LAUTERBACH A

NAND FLASH Programming
User's Guide

NAND FLASH Programming User’s Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
FLASH Programmingccccccciriiccmmriissmssiisssssssisnssssssssmsss s sasssmsss sssssnmss s sssssmssssssssamms s ssssssmmssnnas r—~
NAND FLASH Programming UsSer's GUIdecccuureminimmiismmmnsmsinssssssss s s ssssmssssssssssas 1
0 Yo 11T] T o 5
How This Manual is Organized 5
Related Documents 6
Contacting Support 6
List of Abbreviations ... —————— 8
Background INfOrmation ... s s 8
What is a NAND Flash Device? 8
About Blocks, Pages, Main Area, and Spare Area 9
About Bad Block Markers 10
About NAND Flash Controllers 11
Standard APProach ... —————— 12
Identifying and Running Scripts for NAND Flash Programming 12

If There Is No Script 14
Scripts for NAND Flash Programmingccccccucceemmmmniismssnmnssss s ssssssss s ssssssmss s sssssssssns 15
Establishing Communication between Debugger and Target CPU 17
Configuring the NAND Flash Controller 18
Resetting Default Values 20
Identifying the Type of NAND Flash Controller 21
Informing TRACE32 about the NAND Flash Register Addresses 23
Informing TRACE32 about the NAND Flash Programming Algorithm 25
Identifying the Correct Driver Binary File for a NAND Flash Device 27

File Name Convention for NAND Flash Drivers 28
Finding the <nandflash_code> of a NAND Flash Device 29
Examples for Generic NFCs 31
Example for CPU-Specific NFCs 33
Checking the Identification from the NAND Flash Device 34
Erasing the NAND Flash Device 35
Programming the NAND Flash Device 36
Programming the Main Area 37
Verifying the Main Area 38
©1989-2024 Lauterbach NAND FLASH Programming User’s Guide 2

Other Useful Commands (NAND) 39
Writing Other File Formats to the Main Area 39
Modifying the Main Area 39
Copying the Main Area 41
Programming the Spare Area 43
Programming the ECC Code to the Spare Area 46
Reading/Saving the NAND Flash Device 47

Reading the Main/Spare Area 47

Full Examples: Generic NAND Flash Programming 51
Example 1 51
Example 2 53

Full Example: CPU-Specific NAND Flash Programming 55

About OneNAND Flash DeVICeSccccerrrirssmmrmmsssmssrisssssssssssssssssssssssssss s s ssssssss s sssssnnes 56
Scripts for ONeNAND Flash DeViCesccccuriiirecmrminissmsrinsssssssisssssss s ssssssss s ssssnnens 57

Establishing Communication between Debugger and Target CPU 59

Configuring the OneNAND Flash Bus 59

Resetting Default Values 60

Informing TRACES32 about the OneNAND Flash Address 60

Informing TRACE32 about the OneNAND Flash Programming Algorithm 61
Identifying the Correct OneNAND Flash Driver for a OneNAND Device 63
Naming Convention for OneNAND Flash Drivers 63

Checking the Identification from the OneNAND Flash Device 65

Erasing the OneNAND Flash Device 66

Programming the OneNAND Flash Device 67
Programming the Main Area (OneNAND) 67
Verifying the Main Area (OneNAND) 68

Other Useful Commands (OneNAND) 69
Copying the Main Area (OneNAND) 69
Modifying the Main Area (OneNAND) 71
Programming the Spare Area (OneNAND) 72
Reading/Saving the OneNAND Flash Device 75

Reading the Main/Spare Area (OneNAND) 75
Saving the Main Area (OneNAND) 76
Saving the Spare Area (OneNAND) 77

Full Example 79

Appendix A: ECC (Error Correction Code)ccccmmircmminimmmnsssmssssnssssssssssssssssmssssans 80

How to Generate ECC and to Detect Error 80
3bytes per 256bytes ECC codes 82
3bytes per 512bytes ECC Codes 83

Appendix B: Spare Area SChemMEeSccccocmiiimmiiiiminssssrsss s s ssms s ssss s smsssssnes 84

Linux MTD NAND Driver Default Spare Area Schemes 84

SAMSUNG Standard Spare Area Schemes 86

©1989-2024 Lauterbach NAND FLASH Programming User’s Guide 3

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 4

NAND FLASH Programming User’s Guide

Version 06-Jun-2024

Introduction

This manual describes the basic concept of NAND and OneNAND Flash programming.

