
MANUAL

PowerIntegrator Programming
Guide

PowerIntegrator Programming Guide

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 PowerIntegrator ... 

 PowerIntegrator Programming Guide .. 1

 PowerIntegrator ... 4

 Program Structure ... 5

 Sample Trigger Program 6

 Declarations ... 7

 Data Selectors 7

 Event Counters 8

 Flags 9

 Time Counters 9

 Global Instructions .. 10

 Local Instructions ... 11

 Output Command table 12

 Events ... 13

 Counter Events 13

 Data Selectors 14

 Flags 14

 Time Events 14

 Other Events 15

 Conditions .. 16

 Levels ... 18

 CONTinue 18

 GOTO 18

 TRIGGER, BREAK 19

 Programming Examples ... 20

 Selective Recording 21

 Stopping the PowerIntegrator 23

 Stimulating Output Lines 23

 Using the Internal Trigger Bus 24

 Time and Event Counters 25

 Using Flags 26
PowerIntegrator Programming Guide | 2©1989-2024 Lauterbach

 Switching Trigger Levels 26

 Declaration Reference .. 27

 SELECTOR Data selectors 27

 EVENTCOUNTER Event counter 28

 EXTERNSYNCCOUNTER Synchronous counter 30

 FLAGS Flags 31

 TIMECOUNTER Time counter 31

 Instruction Reference ... 34

 BREAK Trace stop 34

 Bus Bus trigger 34

 CONTinue Sequential level switching 35

 Counter Counter control 36

 Flag Flag control 39

 GOTO Level switching 39

 Out Output control 40

 Sample Recording control 41

 Trigger Trigger control 43

 PowerIntegrator Programming Language Syntax .. 44
PowerIntegrator Programming Guide | 3©1989-2024 Lauterbach

PowerIntegrator Programming Guide

Version 06-Jun-2024

PowerIntegrator

The trigger unit of the timing analyzer is a powerful tool to find complex errors or to sample selective data for
advanced measurements. The trigger unit is programmed by an ASCII definition file. The command
Integrator.Program is used to create a new trigger program. Writing the program is supported by softkeys
and online help. The command Integrator.ReProgram can be used to load ready-to-run programs in the
trigger unit. The commands in this manual refer to the trigger program, unless otherwise mentioned.

 Hardware structure of trigger unit

/

Probes
A Data Transient
.. Data
O Selector Detector Out Output (BNC)

Bus Sys. Trigger Bus

Flags out Trigger
Bus of Sample

Sequencer
m Trigger

Counter Counter Trace
Flags Flag

Mux GOTO

univ. Control
Timer unit
Counter
PowerIntegrator Programming Guide | 4©1989-2024 Lauterbach

Program Structure

A trigger program for the PowerIntegrator consists of the following parts:

Comments Are allowed anywhere in the trigger program. They begin with a "//" or “;“.

Declarations Define input events which need to be declared. Such events are flags,
data patterns or counters (see also declarations).

Instructions Instructions control the action taken by the trigger unit. Usually they
are only executed when a defined condition becomes true. A
condition is the combination of internal or external events of the
analyzer. An event is the occurrence of a specific internal trigger bus
signal or a predefined data pattern.

Levels The begin of a level is defined by the name of the level followed by a
colon ":". The end of a level is the begin of the next level or the end of
the trigger program. All commands within a level and the global
commands are valid while the level is active. Commands outside the level
are not active. Only one level can be active at any time. Usually the begin
of a trigger program is the first written level or the level with the name
"START:".

Global instructions They are located between declarations and the first label, i.e. the first
local instruction. They are valid in all used levels. A trigger program may
only consists of global instructions.

Local instructions Valid within one trigger level. All local instructions defined within a level
and all global instructions are checked simultaneously.
PowerIntegrator Programming Guide | 5©1989-2024 Lauterbach

Sample Trigger Program

The following sample trigger programs gives an overview about the capabilities of the trigger unit. The
program is entered in a window generated by the Integrator.Program command.

;----- declarations -----

EVENTCOUNTER max 20. event counter declaration

;----- global statements -----

Sample.Enable sample everything

;----- local statements -----

start: label
Counter.I max if x.high.gt counter enable
GOTO end if max level control

end:
Trigger

;----- end of trigger program -----
PowerIntegrator Programming Guide | 6©1989-2024 Lauterbach

Declarations

Declarations are used to assign events to independently selected names (flags, counter or time events). In
addition, the event value is specified in the declaration (eg. counter value range, etc.).

Each declaration starts with one of the following keywords: EVENTCOUNTER, FLAGS, TIMECOUNTER.
After the keyword the name for the event is defined.

Data Selectors

Not applicable with this device, please use NAME.Group or NAME.Set or NAME.Word instead.

Data selectors are used to trigger on the occurrence of a specific data pattern on the input probes. A
declaration consists of a free definable name for this data pattern and the data values. The name is used in
the condition for the data event. The declaration

defines a data event named "high", which is true if the input signal on probe A Pin 0 has high level. Data
declarations may be on a byte, word or long word base. Byte declarations can be defined by ranges:

If more than one value is one line is used, this operation between the values is an logical AND. The definition

is only TRUE, is the WRITE signal, the CHIPSELECT and the address sampled with probe A is true.

DATA high A:0Yxxxxxxx1

DATA ascii A:'A'--'Z'||'a'--'z'

DATA write_sio_control A:4 cs write
PowerIntegrator Programming Guide | 7©1989-2024 Lauterbach

Data events can be used in trigger programs with postfix symbols:

Event Counters

Counters can be used to monitor the n.th occurrence of an event. A counter is allocated by a counter event
declaration. The declaration

allocates a logical counter event named "minmax", which is true (as an input event) between 10 and 20
occurences of the selected events.

