LAUTERBACH A

PowerProbe Trigger Unit
Programming Guide

PowerProbe Trigger Unit Programming Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
o3 LT g o o o T =
PowerProbe Trigger Unit Programming GUIde ... s s s ssssesenaas 1
PowerProbe Programmingcccccccceeeciieessmmmssemmmmssssssssssssssssssssssssssesssssssssssssssnsnsssnas

Program SErUCLUIEccciiiiiiiiiincir i e s n e ammn e e e mmnn e
Sample Trigger Program

D 1= o3 P 1= Lo 4 - PSP
Data Selectors
Event Counters
Flags
Time Counters

0 00 0 NN OO0 b

Synchronous Counters 9
L€ [oY 0T 1IN [T3 4 T3 Lo - O 10
Local INStrUCtIONS ..o s s e n e n e ammn e e e e n e 11

Output Command Table 12
=T) 13

Counter Events 13

Data Selectors 13

Flags 14

Time Events 14

Other Events 14
0o 4 o 114 o 13 15
== 17

CONTinue 17

GOTO 17

TRIGGER, BREAK 18
Programming EXamPIesccccciiiiiiiimmininssinninnsssssssssssss s ssss s s sssmss s sssssamssssssssmmnssssssssmmssnnas 19

Selective Recording 19

Stopping the PowerProbe 21

Stimulating Output Lines 21

Using the Internal Trigger Bus 21

Time and Event Counters 23

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 2

Using Flags 24
Switching Trigger Levels 25
Declaration Reference ... s 26
SELECTOR Data selectors 26
EVENTCOUNTER Event counter 27
EXTERNSYNCCOUNTER Synchronous counter 29
FLAGS Flags 30
TIMECOUNTER Time counter 30
Instruction RefErencCe ... e 33
BREAK PowerProbe stop 33
Bus Bus trigger 33
CONTinue Sequential level switching 34
Counter Counter control 35
Flag Flag control 38
GOTO Level switching 39
Out Output control 39
Sample Recording control 40
Trigger Trigger control 42
PowerProbe Programming Language SYyNtaXxcccccccccmscmmmmsemsnsssssessssssassesns 44
©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 3

PowerProbe Trigger Unit Programming Guide

PowerProbe Programming

Version 06-Jun-2024

The trigger unit of the PowerProbe is a powerful tool to find complex errors or to sample selective data for
advanced measurements. The trigger unit is programmed by an ASCII definition file. The command
Probe.Program is used to create a new trigger program. Writing the program is supported by softkeys and
online help. The command Probe.ReProgram can be used to load ready-to-run programs in the trigger unit.
The commands in this manual refer to the trigger program, unless otherwise mentioned.

16 Inputs

4 Multiplexer

i Select

Trigger RAM
N Select

Trace
Control

N Select

Flag
Control

Flag 1

: | Select

Level

Flag 2

9th Mux Input
—>

10th Mux Input
—>

AN

)

Zero

Counter Control

Counter L Counter

Counter

Hardware structure of trigger unit

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide | 4

Program Structure

A trigger program for the PowerProbe consists of the following parts:

Comments

Declarations

Instructions

Levels

Global instructions

Local instructions

Are allowed anywhere in the trigger program. They begin with a "//" or ;“.

Define input events which need to be declared. Such events are flags,
data patterns or counters (see also declarations).

Instructions control the action taken by the trigger unit. Usually they are
only executed when a defined condition becomes true. A condition is the
combination of internal or external events of the PowerProbe. An event is
the occurrence of a specific internal trigger bus signal or a predefined
data pattern.

The begin of a level is defined by the name of the level followed by a
colon ":". The end of a level is the begin of the next level or the end of the
trigger program. All commands within a level and the global commands
are valid while the level is active. Commands outside the level are not
active. Only one level can be active at any time. Usually the begin of a
trigger program is the first written level or the level with the name
"START:".

They are located between declarations and the first label, i.e. the first
local instruction. They are valid in all used levels. A trigger program may
only consists of global instructions.

Valid within one trigger level. All local instructions defined within a level
and all global instructions are checked simultaneously.

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide |

5

Sample Trigger Program

The following sample trigger programs gives an overview about the capabilities of the trigger unit. The
program is entered in a window generated by the Probe.Program command.

;m—-——- declarations -----
SELECTOR strobe x.0 1 <« data selector declaration
EVENTCOUNTER max 20. <«—— event counter declaration
jm——— global statements -----
Sample.Enable <« sample everything
jm———- local statements -----
start: <«— label
Counter.Increment max IF strobe <«— counter increment
GOTO end IF max <«—— level control
end:
Trigger
jm——— end of trigger program -----

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 6

Declarations

Declarations are used to assign events to independently selected names (flags, counter or time events). In

addition, the event value is specified in the declaration (e.g. counter value range, etc.).

Each declaration starts with one of the following keywords: EVENTCOUNTER, EXTERNSYNCCOUNTER,

FLAGS, TIMECOUNTER, SELECTOR. After the keyword the name for the event is defined.

Data Selectors

Data selectors are used to trigger on the occurrence of a specific data pattern on the input probes. A

declaration consists of a free definable name for the data selector and a pattern definition. The name is used

in conditions for the data event. The declaration

SELECTOR high X.0 1

defines a data event named "high", which is true if the input signal on Pin 0 has a high level. Pattern
definitions may also refer to words, which were defined with the “name.word” command:

SELECTOR ascii Word.data 'A'--'Z'||'a'--'z'

If there a several pattern definitions for different signals, the operation between the pattern definitions is a

logical AND. The definition

SELECTOR write_sio_control Word.adr 0x4 eXt.ds 1 eXt.write 1

is only TRUE, if the “X.write” signal and the “X.cs” are high and the address sampled is “0x4”.

