LAUTERBACH A

Powerlntegrator Programming
Guide

Powerlintegrator Programming Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
oYV =T g [(=T [1o r—~
Powerlintegrator Programming GUIdecccccceimiiismmnnsnninnssnnss s s s sssess s s ssmssnses 1
PoWerINtegrator ... s 4
Program SIFUCLUIEccccciiiiiiiiiiincir s s smm e e s e n e sammn s s e ammnn e 5
Sample Trigger Program 6

[1= o2 = T - 1o T 7
Data Selectors 7
Event Counters 8
Flags 9
Time Counters 9
Global INSIFUCLIONS ... e e e s e e e sme e e e mm e e e e s smmmmn e e e mmnnneas 10
Local INSTIUCLIONS ...t s s e e s 11
Output Command table 12
=Y 3 13
Counter Events 13
Data Selectors 14
Flags 14
Time Events 14
Other Events 15
070§ e 11§ To Y T 16
== 18
CONTinue 18
GOTO 18
TRIGGER, BREAK 19
Programming EXamPIesccccceiiiiiimmmmmiisssssmnnsssss s s s sss s ssssssss s ssssssssss s enssssmmnsnnas 20
Selective Recording 21
Stopping the Powerlntegrator 23
Stimulating Output Lines 23
Using the Internal Trigger Bus 24
Time and Event Counters 25
Using Flags 26

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 2

Switching Trigger Levels

26

Declaration RefEerence ... sssssssss s s s smm s s s s s r s s mmmmn s n e s e e e s nnnnas 27
SELECTOR Data selectors 27
EVENTCOUNTER Event counter 28
EXTERNSYNCCOUNTER Synchronous counter 30
FLAGS Flags 31
TIMECOUNTER Time counter 31

T W T o] o T =] = =T o = 34
BREAK Trace stop 34
Bus Bus trigger 34
CONTinue Sequential level switching 35
Counter Counter control 36
Flag Flag control 39
GOTO Level switching 39
Out Output control 40
Sample Recording control 41
Trigger Trigger control 43

Powerintegrator Programming Language Syntaxcccccmeemsmmemessesssns 44

©1989-2024 Lauterbach Powerlntegrator Programming Guide | 3

Powerlintegrator Programming Guide

Powerlintegrator

Version 06-Jun-2024

The trigger unit of the timing analyzer is a powerful tool to find complex errors or to sample selective data for
advanced measurements. The trigger unit is programmed by an ASCII definition file. The command
Integrator.Program is used to create a new trigger program. Writing the program is supported by softkeys
and online help. The command Integrator.ReProgram can be used to load ready-to-run programs in the
trigger unit. The commands in this manual refer to the trigger program, unless otherwise mentioned.

Probes
A —>

o —»

Flags —————>

Bus

Countergy—m>

Flags

Hardware structure of trigger unit

Data Transient
Data
Selector |Detector Out |— Output (BNC)
Bus |—> Sys. Trigger Bus
out Trigger
_— of Sample
— Sequencer
— m Trigger
Counte Trace
E— Flag [—1|—|—
—>| Mux GOTO |— 71 |—|—|—™
/'y
\i
univ. — Control |«
— Timer/ — unit [—
Counter — —

©1989-2024 Lauterbach

Powerlntegrator Programming Guide | 4

Program Structure

A trigger program for the Powerlntegrator consists of the following parts:

Comments

Declarations

Instructions

Levels

Global instructions

Local instructions

[N

Are allowed anywhere in the trigger program. They begin with a "//" or *;".

Define input events which need to be declared. Such events are flags,
data patterns or counters (see also declarations).

Instructions control the action taken by the trigger unit. Usually they
are only executed when a defined condition becomes true. A
condition is the combination of internal or external events of the
analyzer. An event is the occurrence of a specific internal trigger bus
signal or a predefined data pattern.

The begin of a level is defined by the name of the level followed by a
colon ™:". The end of a level is the begin of the next level or the end of
the trigger program. All commands within a level and the global
commands are valid while the level is active. Commands outside the level
are not active. Only one level can be active at any time. Usually the begin
of a trigger program is the first written level or the level with the name
"START:".

They are located between declarations and the first label, i.e. the first
local instruction. They are valid in all used levels. A trigger program may
only consists of global instructions.

Valid within one trigger level. All local instructions defined within a level
and all global instructions are checked simultaneously.

©1989-2024 Lauterbach

Powerlntegrator Programming Guide |

5

Sample Trigger Program

The following sample trigger programs gives an overview about the capabilities of the trigger unit. The
program is entered in a window generated by the Integrator.Program command.

EVENTCOUNTER max 20.
—-—-— global statements ----
Sample.Enable
———-— local statements -----
start:
Counter.I max
GOTO end
end:
Trigger
;----- end of trigger program

-—

if x.high.gs+——

if max

-—

event counter declaration

sample everything

label
counter enable
level control

©1989-2024 Lauterbach

Powerlntegrator Programming Guide | 6

Declarations

Declarations are used to assign events to independently selected names (flags, counter or time events). In
addition, the event value is specified in the declaration (eg. counter value range, etc.).

Each declaration starts with one of the following keywords: EVENTCOUNTER, FLAGS, TIMECOUNTER.
After the keyword the name for the event is defined.

Data Selectors

Not applicable with this device, please use NAME.Group or NAME.Set or NAME.Word instead.