Mode Synonyms

.HH true on high level

.HL .FALLING true on falling edge

.HX true when coming from high level

.LH .RISING true on rising edge

.LL true on low level

.LX true when coming from low level

.XH .1 .HIGH true when ending with high level

.XL .0 .LOW true when ending with low level

.XX .X always true

.DOUBLE true on static level

.EDGE true on falling or rising edge

NAME.Set i.f0 write
SELECTOR write_fifo i.write.HIGH

EVENTCOUNTER minmax 10.--20.
PowerIntegrator Programming Guide | 8©1989-2024 Lauterbach

Flags

Flags are free usable flip-flops to store one bit of information. To allocate a flags only the keyword and the
name of the flag is required. The declaration

defines two flags having the names "reset_state" and "initialized".

Counters and flags may be displayed while the trace is armed.

Time Counters

To monitor time relations, it is possible to declare Time events. The resolution of the timer is 4 ns.. The
declaration

allocates one counter named "after_5ms", which is true after 5 ms.

FLAGS reset_state, initialized

TIMECOUNTER after_5ms 5ms
PowerIntegrator Programming Guide | 9©1989-2024 Lauterbach

Global Instructions

Global statements are commands, which are not related to a trigger level. The shortest possible trigger
program can be made up of one single global statement. For example, the statement

(short form for Sample.enable) is a valid trigger program.

Statements that are placed before the first label are global statements. If declarations are present in a
trigger program, global statements must be written after them.

The goal of global statements is to make programming easier. Statements common to all levels need to be
entered only once. Each global statement is valid in all levels of the trigger program. The commands for
global statements are the same as those for local statements.

S.e
PowerIntegrator Programming Guide | 10©1989-2024 Lauterbach

Local Instructions

As opposed to global statements, local statements are valid only in one level. Levels begin after the definition
of their label and end at the next label or when the trigger program ends. Thus, a label indicates when a new
level is started. A level can contain any number of statements.
A statement consists of two parts, the instruction and the condition. The instruction defines what action
should be taken, e.g. switch-on trace sampling (Sample.Enable), set a flag (Flag.TRUE), reset a counter
(Counter.Restart), or go to the next level (CONTinue). The condition defines under which conditions the
action is to be taken. For example, the command

records only, while the data event 'high' is TRUE.
The condition, if defined, must be separated from the instruction by the keyword IF. If no condition is
defined, then the instruction is always executed. Local statements however, are executed only if the level is
active. The program

will change to level "end" after the data event high is true.

Sample.Enable if i.high

start:
GOTO end if i.high

end:
TRIGGER
PowerIntegrator Programming Guide | 11©1989-2024 Lauterbach

Output Command table

The following instructions control the outputs of the trigger unit:

Instruction Action Description

BREAK .TRACE Stop the recording immediately without delay.

Bus .A Release trigger bus line A (old command syntax for
Trigger.PODBUS)

CONTinue Sequential level switching

Counter .Enable
.Increment
.OFF
.ON
.Restart

Count cycle (old-fashioned for .Increment)
Count cycle
Counter clock disable
Counter clock enable
Reload counter

Flag .FALSE
.OFF
.ON
.Toggle
.TRUE

Reset flag
Reset flag (old-fashioned for .FALSE)
Set flag (old-fashioned for .TRUE)
Toggle flag
Set flag

GOTO Level switching

Out .A
.B
.C
.D

Set trigger outline TOUT0
Set trigger outline TOUT1
Set trigger outline TOUT2
Set trigger outline TOUT3

Sample .Enable
.OFF
.ON

Sample cycle
Sample clock disable
Sample clock enable

Trigger PODBUS
TRACE

TRCNT

Release trigger bus line A (same as old-fashioned BUS.A)
Start trigger delay for breaking PowerIntegrator (same as
old-fashioned Trigger.A)
Start Counter from Simple Trigger
PowerIntegrator Programming Guide | 12©1989-2024 Lauterbach

Events

The actions taken by the trigger unit are controlled by events. An event can be a special trigger bus signal
from other devices, e.g. pattern generator or an internal state of the PowerIntegrator. Events can also be the
result of a declaration, like counter events or time events. For each instruction in a trigger program (e.g. start
trace recording, set flag), conditions can be specified. These conditions are logical combinations of the
individual events. The program

will make a selective trace as long as the input line i.a0 is high.

Counter Events

The counter counts up if the specified condition is true. A counter event is true, when the counter reaches
the declared value. An event range needs two counters. The example samples databytes, which are read
from an FIFO in the target. It ignores always the first 1000 bytes after the last write to the FIFO:

Sample.Enable if i.a0

; Name setting
NAME.Set i.a0 write_fifo
NAME.Set i.a3 reset_fifo

; Selector declaration
Selector write i.write_fifo.XH
Selector reset i.reset_fifo.XH

; Action
Counter.Increment delay IF i.write
Counter.RESTART IF i.reset
Sample.Enable IF delay
PowerIntegrator Programming Guide | 13©1989-2024 Lauterbach

Data Selectors

All not reserved names are allowed as data selector names.

Flags

Flags are flip-flops which can be set or reset, depending on input events. The state of the flip-flops can be
used as an input event in the program. The following program will sample data only between the reset and
the first write to the device fifo.

Time Events

The resolution is 4 ns. An event is true, when the counter reaches the declared value. A time range needs
two counters. The following program stops sampling 50 µs after the trigger point.

