms
PowerProbe Trigger Unit Programming Guide | 8©1989-2024 Lauterbach

Synchronous Counters

If an external clock is applied to the PowerProbe, it is possible to synchronize the clock of a counter to this
external clock. With such a counter it is possible to count external clock cycles. The declaration

allocates one counter named “clock_cycles”, which is true after 10 clock cycles of the external clock.

EXTERNSYNCCOUNTER clock_cycles 10.
PowerProbe Trigger Unit Programming Guide | 9©1989-2024 Lauterbach

Global Instructions

Global statements are commands, which are not related to a trigger level. The shortest possible trigger
program can be made up of one single global statement. For example, the statement

(short form for Sample._Enable) is a valid trigger program.

Statements that are placed before the first label are global statements. If declarations are present in a
trigger program, global statements must be written after them.

The goal of global statements is to make programming easier. Statements common to all levels need to be
entered only once. Each global statement is valid in all levels of the trigger program. The instructions which
can be used in global statements are the same as those for local statements.

S.e
PowerProbe Trigger Unit Programming Guide | 10©1989-2024 Lauterbach

Local Instructions

As opposed to global statements, local statements are valid only in one level. Levels begin after the definition
of their label and end at the next label or when the trigger program ends. Thus, a label indicates when a new
level is started. A level can contain any number of statements.
A statement consists of two parts, the instruction and the condition. The instruction defines what action
should be taken, e.g. enable trace sampling (Sample.Enable), set a flag (Flag.TRUE), reset a counter
(Counter.Restart), or go to the next level (CONTinue). The condition defines under which condition the
action is to be taken. For example, the command

records only, while the data event “strobe” is TRUE.
The condition, if defined, must be separated from the instruction by the keyword IF. If no condition is
defined, then the instruction is always executed. Local statements however, are executed only if the level is
active. The program

will change to level "end" as soon as the data event “strobe” becomes true. When the level “end” is active a
break is triggered.

Sample.Enable IF strobe

start:
GOTO end IF strobe

end:
TRIGGER
PowerProbe Trigger Unit Programming Guide | 11©1989-2024 Lauterbach

Output Command Table

The following instructions control the outputs of the trigger unit:

Instruction Action Description

BREAK .TRACE Stop the recording immediately without delay.

Bus .A Release trigger bus line A (old command syntax for
Trigger.PODBUS)

CONTinue Sequential level switching

Counter .Enable
.Increment
.OFF
.ON
.Restart

Count cycle (old-fashioned for .Increment)
Count cycle
Counter clock disable
Counter clock enable
Reload counter

Flag .FALSE
.OFF
.ON
.Toggle
.TRUE

Reset flag
Reset flag (old-fashioned for .FALSE)
Set flag (old-fashioned for .TRUE)
Toggle flag
Set flag

GOTO Level switching

Out .A
.B
.C
.D

Set trigger outline TOUT0
Set trigger outline TOUT1
Set trigger outline TOUT2
Set trigger outline TOUT3

Sample .Enable
.OFF
.ON

Sample cycle
Sample clock disable
Sample clock enable

Trigger .PATTERN
.PODBUS
.Pulse
.TRACE
.TRCNT

Start Pattern generator
Release trigger bus line A (same as BUS.A)
Start Pulse generator
Start trigger delay for breaking PowerProbe (same as Trigger.A)
Start Counter from Simple Trigger
PowerProbe Trigger Unit Programming Guide | 12©1989-2024 Lauterbach

Events

The actions taken by the trigger unit are controlled by events. An event can be a special trigger bus signal
from other devices, e.g. from the pattern generator or an internal state of the PowerProbe. Events can also
be the result of a declaration, like counter events or time events. For each instruction in a trigger program
(e.g. start trace recording, set flag), conditions can be specified. These conditions are logical combinations
of the individual events. The program

will make a selective trace as long as the input line eXt.0 is high.

Counter Events

The counter counts up when the specified condition becomes true. A counter event is true, when the counter
reaches the declared value. An event range needs two counters. The example samples databytes, which
are read from a FIFO. It ignores always the first 1000 bytes after the last write to the FIFO:

Data Selectors

All not reserved names are allowed as data selector names.

Sample.Enable IF eXt.0

SELECTOR write_fifo eXt.0 1 ; declare Selector for write signal
SELECTOR reset_fifo eXt.3 1 ; declare Selector for reset signal

EVENTCOUNTER delay 1000.

Counter.Increment delay IF write_fifo ; .gt isn’t needed
Counter.Restart IF reset_fifo
Sample.Enable IF delay ; enable sampling after
 ; 1000 writes

SELECTOR low X.0 0
SELECTOR high W.adr 0x55
SELECTOR active eXt.0 1 eXt.1 0 eXt.2 1
SELECTOR select X.cs 0 X.astrobe 1 X.write 0
PowerProbe Trigger Unit Programming Guide | 13©1989-2024 Lauterbach

Flags

Flags are flip-flops which can be set or reset, depending on input events. The state of the flip-flops can be
used as an input event in the program. The following program will only sample data between the reset and
the first write to a fifo device.

Time Events

The resolution is 10 ns (> 50 MHz) or 20 ns (= 50 MHz). A time event is true, when the time counter reaches
the declared value. A time range needs two counters. The following program stops sampling 50 µs after
input pin 0 becomes high.