Data selectors are used to trigger on the occurrence of a specific data pattern on the input probes. A
declaration consists of a free definable name for this data pattern and the data values. The name is used in
the condition for the data event. The declaration

DATA high A:0Y¥xxxxxxxl

defines a data event named "high”, which is true if the input signal on probe A Pin 0 has high level. Data
declarations may be on a byte, word or long word base. Byte declarations can be defined by ranges:

DATA ascii A:'A'--'Z'||'a'--'z'

If more than one value is one line is used, this operation between the values is an logical AND. The definition

DATA write_sio_control A:4 c¢cs write

is only TRUE, is the WRITE signal, the CHIPSELECT and the address sampled with probe A is true.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 7

Data events can be used in trigger programs with postfix symbols:

Mode Synonyms

.HH true on high level

.HL .FALLING true on falling edge

.HX true when coming from high level
.LH .RISING true on rising edge

.LL true on low level

.LX true when coming from low level
.XH .1 .HIGH true when ending with high level
XL .0 .LOW true when ending with low level
XX X always true

.DOUBLE true on static level

.EDGE true on falling or rising edge

NAME.Set 1.f0 write
SELECTOR write_fifo i.write.HIGH

Event Counters

Counters can be used to monitor the n.th occurrence of an event. A counter is allocated by a counter event
declaration. The declaration

EVENTCOUNTER minmax 10.--20.

allocates a logical counter event named "minmax", which is true (as an input event) between 10 and 20
occurences of the selected events.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 8

Flags

Flags are free usable flip-flops to store one bit of information. To allocate a flags only the keyword and the
name of the flag is required. The declaration

FLAGS reset_state, i1nitialized

defines two flags having the names "reset_state" and "initialized".

Counters and flags may be displayed while the trace is armed.

Time Counters

To monitor time relations, it is possible to declare Time events. The resolution of the timer is 4 ns.. The
declaration

TIMECOUNTER after 5ms 5ms

allocates one counter named "after_5ms", which is true after 5 ms.

©1989-2024 Lauterbach Powerlntegrator Programming Guide | 9

Global Instructions

Global statements are commands, which are not related to a trigger level. The shortest possible trigger
program can be made up of one single global statement. For example, the statement

(short form for Sample.enable) is a valid trigger program.

Statements that are placed before the first label are global statements. If declarations are present in a
trigger program, global statements must be written after them.

The goal of global statements is to make programming easier. Statements common to all levels need to be
entered only once. Each global statement is valid in all levels of the trigger program. The commands for
global statements are the same as those for local statements.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 10

Local Instructions

As opposed to global statements, local statements are valid only in one level. Levels begin after the definition
of their label and end at the next label or when the trigger program ends. Thus, a label indicates when a new
level is started. A level can contain any number of statements.

A statement consists of two parts, the instruction and the condition. The instruction defines what action
should be taken, e.g. switch-on trace sampling (Sample.Enable), set a flag (Flag.TRUE), reset a counter
(Counter.Restart), or go to the next level (CONTinue). The condition defines under which conditions the
action is to be taken. For example, the command

Sample.Enable if i.high

records only, while the data event 'high' is TRUE.

The condition, if defined, must be separated from the instruction by the keyword IF. If no condition is
defined, then the instruction is always executed. Local statements however, are executed only if the level is
active. The program

start:

GOTO end if i.high
end:

TRIGGER

will change to level "end" after the data event high is true.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 11

Output Command table

The following instructions control the outputs of the trigger unit:

Instruction Action Description
BREAK .TRACE Stop the recording immediately without delay.
Bus A Release trigger bus line A (old command syntax for
Trigger.PODBUS)
CONTinue Sequential level switching
Counter .Enable Count cycle (old-fashioned for .Increment)
.Increment Count cycle
.OFF Counter clock disable
.ON Counter clock enable
.Restart Reload counter
Flag .FALSE Reset flag
.OFF Reset flag (old-fashioned for .FALSE)
.ON Setflag (old-fashioned for .TRUE)
.Toggle Toggle flag
.TRUE Set flag
GOTO Level switching
Out A Set trigger outline TOUTO
.B Set trigger outline TOUT1
.C Set trigger outline TOUT2
.D Set trigger outline TOUT3
Sample .Enable Sample cycle
.OFF Sample clock disable
.ON Sample clock enable
Trigger PODBUS Release trigger bus line A (same as old-fashioned BUS.A)
TRACE Start trigger delay for breaking PowerIntegrator (same as
old-fashioned Trigger.A)
TRCNT Start Counter from Simple Trigger

©1989-2024 Lauterbach

PowerlIntegrator Programming Guide

12

Events

The actions taken by the trigger unit are controlled by events. An event can be a special trigger bus signal
from other devices, e.g. pattern generator or an internal state of the Powerlntegrator. Events can also be the
result of a declaration, like counter events or time events. For each instruction in a trigger program (e.g. start
trace recording, set flag), conditions can be specified. These conditions are logical combinations of the
individual events. The program

Sample.Enable if i.a0

will make a selective trace as long as the input line i.a0 is high.

Counter Events

The counter counts up if the specified condition is true. A counter event is true, when the counter reaches
the declared value. An event range needs two counters. The example samples databytes, which are read
from an FIFO in the target. It ignores always the first 1000 bytes after the last write to the FIFO:

; Name setting
NAME.Set i.a0 write_fifo
NAME.Set i.a3 reset_fifo

; Selector declaration
Selector write i.write_fifo.XH
Selector reset i.reset_fifo.XH

; Action

Counter.Increment delay IF i.write
Counter .RESTART IF i.reset
Sample.Enable IF delay

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 13

Data Selectors

All not reserved names are allowed as data selector names.

SELECTOR low I.A0.LOW

SELECTOR high W.adr 0x55

SELECTOR active Integrator.F0.XH Integrator.Fl.XL Integrator.F2.XH
SELECTOR select I.cs.XL I.astrobe.XH I.write.XL

Flags

Flags are flip-flops which can be set or reset, depending on input events. The state of the flip-flops can be
used as an input event in the program. The following program will sample data only between the reset and
the first write to the device fifo.