SELECTOR low I.A0.LOW
SELECTOR high W.adr 0x55
SELECTOR active Integrator.F0.XH Integrator.F1.XL Integrator.F2.XH
SELECTOR select I.cs.XL I.astrobe.XH I.write.XL

FLAGS fifo_empty

FLAG.TRUE fifo_empty IF i.reset_fifo
FLAG.FALSE fifo_empty IF i.write_fifo
Sample.Enable IF fifo_empty

TIMECOUNTER delay 50us

start:
GOTO next IF i.a0.DT

next:
Counter.Increment delay
BREAK.TRACE if delay
PowerIntegrator Programming Guide | 14©1989-2024 Lauterbach

Other Events

It is not necessary to declare implicit events of the analyzer. The following input events are available:

Event Description

BUSA Trigger bus A

FALSE Always false

SYNC

TRUE Always true
PowerIntegrator Programming Guide | 15©1989-2024 Lauterbach

Conditions

Conditions are combinations of events, which define when an instruction of the trigger program is executed.
Multiple instructions can be linked together in one line to share the same condition. If the condition is missing
for an instruction, the condition is always assumed to be 'TRUE'. The program

will produce the same results as

Input events can be combined by standard logical operators:

The brackets have the highest priority, the OR operator has the lowest.

The following two conditions will produce the same results:

As instructions can be used more than once in a level or in a statement line, it is possible to have conflicting
instructions or conditions. The following trigger program has two such conflicts:

Sample.Enable

Sample.Enable IF TRUE

(…)

! for NOT

&& for AND

^^ for XOR

 || for OR

(v1&&v2)||!(v3&&!v4)
v1&&v2||!v3||v4

START: Counter.ON count1, Counter.OFF count1 IF i.fifo_write
GOTO Count_Level
GOTO Error_Level if reset_state

Level2:
…

PowerIntegrator Programming Guide | 16©1989-2024 Lauterbach

Instructions are executed from left to right

In the above example the flip-flop used for controlling the counter will be switched to OFF if the fifo_write
condition is true.

Instructions are executed top to down

In the example above this means that the "GOTO" with the condition, which is "always valid", i.e. the jump to
"Count_Level", is programmed first. This programming is overwritten by the second "GOTO" with a jump to
"Error_Level" only in the case that the condition "reset_state" is true.

The trigger unit remains in the "START" level for of one cycle and will then switch either to the trigger level
"Error_Level", or to "Count_Level" depending on the condition "reset_state".
If the order of the "GOTO" statements is changed:

then the first statement is completely overwritten.

Global statements have a low priority

Global statements are used, as they would have been typed before any other statement in a trigger level.

GOTO Error_Level IF i.fifo_write
GOTO Count_Level
PowerIntegrator Programming Guide | 17©1989-2024 Lauterbach

Levels

Trigger levels can be used to realize a sequential or non-sequential trigger function. This means, that after
one trigger condition has arrived, another condition is checked. The beginning of a level is defined by its
label. The end of the level is the label of the following level, or the end of the program. All statements located
between these boundaries are part of that level.

The levels determine which statements are active at the same time. All conditions for instructions in a level
are checked in parallel during each cycle and all instructions whose condition is TRUE are executed. Only
one level can be active at any time. The current level is recorded in the trace and can be viewed in real-time
in the integrator state window.

The instructions CONTinue and GOTO will change the level.

CONTinue

The CONTinue instruction can switch to the next program level following the current one. If no level follows,
then "CONTinue" is the same as the Trigger.TRACE instruction, i.e. the trace is stopped. In the example
the analyzer will change to level "infunc" after "fifo_reset" and stop the analyzer after "fifo_write".

GOTO

The GOTO instruction can switch to any level. The following program will change to the level "init" when the
"fifo_reset" is true is, and change back to "start" on "fifo_write". The probe data is sampled only when the
trigger unit is in the "init" level.

start:
CONTINUE IF i.fifo_reset

infunc:
CONTINUE if i.fifo_write
SAMPLE

start:
GOTO init IF i.fifo_reset

init:
GOTO start if i.fifo_write
SAMPLE
PowerIntegrator Programming Guide | 18©1989-2024 Lauterbach

TRIGGER, BREAK

The TRIGGER.TRACE respectively BREAK.TRACE instruction causes the trace to stop. Breaking the
analyzer means stopping recording and deactivating the trigger unit.

When implementing multiple level change instructions in one trigger level, the instruction priority must be
observed. Instruction priority rises for instructions written later in the level, global instructions have a low
priority. The following example shows this relation:

When the analyzer is in level "level1" and assuming that during "dma" active "nmi" also gets active, then the
program branches to "level2" and not to the trigger level.

start:
TRIGGER IF fifo_write

; Declarations
selector fifo_reset i.reset.XH
selector fifo_write cs write a:4
selector dma b:0Yxxxxxxx0
selector nmi d:0Yxxxxxx0x
…

; global statements

sample
…

; local statements

level0:
continue if fifo_reset

level1:
goto level3 if nmi
goto level3 if dma
continue if dma&&nmi

level2: …

level3: …
trigger.trace
PowerIntegrator Programming Guide | 19©1989-2024 Lauterbach

Programming Examples

All programming examples are explained by a basic SIO circuit:

First the probes are connected and the names of the input signals are defined:

name.group BUS_DATA i.a0 i.a1 i.a2 i.a3 i.a4 i.a5 i.a6 i.a7
name.set i.a8 i.BUS_A0
name.set i.a9 i.BUS_WR -
name.set i.a10 i.CLK
name.set i.a11 i.RESET -
name.set i.a12 i.INT -
name.set i.a13 i.RXRDY
name.set i.a14 i.TXRDY
name.set i.a31 i.CS -

A0 D0 RXDA
A1 D1 TXDA SLT
A2 D2 CTSA-
A3 D3 RTSA-
A4 D4
A5 D5 MAX232
A6 D6
A7 D7 INT- B4
B0 A0 RXRDY B5
B1 WR- TXRDY B6
B2 CLK
B3 RESET-
D7 CS-
PowerIntegrator Programming Guide | 20©1989-2024 Lauterbach

Selective Recording

Selective recording is done with the instruction Sample.Enable. Normally do not use Sample.ON and
Sample.OFF, because the state of this line cannot be monitored in the trace. Using two levels instead is
usually a better solution.

or

All input data is sampled.