Other Events

The following predefined input events are also available:

FLAGS fifo_empty

FLAG.TRUE fifo_empty IF reset_fifo
FLAG.FALSE fifo_empty IF write_fifo
Sample.Enable IF fifo_empty

TIMECOUNTER delay 50us
SELECTOR dsel0 X.0 1

start:
GOTO next IF dsel0.gt

next:
Counter.Increment delay
BREAK.TRACE IF delay

Event Description

BUSA Trigger bus A True when a Podbus trigger signal is detected

FALSE Always false

SYNC SyncClock True at the start of an external synchronous clock cycle

TRUE Always true
PowerProbe Trigger Unit Programming Guide | 14©1989-2024 Lauterbach

Conditions

Conditions are logical combinations of events, which define when an instruction of the trigger program is
executed. Multiple instructions can be linked together in one line to share the same condition. If the condition
is missing for an instruction, the condition is always assumed to be 'TRUE'. The program

will produce the same results as

Input events can be combined by standard logical operators:

The brackets have the highest priority, the OR operator has the lowest.

The following two conditions will produce the same results:

As instructions can be used more than once in a level or in a statement line, it is possible to have conflicting
instructions. The following trigger program has two such conflicts:

Instructions are executed from left to right

In the above example the flip-flop used for controlling the counter will be switched to OFF if the fifo_write
condition is true; the previous “Counter.ON” instruction is overwritten.

Sample.Enable

Sample.Enable IF TRUE

(…)

! for NOT

&& for AND

 ^^ for XOR

 || for OR

(v1&&v2)||!(v3&&!v4)
v1&&v2||!v3||v4

START: Counter.ON count1, Counter.OFF count1 IF fifo_write
 GOTO Count_Level
 GOTO Error_Level IF reset_state
Level2:
…

PowerProbe Trigger Unit Programming Guide | 15©1989-2024 Lauterbach

Instructions are executed top to down

In the example above this means that the "GOTO Count_Level" with the condition, is overwritten by the
second "GOTO Error_Level" when the condition "reset_state" is true.

The trigger unit remains in the "START" level for of one cycle and will then switch either to the trigger level
"Error_Level", or to "Count_Level" depending on the condition "reset_state".
If the order of the "GOTO" statements is changed:

then the first statement is completely overwritten.

Global statements have a low priority

Global statements are used, as if they would have been typed before any other statement in a trigger level.

GOTO Error_Level IF eXt.fifo_write
GOTO Count_Level
PowerProbe Trigger Unit Programming Guide | 16©1989-2024 Lauterbach

Levels

Trigger levels can be used to realize a sequential or non-sequential trigger function. This means, that after
one trigger condition has arrived, another condition can be checked. The beginning of a level is defined by its
label. The end of the level is the label of the following level, or the end of the program. All statements located
between these boundaries are part of that level.

 All conditions for instructions in a level are checked in parallel during each cycle and all instructions whose
condition is TRUE are executed. Only one level can be active at any time. The current level is recorded in the
trace and can be viewed in real-time in the PowerProbe configuration window.

The instructions CONTinue and GOTO will change the level.

CONTinue

The CONTinue instruction can switch to the next program level following the current one. If no level follows,
then "CONTinue" is the same as the Trigger.TRACE instruction, i.e. the PowerProbe stops recording after
the specified trigger delay. In the example the PowerProbe will change to level "infunc" after "fifo_reset" and
stop the PowerProbe after "fifo_write".

GOTO

The GOTO instruction can switch to any level. The following program will change to the level "init" when the
"fifo_reset" event is true, and change back to "start" on "fifo_write". The probe data is sampled only when the
trigger unit is in the "init" level.

start:
CONTinue IF fifo_reset

infunc:
CONTinue IF fifo_write
Sample

start:
GOTO init IF fifo_reset

init:
GOTO start IF fifo_write
Sample
PowerProbe Trigger Unit Programming Guide | 17©1989-2024 Lauterbach

TRIGGER, BREAK

The TRIGGER.TRACE respectively BREAK.TRACE instruction causes the PowerProbe to break. Breaking
the PowerProbe means stopping recording and deactivating the trigger unit.

The difference between both instructions is that TRIGGER will stop the recording after the defined trigger
delay and BREAK will stop the recording immediately.

When implementing multiple level change instructions in one trigger level, the instruction order must be
observed. Later instructions overwrite conflicting instructions which appear earlier in the trigger program.
The following example shows this relation:

When the PowerProbe is in level "level1" and assuming that during an active "dma", "nmi" also gets active,
the program branches to "level2" and not to “level 3”. When “dma” and “nmi” are both active, the
“CONTINUE” statement overwrites the first “GOTO” statement in “level1”.

start:
BREAK.TRACE IF fifo_write

; Declarations
SELECTOR fifo_reset x.reset 1
SELECTOR fifo_write x.cs 0 x.write 0 w.adr 0x4
SELECTOR dma x.dma 0
SELECTOR nmi x.nmi 0
…

; global statements

Sample
…

; local statements

level0:
CONTinue IF fifo_reset

level1:
GOTO level3 IF nmi
GOTO level3 IF dma.gf
CONTinue IF dma&&nmi

level2: …

level3: …
BREAK.TRACE
PowerProbe Trigger Unit Programming Guide | 18©1989-2024 Lauterbach

Programming Examples

All programming examples are explained by a basic SIO circuit:

First the probes are connected and the names of the input signals are defined:

Selective Recording

Selective recording is done with the instructions Sample.Enable.

or

All input data is sampled.