Data events can be used in trigger programs with postfix symbols:

df
.ds
dt
fg
.of
gt
.S

Af

g

double false
double static
double true
false glitch
going false
going true
state

true false

true glitch

true on falling edge, suppresses low glitches
true on high level, suppresses high glitches
true on rising edge, suppresses high glitches
true when low glitch is detected

true on falling edge

true on rising edge

true on high level

true on falling and rising edge

true when high glitch is detected

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide

An Example:

SELECTOR write_sio eXt.write 1 eXt.cssio 1
Trigger.TRACE IF write_sio.gf ; triggers on falling edge of write_sio

Event Counters

Counters can be used to monitor the n.th occurrence of an event. A counter is allocated by a counter event
declaration. The declaration

EVENTCOUNTER minmax 10.--20.

allocates a logical counter event named "minmax”, which is true (as an input event) when the counter has a
value between 10 and 20. An event counter which is controlled by the “counter.increment” instruction, counts
the false-to-true transitions of the defined condition. Because of this it isn’'t necessary to use the “.gt” suffix
for data events in the condition.

Flags

Flags are free usable flip-flops to store one bit of information. To allocate a flag only the keyword and the
name of the flag is required. The declaration

FLAGS reset_state, initialized

defines two flags having the names "reset_state" and "initialized".

Counters and flags may be displayed while the PowerProbe is armed.

Time Counters

To monitor time relations, it is possible to declare Time events. The resolution of the timer is 10 ns
(> 50 MHz) respectively 20 ns (50 MHz). The declaration

TIMECOUNTER after_b5ms 5ms

allocates one counter named "after_5ms", which is true after 5 milliseconds.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide |

Synchronous Counters

If an external clock is applied to the PowerProbe, it is possible to synchronize the clock of a counter to this
external clock. With such a counter it is possible to count external clock cycles. The declaration

EXTERNSYNCCOUNTER clock_cycles 10.

allocates one counter named “clock_cycles”, which is true after 10 clock cycles of the external clock.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 9

Global Instructions

Global statements are commands, which are not related to a trigger level. The shortest possible trigger
program can be made up of one single global statement. For example, the statement

(short form for Sample._Enable) is a valid trigger program.

Statements that are placed before the first label are global statements. If declarations are present in a
trigger program, global statements must be written after them.

The goal of global statements is to make programming easier. Statements common to all levels need to be
entered only once. Each global statement is valid in all levels of the trigger program. The instructions which
can be used in global statements are the same as those for local statements.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 10

Local Instructions

As opposed to global statements, local statements are valid only in one level. Levels begin after the definition
of their label and end at the next label or when the trigger program ends. Thus, a label indicates when a new
level is started. A level can contain any number of statements.

A statement consists of two parts, the instruction and the condition. The instruction defines what action
should be taken, e.g. enable trace sampling (Sample.Enable), set a flag (Flag.TRUE), reset a counter
(Counter.Restart), or go to the next level (CONTinue). The condition defines under which condition the
action is to be taken. For example, the command

Sample.Enable IF strobe

records only, while the data event “strobe” is TRUE.

The condition, if defined, must be separated from the instruction by the keyword IF. If no condition is
defined, then the instruction is always executed. Local statements however, are executed only if the level is
active. The program

start:

GOTO end IF strobe
end:

TRIGGER

will change to level "end" as soon as the data event “strobe” becomes true. When the level “end” is active a
break is triggered.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 11

Output Command Table

The following instructions control the outputs of the trigger unit:

Instruction Action Description
BREAK .TRACE Stop the recording immediately without delay.
Bus A Release trigger bus line A (old command syntax for
Trigger.PODBUS)
CONTinue Sequential level switching
Counter .Enable Count cycle (old-fashioned for .Increment)
.Increment Count cycle
.OFF Counter clock disable
.ON Counter clock enable
.Restart Reload counter
Flag .FALSE Reset flag
.OFF Reset flag (old-fashioned for .FALSE)
.ON Setflag (old-fashioned for .TRUE)
.Toggle Toggle flag
.TRUE Set flag
GOTO Level switching
Out A Set trigger outline TOUTO
B Set trigger outline TOUT1
.C Set trigger outline TOUT2
.D Set trigger outline TOUT3
Sample .Enable Sample cycle
.OFF Sample clock disable
.ON Sample clock enable
Trigger .PATTERN Start Pattern generator
.PODBUS Release trigger bus line A (same as BUS.A)
.Pulse Start Pulse generator
.TRACE Start trigger delay for breaking PowerProbe (same as Trigger.A)
.TRCNT Start Counter from Simple Trigger

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide | 12

Events

The actions taken by the trigger unit are controlled by events. An event can be a special trigger bus signal
from other devices, e.g. from the pattern generator or an internal state of the PowerProbe. Events can also
be the result of a declaration, like counter events or time events. For each instruction in a trigger program
(e.g. start trace recording, set flag), conditions can be specified. These conditions are logical combinations
of the individual events. The program

Sample.Enable IF eXt.O0

will make a selective trace as long as the input line eXt.0 is high.

Counter Events

The counter counts up when the specified condition becomes true. A counter event is true, when the counter
reaches the declared value. An event range needs two counters. The example samples databytes, which
are read from a FIFO. It ignores always the first 1000 bytes after the last write to the FIFO:

SELECTOR write_fifo eXt.0 1 ; declare Selector for write signal
SELECTOR reset_fifo eXt.3 1 ; declare Selector for reset signal

EVENTCOUNTER delay 1000.

Counter.Increment delay IF write_ fifo ; .gt isn’t needed
Counter.Restart IF reset_fifo
Sample.Enable IF delay ; enable sampling after

; 1000 writes

Data Selectors

All not reserved names are allowed as data selector names.