 Samples if the SIO is selected and the write line is active. The same trace function can be defined by input

masks:

sample.enable if true

s.e

; Selector declaration
Selector ValidRecord i.BUS_WR.XL i.CS.XL

; Action
Sample.enable if ValidRecord

DATA SIO_WRITE B:0Yxxxxxx0x D:0Y0xxxxxxx

Sample.enable if Group.SIO_WRITE

WR- _________________

CS- ___________

Sample time
PowerIntegrator Programming Guide | 21©1989-2024 Lauterbach

In synchronous mode the data will be sampled on the clock of D7 only. The channel A must be switched to
synchronous mode:

A.SYnch A ON

DATA SIO_WRITE B:0Yxxxxxx0x

Sample.enable if SIO_WRITE.S

WR- _________________

CS- ___________

Sample time
PowerIntegrator Programming Guide | 22©1989-2024 Lauterbach

Stopping the PowerIntegrator

There are some reasons which can stop the analyzer recording:
Trace Full

Stopping the recording when the analyzer is full can be achieved by selecting Stack operation mode in the
integrator control window (command Integrator.Mode Stack).

The analyzer stops recording independent of the current logical level.

Trigger.TRACE or BREAK.TRACE

Recording stops at a specified condition defined by the Trigger statement. The trigger delay may be defined
between 0 and 100% of the trace storage.

The statement BREAK.TRACE is a synonym for the combination of a Trigger statement with a trigger delay
of 0.

Stimulating Output Lines

The instruction OUT can control the external trigger outputs of the PowerIntegrator. These lines can be
used to trigger external timing analyzers or oscilloscopes or generate stimuli signals for the target hardware.
The example generates an output signal at the connector TOUT0 on the top of the analyzer unit every time
the interrupt line becomes active:

intergrator.mode stack

trigger.trace if SIO_WRITE

OUT.A if i.INT.gt
PowerIntegrator Programming Guide | 23©1989-2024 Lauterbach

Using the Internal Trigger Bus

The intertrigger BUS can trigger other systems of the TRACE32 system. The inter-trigger bus of the
system can be used to trigger the pattern or pluse generator by the timing analyzer. The following example
triggers the pattern generator when an access to a specific address is made. In the pattern generator the
BusA line must be selected as trigger source (command Pattern.TSELect BusA).

The PowerIntegrator can also be triggered by other analyzers. The event BUSA can be used for this
purpose. When the line BUSA is released from the trace analyzer, the PowerIntegrator can be controlled by
the trace analyzer. In the following example the PowerIntergrator records for 1 ms after the trigger event
from the trace analyzer.

NAME.Set i.a0 i.SIO_WRITE

BUS.A IF i.SIO_WRITE ; the bus line A is activated on
; write cycles to the SIO

; declaration
TIMECOUNTER delay 1ms

 ; delay definition

; local instruction
L00: CONTinue IF BUSA

 ; wait until the line BUSA is active

L01:
Counter.Increment delay
Trigger.TRACE IF delay

 ; activate delay counter
 ; break after 1 ms
PowerIntegrator Programming Guide | 24©1989-2024 Lauterbach

Time and Event Counters

The keyword are TIMECOUNTER or EVENTCOUNTER for the declaration and the instruction COUNTER
controls the counter. Time and event counters need a declaration for assigning names and initial values.
Counters are always assigned for the whole trigger program, even the control of the counter is level specific.
The following program defines a counter, which will display the time a program is running in a function. The
total time can be viewed in the integrator state window.

The following example triggers on a write cycle longer than 10.us:

In the next example counts the number of write accesses to the SIO:

This example stops the trace after 1000 write accesses to the SIO:

NAME i.a0 i.SIO_WRITE

; declaration
TIMECOUNTER timeout 10.us

Counter.Restart timeout IF !i.SIO_WRITE
Counter.Increment timeout IF i.SIO_WRITE

Trigger.TRACE IF timeout

; declaration
SELECTOR SIO_WRITE i.a0.LH
EVENTCOUNTER write_cycle

; counter operation
Counter.Increment write_cycle IF i.SIO_WRITE

; declaration
SELECTOR SIO_WRITE i.A0.LH
EVENTCOUNTER write_cycle 1000.

; counter operation
Counter.Increment write_cycle IF i.SIO_WRITE
Trigger.TRACE IF write_cycle
PowerIntegrator Programming Guide | 25©1989-2024 Lauterbach

Using Flags

The keyword FLAGS is used in the declaration and the instruction FLAG can modify the value of a flag.
Flags are useful for remembering the occurrence of a certain state. In some cases they can replace the use
of multiple trigger levels in an integrator trigger program. The following example will monitor the state of an
I/O port in real time. The state of the port can be viewed in the integrator state window:

Switching Trigger Levels
The instructions CONTinue or GOTO can be used to change the level of the trigger unit. The instruction
Trigger.TRACE will disable the trace and the trigger unit.

NAME.Group Group.WRITE_TO_CONTROL i.a0 i.a1+ i.a8
NAME.Set i.63+ i.TX_EN

; declaration
FLAGS TX_ENABLE ; declaration of 1 flag

FLAG.TRUE TX_ENABLE IF i.TX_EN&&Group.WRITE_TO_CONTROL
FLAG.FALSE TX_ENABLE IF !i.TX_EN&&Group.WRITE_TO_CONTROL

; declaration
…

; global instructions
…

; local instructions
LEVEL0: …

CONTinue if i.SIO_WRITE ; change sequential to the next logical
; level

 …
LEVEL1: …

CONTinue if CNT_Limit ; change to the next logical level if
; the counter CNT_Limit is ready

GOTO LEVEL0 if i.BB ; otherwise jump return to the level
; LEVEL0 if the data event BB is true

…
LEVEL2: TRIGGER.TRACE if
DELAY_CNT

; stop recording (user program remains
; running) if the counter DELAY_CNT is
; ready

START: GOTO LEVEL0 if i.INT ; this is the start level after analyzer
; init
; Wait for an interrupt acknowledge,
; then jump to the level LEVEL0
PowerIntegrator Programming Guide | 26©1989-2024 Lauterbach

Declaration Reference

SELECTOR Data selectors

A data selector named Port_1 with the value 0x55 on the pins i.a0 (LSB) to i.a7 (MSB).