Samples if the SIO is selected and the write line is active. The same trace function can be defined by input

NAME.Word BUS_DATA eXt.0 eXt.1 eXt.2 eXt.3 eXt.4 eXt.5 eXt.6 eXt.7
NAME.Set eXt.8 eXt.BUS_A0
NAME.Set eXt.9 eXt.BUS_WR -
Probe.SyncClock sclk0 Rising
NAME.Set eXt.11 eXt.RESET -
NAME.Set eXt.12 eXt.INT -
NAME.Set eXt.13 eXt.RXRDY
NAME.Set eXt.14 eXt.TXRDY
NAME.Set eXt.31 eXt.CS -

Sample.Enable IF TRUE

s.e

Sample.Enable IF !eXt.BUS_WR&&!eXt.CS

00 D0 RXDA
01 D1 TXDA SLT
02 D2 CTSA-
03 D3 RTSA-
04 D4
05 D5 MAX232
06 D6
07 D7 INT- 10
08 A0 RXRDY 11
09 WR- TXRDY 12
SCLK0 CLK
11 RESET-
31 CS-
PowerProbe Trigger Unit Programming Guide | 19©1989-2024 Lauterbach

masks:

In synchronous mode the data will be sampled on the clock SCLK0 only. The pins 0-7 must be switched to
synchronous mode:

The Sample time is a elongated a little bit, so that it is possible to see the signal change, which was
responsible for the activation and deactivation of the “Sample.Enable” instruction.

SELECTOR SIO_WRITE eXt.BUS_WR 0 eXt.CS 0

Sample.Enable IF SIO_WRITE

NAME.Set eXt.0 d0 + sync
NAME.Set eXt.1 d1 + sync
…

SELECTOR SIO_WRITE eXt.9 0 eXt.31 0

Sample.Enable IF SIO_WRITE

WR-

CS-

Sample time

WR-

CS-

Sample time
PowerProbe Trigger Unit Programming Guide | 20©1989-2024 Lauterbach

Stopping the PowerProbe

There are some reasons which can stop the PowerProbe recording:

Trace Full

Stopping the recording when the PowerProbe is full can be achieved by selecting Stack operation mode in
the PowerProbe configuration window (command Probe.Mode Stack).

The PowerProbe stops recording independent of the current logical level.

Trigger or BREAK

Recording stops at a specified condition defined by the Trigger statement. The trigger delay may be defined
between 0 and 100% of the trace storage.

The statement BREAK is a synonym for the combination of a Trigger statement with a trigger delay of 0.

Stimulating Output Lines

The instruction OUT can control the external trigger outputs of the PowerProbe. These lines can be used to
trigger external timing PowerProbes or oscilloscopes or generate stimuli signals for the target hardware. The
example generates an output signal at the connector TOUT0 on the top of the PowerProbe unit every time
the interrupt line becomes active low:

Using the Internal Trigger Bus

The instruction BUS can trigger other systems of the TRACE32 system. The inter-trigger bus of the system
can be used to trigger the pattern or pulse generator by the timing PowerProbe. The following example
triggers the pattern generator when an access to a specific address is made. In the pattern generator the
BusA line must be selected as trigger source (command Pattern.TSELect BusA).

Probe.Mode Stack

TRIGGER.TRACE IF SIO_WRITE

SELECTOR int_active eXt.INT 0
OUT.A IF int_active.gt

SELECTOR SIO_WRITE eXt.bus_wr 0

BUS.A IF SIO_WRITE ; the bus line A is activated on
; write cycles to the SIO
PowerProbe Trigger Unit Programming Guide | 21©1989-2024 Lauterbach

The timing PowerProbe can also be triggered by other PowerProbes. The event BUSA can be used for this
purpose. When the line BUSA is released from the state PowerProbe, the timing PowerProbe can be
controlled by the state PowerProbe. In the following example the timing PowerProbe records for 1 ms after
the trigger event from the state PowerProbe.

; declaration
TIMECOUNTER delay 1ms ; delay definition

; local instruction
L00: CONTinue IF BUSA ; wait until the line BUSA is

; active

L01:
Counter.Increment delay
Trigger.TRACE IF delay

; activate delay counter
; break after 1 ms
PowerProbe Trigger Unit Programming Guide | 22©1989-2024 Lauterbach

Time and Event Counters

The keyword is TIMECOUNTER for the declaration and the instruction COUNTER controls the counter.
Time and event counters need a declaration to give the counters a name and an initial value. Counters are
always assigned for the whole trigger program, only the control of the counters is level specific.