SELECTOR low X.0 0

SELECTOR high W.adr 0x55

SELECTOR active eXt.0 1 exXt.1l 0 exXt.2 1
SELECTOR select X.cs O X.astrobe 1 X.write 0

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 13

Flags

Flags are flip-flops which can be set or reset, depending on input events. The state of the flip-flops can be
used as an input event in the program. The following program will only sample data between the reset and
the first write to a fifo device.

FLAGS fifo_empty

FLAG.TRUE fifo_empty IF reset_fifo
FLAG.FALSE fifo_empty IF write_fifo
Sample.Enable IF fifo_empty

Time Events

The resolution is 10 ns (> 50 MHz) or 20 ns (= 50 MHz). A time event is true, when the time counter reaches
the declared value. A time range needs two counters. The following program stops sampling 50 ps after
input pin 0 becomes high.

TIMECOUNTER delay 50us

SELECTOR dsell X.0 1
start:
GOTO next IF dselO.gt
next:
Counter.Increment delay
BREAK.TRACE IF delay
Other Events

The following predefined input events are also available:

Event Description

BUSA Trigger bus A True when a Podbus trigger signal is detected

FALSE Always false

SYNC SyncClock True at the start of an external synchronous clock cycle
TRUE Always true

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 14

Conditions

Conditions are logical combinations of events, which define when an instruction of the trigger program is
executed. Multiple instructions can be linked together in one line to share the same condition. If the condition
is missing for an instruction, the condition is always assumed to be 'TRUE'. The program

Sample.Enable

will produce the same results as

Sample.Enable IF TRUE

Input events can be combined by standard logical operators:

(...)

! for NOT
&& for AND
AN for XOR
Il for OR

The brackets have the highest priority, the OR operator has the lowest.
The following two conditions will produce the same results:

(V1&&v2) | | ! (v3&&!v4)
v1&&v2 | | 1v3 | |v4

As instructions can be used more than once in a level or in a statement line, it is possible to have conflicting
instructions. The following trigger program has two such conflicts:

START: Counter.ON countl, Counter.OFF countl IF fifo_write
GOTO Count_Level
GOTO Error_Level IF reset_state

Level2:

Instructions are executed from left to right

In the above example the flip-flop used for controlling the counter will be switched to OFF if the fifo_write
condition is true; the previous “Counter.ON” instruction is overwritten.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 15

Instructions are executed top to down

In the example above this means that the "GOTO Count_Level" with the condition, is overwritten by the
second "GOTO Error_Level" when the condition "reset_state" is true.

The trigger unit remains in the "START" level for of one cycle and will then switch either to the trigger level
"Error_Level", or to "Count_Level" depending on the condition "reset_state".
If the order of the "GOTO" statements is changed:

GOTO Error_Level IF eXt.fifo write
GOTO Count_Level

then the first statement is completely overwritten.

Global statements have a low priority
Global statements are used, as if they would have been typed before any other statement in a trigger level.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 16

Levels

Trigger levels can be used to realize a sequential or non-sequential trigger function. This means, that after
one trigger condition has arrived, another condition can be checked. The beginning of a level is defined by its
label. The end of the level is the label of the following level, or the end of the program. All statements located
between these boundaries are part of that level.

All conditions for instructions in a level are checked in parallel during each cycle and all instructions whose
condition is TRUE are executed. Only one level can be active at any time. The current level is recorded in the
trace and can be viewed in real-time in the PowerProbe configuration window.

The instructions CONTinue and GOTO will change the level.

CONTinue

The CONTinue instruction can switch to the next program level following the current one. If no level follows,
then "CONTinue" is the same as the Trigger.TRACE instruction, i.e. the PowerProbe stops recording after
the specified trigger delay. In the example the PowerProbe will change to level "infunc" after “fifo_reset" and
stop the PowerProbe after “fifo_write".

start:
CONTinue IF fifo_reset

infunc:
CONTinue IF fifo_write
Sample

GOTO

The GOTO instruction can switch to any level. The following program will change to the level "init" when the
"fifo_reset" event is true, and change back to "start" on "fifo_write". The probe data is sampled only when the
trigger unit is in the "init" level.

start:
GOTO init IF fifo_reset

init:
GOTO start IF fifo_write
Sample

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 17

TRIGGER, BREAK

The TRIGGER.TRACE respectively BREAK.TRACE instruction causes the PowerProbe to break. Breaking
the PowerProbe means stopping recording and deactivating the trigger unit.

start:

BREAK.TRACE IF fifo_write

The difference between both instructions is that TRIGGER will stop the recording after the defined trigger
delay and BREAK will stop the recording immediately.

When implementing multiple level change instructions in one trigger level, the instruction order must be
observed. Later instructions overwrite conflicting instructions which appear earlier in the trigger program.
The following example shows this relation:

; Declarations

SELECTOR
SELECTOR
SELECTOR
SELECTOR

; global

Sample

fifo_reset
fifo_write
dma
nmi

statements

; local statements

levelO:

CONTinue IF

levell:

GOTO level3 IF

GOTO level3 IF
CONTinue IF
level2:
level3:

BREAK.TRACE

.reset 1

.cs 0 x.write 0 w.adr 0x4
.dma O

.nmi O

XWX X

fifo_reset

nmi
dma.gf
dma&&nmi

When the PowerProbe is in level "level1" and assuming that during an active "dma", "nmi" also gets active,
the program branches to "level2" and not to “level 3”. When “dma” and “nmi” are both active, the
“CONTINUE” statement overwrites the first “GOTO” statement in “level1”.