A data selector named Port_2 with the value 0x55 on the pins i.a0 (LSB) to i.a7(MSB) and with the bit mask
1010xx1x on pins i.a8 (LSB) to i.a15 (MSB):

All alphabetic characters of the ASCII character set (lower case and upper case) are assigned to a data
selector called "ascii":

Logical pin names can be used like this

Format: SELECTOR <name> <pin> . <mode> | <w.name> <value> …

<pin>: i.a0 | … | i.f15 | i.j0 | … | i.o15 | clcka | … | clckf | clckj | … | clcko |
 <name declared with name.set>

<mode>: 0 | 1 | DOUBLE | EDGE | FALLING | HH | HIGH | HL | HX | LH | LL | LOW | LX
| RISING | XH | XL

<w.name>: Word declared with “name.word”

<value>: 0 | 1 for pins, integer value or bit mask for words

NAME.WORD adr i.a0 i.a1 i.a2 i.a3 i.a4 i.a5 i.a6 i.a7
SELECTOR Port_1 w.adr 0x55

NAME.WORD adr i.a0 i.a1 i.a2 i.a3 i.a4 i.a5 i.a6 i.a7
NAME.WORD data i.a8 i.a9 i.a10 i.a11 i.a12 i.a13 i.a14 i.a15
SELECTOR Port_2 w.adr 0x55 w.data 0y1010xx1x

SELECTOR ascii w.data ('a'--'z')||('A'--'Z')

NAME.Set i.f0 write
SELECTOR write_fifo i.write.HIGH
PowerIntegrator Programming Guide | 27©1989-2024 Lauterbach

EVENTCOUNTER Event counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for event counting are available on the PowerIntegrator. They have a width of 45 bits. If a
event counter reaches its declared value it will stop automatically. The event counters can be reloaded in
real-time. However, program-dependent dead times can result. The default value is the maximum time.

The current value of the counters are visible in real-time in the integrator state window.

Endless Counter

Declaration of an event counter called "Evcntr_2", count argument 0. The counter is always enabled but it
never counts because it immediately reaches the declared value. In this example the integrator begins
sampling immediately .

Event TRUE after n Clocks

Declaration of an event counter called "CYCLE_CNT". The counter is always enabled and counts all cycles.
The integrator begins sampling after a delay of 500 cycles.

Format: EVENTCOUNTER <name> [<event>]

EVENTCOUNTER Evcntr_2 0
Counter.increment Evcntr_2 IF true
Sample.enable IF Evcntr_2

EVENTCOUNTER CYCLE_CNT 500.
Counter.increment CYCLE_CNT IF true
Sample.enable IF CYCLE_CNT

0 infinite

true

0 500. infinite

false true
PowerIntegrator Programming Guide | 28©1989-2024 Lauterbach

Event TRUE till n Clocks

Declaration of an event counter called "NR_cnt", event argument is 30 (hex). The counter is always enabled.
The integrator begins sampling immediately and stops recording after 48 sampled cycles.

Event Windows

Declaration of an event counter called "EV_range" with an event range from 100 to 200. The counter is
always enabled and counts all cycle. The integrator begins sampling after 100 cycles and stops recording
100 cycles later. Two physical counters are used by the trigger unit.

EVENTCOUNTER NR_cnt 0x0--0x30
Counter.increment NR_cnt IF true
Sample.enable IF NR_cnt

EVENTCOUNTER EV_Range 100.--200.
Counter.increment EV_range IF true
Sample.enable IF EV_range

0 48. infinite

true false

0 100. 200. infinite

false true false
PowerIntegrator Programming Guide | 29©1989-2024 Lauterbach

EXTERNSYNCCOUNTER Synchronous counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for counting external clock cycles are available on the PowerIntegrator. They have a width
of 45 bits. A synchronous counter is synchronized to an external clock, which means that the counter will
count only at the start of an external clock cycle. Because of this the events used in the conditions for the
controlling instructions for the counter should use signals, which are also synchronized to the external clock:

The counter will become true, after three clock cycles in which the i.b0 and i.b1 pins are high.

If events used in a condition for an instruction for a synchronous counter, are not synchronized to the
external clock.

Format: EXTERNSYNCCOUNTER <name> [<event>]

name.set i.a0 d0 sync
name.set i.a1 d1 sync
name.word data i.b0 i.b1

SELECTOR datahigh w.data 0x3
EXTERNSYNCCOUNTER threehigh 3.
Counter.increment threehigh IF datahigh
Sample.enable IF threehigh
PowerIntegrator Programming Guide | 30©1989-2024 Lauterbach

FLAGS Flags

Flags are Flip-flops which can be controlled and read by the trigger unit. The hardware for the flags is
assigned automatically by the system, depending on their usage. There are a maximum of 2 flags available.

After programming the trigger unit, or after the command Integrator.Init all flags are set to off. Flags can be
set, reset or toggled.

The following program samples only, when the flag 'init_state' has the value TRUE:

TIMECOUNTER Time counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for timing measurements are available on the PowerIntegrator. They have a resolution of
10 ns (>50 MHz) respectively 20 ns (50 MHz) and a width of 45 bits. If a time counter reaches its declared
value, it will be stopped automatically. The timers can be reloaded in real-time. However, program-
dependent dead times can result. The default value is the maximum time.