There are many similarities between NAND Flash programming and OneNAND Flash programming, but
also important differences. For reasons of clarity and user-friendliness, this manual covers NAND Flash
programming and OneNAND Flash programming in separate chapters.

How This Manual is Organized

Background Information: Provides information about important terms in NAND Flash
programming, including the different types of NAND Flash controllers (NFC).

Standard Approach: Describes the fastest way to get started with NAND Flash programming. All
you need to do is to identify and run the correct script.

Demo scripts for NAND Flash programming are available in the folder:
~~/demo/<architecture>/flash/<cpu_name>-<nand_flash_code>.cmm

e.g. omap3430-nand.cmm, imx31-nand2g08.cmm ...

Scripts for NAND Flash Programming: Describes how you can create a script if there is no
demo script for the NFC type you are using.

About OneNAND Flash Devices: Explains the difference between OneNAND Flash and NAND
Flash.

Scripts for OneNAND Flash Devices: Describes how you can create scripts for OneNAND Flash
programming based on the template script provided by Lauterbach.

Appendix A and B: Provide information about ECC (error correction code) and spare area
schemes.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 5

Related Documents

A complete description of all NAND Flash programming commands can be found in chapter “FLASHFILE”
in “General Commands Reference Guide F” (general_ref_f.pdf).

The manual “List of Supported FLASH Devices” (flashlist.pdf) provides the following information:
. A list of the supported NAND and OneNAND Flash devices.
. A list of the supported on-chip NAND Flash controllers.

The Lauterbach home page provides an up-to-date list of

. Supported NAND and OneNAND Flash devices under:
https://www.lauterbach.com/ylist.html

J Supported on-chip NAND Flash controllers under:
https://www.lauterbach.com/ylistnand.html

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

. To contact your local TRACES32 support team directly.

. To register and submit a support ticket to the TRACE32 global center.
J To log in and manage your support tickets.

o To benefit from the TRACES32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@ lauterbach.com.

Be sure to include detailed system information about your TRACES32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 6

https://www.lauterbach.com/ylist.html
https://www.lauterbach.com/ylistnand.html
https://support.lauterbach.com

Lauterbach Homepage
Support > & System Information...
B About TRACE32 2 Update TRACE32...
B Technical Support Contacts

4 Contact Lauterbach .
P Generate TRACE32 Support Information E@.
Press the following button to get help on how to generate Support Information:
Company: Lauterbach Department: |
Prefix:
Firstname: Andrea
Surname: Martin
Street: Altlaufstr, 40 P.O.Box:
City: Hoehenkirchen-Siegertsbr. ZIP Code: 85635
Country: Germany
Telephone: (+49) 8102-9876-355
eMail: andrea.martin@lauterbach.com |
Product: PowerTrace PX |
Target CPU: ARMSA0T
Hostsystern: | Windows 10 v
Compiler: Arm
Realtime05: MNeno Safe Mode: []
Generate Support Information: Save to Clipboard | | Save to File
NOTE: Please help to speed up processing of your support request. By filling out the

resolve your problem.

system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.
3. Click Save to Clipboard, and then paste the system information into your e-mail.
NOTE: In case of missing script files (* . cmm), please proceed as requested in “If There

is No Script”.

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 7

List of Abbreviations

ALE Address latch enable
CLE Command latch enable
CSs Chip selection

ECC Error correction code
NFC NAND Flash controller
SP Spare area

Background Information

This chapter of the manual is aimed at users who are new to NAND Flash programming; it does not address
experts with many years of expertise in this area. This chapter gives you a brief overview of important terms

in NAND Flash programming, such as NAND Flash device, block, page, main area, spare area, bad block

marker, generic NFC, CPU-specific NFC.

What is a NAND Flash Device?

A NAND Flash device (short: NAND Flash) is a non-volatile storage chip that can be electrically erased and
reprogrammed. It is used in data-storage applications such as cell phones and multi-media devices.
Reasons why NAND Flash devices have become widespread include:

J Smaller interface pins than NOR Flash

. High density at low-cost per bit

o Faster than NOR Flash

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

8

About Blocks, Pages, Main Area, and Spare Area

A NAND Flash consists of blocks. Each block is subdivided into 32, 64, or 128 pages, and each page has a

main and a spare area; see example diagram below.