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide | 18

Programming Examples

All programming examples are explained by a basic SIO circuit:

00
01
02
03
04
05
06
07
08
09

SCLKO

11
31

DO
D1
D2
D3
D4
D5
D6
D7
A0

WR-
CLK
RESET-
Cs-

RXDA

TXDA

CTSA-

RTSA-

INT-
RXRDY
TXRDY

10
11
12

SLT

Y AV A

MAX232

First the probes are connected and the names of the input signals are defined:

NAME .Word BUS_DATA eXt.0 eXt.l eXt.2 eXt.3 eXt.4 eXt.5 eXt.6 eXt.7
NAME. Set eXt.8
NAME. Set eXt.9

Probe.SyncClock
NAME .
NAME .
NAME .
NAME .
NAME .

Set
Set
Set
Set
Set

eXt.
.12

eXt

eXt.
eXt.
eXt.

11

13
14
31

Selective Recording

eXt.BUS_AOQ
eXt.BUS_WR -
sclk0 Rising
eXt .RESET -
eXt.INT -
eXt .RXRDY
eXt .TXRDY

eXt.CS

Selective recording is done with the instructions Sample.Enable.

or

Sample.Enable IF TRUE

All input data is sampled.

Samples if the SIO is selected and the write line is active. The same trace function can be defined by input

Sample.Enable IF

leXt .BUS_WR&&!eXt.CS

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide

19

masks:

SELECTOR SIO_WRITE eXt.BUS_WR 0 eXt.CS 0

Sample.Enable IF SIO_WRITE

-]

cs- |

Sample time I I

In synchronous mode the data will be sampled on the clock SCLKO only. The pins 0-7 must be switched to
synchronous mode:

NAME.Set eXt.0 d0 + sync
NAME.Set eXt.l dl + sync

SELECTOR SIO_WRITE eXt.9 0 eXt.31 0

Sample.Enable IF SIO_WRITE

]

cs- |

Sample time I I

The Sample time is a elongated a little bit, so that it is possible to see the signal change, which was
responsible for the activation and deactivation of the “Sample.Enable” instruction.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 20

Stopping the PowerProbe

There are some reasons which can stop the PowerProbe recording:

Trace Full

Stopping the recording when the PowerProbe is full can be achieved by selecting Stack operation mode in
the PowerProbe configuration window (command Probe.Mode Stack).

Probe.Mode Stack

The PowerProbe stops recording independent of the current logical level.

Trigger or BREAK
Recording stops at a specified condition defined by the Trigger statement. The trigger delay may be defined
between 0 and 100% of the trace storage.

The statement BREAK is a synonym for the combination of a Trigger statement with a trigger delay of 0.

TRIGGER.TRACE IF SIO_WRITE

Stimulating Output Lines

The instruction OUT can control the external trigger outputs of the PowerProbe. These lines can be used to
trigger external timing PowerProbes or oscilloscopes or generate stimuli signals for the target hardware. The
example generates an output signal at the connector TOUTO on the top of the PowerProbe unit every time
the interrupt line becomes active low:

SELECTOR int_active eXt.INT 0
OUT.A IF int_active.gt

Using the Internal Trigger Bus

The instruction BUS can trigger other systems of the TRACES32 system. The inter-trigger bus of the system
can be used to trigger the pattern or pulse generator by the timing PowerProbe. The following example
triggers the pattern generator when an access to a specific address is made. In the pattern generator the
BusA line must be selected as trigger source (command Pattern.TSELect BusA).

SELECTOR SIO_WRITE eXt.bus_wr 0

BUS.A IF SIO_WRITE ; the bus line A is activated on

; write cycles to the SIO

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 21

The timing PowerProbe can also be triggered by other PowerProbes. The event BUSA can be used for this
purpose. When the line BUSA is released from the state PowerProbe, the timing PowerProbe can be
controlled by the state PowerProbe. In the following example the timing PowerProbe records for 1 ms after
the trigger event from the state PowerProbe.

; declaration
TIMECOUNTER delay lms ; delay definition

; local instruction

L00: CONTinue IF BUSA ; wait until the line BUSA is
; active
LO1:
Counter.Increment delay ; activate delay counter
Trigger.TRACE IF delay ; break after 1 ms

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 22

Time and Event Counters

The keyword is TIMECOUNTER for the declaration and the instruction COUNTER controls the counter.
Time and event counters need a declaration to give the counters a name and an initial value. Counters are
always assigned for the whole trigger program, only the control of the counters is level specific.

The following example triggers on a write cycle longer than 10.us:

SELECTOR SIO_WRITE eXt.BUS_WR O
TIMECOUNTER timeout 10.us

Counter.Restart timeout IF SIO_WRITE
Counter.Increment timeout IF !SIO_WRITE

Trigger.TRACE IF timeout

The next example counts the number of write accesses to the SIO:

; declaration
SELECTOR SIO_WRITE X.BUS_WR 0

EVENTCOUNTER write_cycle

; counter operation
Counter.Increment write_cycle IF SIO_WRITE

This example stops the PowerProbe after 1000 write accesses to the SIO:

; declaration
SELECTOR SIO_WRITE X.BUS_WR 0
EVENTCOUNTER write_cycle 1000.

; counter operation
Counter.Increment write_cycle IF SIO_WRITE

Trigger .TRACE IF write_cycle

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide |

23

Using Flags

The keyword FLAGS is used in the declaration and the instruction FLAG can modify the value of a flag.
Flags are useful for remembering the occurrence of a certain state. In some cases they can replace the use
of multiple trigger levels in an PowerProbe trigger program. The following example will monitor the state of an
I/O port in real time. The state of the port can be viewed in the PowerProbe state window:

SELECTOR WRITE_TO_CONTROL Word.BUS_DATA 0x12 eXt.CS 0 eXt.BUS_WR 0

; declaration
FLAGS TX_ENABLE ; declaration of 1 flag

FLAG.TRUE TX_ENABLE IF WRITE_TO_CONTROL
FLAG.FALSE TX ENABLE IF [!WRITE_TO_CONTROL

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 24

Switching Trigger Levels

The instructions CONTinue or GOTO can be used to change the level of the trigger unit. The instruction
Trigger.TRACE and Break.TRACE will disable the PowerProbe and the trigger unit.