The following example triggers on a write cycle longer than 10.us:

The next example counts the number of write accesses to the SIO:

This example stops the PowerProbe after 1000 write accesses to the SIO:

SELECTOR SIO_WRITE eXt.BUS_WR 0
TIMECOUNTER timeout 10.us

Counter.Restart timeout IF SIO_WRITE
Counter.Increment timeout IF !SIO_WRITE

Trigger.TRACE IF timeout

; declaration
SELECTOR SIO_WRITE X.BUS_WR 0
EVENTCOUNTER write_cycle

; counter operation
Counter.Increment write_cycle IF SIO_WRITE

; declaration
SELECTOR SIO_WRITE X.BUS_WR 0
EVENTCOUNTER write_cycle 1000.

; counter operation
Counter.Increment write_cycle IF SIO_WRITE
Trigger.TRACE IF write_cycle
PowerProbe Trigger Unit Programming Guide | 23©1989-2024 Lauterbach

Using Flags

The keyword FLAGS is used in the declaration and the instruction FLAG can modify the value of a flag.
Flags are useful for remembering the occurrence of a certain state. In some cases they can replace the use
of multiple trigger levels in an PowerProbe trigger program. The following example will monitor the state of an
I/O port in real time. The state of the port can be viewed in the PowerProbe state window:

SELECTOR WRITE_TO_CONTROL Word.BUS_DATA 0x12 eXt.CS 0 eXt.BUS_WR 0

; declaration
FLAGS TX_ENABLE ; declaration of 1 flag

FLAG.TRUE TX_ENABLE IF WRITE_TO_CONTROL
FLAG.FALSE TX_ENABLE IF !WRITE_TO_CONTROL
PowerProbe Trigger Unit Programming Guide | 24©1989-2024 Lauterbach

Switching Trigger Levels
The instructions CONTinue or GOTO can be used to change the level of the trigger unit. The instruction
Trigger.TRACE and Break.TRACE will disable the PowerProbe and the trigger unit.

; declaration
…

; global instructions
…

; local instructions
level0: …

 CONTinue IF SIO_WRITE
 …

; change sequential to the next
; logical level

level1: …
 CONTinue IF CNT_Limit

; change to the next logical level
; if the counter event CNT_Limit is
; true

 GOTO level0 IF BB
 …

; otherwise jump return to the
; level level0 if the data event BB
; is true

level2: BREAK.TRACE IF DELAY_CNT ; stop recording if the counter
; event DELAY_CNT is true

START: GOTO level0 IF INT ; this is the start level after
; PowerProbe init jump to level0
; when the data event INT is true
PowerProbe Trigger Unit Programming Guide | 25©1989-2024 Lauterbach

Declaration Reference

SELECTOR Data selectors

A data selector named Port_1 with the value 0x55 on the pins x.0 (LSB) to x.7 (MSB).

A data selector named Port_2 with the value 0x55 on the pins x.0 (LSB) to x.7(MSB) and with the bit mask
1010xx1x on pins x.8 (LSB) to x.15 (MSB):

All alphabetic characters of the ASCII character set (lower case and upper case) are assigned to a data
selector called "ascii":

Logical pin names can be used like this

Format: SELECTOR <name> <pin> <value>|<w.name> <value> …

<pin>: x.0 | x.1 | x.2 | x.3 | … | <name declared with name.set>

<w.name>: Word declared with “name.word”

<value>: 0 | 1 for pins, integer value or bit mask for words

NAME.WORD adr x.0 x.1 x.2 x.3 x.4 x.5 x.6 x.7
SELECTOR Port_1 w.adr 0x55

NAME.WORD addr x.0 x.1 x.2 x.3 x.4 x.5 x.6 x.7
NAME.WORD data x.8 x.9 x.10 x.11 x.12 x.13 x.14 x.15
SELECTOR Port_2 w.addr 0x55 w.data 0y1010xx1x

SELECTOR ascii w.data ('a'--'z')||('A'--'Z')

NAME.Set x.0 write
SELECTOR write_fifo x.write 1
PowerProbe Trigger Unit Programming Guide | 26©1989-2024 Lauterbach

EVENTCOUNTER Event counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for event counting are available on the PowerProbe. They have a width of 45 bits. If a
event counter reaches its declared value it will stop automatically. The event counters can be reloaded in
real-time. However, program-dependent dead times can result. The default value is the maximum value.

The current value of the counters are visible in real-time in the PowerProbe configuration window.

Endless Counter

Declaration of an event counter called "Evcntr_2", count argument 0. The counter is always enabled but it
never counts because it immediately reaches the declared value. In this example the PowerProbe begins
sampling immediately.

Event TRUE after n Clocks

Declaration of an event counter called "CYCLE_CNT". The counter counts rising edges of the SIO_WRITE
data event. The PowerProbe begins sampling after a delay of 500 rising edges of SIO_WRITE.

Format: EVENTCOUNTER <name> [<event>]

EVENTCOUNTER Evcntr_2 0
Counter.increment Evcntr_2 IF true
Sample.enable IF Evcntr_2

EVENTCOUNTER CYCLE_CNT 500.
Counter.increment CYCLE_CNT IF SIO_WRITE
Sample.enable IF CYCLE_CNT

0 infinite

true

0 500. infinite

false true
PowerProbe Trigger Unit Programming Guide | 27©1989-2024 Lauterbach

Event TRUE till n Clocks

Declaration of an event counter called "NR_cnt", event argument is 0x30. The counter counts rising edges of
the SIO_WRITE data event. The PowerProbe begins sampling immediately and stops recording after 48
rising edges of SIO_WRITE.