Main Area
] Page 1
Spare
Area
] Block 1
Main Area
NAND Flash L1 Page 128"
Spare
Area
L Block n
*) 382, 64 or 128 pages
Block A block is the minimum size unit for erasing.
Page A page is the minimum size unit for reading and writing.
There are two types of pages:
. Small pages
. Large pages
Type Main Area* Spare Area* Total*
Small Page | 256 8 264
512 16 528
Large Page | 2048 64 2112
4096 128 4224
*) in Bytes
Main area The main area of each page can have a size of 512, 2048, or 4096 Bytes and
contains the real code or data.
Spare area The spare area of each page can have a size of 16, 32, 64, or 128 Bytes and

contains the following:

. Bad block marker for a bad block (mandatory)

. ECC codes (optional)
. User-specific metadata (optional)

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

9

About Bad Block Markers

If a block is bad, then data cannot be erased or read from or written to the bad block. To flag a bad block,
one or two bad block markers are used:

. The 1st marker is located in the spare area of the 1st page.

J The 2nd marker is located in the spare area of the 2nd page.

Bad block markers are stored in different byte positions, depending on the type of page (large or small):
o Large page NAND: The bad block marker is stored in the 1st byte.
. Small page NAND: The bad block marker is stored in the 6th byte.

The figure below shows the 64-byte spare areas of the first two pages of a large page NAND. The
FLASHFILE.DUMP window visualizes the individual pages using alternating colors for pages - white and

gray.
£5 B::flashfile.dump Ox0 |- M [=]E3

sl SPARE W Byte v
2 3 4 5 6 7r.2'a s 8 c D E F ',

address L0 1

E_ﬂﬂnﬂﬂﬂﬂnﬂEFF FF FF FF FF FF FI|39 5 56 |FF FF FF FF FFSQ
0o00000M0 rr FF FF FF FF FF FF FF ar we rr FF FF FF FF FF 1st page
000000020 | FF FF FF FF FF FF FF FF 03 03 OF FF FF FF FF FF A4 pag
noooooo3n LEE_EF FF FF FF FF FF FF 55 9A BA FF FF FF FF FF %
000000040 |'FF |5F FE FF FF FF FF FF &% BA 56 FF FF FF FF FFN\&
n000000S0 (yrr FF FF FE FF FF FF FF OC 33 3C FF FF FF FF FF
000000060 ||FF FF FF FF FE FF FF FF FC FC CC FF FF FF FF FF 0 2ndpage
000000070 (\FF FF FF FE FF FF FF FF OF CO C3 FF FF FF FF FF 4

J
[c]
A Spare area of a large page NAND
B ECC code
C,D . FF = The block that these first two pages (white and gray) belong to is intact.
. If [C] or [D] or both do not read FF, as shown above, then the system considers the

block to be bad.
Byte position of a 1st bad block marker in the 1st page = [D].
Byte position of a 2nd bad block marker in the 2nd page = [C].

NOTE: The /EraseBadBlocks option of the FLASHFILE.Erase command can only
erase faked bad blocks, but not real bad blocks.
A faked bad block is a block where the user has modified an FF value to a
non-FF value in the byte position [C] or [D] or in both byte positions.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 10

About NAND Flash Controllers

Access to the NAND Flash is performed by an on-chip NAND Flash controller. There are two types of NAND

Flash controllers (NFC):

. Generic NAND Flash controllers
These NFC types are typically manufactured by Samsung Semiconductor, Atmel Corporation,
STMicroelectronics, Marvell, Inc., and Texas Instruments.

J CPU-specific NAND Flash controllers
These NFC types are typically manufactured by Qualcomm, Freescale Semiconductor, NVIDIA
Corporation, and Renesas Technology, Corp.

The architecture of systems featuring generic NFCs is shown in the block diagram below.

Bmgessor/ Command Latch Enable
NFC Address Latch Enable NAND
Core Flash
= Data I/0 - Memory

Figure: System with a Generic NAND Flash Controller (NFC)

The architectures of systems featuring CPU-specific NFCs may vary considerably. The following block
diagram illustrates an example of a typical architecture. Data from/to the NAND Flash is buffered in a data

buffer.
5?3863“” Command Latch Enable |
NFC i
Address Latch Enable > NAND
Flash
c Data Memory
ore Buffer | Data I/O -

Figure: Example of a System with a CPU-specific NAND Flash Controller (NFC)

©1989-2024 Lauterbach NAND FLASH Programming User's Guide |

11

Standard Approach

The chapter “Standard Approach” provides a compact description of the steps required to program NAND
Flash memory. This description is intentionally restricted to standard use cases.

Overview of the Standard Approach:

J Identify and run the required script for NAND Flash programming based on information on our
website.