; declaration

; global instructions

; local instructions
levelO:
CONTinue IF SIO_WRITE

levell: ..
CONTinue IF CNT Limit

GOTO levelO IF BB

level2: BREAK.TRACE IF DELAY_CNT

START: GOTO levelO IF INT

change sequential to the next
logical level

change to the next logical level
if the counter event CNT _Limit is
true

otherwise jump return to the
level levelO if the data event BB
is true

stop recording if the counter
event DELAY_CNT is true

this is the start level after
PowerProbe init jump to levelO
when the data event INT is true

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide | 25

Declaration Reference

SELECTOR Data selectors
Format: SELECTOR <name> <pin> <value>l<w.name> <value> ...
<pin>: x.01x.11x.21x.31... | <name declared with name.set>
<w.name>: Word declared with “name.word”
<value>: 0 | 1 for pins, integer value or bit mask for words

A data selector named Port_1 with the value 0x55 on the pins x.0 (LSB) to x.7 (MSB).

NAME . WORD adr x.0 x.1 x.2 x.3 x.4 x.5 x.6 x.7
SELECTOR Port_1 w.adr 0x55

A data selector named Port_2 with the value 0x55 on the pins x.0 (LSB) to x.7(MSB) and with the bit mask
1010xx1x on pins x.8 (LSB) to x.15 (MSB):

NAME . WORD addr x.0 x.1 x.2 x.3 x.4 x.5 x.6 x.7
NAME . WORD data x.8 x.9 x.10 x.11 x.12 x.13 x.14 x.15
SELECTOR Port_2 w.addr 0x55 w.data Oyl010xxlx

All alphabetic characters of the ASCII character set (lower case and upper case) are assigned to a data
selector called "ascii":

SELECTOR ascii w.data ('a'--'z')||('A'--'2Z")

Logical pin names can be used like this

NAME.Set x.0 write
SELECTOR write_fifo x.write 1

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 26

EVENTCOUNTER Event counter

Format: EVENTCOUNTER <name> [<event>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for event counting are available on the PowerProbe. They have a width of 45 bits. If a
event counter reaches its declared value it will stop automatically. The event counters can be reloaded in
real-time. However, program-dependent dead times can result. The default value is the maximum value.

The current value of the counters are visible in real-time in the PowerProbe configuration window.

Endless Counter

EVENTCOUNTER Evcntr_2 0
Counter.increment Evcntr_2 IF true
Sample.enable IF Evcntr_2

infinite

Declaration of an event counter called "Eventr_2", count argument 0. The counter is always enabled but it
never counts because it immediately reaches the declared value. In this example the PowerProbe begins
sampling immediately.

Event TRUE after n Clocks

EVENTCOUNTER CYCLE_CNT 500.
Counter.increment CYCLE_CNT IF SIO_WRITE

Sample.enable IF CYCLE_CNT
0 500. infinite
|-— false true

Declaration of an event counter called "CYCLE_CNT". The counter counts rising edges of the SIO_WRITE
data event. The PowerProbe begins sampling after a delay of 500 rising edges of SIO_WRITE.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 27

Event TRUE till n Clocks

EVENTCOUNTER NR_cnt 0x0--0x30
Counter.Increment NR_cnt IF SIO_WRITE

Sample.Enable IF NR_cnt
0 48. infinite
t———— true false

Declaration of an event counter called "NR_cnt", event argument is 0x30. The counter counts rising edges of
the SIO_WRITE data event. The PowerProbe begins sampling immediately and stops recording after 48
rising edges of SIO_WRITE.

Event Windows

EVENTCOUNTER EV_Range 100.--200.
Counter.Increment EV_range IF SIO_WRITE

Sample.Enable IF EV_range
0 100. 200. infinite
t———— false true false

Declaration of an event counter called "EV_range" with an event range from 100 to 200. The counter counts
rising edges of the SIO_WRITE data event. The PowerProbe begins sampling after 100 rising edges and
stops recording 100 rising edges later. Two physical counters are used by the trigger unit.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 28

EXTERNSYNCCOUNTER Synchronous counter

Format: EXTERNSYNCCOUNTER <name> [<event>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for counting external clock cycles are available on the PowerProbe. They have a width of
45 bits. A synchronous counter is synchronized to an external clock, which means that the counter will count
only at the start of an external clock cycle. Because of this the events used in the conditions for the
controlling instructions for the counter should use signals, which are also synchronized to the external clock:

name.set x.0 d0 sync
name.set x.1 dl sync
name.word data x.0 x.1

SELECTOR datahigh w.data 0x3
EXTERNSYNCCOUNTER threehigh 3.
Counter.Increment threehigh IF datahigh
Sample.Enable IF threehigh

The counter will become true, after three clock cycles in which the x.0 and x.1 pins are high.

If events used in a condition for an instruction for a synchronous counter, are not synchronized to the

external clock, it must be ensured, that the events have a setup and hold time of at least 5ns. Otherwise
correct operation can’t be guaranteed.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 29

FLAGS Flags

Format: FLAGS <name> ...

Flags are Flip-flops which can be controlled and read by the trigger unit. The hardware for the flags is
assigned automatically by the system, depending on their usage. There are a maximum of 2 flags available.

After programming the trigger unit, or after the command Probe.Init all flags are set to off. Flags can be set,
reset or toggled.