FLAGS fifo_empty

FLAG.TRUE fifo_empty IF i.reset_fifo
FLAG.FALSE fifo_empty IF i.write_fifo
Sample.Enable IF fifo_empty

Time Events

The resolution is 4 ns. An event is true, when the counter reaches the declared value. A time range needs
two counters. The following program stops sampling 50 ps after the trigger point.

TIMECOUNTER delay 50us

start:
GOTO next IF i.a0.DT
next:
Counter.Increment delay
BREAK.TRACE if delay

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 14

Other Events

It is not necessary to declare implicit events of the analyzer. The following input events are available:

Event
BUSA
FALSE
SYNC
TRUE

Description
Trigger bus A

Always false

Always true

©1989-2024 Lauterbach

PowerlIntegrator Programming Guide

15

Conditions

Conditions are combinations of events, which define when an instruction of the trigger program is executed.
Multiple instructions can be linked together in one line to share the same condition. If the condition is missing
for an instruction, the condition is always assumed to be 'TRUE'. The program

Sample.Enable

will produce the same results as

Sample.Enable IF TRUE

Input events can be combined by standard logical operators:

(--.)

! for NOT
&& for AND
AN for XOR
Il for OR

The brackets have the highest priority, the OR operator has the lowest.
The following two conditions will produce the same results:

(vi&&v2) | | ! (v3&&!v4)
v1&&v2 | | 1v3 | |v4

As instructions can be used more than once in a level or in a statement line, it is possible to have conflicting
instructions or conditions. The following trigger program has two such conflicts:

START: Counter.ON countl, Counter.OFF countl IF 1.fifo write
GOTO Count_Level
GOTO Error_Level 1if reset_state

Level2:

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 16

Instructions are executed from left to right

In the above example the flip-flop used for controlling the counter will be switched to OFF if the fifo_write
condition is true.

Instructions are executed top to down

In the example above this means that the "GOTO" with the condition, which is "always valid", i.e. the jump to
"Count_Level", is programmed first. This programming is overwritten by the second "GOTO" with a jump to
"Error_Level" only in the case that the condition "reset_state" is true.

The trigger unit remains in the "START" level for of one cycle and will then switch either to the trigger level
"Error_Level", or to "Count_Level" depending on the condition "reset_state".
If the order of the "GOTO" statements is changed:

GOTO Error_Level IF 1i.fifo write
GOTO Count_Level

then the first statement is completely overwritten.

Global statements have a low priority
Global statements are used, as they would have been typed before any other statement in a trigger level.

©1989-2024 Lauterbach Powerlntegrator Programming Guide | 17

Levels

Trigger levels can be used to realize a sequential or non-sequential trigger function. This means, that after
one trigger condition has arrived, another condition is checked. The beginning of a level is defined by its
label. The end of the level is the label of the following level, or the end of the program. All statements located
between these boundaries are part of that level.

The levels determine which statements are active at the same time. All conditions for instructions in a level
are checked in parallel during each cycle and all instructions whose condition is TRUE are executed. Only
one level can be active at any time. The current level is recorded in the trace and can be viewed in real-time
in the integrator state window.

The instructions CONTinue and GOTO will change the level.

CONTinue

The CONTinue instruction can switch to the next program level following the current one. If no level follows,
then "CONTinue" is the same as the Trigger.TRACE instruction, i.e. the trace is stopped. In the example
the analyzer will change to level "infunc" after "fifo_reset" and stop the analyzer after "fifo_write".

start:
CONTINUE IF i.fifo_reset

infunc:
CONTINUE if i.fifo_write
SAMPLE

GOTO

The GOTO instruction can switch to any level. The following program will change to the level "init" when the
"fifo_reset" is true is, and change back to "start" on "fifo_write". The probe data is sampled only when the
trigger unit is in the "init" level.

start:
GOTO init IF i.fifo_reset

init:
GOTO start if i.fifo_write
SAMPLE

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 18

TRIGGER, BREAK

The TRIGGER.TRACE respectively BREAK.TRACE instruction causes the trace to stop. Breaking the
analyzer means stopping recording and deactivating the trigger unit.

start:
TRIGGER IF fifo_write

When implementing multiple level change instructions in one trigger level, the instruction priority must be
observed. Instruction priority rises for instructions written later in the level, global instructions have a low
priority. The following example shows this relation:

; Declarations

selector fifo_reset 1i.reset.XH
selector fifo_write cs write a:4
selector dma b: 0Yxxxxxxx0
selector nmi d: 0Yxxxxxx0x

; global statements

sample

; local statements

levelO:
continue if fifo_reset

levell:
goto levelld if nmi
goto levell3 if dma
continue if dma&&nmi

level2:

level3:
trigger.trace

When the analyzer is in level "level1" and assuming that during "dma" active "nmi" also gets active, then the
program branches to "level2" and not to the trigger level.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 19

Programming Examples

All programming examples are explained by a basic SIO circuit:

A0
Al
A2
A3
A4
A5
A6
A7
BO
Bl
B2
B3
D7

DO
D1
D2
D3
D4
D5
D6
D7
A0
WR-
CLK

RESET-

Cs-

RXDA

TXDA

CTSA-

RTSA-

INT-
RXRDY
TXRDY

B4
B5
B6

SLT

Yy A ¥V A

MAX232

First the probes are connected and the names of the input signals are defined:

name.
name.
.set
name.
.set
name.
name.
name.
name.

name

name

group

set

set

set
set
set
set

i.