U What to do if there is no script for NAND Flash programming.
The following step-by-step procedures describe the standard approach in detail.

A detailed description of the NAND Flash programming concepts is given in “Scripts for NAND Flash
Programming’.

Identifying and Running Scripts for NAND Flash Programming

Demo scripts (*.cmm) for NAND Flash programming are provided by Lauterbach. They can be found in the
TRACE32 installation directory, which contains scripts developed for generic and CPU-specific NFC types.

Path and file name convention of scripts for generic and CPU-specific NFC types:
~~/demo/<architecture>/flash/<cpu_name>-<prefix_of_nand_flash_code>.cmm

To identify and run the required script:
1. Make a note of the <cpu_name> printed on the CPU; for example, at91sam9xe
2. For information about supported Flash devices, access the Lauterbach website.

3. Click the + tree button next to Tool Chain, and then click Supported Flash Devices
(https://www.lauterbach.com/ylist.html).

4. On the Supported Flash Devices page, select the required company from the drop-down list.

| Supported FLASH Devices | LAUTERBACH
 [content] iv| * Supported Flash Devices El
HYNDK o home = Tool Chain

INFINEQN
INTEL
MACROND{
MICRON
MICRONAS
MICROSEMI

NEC Supported FLASH Devices
NXP

oKl

RENESAS NAND FLASH devices are marked in GREEN.

Sauslh b SERIAL FLASH devices are marked in RED.

SANDISK -

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 12

http://www.lauterbach.com/
https://www.lauterbach.com/ylist.html

5. Use the type printed on the Flash device to retrieve the <nand_flash_code> from the web page.

For example, NAND Flash type = MT29F2G08

B Tool Chain l Micron Technology, Inc.
= :
SIPCIEUemE Ee TYPE COMPANY (‘copE J—. COMMENT

[” Supported Host

Operating Systems 28FODAM29EW MICRON M29EW 16-bit mode
L ZAEW _hi
[" Supported Flash Devices M29EWB 8-bit mode
[T Supported NAND/Serial Flash
Controller : : : .
I Supported Target MT29F1G18 MICRON NAND1G16 MAND Flash
Operating Systems MT29F2G08 hEREH NAND2GO3 MAND Flash
I Supported Tool Integrations MT29F2G18 MICRON NAND2G16 NAND Flash
I Supported Simulators/virtual MT29F4G08 MICRON NAND2GOS NAND Flash
PrototypesiTarget Servers
Support
Result: <prefix_of_nand_flash_code> nand2g08 = nand
6. Put the <cpu_name> and the prefix together to form the script name:

at91sam9xe-nand2g08.cmm

The script file resides in this folder: ~~/demo/arm/flash/at91sam9xe-nand2g08.cmm

Where ~~ is expanded to the TRACES32 installation directory, which is c:/t32 by default.

If the folder does not contain the script you are looking for, see “If There Is No Script’ on page 14.
7. Run the script in TRACE32 by doing one of the following:

- Choose File > Run Script <cmm_script_name>

- In the command line, type DO <cmm_script_name>

NOTE: Each script (*.cmm) includes a reference to the required NAND Flash
programming algorithm (*.bin).
You do not need to program or select the algorithm.

Example

; <code_range> <data_range> <algorithm file>
FLASHFILE.TARGET 0x80008000++0x3fff 0x8000C000++0x4FFF
~~/demo/arm/flash/byte/nand2g08_imx.bin

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 13

If There Is No Script

If there is no script for your device in this directory (~~/demo/<architecture>/flash/), then please send a
request to support@lauterbach.com using the e-mail template below.

E-Mail Template:

Chip name:

Name of NAND Flash device:
Provide the CPU datasheet for us:
Lend the target board to us by sending it to the address given in “Contacting Support”:

<system_information>

Be sure to include detailed system information about your TRACES32 configuration. For information about
how to create a system information report, see “Contacting Support”.

Normally we can provide support for a new device in two weeks.

If our support cannot provide you with a PRACTICE script, you will have to create your own PRACTICE
script (*.cmm).

For more information, see “Scripts for NAND Flash Programming” on page 14.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 14

Scripts for NAND Flash Programming

This chapter describes how you can create your own scripts for chips that are equipped with generic or
CPU-specific NAND Flash controllers.

The steps and the framework (see below) provide an overview of the process. Both, steps and framework,
are described in detail in the following sections.