Event Windows

Declaration of an event counter called "EV_range" with an event range from 100 to 200. The counter counts
rising edges of the SIO_WRITE data event. The PowerProbe begins sampling after 100 rising edges and
stops recording 100 rising edges later. Two physical counters are used by the trigger unit.

EVENTCOUNTER NR_cnt 0x0--0x30
Counter.Increment NR_cnt IF SIO_WRITE
Sample.Enable IF NR_cnt

EVENTCOUNTER EV_Range 100.--200.
Counter.Increment EV_range IF SIO_WRITE
Sample.Enable IF EV_range

0 48. infinite

true false

0 100. 200. infinite

false true false
PowerProbe Trigger Unit Programming Guide | 28©1989-2024 Lauterbach

EXTERNSYNCCOUNTER Synchronous counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for counting external clock cycles are available on the PowerProbe. They have a width of
45 bits. A synchronous counter is synchronized to an external clock, which means that the counter will count
only at the start of an external clock cycle. Because of this the events used in the conditions for the
controlling instructions for the counter should use signals, which are also synchronized to the external clock:

The counter will become true, after three clock cycles in which the x.0 and x.1 pins are high.

If events used in a condition for an instruction for a synchronous counter, are not synchronized to the
external clock, it must be ensured, that the events have a setup and hold time of at least 5ns. Otherwise
correct operation can’t be guaranteed.

Format: EXTERNSYNCCOUNTER <name> [<event>]

name.set x.0 d0 sync
name.set x.1 d1 sync
name.word data x.0 x.1

SELECTOR datahigh w.data 0x3
EXTERNSYNCCOUNTER threehigh 3.
Counter.Increment threehigh IF datahigh
Sample.Enable IF threehigh
PowerProbe Trigger Unit Programming Guide | 29©1989-2024 Lauterbach

FLAGS Flags

Flags are Flip-flops which can be controlled and read by the trigger unit. The hardware for the flags is
assigned automatically by the system, depending on their usage. There are a maximum of 2 flags available.

After programming the trigger unit, or after the command Probe.Init all flags are set to off. Flags can be set,
reset or toggled.

The following program samples only, when the flag 'init_state' has the value TRUE:

TIMECOUNTER Time counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for timing measurements are available on the PowerProbe. They have a resolution of
10 ns (> 50 MHz) respectively 20 ns (50 MHz) and a width of 45 bits. If a time counter reaches its declared
value, it will be stopped automatically. The timers can be reloaded in real-time. However, program-
dependent dead times can result. The default value is the maximum time.

The current value of the counters can be viewed in real-time in the PowerProbe configuration window.

Time values can be entered in the following units:

Format: FLAGS <name> …

FLAGS init_state
SELECTOR reset_fifo x.0 1
SELECTOR write_fifo x.1 1

FLAG.TRUE init_state IF eXt.reset_fifo
FLAG.FALSE init_state IF eXt.write_fifo

Sample.Enable IF init_state

Format: TIMECOUNTER <name> [<time>]

Nanoseconds (ns)

Microseconds (us)

Milliseconds (ms)

Seconds (s)

Kiloseconds (ks)
PowerProbe Trigger Unit Programming Guide | 30©1989-2024 Lauterbach

Timer running till Overflow

Declaration of a time counter called Timer_1 without time argument. The counter is always enabled and
counts every time. After the maximum time the PowerProbe starts sampling input data.

Always running Timer

Declaration of a time counter called Timer_2, time argument 0ms. The counter is always enabled but it never
counts because it immediately reaches the declared value.

Timer TRUE after time

Declaration of a time counter "Timer_A", time argument is 500us. The counter is always enabled. The
PowerProbe begins sampling after a time delay of 500us.

TIMECOUNTER Timer_1
Counter.increment Timer_1 IF true
Sample.enable IF Timer_1

TIMECOUNTER Timer_2 0.ms
Counter.Increment Timer_2 IF TRUE
Sample.Enable IF Timer_2

TIMECOUNTER Timer_A 500.us
Counter.Increment Timer_A IF TRUE
Sample.Enable IF Timer_A

0 max.time infinite

false true

0 infinite

true

0 500.us infinite

false true
PowerProbe Trigger Unit Programming Guide | 31©1989-2024 Lauterbach

Timer TRUE till time

Declaration of a time counter called "Timer_B". The counter is always enabled. The PowerProbe begins
sampling immediately and stops recording after a time of 30us.

Time Windows

Declaration of a timer called "Timer_C" with a time range from 100 to 200 microseconds. The counter is
always enabled and counts every time. The PowerProbe begins sampling after 100us and stops recording
100us later. Two physical counters are used by the trigger unit.

TIMECOUNTER Timer_B 0.us--30.us
Counter.Increment Timer_B IF TRUE
Sample.Enable IF Timer_B

TIMECOUNTER Timer_C 100.us--200.us
Counter.Increment Timer_C IF TRUE
Sample.Enable IF Timer_C

0 30.us infinite

true false

0 100.us 200.us infinite

false true false
PowerProbe Trigger Unit Programming Guide | 32©1989-2024 Lauterbach

Instruction Reference

BREAK PowerProbe stop

The PowerProbe breaks and stops recording immediately, independently from the before defined trigger
delay. The value from a before used Probe.TDelay command will be ignored. The PowerProbe can be read
out when in break state, similar to the OFF state. The break level is reset by the command Probe.Init. See
also the command Trigger.TRACE.