The following program samples only, when the flag 'init_state' has the value TRUE:

FLAGS init_state
SELECTOR reset_fifo x.0 1

SELECTOR write_fifo x.1 1

FLAG.TRUE 1init_state IF eXt.reset_fifo
FLAG.FALSE init_state IF eXt.write_fifo

Sample.Enable IF init_state
TIMECOUNTER Time counter
Format: TIMECOUNTER <name> [<time>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for timing measurements are available on the PowerProbe. They have a resolution of
10 ns (> 50 MHz) respectively 20 ns (50 MHz) and a width of 45 bits. If a time counter reaches its declared
value, it will be stopped automatically. The timers can be reloaded in real-time. However, program-
dependent dead times can result. The default value is the maximum time.

The current value of the counters can be viewed in real-time in the PowerProbe configuration window.

Time values can be entered in the following units:

Nanoseconds (ns)
Microseconds (us)
Milliseconds (ms)
Seconds (s)

Kiloseconds (ks)

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 30

Timer running till Overflow

TIMECOUNTER Timer_ 1
Counter.increment Timer_1 IF true

Sample.enable IF Timer_ 1
0 max.time infinite
t————————-false true

Declaration of a time counter called Timer_1 without time argument. The counter is always enabled and
counts every time. After the maximum time the PowerProbe starts sampling input data.

Always running Timer

TIMECOUNTER Timer_2 0.ms
Counter.Increment Timer_2 IF TRUE
Sample.Enable IF Timer_2

infinite

Declaration of a time counter called Timer_2, time argument Oms. The counter is always enabled but it never
counts because it immediately reaches the declared value.

Timer TRUE after time

TIMECOUNTER Timer_A 500.us
Counter.Increment Timer A IF TRUE
Sample.Enable IF Timer_ A

0 500.us infinite

Declaration of a time counter "Timer_A", time argument is 500us. The counter is always enabled. The
PowerProbe begins sampling after a time delay of 500us.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 31

Timer TRUE till time

TIMECOUNTER Timer_B 0.us--30.us
Counter.Increment Timer B IF TRUE
Sample.Enable IF Timer_ B

0 30.us infinite

Declaration of a time counter called "Timer_B". The counter is always enabled. The PowerProbe begins
sampling immediately and stops recording after a time of 30us.

Time Windows

TIMECOUNTER Timer_C 100.us--200.us
Counter.Increment Timer_C IF TRUE
Sample.Enable IF Timer_C

0 100.us 200.us infinite

Declaration of a timer called "Timer_C" with a time range from 100 to 200 microseconds. The counter is

always enabled and counts every time. The PowerProbe begins sampling after 100us and stops recording

100us later. Two physical counters are used by the trigger unit.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide |

32

Instruction Reference

BREAK PowerProbe stop

Format: BREAKI[.TRACE] [IF <condition>]

The PowerProbe breaks and stops recording immediately, independently from the before defined trigger
delay. The value from a before used Probe.TDelay command will be ignored. The PowerProbe can be read
out when in break state, similar to the OFF state. The break level is reset by the command Probe.Init. See
also the command Trigger.TRACE.

BREAK.TRACE IF fifo_reset

The PowerProbe breaks, whenever the data event "fifo_reset" is true.

Bus Bus trigger

Format: Bus.<mode> [IF <condition>]

<mode>: A

In order to be able to trigger more than one TRACES2 system, several trigger lines are available on the inter-
trigger bus. A synonym for this command will be Trigger.PODBUS

A Activates podbus trigger line A.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 33

CONTinue Sequential level switching

Format: CONTinue [IF <condition>]

A sequential level switch (to the next written level) will be done, when the specified condition is true. If no
further written level is present, the PowerProbe is breaked.

In the example the PowerProbe will change to level "init" if the data event "fifo_reset" is true.

SELECTOR fifo_reset x.0 0
start: CONTinue IF fifo_reset

init:

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 34

Counter Counter control

Format: Counter[.<mode>] <counter_name> [IF <condition>]

<mode>: Enable (old-fashioned)
Increment
OFF
ON
Restart

Control the trigger units counters. The instructions Counter.ON and Counter.Increment are programmed
automatically, if they are not used in the trigger program. The counters have to be declared according to their
function (see also declaration EVENTCOUNTER, EXTERNSYNCCOUNTER or TIMECOUNTER and
chapters Counter Events or Time Events).

Enable (old-fash- Releases counters when the specified condition is matched.
ioned),

Increment

OFF Switches the enable Flip-flop OFF.

ON Switches the enable Flip-flop ON.

Restart The counter is reset to zero.

The instructions ON, OFF and Increment (Enable) can be seen as a controlled switch and a key in series. If
the switch is closed (Counter.ON) it remains closed till it is opened by Counter.OFF. The key is closed for
the cycles which meet the specified condition. An event counter will only advance once when the key is
closed. That means an event counter counts how often the key was closed. A Time counter will count as
long as the key is closed. That means a time counter counts how long the key was closed.

switch key
| | |
ON/OFF Increment (Enable)

If neither ON/OFF nor Increment (Enable) are used in the complete trigger program, the switch and the key
are closed, that means the counter counts time or exactly one event (key is closed when the recording
starts) depending on its declaration.

switch key

ON/OFF Increment (Enable)

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 35

If only Increment (Enable) is used in the trigger program, the switch ON/OFF is closed automatically, that
means counting is controlled only by Increment (Enable).

switch key

]] | |
ON/OFF Increment (Enable)

If only ON/OFF is used in the trigger program, the key Increment (Enable) is closed automatically, that
means counting is controlled only by ON/OFF.

switch key
| | | |
ON/OFF Increment (Enable)

Counter CYCLE_CNT counts exactly one event:

; declaration
EVENTCOUNTER CYCLE_CNT

; global or local instruction
Counter.Increment CYCLE_CNT

Counter "count_reset" is incremented by 1 every time, the input pin 0 is pulled to low.