The following steps are necessary to create a new script:

1. “Establishing Communication between Debugger and Target CPU”, page 17
“Configuring the NAND Flash Controller”, page 18

“Resetting Default Values”, page 20

“Identifying the Type of NAND Flash Controller”, page 21

“Informing TRACE32 about the NAND Flash Register Addresses”, page 23
“Informing TRACE32 about the NAND Flash Programming Algorithm”, page 25
“Checking the Identification from the NAND Flash Device”, page 34

“Erasing the NAND Flash Device”, page 35

© ® N o g A~ 0D

“Programming the NAND Flash Device”, page 36

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 15

The following framework can be used as base for NAND Flash programming:

; Establish the communication
; between the target CPU and the
; TRACE32 debugger.

; Configure the NAND Flash
; controller.

FLASHFILE.RESet ; Reset the NAND Flash environment
; 1n TRACE32 to its default values.

FLASHFILE.CONFIG ... ; Inform TRACE32 about the
; NAND Flash register addresses.

FLASHFILE.TARGET .. ; Specify the NAND Flash
; programming algorithm and where
; 1t runs in the target RAM.

FLASHFILE.GETID ; Get the ID values of the NAND
; Flash device.

FLASHFILE.Erase .. ; Erase the NAND Flash.

FLASHFILE.LOAD <main file> .. ; Program the file to the NAND
; Flash (main area).

An ellipsis (...) in the framework indicates that command parameters have been omitted here for space
economy.

NOTE: The parametrization of FLASHFILE.CONFIG and FLASHFILE.TARGET
requires expert knowledge.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 16

Establishing Communication between Debugger and Target CPU

NAND Flash programming with TRACES32 requires that the communication between the debugger and the
target CPU is established. The following commands are available to set up this communication:

SYStem.CPU <cpu> Specify your target CPU.

SYStem.Up Establish the communication between the
debugger and the target CPU.

SYStem.CPU OMAP3430 ; Select OMAP3430 as the target CPU.

SYStem.Up ; Establish the communication between the
; debugger and the target CPU.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 17

Configuring the NAND Flash Controller

Programming a NAND Flash device requires a proper initialization of the NAND Flash controller. The

following settings might be necessary:

. Enable the NAND Flash controller or bus.

. Configure the communication signals (clock, timing, etc.).

J Inform the NAND Flash controller about the NAND Flash device (large/small page, ECC, spare,

etc.).

J Configure the NAND Flash pins if they are muxed with other functions of the CPU.

. Disable the write protection for the NAND Flash.

Use the PER.view command to check the settings for the NAND Flash controller.

i Bi:PER

Echip Select #1

GPMC_CONFIGT_C51

GPMC_CONFIGZ_C51

GPMC_CONFIGE_C51

GPMC_CONFIG4_C51

GPMC_CONFIGY _C51

GPMC_CONFIG

GPMC_MAND_COMMAND _C51

GPMC_MAND_ADDRESS_CS1
GPMC_MAND_DATA_CS1

oo101001

KHHR IR
HHHHNHN

WRAPBLURST
WAITPINSELECT
DEVICESIZE
DEVICETYPE
MUXADDDATA
TIMEPARAGRANULARITY
GPMCFCLEDIVIDER
CSWROFFTIME
CSRDOFFTIME
CSEXTRADE LAY
CSONTIME
ADYWROFFTIME
ADYVRDOFFTIME
ADVEXTRADE LAY
ADVONTIME
WEOFFTIME
WEEXTRADE LAY
WEONTIME
CEQOFFTIME
CEEXTRADE LAY
MASKADDRESS
CSMALID
BASEADDRESS
WAITIPINPOLARITY
WAITZPINPOLARITY
WAITIPINPOLARITY
WAITOPINPOLARITY
WRITEPROTECT

Not supported
WaITO
g bit

Disable
®1 latencies

16
16
Hot delayed
1
B

4
Not delayved
=

Hot delayed
1

8
Not delayed
128 MB
EnabTed
30

Low

Low

Low

Low

High

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

18

Example: NAND Flash controller configuration for the OMAP3430.

PER.Set SD:0x6E0000A8 %LE %Long 0x870

PER.Set SD:0x6E000098 %LE %Long 0x60401
PER.Set SD:0x6E00009C %LE %Long 0x5010801

PER.Set SD:0x6E000090 %LE %Long 0x0800

PER.Set SD:0x6E000050 %LE %Long 0x10

Enable CS1 and define
the base address of
CS1 (NAND Flash) .

LE = little endian

Define the NAND Flash
access timing.

Define CS1 for 8 bit
NAND Flash.

Disable the write
protection of the NAND
Flash device.