The PowerProbe breaks, whenever the data event "fifo_reset" is true.

Bus Bus trigger

In order to be able to trigger more than one TRACE32 system, several trigger lines are available on the inter-
trigger bus. A synonym for this command will be Trigger.PODBUS

Format: BREAK[.TRACE] [IF <condition>]

…
BREAK.TRACE IF fifo_reset
…

Format: Bus.<mode> [IF <condition>]

<mode>: A

A Activates podbus trigger line A.
PowerProbe Trigger Unit Programming Guide | 33©1989-2024 Lauterbach

CONTinue Sequential level switching

A sequential level switch (to the next written level) will be done, when the specified condition is true. If no
further written level is present, the PowerProbe is breaked.

In the example the PowerProbe will change to level "init" if the data event "fifo_reset" is true.

Format: CONTinue [IF <condition>]

SELECTOR fifo_reset x.0 0

start: CONTinue IF fifo_reset

init:
PowerProbe Trigger Unit Programming Guide | 34©1989-2024 Lauterbach

Counter Counter control

Control the trigger units counters. The instructions Counter.ON and Counter.Increment are programmed
automatically, if they are not used in the trigger program. The counters have to be declared according to their
function (see also declaration EVENTCOUNTER, EXTERNSYNCCOUNTER or TIMECOUNTER and
chapters Counter Events or Time Events).

The instructions ON, OFF and Increment (Enable) can be seen as a controlled switch and a key in series. If
the switch is closed (Counter.ON) it remains closed till it is opened by Counter.OFF. The key is closed for
the cycles which meet the specified condition. An event counter will only advance once when the key is
closed. That means an event counter counts how often the key was closed. A Time counter will count as
long as the key is closed. That means a time counter counts how long the key was closed.

If neither ON/OFF nor Increment (Enable) are used in the complete trigger program, the switch and the key
are closed, that means the counter counts time or exactly one event (key is closed when the recording
starts) depending on its declaration.

Format: Counter[.<mode>] <counter_name> [IF <condition>]

<mode>: Enable (old-fashioned)
Increment
OFF
ON
Restart

Enable (old-fash-
ioned),
Increment

Releases counters when the specified condition is matched.

OFF Switches the enable Flip-flop OFF.

ON Switches the enable Flip-flop ON.

Restart The counter is reset to zero.

switch key

ON/OFF Increment (Enable)

switch key

ON/OFF Increment (Enable)
PowerProbe Trigger Unit Programming Guide | 35©1989-2024 Lauterbach

If only Increment (Enable) is used in the trigger program, the switch ON/OFF is closed automatically, that
means counting is controlled only by Increment (Enable).

If only ON/OFF is used in the trigger program, the key Increment (Enable) is closed automatically, that
means counting is controlled only by ON/OFF.

Counter CYCLE_CNT counts exactly one event:

Counter "count_reset" is incremented by 1 every time, the input pin 0 is pulled to low.

Counter "reset_puls" is measuring the pulse width of the reset signal.

; declaration
EVENTCOUNTER CYCLE_CNT

; global or local instruction
Counter.Increment CYCLE_CNT

; declaration
SELECTOR reset_fifo eXt.0 0
EVENTCOUNTER count_reset

; global or local instruction
Counter.Increment count_reset IF reset_fifo

; declaration
SELECTOR reset_fifo eXt.0 0
TIMECOUNTER reset_puls

Counter.Increment reset_puls IF fifo_reset

; Wait for start of fifo_reset
level0: GOTO level1, Counter.ON reset_puls IF fifo_reset.gt

; Wait for end of fifo_reset
level1: BREAK.TRACE, Counter.OFF reset_puls IF !fifo_reset

switch key

ON/OFF Increment (Enable)

switch key

ON/OFF Increment (Enable)
PowerProbe Trigger Unit Programming Guide | 36©1989-2024 Lauterbach

The counter "ascii_count" is incremented on synchronous clocks with a valid upper-case ASCII character on
probe A. The counter stops at 100. and the PowerProbe breaks.

If the pulse width of the "cs_fifo" signal is more than 500 ns, the timing PowerProbe will break.

The first write_fifo event must be within 100 µs after the fifo_reset state. Otherwise the PowerProbe is
breaked. The counter max_time measures the real time between 'reset' and 'write' on the break condition.

; declaration
SELECTOR upper_ascii Word.databus 'A'--'Z'
EVENTCOUNTER ascii_count 100.