1

O R S T

BUS_DATA

a8 1.BUS_AOQ
i.a9 1.BUS_WR -
.al0 1.CLK
.all i1.RESET -
.al2 1i.INT -
.al3 1.RXRDY
.ald4d i.TXRDY
.a31 1.Cs -

i.a0 i.al i.a2 i.a3 i.a4 i.ab i.a6 i.a7

©1989-2024 Lauterbach

PowerlIntegrator Programming Guide

20

Selective Recording

Selective recording is done with the instruction Sample.Enable. Normally do not use Sample.ON and
Sample.OFF, because the state of this line cannot be monitored in the trace. Using two levels instead is
usually a better solution.

sample.enable if true

or

All input data is sampled.

Samples if the SIO is selected and the write line is active. The same trace function can be defined by input

; Selector declaration
Selector ValidRecord i1.BUS_WR.XL i.CS.XL

; Action
Sample.enable if ValidRecord

masks:

DATA SIO_WRITE B:0Y¥xxxxxX0x D:0Y0XXXXXXX

Sample.enable if Group.SIO_WRITE

WR-

Cs-

Sample time F—————————{

©1989-2024 Lauterbach Powerlntegrator Programming Guide | 21

In synchronous mode the data will be sampled on the clock of D7 only. The channel A must be switched to
synchronous mode:

A.SYnch A ON
DATA SIO_WRITE B:0Y¥xxxxxx0x

Sample.enable if SIO_WRITE.S

WR-

Cs-

Sample time

©1989-2024 Lauterbach Powerlntegrator Programming Guide | 22

Stopping the Powerintegrator

There are some reasons which can stop the analyzer recording:
Trace Full

Stopping the recording when the analyzer is full can be achieved by selecting Stack operation mode in the
integrator control window (command Integrator.Mode Stack).

intergrator.mode stack

The analyzer stops recording independent of the current logical level.

Trigger.TRACE or BREAK.TRACE

Recording stops at a specified condition defined by the Trigger statement. The trigger delay may be defined
between 0 and 100% of the trace storage.

The statement BREAK.TRACE is a synonym for the combination of a Trigger statement with a trigger delay
of 0.

trigger.trace if SIO_WRITE

Stimulating Output Lines

The instruction OUT can control the external trigger outputs of the PowerIntegrator. These lines can be
used to trigger external timing analyzers or oscilloscopes or generate stimuli signals for the target hardware.
The example generates an output signal at the connector TOUTO on the top of the analyzer unit every time
the interrupt line becomes active:

OUT.A if i.INT.gt

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 23

Using the Internal Trigger Bus

The intertrigger BUS can trigger other systems of the TRACES32 system. The inter-trigger bus of the
system can be used to trigger the pattern or pluse generator by the timing analyzer. The following example
triggers the pattern generator when an access to a specific address is made. In the pattern generator the
BusA line must be selected as trigger source (command Pattern.TSELect BusA).

NAME.Set i.a0 i1.SIO_WRITE

BUS.A IF 1i.SIO_WRITE ; the bus line A is activated on
; write cycles to the SIO

The Powerlntegrator can also be triggered by other analyzers. The event BUSA can be used for this
purpose. When the line BUSA is released from the trace analyzer, the Powerlntegrator can be controlled by
the trace analyzer. In the following example the PowerlIntergrator records for 1 ms after the trigger event
from the trace analyzer.

; declaration
TIMECOUNTER delay 1ms ; delay definition

; local instruction

L00: CONTinue IF BUSA ; wailt until the line BUSA is active
LO1:
Counter.Increment delay ; activate delay counter
Trigger.TRACE IF delay ; break after 1 ms

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 24

Time and Event Counters

The keyword are TIMECOUNTER or EVENTCOUNTER for the declaration and the instruction COUNTER
controls the counter. Time and event counters need a declaration for assigning names and initial values.
Counters are always assigned for the whole trigger program, even the control of the counter is level specific.
The following program defines a counter, which will display the time a program is running in a function. The
total time can be viewed in the integrator state window.

The following example triggers on a write cycle longer than 10.us:

NAME i.a0 i.STIO_WRITE

; declaration
TIMECOUNTER timeout 10.us

Counter.Restart timeout IF !1.SIO_WRITE
Counter.Increment timeout IF 1.SIO_WRITE

Trigger.TRACE IF timeout

In the next example counts the number of write accesses to the SIO:

; declaration
SELECTOR SIO_WRITE i.a0.LH

EVENTCOUNTER write_cycle

; counter operation
Counter.Increment write_cycle IF 1i.SIO_WRITE

This example stops the trace after 1000 write accesses to the SIO:

; declaration
SELECTOR SIO_WRITE i.A0.LH
EVENTCOUNTER write_cycle 1000.

; counter operation
Counter.Increment write_cycle IF 1i.SIO_WRITE

Trigger .TRACE IF write_cycle

©1989-2024 Lauterbach PowerIntegrator Programming Guide |

25

Using Flags

The keyword FLAGS is used in the declaration and the instruction FLAG can modify the value of a flag.
Flags are useful for remembering the occurrence of a certain state. In some cases they can replace the use
of multiple trigger levels in an integrator trigger program. The following example will monitor the state of an
I/O port in real time. The state of the port can be viewed in the integrator state window:

NAME .Group Group.WRITE_TO_CONTROL i.a0 i.al+ i.a8
NAME . Set 1.63+ 1.TX_EN

; declaration
FLAGS TX_ENABLE ; declaration of 1 flag

FLAG.TRUE TX_ENABLE IF 1.TX_EN&&Group.WRITE_TO_CONTROL
FLAG.FALSE TX_ENABLE IF !i.TX EN&&Group.WRITE_ TO_CONTROL

Switching Trigger Levels

The instructions CONTinue or GOTO can be used to change the level of the trigger unit. The instruction
Trigger.TRACE will disable the trace and the trigger unit.