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide |

19

Resetting Default Values

The following command is used to reset the NAND Flash environment in TRACES32 to its default values.

FLASHFILE.RESet Reset the NAND Flash environment
in TRACE32 to its default values.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 20

Identifying the Type of NAND Flash Controller

You need to know which NFC type you are dealing with because NAND Flash programming differs
depending on the NFC type:

. Generic NAND Flash controllers

J CPU-specific NAND Flash controllers

To identify the type of controller:
1. Access the Lauterbach website.

2. Click the + tree button next to Tool Chain, and then click Supported NAND/Serial Flash
Controller.

3. Select the required company from the drop-down list.

[Supported NANDISERIAL FLASH Controllers | LAUTERBACH

{[content] i+] + Supported NAND/Serial Flash Controller =
[content] home > Tool Chain
ALTERA

AMCC
ATHEROS
ATMEL
BROADCOM

FREESCALE

INFINEQON

MARVELL
NEC

Supported NAND | Serial FLASH Contollers

p Serial FLASH Controller are marked in RED.
QUALCOMM -
REMESAS MMC FLASH Controller are marked in BLUE.
SAMSUNG

4. Locate the desired CPU.

The Controller column indicates whether the NFC type is generic or CPU-specific or a hybrid. The
following three examples cover all possible options.

Example 1: CPU = OMAP3530

The entry in the Controller column reads generic, and the entry in the Comment column reads
NAND. That means that this CPU is equipped with a generic NAND Flash controller.

E Tool Chain

- STM32F103ZE cortexma3 MAND
™ Supported Compilers
STM32F10X stm SPI
[” Supported Host
Operating Systems STR910 stm SPI
[” Supported Flash Devices
7 Supported NAND/Serial Flash l Texas Instruments
Controller CPU CONTROLLER COMMENT
™ Supported Target
Operating Systems DMm3z20 generic MNAND
7 Supported Tool Integrations DM355 generic NAND
™ Supported Simulators/Virtual DM365 generic NAND
PrototypesiTarget Servers DM3G5 dm3gs P
Support DM365 dm365 eMMC
DM6443 generic NAND
News | Events OMAP 243X generic MAND
Company OMAP34X generic MNAND
Chip Selection OMAP3530 omap3530 eMMC
OMAP35XX MAND
OMAP4430 omap4430 eMMC
OMAPL138 generic MAND

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 21

http://www.lauterbach.com/

Example 2: CPU = AT91SAM3U4

The entry in the Controller column reads generic (cortexm3), and the entry in the Comment column
reads NAND, Thumb2.

That means that this CPU is equipped with a generic NAND Flash controller, too. The term in
parentheses tells you the architecture of the processor core, here (cortexm3). This processor core
requires that the NAND Flash driver binary file is compiled using a special instruction set,

here Thumb2.

B Tool Chain =
7 Supported Compilers l Atmel Corporation
I Supported Host cPU CONTROLLER COMMENT
- UEEIPEEES ATI1SAMIUA _generic (cortexm3)_> NAND, Thi
= pupprEdhiashinewces ATI1SAM3UA atg1sam sPI

Supported MAMD/Serial Flash
[oy] ATI1SAM3U4 ata1sam elNC

[” Supported Target
Operating Systems

[” Supported Tool Integrations

[T Supported Simulators/Virtual
PrototypesiTarget Servers

Support

Example 3: CPU = .MX31

The entry in the Controller column contains the controller name (imx), and the entry in the Comment
column reads NAND. That means that this CPU is equipped with a CPU-specific NAND Flash
controller.

E Tool Chain

™ Supported Compilers l Freescale Semiconductor, Inc.
[” Supported Host

Operating Systems cPU CONTROLLER COMMENT
[” Supported Flash Devices L MX21 imx NAND
[r Supported NAND/Serial Flash] 123 gpmim23 NAND
Controller |.MX25 imx25 MNAND

[” Supported Target |.MX25 imx35 SPI{CSPI)
Operating Systems LMX27 imx NAND

[” Supported Tool Integrations |MX27 imx SPI(CSPI)
o gt‘;g;ﬁig ﬁg’pg“;?ts"éfv’g 'r':“a' LMX28 gpmimx28 NAND

LMX31 T SPI(CSPI)
LMX35 imx25 NAND

LMX35 imx3s5 SPI(CSPI)
uPC5121 mpc5 T NAND

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 22

Informing TRACE32 about the NAND Flash Register Addresses

The parametrization of FLASHFILE.CONFIG differs for generic and CPU-specific NFCs.
In the case of generic NAND Flash controllers:

The NAND Flash device can be programmed by operating the command, address, and I/O registers. As
a result:
1. A generic NAND Flash programming driver can be used.