; declaration
SELECTOR reset_fifo eXt.0 O
EVENTCOUNTER count_reset

; global or local instruction
Counter.Increment count_reset IF reset_fifo

Counter "reset_puls" is measuring the pulse width of the reset signal.

; declaration
SELECTOR reset_fifo exXt.0 O
TIMECOUNTER reset_puls

Counter.Increment reset_puls IF fifo_reset

; Wait for start of fifo_ reset
levelO: GOTO levell, Counter.ON reset_puls IF fifo_reset.gt

; Wait for end of fifo_reset
levell: BREAK.TRACE, Counter.OFF reset_puls IF !fifo_reset

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide

The counter "ascii_count" is incremented on synchronous clocks with a valid upper-case ASCII character on
probe A. The counter stops at 100. and the PowerProbe breaks.

; declaration
SELECTOR upper_ascii Word.databus 'A'--'Z'
EVENTCOUNTER ascii_count 100.

; global or local instruction
Counter.Increment ascii_count.s
BREAK.TRACE IF ascii_count

If the pulse width of the "cs_fifo" signal is more than 500 ns, the timing PowerProbe will break.

; declaration
SELECTOR cs_fifo Word.cs_fifo_register 0Yxxxxx00x

TIMECOUNTER time_out 500ns

; global instruction

Sample.Enable

Counter.Restart time_out IF cs_fifo.gt
Counter.Increment time out IF cs_fifo
BREAK.TRACE IF time_out

The first write_fifo event must be within 100 s after the fifo_reset state. Otherwise the PowerProbe is
breaked. The counter max_time measures the real time between 'reset' and 'write' on the break condition.

; declaration
TIMECOUNTER first_write 100us
TIMECOUNTER max_time

SELECTOR reset_fifo eXt.0 O
SELECTOR write fifo eXt.1l O
start:

GOTO reset_state IF reset_fifo
reset_state:

Counter.Restart first_write

Counter.Restart max_time

GOTO no_reset IF !reset fifo
no_reset:

Counter.Increment first_write

Counter.Increment max_time

GOTO start IF write_fifo

BREAK.TRACE IF write_fifo&&!first_write

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 37

Flag Flag control

Format: Flag.<mode> <name> [IF <condition>]

<mode>: FALSE
OFF
ON
Toggle
TRUE

Flags are used to mark event occurrences. Flags have to be declared at the beginning of a trigger program
(see chapter FLAGS). The default state at the beginning is OFF. The current state of the used flags is visible
in real time in the PowerProbe configuration window.

FALSE, OFF Resets the flag.
TRUE, ON Sets the flag.
Toggle Reverses the current state.

Set Flag1 if timer_1 has not expired.

; declaration
FLAGS Flagl

; global or local instruction
Flag.TRUE Flagl IF !timer_1

Toggle Flag4 if data_event occurs.

Flag.Toggle Flag4 IF data_event

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 38

GOTO Level switching

Format: GOTO <l/evel [IF <condition>]
<level>: name
START

Change the current level of the trigger unit. GOTO may be used more than once in a level.

The first level which is active after the trigger unit has been programmed is the start level. It is defined by the
label "START:". If no level has been defined this way, then the first level in the program is the start level. The
level marked with "START" has to be the first level written in the program.

On the PowerProbe there are 4 levels available.

Start:

Counter.Restart int_count

GOTO LL8
LL5:

Sample.Enable IF dma

GOTO 118 IF dma&&last_transfer
LL8:

Sample.Enable
Counter.Increment int count IF int_ adr

Out Output control

Format: Out. <mode> [IF <condition>]

<mode>: AIBICID

Four signals can be generated to trigger other devices (e.g. PowerProbes or oscilloscopes) or to stimulate
the target hardware. These signals are accessible via socket connectors at the PowerProbe chassis.

A,B,C,D Activates the universal output TOUTO..TOUTS at the top of the
PowerProbe chassis.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 39

Out.A IF time_out.gt

Release trigger line TOUTO for 10 ns when event time_out becomes true.

Sample Recording control
Format: Sample[.<mode>] [IF <condition>]
<mode>: Enable
OFF
ON

Controls trace memory recording. The instructions Sample.ON and Sample.Enable are programmed
automatically, if they aren't used in the trigger program. This instruction does not effect the recording of the
trigger event and the first and last cycle before the user program stopped.

Enable Releases trace memory for recording when the specified condition is
true.

OFF Disables the Flip-flop for sampling.

ON Enables the Flip-flop for sampling.

The instructions ON, OFF and Enable can be seen as a controlled switch and a key in series. If the switch is
closed (Sample.ON) it remains closed until it is opened by Sample.OFF. The key is closed only for the cycle
which meets the specified condition, i.e. one bus cycle is stored in the trace buffer.

switch key
| | |
ON/OFF Enable

Sampling is only enabled if the switch and the key are closed.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 40

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means all cycles are recorded (Implicit global "Sample.ON IF true" and "Sample.Enable IF true").

switch key

] | | |
ON/OFF Enable

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, that means
sampling is controlled only via “Sample.Enable” (Implicit global "Sample.ON IF true").

switch key

] | | |
ON/OFF Enable

If only “Sample.OFF” is used in the trigger program, the key Enable is closed automatically, and the ON/OFF
switch is closed initially. The sampling will stop as soon as the “Sample.OFF” instruction is executed.

If only “Sample.ON” and “Sample.OFF” are used, the key Enable is closed, and the ON/OFF switch is open
initially. Sampling will only be controlled by the ON/OFF switch.

switch key
| | | |
ON/OFF Enable

The following statements are equal and will sample all cycles:

Sample.Enable IF TRUE
Sample.Enable

S.E

S

Sample only if line eXt.0 is high:

SELECTOR x0Ohigh eXt.0 1

Sample.Enable IF x0high

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 41

The PowerProbe starts and waits in LevelO without recording till the appearance of the int1 line

; declaration area
SELECTOR intl low eXt.4 O

; local area

LevelO: Sample.Enable IF intl_low
CONTinue IF intl_low

Levell: Sample.Enable

Trigger Trigger control
Format: Trigger. <mode> [IF <condition>]
<mode>: A | P | PATTERN | PODBUS | PULSE | TRACE | TRCNT

Trigger other systems of the PowerProbe.