The current value of the counters can be viewed in real-time in the integrator state window.

Time values can be entered in the following units:

Format: FLAGS <name> …

FLAGS init_state
SELECTOR reset_fifo i.c0.high
SELECTOR write_fifo i.c1.low i.c2.high

FLAG.TRUE init_state if reset_fifo
FLAG.FALSE init_state if write_fifo

SAMPLE.ENABLE if init_state

Format: TIMECOUNTER <name> [<time>]

Nanoseconds (ns)

Microseconds (µs)

Milliseconds (ms)

Seconds (s)

Kiloseconds (ks)
PowerIntegrator Programming Guide | 31©1989-2024 Lauterbach

Timer running till Overflow

Declaration of a time counter called Timer_1 without time argument. The counter is always enabled and
counts every time. After the maximum time the integrator starts sampling input data.

Always running Timer

Declaration of a time counter called Timer_2, time argument 0ms. The counter is always enabled but it never
counts because it immediately reaches the declared value.

Timer TRUE after Time

Declaration of a time counter "Timer_A", time argument is 500us. The counter is always enabled. The
integrator begins sampling after a time delay of 500us.

TIMECOUNTER Timer_1
Counter.increment Timer_1 IF true
Sample.enable IF Timer_1

TIMECOUNTER Timer_2 0ms
Counter.increment Timer_2 IF true
Sample.enable IF Timer_2

TIMECOUNTER Timer_A 500.us
Counter.increment Timer_A IF true
Sample.enable IF Timer_A

0 max.time infinite

false true

0 infinite

true

0 500.us infinite

false true
PowerIntegrator Programming Guide | 32©1989-2024 Lauterbach

Timer TRUE till Time

Declaration of a time counter called "Timer_B". The counter is always enabled. The integrator begins
sampling immediately and stops recording after a time of 30us.

Time Windows

Declaration of a timer called "Timer_C" with a time range of 100 … 200 µs. The counter is always enabled
and counts every time. The integrator begins sampling after 100 µs and stops recording 100 µs later. Two
physical counters are used by the trigger unit.

TIMECOUNTER Timer_B 0.us--30.us
Counter.increment Timer_B IF true
Sample.enable IF Timer_B

TIMECOUNTER Timer_C 100.us--200.us
Counter.increment Timer_C if true
Sample.enable if Timer_C

0 30.us infinite

true false

0 100.us 200.us infinite

false true false
PowerIntegrator Programming Guide | 33©1989-2024 Lauterbach

Instruction Reference

BREAK Trace stop

The analyzer breaks and stops recording immediately, independently from the before defined trigger delay.
The value from a before used Integrator.TDelay command will be ignored. The use of a BREAK command
inside a trigger program resets automatically the trigger delay to 0. The analyzer can be read out when in
break state, similar to the OFF state. The break level is reset by the command Integrator.Init. See also the
command Trigger.TRACE.

The integrator breaks, whenever the state "fifo_reset" is true.

Bus Bus trigger

In order to be able to trigger more than one TRACE32 system, several trigger lines are available on the inter-
trigger bus. A synonym for this command will be Trigger.PODBUS.

Format: BREAK[.TRACE] [IF <condition>]

…
BREAK.TRACE if fifo_reset
…

Format: Bus.<mode> [IF <condition>]

<mode>: A

A Activates podbus trigger line A.
PowerIntegrator Programming Guide | 34©1989-2024 Lauterbach

CONTinue Sequential level switching

A sequential level switch (to the next written level) will be done, when the specified condition is true. If no
further written level is present, the trace is stopped.

In the example the analyzer will change to level "init" if the data pattern "fifo_reset" is true.

Format: CONTinue [IF <condition>]

SELECTOR fifo_reset I.A0.XL

start: CONTINUE IF fifo_reset

init:
PowerIntegrator Programming Guide | 35©1989-2024 Lauterbach

Counter Counter control

Control the trigger units counters. The instructions Counter.ON and Counter.Increment are programmed
automatically, if they are not used in the trigger program. The counters have to be declared according to their
function (see also declaration EVENTCOUNTER, EXTERNSYNCCOUNTER or TIMECOUNTER and
chapters Counter Events or Time Events).

The instructions ON, OFF and Increment (old-fashioned Enable) can be seen as a controlled switch
and a key in series. If the switch is closed (Counter.ON) it remains closed till it is opened by Counter.OFF.
The key is closed only for the cycle which meets the specified condition, i.e. an event counter will make one
step.

Only if the switch and the key are closed the counter advances.

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means the counter counts time or events (cycles) depending on its declaration.

Format: Counter[.<mode>] <counter_name> [IF <condition>]

<mode>: Increment
OFF
ON
Restart

Increment Releases counters when the specified condition is matched.

OFF Switches the enable Flip-flop OFF.

ON Switches the enable Flip-flop ON.

Restart The counter is reset to zero.

switch key

ON/OFF Increment (old-fashioned Enable)

switch key

ON/OFF Increment (old-fashioned Enable)
PowerIntegrator Programming Guide | 36©1989-2024 Lauterbach

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, that means
counting is controlled only by Increment (old-fashioned Enable).

If only ON/OFF is used in the trigger program, the key Increment (old-fashioned Enable) is closed
automatically, that means counting is controlled only by ON/OFF.

NOTE: In all cases during the first cycle the switch ON/OFF is closed!

Counter CYCLE_CNT is running all the time

Counter "count_reset" is incremented by 1 every time, the input line A0 is pulled to low.

Counter "reset_puls" is measuring the pulse width of the reset signal.