; global or local instruction
Counter.Increment ascii_count.s
BREAK.TRACE IF ascii_count

; declaration
SELECTOR cs_fifo Word.cs_fifo_register 0Yxxxxx00x
TIMECOUNTER time_out 500ns

; global instruction
Sample.Enable
Counter.Restart time_out IF cs_fifo.gt
Counter.Increment time_out IF cs_fifo
BREAK.TRACE IF time_out

; declaration
TIMECOUNTER first_write 100us
TIMECOUNTER max_time
SELECTOR reset_fifo eXt.0 0
SELECTOR write_fifo eXt.1 0

start:
GOTO reset_state IF reset_fifo

reset_state:
Counter.Restart first_write
Counter.Restart max_time
GOTO no_reset IF !reset_fifo

no_reset:
Counter.Increment first_write
Counter.Increment max_time
GOTO start IF write_fifo
BREAK.TRACE IF write_fifo&&!first_write
PowerProbe Trigger Unit Programming Guide | 37©1989-2024 Lauterbach

Flag Flag control

Flags are used to mark event occurrences. Flags have to be declared at the beginning of a trigger program
(see chapter FLAGS). The default state at the beginning is OFF. The current state of the used flags is visible
in real time in the PowerProbe configuration window.

Set Flag1 if timer_1 has not expired.

Toggle Flag4 if data_event occurs.

Format: Flag.<mode> <name> [IF <condition>]

<mode>: FALSE
OFF
ON
Toggle
TRUE

FALSE, OFF Resets the flag.

TRUE, ON Sets the flag.

Toggle Reverses the current state.

; declaration
FLAGS Flag1

; global or local instruction
Flag.TRUE Flag1 IF !timer_1

Flag.Toggle Flag4 IF data_event
PowerProbe Trigger Unit Programming Guide | 38©1989-2024 Lauterbach

GOTO Level switching

Change the current level of the trigger unit. GOTO may be used more than once in a level.

The first level which is active after the trigger unit has been programmed is the start level. It is defined by the
label "START:". If no level has been defined this way, then the first level in the program is the start level. The
level marked with "START" has to be the first level written in the program.

On the PowerProbe there are 4 levels available.

Out Output control

Four signals can be generated to trigger other devices (e.g. PowerProbes or oscilloscopes) or to stimulate
the target hardware. These signals are accessible via socket connectors at the PowerProbe chassis.

Format: GOTO <level> [IF <condition>]

<level>: name
START

Start:
Counter.Restart int_count
GOTO LL8

…

LL5:
Sample.Enable IF dma
GOTO ll8 IF dma&&last_transfer

…

LL8:
Sample.Enable
Counter.Increment int_count IF int_adr

…

Format: Out. <mode> [IF <condition>]

<mode>: A | B | C | D

A, B, C, D Activates the universal output TOUT0..TOUT3 at the top of the
PowerProbe chassis.
PowerProbe Trigger Unit Programming Guide | 39©1989-2024 Lauterbach

Release trigger line TOUT0 for 10 ns when event time_out becomes true.

Sample Recording control

Controls trace memory recording. The instructions Sample.ON and Sample.Enable are programmed
automatically, if they aren't used in the trigger program. This instruction does not effect the recording of the
trigger event and the first and last cycle before the user program stopped.

The instructions ON, OFF and Enable can be seen as a controlled switch and a key in series. If the switch is
closed (Sample.ON) it remains closed until it is opened by Sample.OFF. The key is closed only for the cycle
which meets the specified condition, i.e. one bus cycle is stored in the trace buffer.

Sampling is only enabled if the switch and the key are closed.

Out.A IF time_out.gt

Format: Sample[.<mode>] [IF <condition>]

<mode>: Enable
OFF
ON

Enable Releases trace memory for recording when the specified condition is
true.

OFF Disables the Flip-flop for sampling.

ON Enables the Flip-flop for sampling.

switch key

ON/OFF Enable
PowerProbe Trigger Unit Programming Guide | 40©1989-2024 Lauterbach

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means all cycles are recorded (Implicit global "Sample.ON IF true" and "Sample.Enable IF true").

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, that means
sampling is controlled only via “Sample.Enable” (Implicit global "Sample.ON IF true").

If only “Sample.OFF” is used in the trigger program, the key Enable is closed automatically, and the ON/OFF
switch is closed initially. The sampling will stop as soon as the “Sample.OFF” instruction is executed.

If only “Sample.ON” and “Sample.OFF” are used, the key Enable is closed, and the ON/OFF switch is open
initially. Sampling will only be controlled by the ON/OFF switch.

The following statements are equal and will sample all cycles:

Sample only if line eXt.0 is high:

Sample.Enable IF TRUE
Sample.Enable
S.E
s

SELECTOR x0high eXt.0 1

Sample.Enable IF x0high

switch key

ON/OFF Enable

switch key

ON/OFF Enable

switch key

ON/OFF Enable
PowerProbe Trigger Unit Programming Guide | 41©1989-2024 Lauterbach

The PowerProbe starts and waits in Level0 without recording till the appearance of the int1 line

Trigger Trigger control

Trigger other systems of the PowerProbe.

Trigger.PODBUS:

In order to be able to trigger more than one TRACE32 system, a special trigger line is available on the inter-
trigger bus. A synonym for this command will be BUS.A.

Trigger.TRACE:

When the PowerProbe breaks, it stops recording after the, with the command Probe.TDelay defined trigger
delay. The PowerProbe can be read out when in break state, similar to the OFF state. The break level is
reset by the command Probe.Init. See also the command BREAK.TRACE.