2. The command FLASHFILE.CONFIG always requires the parameters
<cmd_reg> <addr_reg> <io_reg>

FLASHFILE.CONFIG <cmd_reg> <addr_reg> <io_reg> Inform TRACES32 about the NAND
Flash register addresses.

Parameters for FLASHFILE.CONFIG command — generic NAND Flash programming

<cmd_reg> Register address of the command register
<addr_reg> Register address of the address register
<io_reg> Register address of the data I/O register

For information about the register addresses of the command, address, and data I/O register, refer to the
manufacturer’s processor manual.

Example 1:

; Register addresses of the generic NAND Flash controller in the OMAP3530
FLASHFILE.CONFIG 0x6E00007C 0x6E000080 0x6E000084

Example 2:

; Register addresses of the generic NAND Flash controller in the OMAP3430
FLASHFILE.CONFIG 0x6EO0000AC 0x6E0000BO 0x6E0000B4

In the case of CPU-specific NAND Flash controllers:

FLASHFILE.CONFIG <nfc_base_address> , , Specify the start address of the
NAND Flash base register.
, represents don’t-care parameters.

For information about the NAND Flash base register, refer to the manufacturer’s processor manual.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 23

Example:

; NFC base address of the CPU-specific NAND Flash controller
; in the i.MX31.
FLASHFILE.CONFIG 0xB8000000 , ,

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 24

Informing TRACE32 about the NAND Flash Programming Algorithm

The following command is available to inform TRACE32 about the NAND Flash programming algorithm

(*.bin):

FLASHFILE.TARGET <code_range> <data_range> <file> Specify the NAND Flash
programming algorithm and
where it runs in the target
RAM.

Parameters
. <code_range>

Define an address range in the target’s RAM to which the NAND Flash programming algorithm is
loaded.

Flash algorithm

32 byte

Figure: Memory mapping for the <code_range>

Required size for the code is: size_of(<file>) + 32 byte
. <data_range>

Define the address range in the target’s RAM where the programming data is buffered for the
programming algorithm.

64 byte argument buffer
buffer for programming data
256 byte stack

Figure: Memory mapping for the <data_range>

The argument buffer used for the communication between the TRACE32 software and the

programming algorithm is located at the first 64 bytes of <data_range>. The 256 byte stack is
located at the end of <data_range>.

<buffer_size> = size_of(<data_range>) - 64 byte argument buffer - 256 byte stack

<buffer_size> is the maximum number of bytes that are transferred from the TRACES32 software
to the NAND Flash programming algorithm in one call.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 25

. <file>

Lauterbach provides ready-to-run driver binary files for NAND Flash programming. They are located
in the TRACE32 installation directory:

~~/demo/<architecture>/flash/<bus_width>/

Where ~~ is expanded to the TRACES32 installation directory, which is c:/t32 by default.

For detailed information about how to determine the <file> parameter, see “Identifying the
Correct Driver Binary File for a NAND Flash Device” on page 26.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 26

Identifying the Correct Driver Binary File for a NAND Flash Device

There are two ways to find the correct *.bin file:

You can identify the *.bin file via our website, as described in this section.

Alternatively, run a PRACTICE script (*.cmm), as described in “Finding the <nandflash_code>

of a NAND Flash Device”, page 29.

To identify the correct *.bin file:

1.
2.

For information about supported Flash devices, access the Lauterbach website.

Click the + tree button next to Tool Chain, and then click Supported NAND/Serial Flash
Controller (https://www.lauterbach.com/ylistnand.html).

Open Supported Flash Devices in a separate window or tab
(https://www.lauterbach.com/ylist.html).

On the Supported Flash Devices page, select the required company from the drop-down list.

| Supported FLASH Devices | LAUTERBACH
 [content] iv| * Supported Flash Devices El
HYNDK o home = Tool Chain

INFINEQN
INTEL
MACRONLX
MICRON
MICRONAS
MICROSEMI
NEC Supported FLASH Devices
NXP
oKl
REMESAS NAND FLASH devices are marked in GREEN.

SAMSUNG . .
SANDISK | SERIAL FLASH devices are marked in RED.

Locate the desired Flash device.

You need the name of the Flash device to be able to identify the correct driver binary file.

Identify the correct *.bin file based on the name of the Flash device. The following examples
illustrate how to do this.