Pattern Releases a trigger signal to the pattern generator.
PODBUS Releases a signal on the inter-trigger bus (BUS.A).
PULSE Releases a pulse of the pulse generator (PULSe).
TRACE, A Starts the trigger delay counter defined by the command Probe.TDelay
TRCNT Release pulse on universal counter input line.
Trigger.PODBUS:

In order to be able to trigger more than one TRACES32 system, a special trigger line is available on the inter-
trigger bus. A synonym for this command will be BUS.A.

Trigger.TRACE:

When the PowerProbe breaks, it stops recording after the, with the command Probe.TDelay defined trigger
delay. The PowerProbe can be read out when in break state, similar to the OFF state. The break level is
reset by the command Probe.Init. See also the command BREAK.TRACE.

Trigger.TRACE IF fifo_reset

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 42

The PowerProbe breaks, whenever the state "fifo_reset" is true.

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide | 43

PowerProbe Programming Language Syntax

NOTE: The following symbols are meta-symbols belonging to the formalism and not symbols of the trigger

programming language.

[1 0 up to 1 iteration of the expression included (the expression can be omitted)
{1} 1 up to infinite iteration of the expression inside (the expression must be written at least once)
() summary (summarize alternatives)

I separates alternatives

the name (nonterminal symbol) on the left can be substituted with the expression on the right

text/ the characters written in bold letters are terminal symbols which cannot be substituted any

text more (the characters have to be typed in this way)

The meta symbols mustn’t written in the trigger program.
The PowerProbe programming language starts with the nonterminal symbol ppta_prog.

ppta_prog: [{EOL}] [decls] [globals] [{locals}] {EOL} EOF

decls: [(eve _dec | ext_dec | flg dec | sel_dec | tim dec)]

[comment] {EOL} [decls]

eve_dec: EVentCouNTer namel [int]

ext_dec: EXternSYncCouNTer namel [int]

flg dec: FLAGS name2 [{[,] name2}]

sel_dec: SELECTOR name3 {{dataname _prefixl . dataname_postfix]|

dataname_prefix2 . dataname_postfix}

[{int | range | bitmask}] }

tim_dec: TImeCouNTer namel [time]

globals: instr

locals: label [instr]

label: (name | START) :

instr: [comlist] [comment] {EOL} [instr]

comment : (11 | ;) text

comlist: command [{[,] command}] [IF condition]

command: c_break | c_bus | c_continue | c_counter | c_flag |
c_goto | c_out | c_sample | c_trigger

c_break: BREAK [.TRACE]

©1989-2024 Lauterbach PowerProbe Trigger Unit Programming Guide

44

c_bus:
c_continue:

c_counter:

c_flag:
c_goto:
Cc_out:
c_sample:

c_trigger:

condition:
tl:
t2:
t3:

dataname_prefixl:
dataname_prefix2:

dataname_postfix:

mode:

inline name:

namel, nameZ2, name3

int:

time:

text:

(B | BUS) [.A]
(CONT | CONTINUE)

(c | COUNTER) [. (I|INCREMENT|OFF|ON|R|RESTART))]

{name1}
(F | FLAG) . (FALSE|T|TOGGLE|TRUE) {name2}
GOTO (name | START)
(o | ouT) . (A | B | c | D
(s | SAMPLE) [. (E|ENABLE|OFF |ON)]
(T | TRIGGER) [. (A|P|PATTERN|PODUS |PULSE|TRACE|
TRCNT)]
t1 {[]] t11}
t2 {[+* t2]}

t3 {[&& t3]}

(v £3) | (condition) | namel name2 |
dataname_prefixl dataname_postfix [.mode]
name3 [.mode] | inline name

EXT | s | soc | X
W | WORD

0..1023 | from user with NAME.Group or NAME.Set or
NAME.Word defined names

DF | DS | DT | FG | GF | GT | S | TF | TG

BUSA | FALSE | SYNC | TRUE

is chosen from the user and must correspond with the
'C'-name conventions

syntax described in the Operation System User's
Guide

dto.

all characters excepted EOL and EOF

©1989-2024 Lauterbach

PowerProbe Trigger Unit Programming Guide | 45

	PowerProbe Trigger Unit Programming Guide
	PowerProbe Programming
	Program Structure
	Sample Trigger Program

	Declarations
	Data Selectors
	Event Counters
	Flags
	Time Counters
	Synchronous Counters

	Global Instructions
	Local Instructions
	Output Command Table

	Events
	Counter Events
	Data Selectors
	Flags
	Time Events
	Other Events

	Conditions
	Levels
	CONTinue
	GOTO
	TRIGGER, BREAK

	Programming Examples
	Selective Recording
	Stopping the PowerProbe
	Stimulating Output Lines
	Using the Internal Trigger Bus
	Time and Event Counters
	Using Flags
	Switching Trigger Levels

	Declaration Reference
	SELECTOR Data selectors
	EVENTCOUNTER Event counter
	EXTERNSYNCCOUNTER Synchronous counter
	FLAGS Flags
	TIMECOUNTER Time counter

	Instruction Reference
	BREAK PowerProbe stop
	Bus Bus trigger
	CONTinue Sequential level switching
	Counter Counter control
	Flag Flag control
	GOTO Level switching
	Out Output control
	Sample Recording control
	Trigger Trigger control

	PowerProbe Programming Language Syntax