; declaration
EVENTCOUNTER CYCLE_CNT

; global or local instruction
Counter.Increment CYCLE_CNT

; declaration
SELECTOR reset_fifo i.a0.XL
EVENTCOUNTER count_reset

; global or local instruction
Counter.Increment count_reset if i.reset_fifo

; declaration
SELECTOR reset_fifo i.a0.XL
TIMECOUNTER reset_puls

start:
GOTO res_valid IF reset_fifo

res_valid:
Counter.increment reset_puls
GOTO next IF !reset_fifo

next:
TRIGGER.TRACE

switch key

ON/OFF Increment (old-fashioned Enable)

switch key

ON/OFF Increment (old-fashioned Enable)
PowerIntegrator Programming Guide | 37©1989-2024 Lauterbach

The counter "ascii_count" is incremented on synchronous clocks with a valid upper-case ASCII character on
probe A. The counter stops at 100. and the trace stops.

If the pulse width of the "cs_fifo" signal is more than 500 ns, the timing trace will stop

The first write_fifo event must be within 100 us after the fifo_reset state. Otherwise the integrator is stopped.
The counter max_time measures the real time between 'reset' and 'write' on the break condition.

; declaration
SELECTOR upper_ascii w.databusB0 'A'--'Z'
EVENTCOUNTER ascii_count 100.

; global or local instruction
Counter.increment ascii_count.s
TRIGGER.TRACE IF ascii_count

; declaration
SELECTOR cs_fifo I.A0.XH
TIMECOUNTER time_out 500ns

; global instruction
Sample.enable
Counter.Restart time_out IF !cs_fifo
Counter.increment time_out IF cs_fifo
TRIGGER.TRACE IF time_out

; declaration
TIMECOUNTER first_write 100us
TIMECOUNTER max_time
SELECTOR reset_fifo i.a0.XL
SELECTOR write_fifo i.a1.Xl i.a2.XH

start:
GOTO reset_state IF reset_fifo

reset_state:
Counter.Restart first_write
Counter.Restart max_time
GOTO no_reset IF !reset_fifo

no_reset:
Counter.increment first_write
Counter.increment max_time
GOTO start IF write_fifo
Trigger.TRACE IF write_fifo&&!first_write
PowerIntegrator Programming Guide | 38©1989-2024 Lauterbach

Flag Flag control

Flags are used to mark event occurrences. Flags have to be declared at the beginning of a trigger program
(see chapter FLAGS). The default state at the beginning is OFF. The current state of the used flags is visible
in real time in the integrator state window.

Set Flag1 if timer_1 has not expired.

Toggle Flag4 if data_event occurs.

GOTO Level switching

Change the current level of the trigger unit. GOTO may be used more than once in a level.

Format: Flag.<mode> <name> [IF <condition>]

<mode>: FALSE
Toggle
TRUE

FALSE Resets the flag.

TRUE Sets the flag.

Toggle Reverses the current state.

; declaration
FLAGS Flag1

; global or local instruction
Flag.TRUE Flag1 if !timer_1

Flag.Toggle Flag4 if i.data_event

Format: GOTO <level> [IF <condition>]

<level>: name
START
PowerIntegrator Programming Guide | 39©1989-2024 Lauterbach

The first level which is active after the trigger unit has been programmed is the start level. It is defined by the
label "START:". If no level has been defined this way, then the first level in the program is the start level. The
level marked with "START" has to be the first level written in the program.

On the PowerIntegrator there are 4 levels available.

Out Output control

Four signals can be generated to trigger other devices (e.g. analyzers or oscilloscopes) or to stimulate the
target hardware. These signals are accessible via socket connectors at the integrator box.

Release trigger line TOUT0 if the event time_out becomes true.

Start:counter.restart int_count
goto ll8

…

LL5: sample.enable if dma
GOTO ll8 if dma&&last_transfer

…

LL8: sample.enable
counter.increment int_count if int_adr

…

Format: Out. <mode> [IF <condition>]

<mode>: A | B | C | D

A, B, C, D Activates the universal output TOUT0..TOUT3 at the top of the integrator
box.

Out.A if i.time_out.gt
PowerIntegrator Programming Guide | 40©1989-2024 Lauterbach

Sample Recording control

Controls trace memory recording. The instructions Sample.ON and Sample.Enable are programmed
automatically, if they aren't used in the trigger program. This instruction does not effect the recording of the
emulator trigger event and the first and last cycle before the user program stopped.

The instructions ON, OFF and Enable can be seen as a controlled switch and a key in series. If the switch is
closed (Sample.ON) it remains closed till it is opened by Sample.OFF. The key is closed only for the cycle
which meets the specified condition, i.e. one bus cycle is stored in the trace buffer.

Only if the switch and the key are closed sampling is done.

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means all cycles are recorded (Implicit global "Sample.ON if true" and "Sample.Enable if true").

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, that means
sampling is controlled only via the Enable (Implicit global "Sample.ON if true").

Format: Sample[.<mode>] [IF <condition>]

<mode>: Enable
OFF
ON

Enable Releases trace memory for recording when the specified condition is
true.

OFF Disables the Flip-flop for sampling.

ON Enables the Flip-flop for sampling.

switch key

ON/OFF Enable

switch key

ON/OFF Enable

switch key

ON/OFF Enable
PowerIntegrator Programming Guide | 41©1989-2024 Lauterbach

If only ON/OFF is used in the trigger program, the key Enable is closed automatically, that means sampling
is controlled only via ON/OFF (Implicit global "Sample.Enable if true").

NOTE: In all cases during the first cycle the switch ON/OFF is closed!

The following statements are equal and will sample all cycles:

Sample only if line i.a0 is high:

The trace starts and waits in Level0 without recording till the appearance of the int1 line.