; declaration

; global instructions

; local instructions

LEVELO:
CONTinue if i.SIO_WRITE ; change sequential to the next logical
; level
LEVEL]1 :
CONTinue if CNT Limit ; change to the next logical level if
; the counter CNT_Limit is ready
GOTO LEVELO if i.BB ; otherwise jump return to the level
; LEVELO if the data event BB is true
LEVEL2: TRIGGER.TRACE if ; stop recording (user program remains
DELAY_ CNT ; running) if the counter DELAY_CNT is
; ready
START: GOTO LEVELO if i.INT ; this is the start level after analyzer
; init

; Wait for an interrupt acknowledge,
; then jump to the level LEVELO

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 26

Declaration Reference

SELECTOR Data selectors
Format: SELECTOR <name> <pin>.<mode> | <w.name> <value> ...
<pin>: i.a0l...1i.f151i.jol... li.o15 | clcka | ... | clckf | clckj | ... | clcko |

<name declared with name.set>

<mode>: 011! DOUBLE | EDGE | FALLING |HH |HIGH |HL |HX | LH | LL | LOW | LX
| RISING | XH | XL

<w.name>: Word declared with “name.word”

<value>: 011 for pins, integer value or bit mask for words

A data selector named Port_1 with the value 0x55 on the pins i.a0 (LSB) to i.a7 (MSB).

NAME . WORD adr 1.a0 i.al i.a2 i.a3 i.a4 i.ab i.a6 i.a7
SELECTOR Port_1 w.adr 0x55

A data selector named Port_2 with the value 0x55 on the pins i.a0 (LSB) to i.a7(MSB) and with the bit mask
1010xx1x on pins i.a8 (LSB) to i.a15 (MSB):

NAME . WORD adr i.a0 i.al 1.a2 i.a3 i.ad4 i.ab5 i.a6 i.a”7
NAME . WORD data i.a8 1.a9 1.al0 i.all i.al2 i.al3 i.ald4 i.al>s
SELECTOR Port_2 w.adr 0x55 w.data 0yl010xxlx

All alphabetic characters of the ASCII character set (lower case and upper case) are assigned to a data
selector called "ascii":

SELECTOR ascii w.data ('a'--'z')||('A'--'2Z")

Logical pin names can be used like this

NAME.Set 1.f0 write
SELECTOR write_fifo i.write.HIGH

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 27

EVENTCOUNTER Event counter

Format: EVENTCOUNTER <name> [<event>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for event counting are available on the PowerIntegrator. They have a width of 45 bits. If a
event counter reaches its declared value it will stop automatically. The event counters can be reloaded in
real-time. However, program-dependent dead times can result. The default value is the maximum time.

The current value of the counters are visible in real-time in the integrator state window.

Endless Counter

EVENTCOUNTER Evcntr_2 0
Counter.increment Evcntr_2 IF true
Sample.enable IF Evcntr_2

infinite

Declaration of an event counter called "Eventr_2", count argument 0. The counter is always enabled but it
never counts because it immediately reaches the declared value. In this example the integrator begins
sampling immediately .

Event TRUE after n Clocks

EVENTCOUNTER CYCLE_CNT 500.
Counter.increment CYCLE_CNT IF true

Sample.enable IF CYCLE_CNT
0 500. infinite
|-— false true

Declaration of an event counter called "CYCLE_CNT". The counter is always enabled and counts all cycles.
The integrator begins sampling after a delay of 500 cycles.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 28

Event TRUE till n Clocks

EVENTCOUNTER NR_cnt 0x0--0x30
Counter.increment NR_cnt IF true

Sample.enable IF NR_cnt
0 48. infinite
t———— true false

Declaration of an event counter called "NR_cnt", event argument is 30 (hex). The counter is always enabled.
The integrator begins sampling immediately and stops recording after 48 sampled cycles.

Event Windows

EVENTCOUNTER EV_Range 100.--200.
Counter.increment EV_range IF true

Sample.enable IF EV_range
0 100. 200. infinite
t———— false true false

Declaration of an event counter called "EV_range" with an event range from 100 to 200. The counter is
always enabled and counts all cycle. The integrator begins sampling after 100 cycles and stops recording
100 cycles later. Two physical counters are used by the trigger unit.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 29

EXTERNSYNCCOUNTER Synchronous counter

Format: EXTERNSYNCCOUNTER <name> [<event>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for counting external clock cycles are available on the Powerlntegrator. They have a width
of 45 bits. A synchronous counter is synchronized to an external clock, which means that the counter will
count only at the start of an external clock cycle. Because of this the events used in the conditions for the
controlling instructions for the counter should use signals, which are also synchronized to the external clock:

name.set i.a0 d0 sync
name.set i.al dl sync
name.word data i1.b0 i.bl

SELECTOR datahigh w.data 0x3
EXTERNSYNCCOUNTER threehigh 3.
Counter.increment threehigh IF datahigh
Sample.enable IF threehigh

The counter will become true, after three clock cycles in which the i.b0 and i.b1 pins are high.

If events used in a condition for an instruction for a synchronous counter, are not synchronized to the
external clock.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 30

FLAGS Flags

Format: FLAGS <name> ...

Flags are Flip-flops which can be controlled and read by the trigger unit. The hardware for the flags is
assigned automatically by the system, depending on their usage. There are a maximum of 2 flags available.

After programming the trigger unit, or after the command Integrator.Init all flags are set to off. Flags can be
set, reset or toggled.