; declaration area
SELECTOR int1_low eXt.4 0
…

; local area
Level0: Sample.Enable IF int1_low
 CONTinue IF int1_low
Level1: Sample.Enable

…

Format: Trigger. <mode> [IF <condition>]

<mode>: A | P | PATTERN | PODBUS | PULSE | TRACE | TRCNT

Pattern Releases a trigger signal to the pattern generator.

PODBUS Releases a signal on the inter-trigger bus (BUS.A).

PULSE Releases a pulse of the pulse generator (PULSe).

TRACE, A Starts the trigger delay counter defined by the command Probe.TDelay

TRCNT Release pulse on universal counter input line.

…
Trigger.TRACE IF fifo_reset
…

PowerProbe Trigger Unit Programming Guide | 42©1989-2024 Lauterbach

The PowerProbe breaks, whenever the state "fifo_reset" is true.
PowerProbe Trigger Unit Programming Guide | 43©1989-2024 Lauterbach

PowerProbe Programming Language Syntax

NOTE: The following symbols are meta-symbols belonging to the formalism and not symbols of the trigger
programming language.

The meta symbols mustn’t written in the trigger program.
The PowerProbe programming language starts with the nonterminal symbol ppta_prog.

[] 0 up to 1 iteration of the expression included (the expression can be omitted)

{ } 1 up to infinite iteration of the expression inside (the expression must be written at least once)

() summary (summarize alternatives)

| separates alternatives

: the name (nonterminal symbol) on the left can be substituted with the expression on the right

text/
text

the characters written in bold letters are terminal symbols which cannot be substituted any
more (the characters have to be typed in this way)

ppta_prog: [{EOL}] [decls] [globals] [{locals}] {EOL} EOF

decls: [(eve_dec | ext_dec | flg_dec | sel_dec | tim_dec)]
[comment] {EOL} [decls]

eve_dec: EVentCouNTer name1 [int]

ext_dec: EXternSYncCouNTer name1 [int]

flg_dec: FLAGS name2 [{[,] name2}]

sel_dec: SELECTOR name3 {{dataname_prefix1 . dataname_postfix|
 dataname_prefix2 . dataname_postfix}
 [{int | range | bitmask}] }

tim_dec: TImeCouNTer name1 [time]

globals: instr

locals: label [instr]

label: (name | START) :

instr: [comlist] [comment] {EOL} [instr]

comment: (// | ;) text

comlist: command [{[,] command}] [IF condition]

command: c_break | c_bus | c_continue | c_counter | c_flag |
c_goto | c_out | c_sample | c_trigger

c_break: BREAK [.TRACE]
PowerProbe Trigger Unit Programming Guide | 44©1989-2024 Lauterbach

c_bus: (B | BUS) [.A]

c_continue: (CONT | CONTINUE)

c_counter: (C | COUNTER) [. (I|INCREMENT|OFF|ON|R|RESTART)]
 {name1}

c_flag: (F | FLAG) . (FALSE|T|TOGGLE|TRUE) {name2}

c_goto: GOTO (name | START)

c_out: (O | OUT) . (A | B | C | D)

c_sample: (S | SAMPLE) [. (E|ENABLE|OFF|ON)]

c_trigger: (T | TRIGGER) [. (A|P|PATTERN|PODUS|PULSE|TRACE|
 TRCNT)]

condition: t1 {[|| t1]}

t1: t2 {[^^ t2]}

t2: t3 {[&& t3]}

t3: (! t3) | (condition) | name1 | name2 |
dataname_prefix1 . dataname_postfix [.mode] |
name3 [.mode] | inline_name

dataname_prefix1: EXT | S | SOC | X

dataname_prefix2: W | WORD

dataname_postfix: 0..1023 | from user with NAME.Group or NAME.Set or
NAME.Word defined names

mode: DF | DS | DT | FG | GF | GT | S | TF | TG

inline_name: BUSA | FALSE | SYNC | TRUE

name1,name2,name3
:

is chosen from the user and must correspond with the
'C'-name conventions

int: syntax described in the Operation System User's
Guide

time: dto.

text: all characters excepted EOL and EOF
PowerProbe Trigger Unit Programming Guide | 45©1989-2024 Lauterbach

	PowerProbe Trigger Unit Programming Guide
	PowerProbe Programming
	Program Structure
	Sample Trigger Program

	Declarations
	Data Selectors
	Event Counters
	Flags
	Time Counters
	Synchronous Counters

	Global Instructions
	Local Instructions
	Output Command Table

	Events
	Counter Events
	Data Selectors
	Flags
	Time Events
	Other Events

	Conditions
	Levels
	CONTinue
	GOTO
	TRIGGER, BREAK

	Programming Examples
	Selective Recording
	Stopping the PowerProbe
	Stimulating Output Lines
	Using the Internal Trigger Bus
	Time and Event Counters
	Using Flags
	Switching Trigger Levels

	Declaration Reference
	SELECTOR Data selectors
	EVENTCOUNTER Event counter
	EXTERNSYNCCOUNTER Synchronous counter
	FLAGS Flags
	TIMECOUNTER Time counter

	Instruction Reference
	BREAK PowerProbe stop
	Bus Bus trigger
	CONTinue Sequential level switching
	Counter Counter control
	Flag Flag control
	GOTO Level switching
	Out Output control
	Sample Recording control
	Trigger Trigger control

	PowerProbe Programming Language Syntax