Sample.Enable if true
Sample.Enable
S.E
s

NAME.Set i.a0 i.high

Sample.Enable if i.high

; declaration area
SELECTOR int1_low I.C3.0
…

; local area
Level0: s.e if i.int1_low

continue if i.int1_low
Level1: S.e

…

switch key

ON/OFF Enable
PowerIntegrator Programming Guide | 42©1989-2024 Lauterbach

Trigger Trigger control

Trigger other systems of the PowerIntegrator.

Trigger.PODBUS:

In order to be able to trigger more than one TRACE32 system, a special trigger line is available on the inter-
trigger bus. A synonym for this command will be BUS.A.

Trigger.TRACE:

When the trace is triggered, it stops recording after the, with the command Integrator.TDelay defined trigger
delay. The analyzer can be read out when in break state, similar to the OFF state. The break level is reset by
the command Integrator.Init. See also the command BREAK.TRACE.

The trace stops recording, whenever the state "fifo_reset" is true.

Format: Trigger. <mode> [IF <condition>]

<mode>: A | P | PODBUS | TRACE | TRCNT

PODBUS Releases a signal on the inter-trigger bus (BUS.A).

TRACE,
A (obsolete)

Starts the trigger delay counter defined by the command
Integrator.TDelay

TRCNT Release pulse on universal counter input line.

…
Trigger.TRACE if fifo_reset
…

PowerIntegrator Programming Guide | 43©1989-2024 Lauterbach

PowerIntegrator Programming Language Syntax

NOTE: The following symbols are meta-symbols belonging to the formalism and not symbols of the trigger
programming language.

The meta symbols mustn’t written in the trigger program.
The timing analyzer programming language starts with the nonterminal symbol ppta_prog.

[] 0 up to 1 iteration of the expression included (the expression can be omitted)

{ } 1 up to infinite iteration of the expression inside (the expression must be written at least once)

() summary (summarize alternatives)

| separates alternatives

: the name (nonterminal symbol) on the left can be substituted with the expression on the right

text/
text

the characters written in bold letters are terminal symbols which cannot be substituted any
more (the characters have to be typed in this way)

ppta_prog: [{EOL}] [decls] [globals] [{locals}] {EOL} EOF

decls: [(eve_dec | flg_dec | sel_dec | tim_dec)] [comment]
{EOL} [decls]

eve_dec: EVENTCOUNTER name1 [int]

ext_dec: EXTERNSYNCCOUNTER name1 [int]

flg_dec: FLAGS name2 [{[,] name2}]

sel_dec: SELECTOR name3 {{dataname_prefix1 . dataname_postfix|
 dataname_prefix2 . dataname_postfix}
 [. mode] [{int | range | bitmask}] }

tim_dec: TIMECOUNTER name1 [time]

globals: instr

locals: label [instr]

label: (name | START) :

instr: [comlist] [comment] {EOL} [instr]

comment: (// | ;) text

comlist: command [{[,] command}] [IF condition]

command: c_break | c_bus | c_continue | c_counter | c_flag |
c_goto | c_out | c_sample | c_trigger

c_break: BREAK [.TRACE]
PowerIntegrator Programming Guide | 44©1989-2024 Lauterbach

c_bus: (B | BUS) [.A]

c_continue: (CONT | CONTINUE)

c_counter: (C | COUNTER) [. (I|INCREMENT|OFF|ON|R|RESTART)]
 {name1}

c_flag: (F | FLAG) . (FALSE|T|TOGGLE|TRUE) {name2}

c_goto: GOTO (name | START)

c_out: (O | OUT) . (A | B | C | D)

c_sample: (S | SAMPLE) [. (E|ENABLE|OFF|ON)]

c_trigger: (T | TRIGGER) [. (A|P|PATTERN|PODUS|PULSE|TRACE|
TRCNT)]

condition: t1 {[|| t1]}

t1: t2 {[^^ t2]}

t2: t3 {[&& t3]}

t3: (! t3) | (condition) | name1 | name2 |
dataname_prefix1 . dataname_postfix .mode |
name3 [.mode] | inline_name2

dataname_prefix1: I | INTEGRATOR

dataname_prefix2: W | WORD

dataname_postfix: A0..F15 | J0..O15 | CLCKA..CLCKF | CLCKJ..CLCKO |

from user with NAME.Group or NAME.Set or NAME.Word
defined names

mode: 0 | 1 | DOUBLE | EDGE | FALLING | HH | HIGH | HL | HX |
LH | LL | LOW | LX | RISING | XH | XL | X | XX

inline_name2: BUSA | FALSE | SYNC | TRUE

name1,name2,name3
:

is chosen from the user and must correspond with the
'C'-name conventions

int: syntax described in the Operation System User's
Guide

time: dto.

text: all characters excepted EOL and EOF
PowerIntegrator Programming Guide | 45©1989-2024 Lauterbach

	PowerIntegrator Programming Guide
	PowerIntegrator
	Program Structure
	Sample Trigger Program

	Declarations
	Data Selectors
	Event Counters
	Flags
	Time Counters

	Global Instructions
	Local Instructions
	Output Command table

	Events
	Counter Events
	Data Selectors
	Flags
	Time Events
	Other Events

	Conditions
	Levels
	CONTinue
	GOTO
	TRIGGER, BREAK

	Programming Examples
	Selective Recording
	Stopping the PowerIntegrator
	Stimulating Output Lines
	Using the Internal Trigger Bus
	Time and Event Counters
	Using Flags
	Switching Trigger Levels

	Declaration Reference
	SELECTOR Data selectors
	EVENTCOUNTER Event counter
	EXTERNSYNCCOUNTER Synchronous counter
	FLAGS Flags
	TIMECOUNTER Time counter

	Instruction Reference
	BREAK Trace stop
	Bus Bus trigger
	CONTinue Sequential level switching
	Counter Counter control
	Flag Flag control
	GOTO Level switching
	Out Output control
	Sample Recording control
	Trigger Trigger control

	PowerIntegrator Programming Language Syntax