The following program samples only, when the flag 'init_state' has the value TRUE:

FLAGS init_state
SELECTOR reset_fifo i.c0.high
SELECTOR write_fifo 4di.cl.low i.c2.high

FLAG.TRUE 1init_state if reset_fifo
FLAG.FALSE init_state if write_fifo

SAMPLE . ENABLE if init_state
TIMECOUNTER Time counter
Format: TIMECOUNTER <name> [<time>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. Three
universal counters for timing measurements are available on the PowerIntegrator. They have a resolution of
10 ns (>50 MHz) respectively 20 ns (50 MHz) and a width of 45 bits. If a time counter reaches its declared
value, it will be stopped automatically. The timers can be reloaded in real-time. However, program-
dependent dead times can result. The default value is the maximum time.

The current value of the counters can be viewed in real-time in the integrator state window.

Time values can be entered in the following units:

Nanoseconds (ns)
Microseconds (us)
Milliseconds (ms)
Seconds (s)

Kiloseconds (ks)

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 31

Timer running till Overflow

TIMECOUNTER Timer_1
Counter.increment Timer_1 IF true

Sample.enable IF Timer_1
0 max.time infinite
|;————————-false true

Declaration of a time counter called Timer_1 without time argument. The counter is always enabled and
counts every time. After the maximum time the integrator starts sampling input data.

Always running Timer

TIMECOUNTER Timer_ 2 Oms
Counter.increment Timer_ 2 IF true
Sample.enable IF Timer_ 2

infinite

Declaration of a time counter called Timer_2, time argument Oms. The counter is always enabled but it never
counts because it immediately reaches the declared value.

Timer TRUE after Time

TIMECOUNTER Timer_A 500.us
Counter.increment Timer_ A IF true
Sample.enable IF Timer_ A

0 500.us infinite

Declaration of a time counter "Timer_A", time argument is 500us. The counter is always enabled. The
integrator begins sampling after a time delay of 500us.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 32

Timer TRUE till Time

TIMECOUNTER Timer_ B 0.us--30.us
Counter.increment Timer_B IF true

Sample.enable IF Timer_B
0 30.us infinite
t———— true false

Declaration of a time counter called "Timer_B". The counter is always enabled. The integrator begins
sampling immediately and stops recording after a time of 30us.

Time Windows

TIMECOUNTER Timer_ C 100.us--200.us
Counter.increment Timer C i1f true

Sample.enable if Timer C
0 100.us 200.us infinite
t———— false true false

Declaration of a timer called "Timer_C" with a time range of 100 ... 200 ps. The counter is always enabled
and counts every time. The integrator begins sampling after 100 ps and stops recording 100 s later. Two
physical counters are used by the trigger unit.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 33

Instruction Reference

BREAK Trace stop

Format: BREAKI.TRACE] [IF <condition>]

The analyzer breaks and stops recording immediately, independently from the before defined trigger delay.
The value from a before used Integrator.TDelay command will be ignored. The use of a BREAK command
inside a trigger program resets automatically the trigger delay to 0. The analyzer can be read out when in

break state, similar to the OFF state. The break level is reset by the command Integrator.Init. See also the
command Trigger.TRACE.

BREAK.TRACE if fifo_ reset

The integrator breaks, whenever the state "fifo_reset" is true.

Bus Bus trigger

Format: Bus.<mode> [IF <condition>]

<mode>: A

In order to be able to trigger more than one TRACES2 system, several trigger lines are available on the inter-
trigger bus. A synonym for this command will be Trigger.PODBUS.

A Activates podbus trigger line A.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 34

CONTinue Sequential level switching

Format: CONTinue [IF <condition>]

A sequential level switch (to the next written level) will be done, when the specified condition is true. If no
further written level is present, the trace is stopped.

In the example the analyzer will change to level "init" if the data pattern "fifo_reset" is true.

SELECTOR fifo_reset I.A0.XL
start: CONTINUE IF fifo_reset

init:

©1989-2024 Lauterbach Powerlntegrator Programming Guide | 35

Counter Counter control

Format: Counter[.<mode>] <counter_name> [IF <condition>]
<mode>: Increment

OFF

ON

Restart

Control the trigger units counters. The instructions Counter.ON and Counter.Increment are programmed
automatically, if they are not used in the trigger program. The counters have to be declared according to their
function (see also declaration EVENTCOUNTER, EXTERNSYNCCOUNTER or TIMECOUNTER and
chapters Counter Events or Time Events).

Increment Releases counters when the specified condition is matched.
OFF Switches the enable Flip-flop OFF.

ON Switches the enable Flip-flop ON.

Restart The counter is reset to zero.

The instructions ON, OFF and Increment (o1d-fashioned Enable) can be seen as a controlled switch
and a key in series. If the switch is closed (Counter.ON) it remains closed till it is opened by Counter.OFF.
The key is closed only for the cycle which meets the specified condition, i.e. an event counter will make one

step.
switch key
| |
ON/OFF Increment (old-fashioned Enable)

Only if the switch and the key are closed the counter advances.

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means the counter counts time or events (cycles) depending on its declaration.

switch key

ON/OFF Increment (old-fashioned Enable)

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 36

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, that means
counting is controlled only by Increment (old-fashioned Enable).

switch key

| | | |
ON/OFF Increment (old-fashioned Enable)

If only ON/OFF is used in the trigger program, the key Increment (old-fashioned Enable) is closed
automatically, that means counting is controlled only by ON/OFF.

switch key
| | |
ON/OFF Increment (old-fashioned Enable)

NOTE: In all cases during the first cycle the switch ON/OFF is closed!
Counter CYCLE_CNT is running all the time

; declaration
EVENTCOUNTER CYCLE_CNT

; global or local instruction
Counter.Increment CYCLE_CNT

Counter "count_reset" is incremented by 1 every time, the input line AQ is pulled to low.

; declaration
SELECTOR reset_fifo i.a0.XL
EVENTCOUNTER count_reset

; global or local instruction
Counter.Increment count_reset if i.reset_fifo

Counter "reset_puls" is measuring the pulse width of the reset signal.

; declaration
SELECTOR reset_fifo i.a0.XL
TIMECOUNTER reset_puls

start:

GOTO res_valid IF reset_fifo
res_valid:

Counter.increment reset_puls

GOTO next IF !reset_fifo
next:

TRIGGER.TRACE

37

©1989-2024 Lauterbach PowerlIntegrator Programming Guide

The counter "ascii_count" is incremented on synchronous clocks with a valid upper-case ASCII character on
probe A. The counter stops at 100. and the trace stops.

; declaration
SELECTOR upper_ascii w.databusB0 'A'--'Z'

EVENTCOUNTER ascii_count 100.

; global or local instruction
Counter.increment ascii_count.s
TRIGGER.TRACE IF ascii_count

If the pulse width of the "cs_fifo" signal is more than 500 ns, the timing trace will stop

; declaration
SELECTOR cs_fifo I.A0.XH
TIMECOUNTER time_out 500ns

; global instruction
Sample.enable

Counter.Restart time_out IF !cs_fifo
Counter.increment time_out IF cs_fifo
TRIGGER.TRACE IF time_out

The first write_fifo event must be within 100 us after the fifo_reset state. Otherwise the integrator is stopped.
The counter max_time measures the real time between 'reset' and 'write' on the break condition.

; declaration

TIMECOUNTER first_write 100us
TIMECOUNTER max_time

SELECTOR reset_fifo 1i.a0.XL
SELECTOR write_fifo i1.al.Xl i.a2.XH

start:
GOTO reset_state IF reset_fifo
reset_state:
Counter.Restart first_write
Counter.Restart max_time
GOTO no_reset IF !reset_fifo
no_reset:
Counter.increment first_write
Counter.increment max_time
GOTO start IF write_fifo
Trigger.TRACE IF write_fifo&&!first_write

38

©1989-2024 Lauterbach PowerlIntegrator Programming Guide

Flag

Flag control

Format:

<mode>:

Flag.<mode> <name> [IF <condition>]

FALSE
Toggle
TRUE

Flags are used to mark event occurrences. Flags have to be declared at the beginning of a trigger program
(see chapter FLAGS). The default state at the beginning is OFF. The current state of the used flags is visible

in real time in the integrator state window.

FALSE
TRUE

Toggle

Resets the flag.
Sets the flag.

Reverses the current state.

Set Flag1 if timer_1 has not expired.

; declaration
FLAGS Flagl

; global or 1

ocal instruction

Flag.TRUE Flagl if !timer_1

Toggle Flag4 if data_event occurs.

Flag.Toggle Flag4 if i.data_event

Level switching

GOTO
Format: GOTO </evel> [IF <condition>]
<level: name
START

Change the current level of the trigger unit. GOTO may be used more than once in a level.

©1989-2024 Lauterbach

PowerlIntegrator Programming Guide

39

The first level which is active after the trigger unit has been programmed is the start level. It is defined by the
label "START:". If no level has been defined this way, then the first level in the program is the start level. The
level marked with "START" has to be the first level written in the program.

On the Powerlntegrator there are 4 levels available.

Start:counter.restart int_count

goto 118
LL5: sample.enable if dma
GOTO 118 if dma&&last_transfer

LL8: sample.enable
counter.increment int count i1f int_adr

Out Output control

Format: Out. <mode> [IF <condition>]

<mode>: AIBICID

Four signals can be generated to trigger other devices (e.g. analyzers or oscilloscopes) or to stimulate the
target hardware. These signals are accessible via socket connectors at the integrator box.

A,B,C,D Activates the universal output TOUTO0..TOUT3 at the top of the integrator
box.

Out.A if i.time_out.gt

Release trigger line TOUTO if the event time_out becomes true.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 40

Sample Recording control

Format: Sample[.<mode>] [IF <condition>]
<mode>: Enable

OFF

ON

Controls trace memory recording. The instructions Sample.ON and Sample.Enable are programmed
automatically, if they aren't used in the trigger program. This instruction does not effect the recording of the
emulator trigger event and the first and last cycle before the user program stopped.

Enable Releases trace memory for recording when the specified condition is
true.

OFF Disables the Flip-flop for sampling.

ON Enables the Flip-flop for sampling.

The instructions ON, OFF and Enable can be seen as a controlled switch and a key in series. If the switch is
closed (Sample.ON) it remains closed till it is opened by Sample.OFF. The key is closed only for the cycle
which meets the specified condition, i.e. one bus cycle is stored in the trace buffer.

switch key
| |
ON/OFF Enable

Only if the switch and the key are closed sampling is done.

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means all cycles are recorded (Implicit global "Sample.ON if true" and "Sample.Enable if true").

switch key

| | | |
ON/OFF Enable

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, that means
sampling is controlled only via the Enable (Implicit global "Sample.ON if true").

switch key

] | | |
ON/OFF Enable

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 41

If only ON/OFF is used in the trigger program, the key Enable is closed automatically, that means sampling
is controlled only via ON/OFF (Implicit global "Sample.Enable if true").

switch key
| | |
ON/OFF Enable

NOTE: In all cases during the first cycle the switch ON/OFF is closed!
The following statements are equal and will sample all cycles:

Sample.Enable if true
Sample.Enable

S.E

s

Sample only if line i.a0 is high:
The trace starts and waits in LevelO without recording till the appearance of the int1 line.

NAME.Set i.a0 i.high

Sample.Enable if i.high

; declaration area
SELECTOR intl low I.C3.0

; local area

LevelO: s.e if i1i.intl_low
continue if i.intl_low

Levell: S.e

©1989-2024 Lauterbach Powerlntegrator Programming Guide | 42

Trigger Trigger control

Format: Trigger. <mode> [IF <condition>]

<mode>: A | P |1 PODBUS | TRACE | TRCNT

Trigger other systems of the PowerIntegrator.

PODBUS Releases a signal on the inter-trigger bus (BUS.A).

TRACE, Starts the trigger delay counter defined by the command

A (obsolete) Integrator.TDelay

TRCNT Release pulse on universal counter input line.
Trigger.PODBUS:

In order to be able to trigger more than one TRACES32 system, a special trigger line is available on the inter-
trigger bus. A synonym for this command will be BUS.A.

Trigger.TRACE:

When the trace is triggered, it stops recording after the, with the command Integrator.TDelay defined trigger
delay. The analyzer can be read out when in break state, similar to the OFF state. The break level is reset by
the command Integrator.Init. See also the command BREAK.TRACE.

Trigger.TRACE if fifo_reset

The trace stops recording, whenever the state "fifo_reset" is true.

©1989-2024 Lauterbach PowerlIntegrator Programming Guide | 43

Powerintegrator Programming Language Syntax

NOTE: The following symbols are meta-symbols belonging to the formalism and not symbols of the trigger

programming language.

[1 0 up to 1 iteration of the expression included (the expression can be omitted)
{1} 1 up to infinite iteration of the expression inside (the expression must be written at least once)
() summary (summarize alternatives)

I separates alternatives

the name (nonterminal symbol) on the left can be substituted with the expression on the right

text/ the characters written in bold letters are terminal symbols which cannot be substituted any
text more (the characters have to be typed in this way)

The meta symbols mustn’t written in the trigger program.
The timing analyzer programming language starts with the nonterminal symbol ppta_prog.

ppta_prog:

decls:

eve_dec:
ext_dec:
flg dec:

sel_dec:

tim dec:

globals:
locals:

label:

instr:
comment:
comlist:

command:

c_break:

[{EOL}] [decls] [globals] [{locals}] {EOL} EOF

[(eve _dec | flg_ dec | sel_dec | tim dec)] [comment]
{EOL} [decls]

EVENTCOUNTER namel [int]
EXTERNSYNCCOUNTER namel [int]
FLAGS name2 [{[,] name2}]

SELECTOR name3 {{dataname _prefixl . dataname_postfix]|
dataname_prefix2 . dataname_postfix}
[. mode] [{int | range | bitmask}] }

TIMECOUNTER namel [time]

instr
label [instr]

(name | START) :

[comlist] [comment] {EOL} [instr]
(11 | ;) text
command [{[,] command}] [IF condition]

c_break | c_bus | c_continue | c_counter | c_flag |
c_goto | c_out | c_sample | c_trigger

BREAK [.TRACE]

©1989-2024 Lauterbach

Powerlntegrator Programming Guide | 44

c_bus:
c_continue:

c_counter:

c_flag:
c_goto:
Cc_out:
c_sample:

c_trigger:

condition:
tl:
t2:
t3:

dataname_prefixl:
dataname_prefix2:

dataname_postfix:

mode:

inline nameZ2:

namel, nameZ2, name3

int:

time:

text:

(B | BUS) [.A]
(CONT | CONTINUE)

(c | COUNTER) [. (I|INCREMENT|OFF|ON|R|RESTART))]

{namel}
(F | FLAG) . (FALSE|T|TOGGLE|TRUE) {name2}
GOTO (name | START)
(o | ouT) . (A | B | Cc | D)
(s | SAMPLE) [. (E|ENABLE|OFF |ON)]
(T | TRIGGER) [. (A|P|PATTERN|PODUS |PULSE|TRACE|
TRCNT)]
t1 {[]] t11}
t2 {[+~ t2]}

t3 {[&& t3]}

(v £3) | (condition) | namel | name2 |
dataname_prefixl dataname_postfix .mode |
name3 [.mode] | inline nameZ2

I | INTEGRATOR
W | WORD

A0..F15 | J0..015 | CLCKA..CLCKF | CLCKJ..CLCKO |
from user with NAME.Group or NAME.Set or NAME.Word
defined names

0 | 1 | DOUBLE | EDGE | FALLING | HH | HIGH | HL | HX |
IH | LL | LOW | LX | RISING | XH | XL | X | XX

BUSA | FALSE | SYNC | TRUE

is chosen from the user and must correspond with the
'C'-name conventions

syntax described in the Operation System User's
Guide

dto.

all characters excepted EOL and EOF

©1989-2024 Lauterbach

PowerlIntegrator Programming Guide | 45

	PowerIntegrator Programming Guide
	PowerIntegrator
	Program Structure
	Sample Trigger Program

	Declarations
	Data Selectors
	Event Counters
	Flags
	Time Counters

	Global Instructions
	Local Instructions
	Output Command table

	Events
	Counter Events
	Data Selectors
	Flags
	Time Events
	Other Events

	Conditions
	Levels
	CONTinue
	GOTO
	TRIGGER, BREAK

	Programming Examples
	Selective Recording
	Stopping the PowerIntegrator
	Stimulating Output Lines
	Using the Internal Trigger Bus
	Time and Event Counters
	Using Flags
	Switching Trigger Levels

	Declaration Reference
	SELECTOR Data selectors
	EVENTCOUNTER Event counter
	EXTERNSYNCCOUNTER Synchronous counter
	FLAGS Flags
	TIMECOUNTER Time counter

	Instruction Reference
	BREAK Trace stop
	Bus Bus trigger
	CONTinue Sequential level switching
	Counter Counter control
	Flag Flag control
	GOTO Level switching
	Out Output control
	Sample Recording control
	Trigger Trigger control

	PowerIntegrator Programming Language Syntax