- Examples for Generic NFCs
- Example for CPU-Specific NFCs

- The file name convention for driver binary files (*.bin) is explained below.

©1989-2024 Lauterbach NAND FLASH Programming User’s Guide

27

https://www.lauterbach.com/
https://www.lauterbach.com/ylistnand.html
https://www.lauterbach.com/ylist.html

File Name Convention for NAND Flash Drivers

The NAND Flash drivers for the various NFC types use the following file name convention:

Page Size (bytes) Block Size [Device Size Bus Width |File Name
Main area |Spare area
512 16 32 pages | <=2048 blocks | 8 Nand5608.bin
16 Nand5616.bin
512 16 32 pages | > 2048 blocks 8 Nand1208.bin
16 Nand1216.bin
2048 64 64 pages | <= 1024 blocks | 8 Nand1g08.bin
16 Nand1g16.bin
2048 64 64 pages | > 1024 blocks 8 Nand2g08.bin
16 Nand2g16.bin
2048 64 128 pages| > 1024 blocks 8 NandLAg08.bin
4096 128 64 pages | > 1024 blocks 8 Nand8g08.bin
4096 218 Nand8g08xs.bin
4096 128 128 pages| > 1024 blocks 8 NandLBg08.bin
4096 218 NandLBg08xs.bin

“xs” = eXtra spare area

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

28

Finding the <nandflash_code> of a NAND Flash Device

The following step-by-step procedure helps you find the <nandflash_code> of your NAND Flash device.
Based on the <nandflash_code>, you can then identify the correct *.bin file.

To find the <nandflash_code>:

1. Run the following PRACTICE script file (*.cmm) from the TRACES32 demo folder:

CD.DO ~~/demo/etc/flash/find nanddef.cmm

; The path prefix ~~ expands to the system directory of TRACE32,
;by default C:\t32.

If this demo script is missing, you can download it from www.lauterbach.com/scripts.html.
The Find nandflash code dialog opens.

A Find nandflash code EI@

MNandflash parameters
- Bus Width: @) 8bit 16bit
- PageSize Main: 248, x| Byte
- PageSize Spare: 64. | Byte
- PageMum per Block: |64. ~| ea
- COL Mum: 2. Cycles

- ROW Num: 3. ¥ | Cycles

d
e Find

nand2g08 =

2. Under Nandflash parameters, make your settings.
- You can find the required information in the NAND Flash data sheet of the manufacturer.

- The values selected in the screenshot are based on the lllustration of a NAND Flash Array
Organization.

3. Click Find.

- The code box displays the <nandflash_code> of your NAND flash device.

- If the code box displays unknown, then proceed as described in “If There is No Script”.
4. Make a note of the displayed <nandflash_code>; for example, nand2g08.
5. Click End to close the Find nandflash code dialog.

6. Identify the correct *.bin file based on the <nandflash_code>. The following examples illustrate how to
do this.

- Examples for Generic NFCs

- Example for CPU-Specific NFCs

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 29

www.lauterbach.com/scripts.html

lllustration of a NAND Flash Array Organization

The terms highlighted in bold correspond to the drop-down lists and radio options of the Find nandflash
code dialog box (below).

You can find the required information in the NAND Flash data sheet of the manufacturer.

Bus Width . .
I PageSize Main
/0 [0] . !
110 [7] —&_ .
71 \ 2048 (64 [> PageSize Spare
ri 2112 bytes ﬂ
1 page = (2K + 64 bytes)
[1 block (64 pages) PageNum per Block
2048 blocks = (2K+64) bytes x 64 pages L
per device = (128K + 4K) bytes
A
Col. CA7 CA6 CA5 CA4 CA3 CA2 CA1 CAO COL Num
cycle v LOW LOW LOW LOW CA11 CA10 CA9 CA8
% 3d RA19 RA18 RA17 RA16 RA15 RA14 RA13 RA12
vt ROW Num
cycle 4th RA27 RA26 RA25 RA24 RA23 RA22 RA21 RA20
L 5t LOW LOW LOW LOW LOW LOW LOW RA28

CA = Column address
RA = Row address

“Find nandflash code” Dialog Box

A Find nandfiash code oo e [A] Oncg you have_ entered the
information found in the NAND
Mandflash parameters Flash data sheet of the
- Bus Width: @ 8bit O 16bit manufacturer, click Find.
- PageSize Main: 248, ~| Byte
- PageSize Spare: 64. = | Byte
- PageMum per Block: |64. ~| ea
- COL Mum: 2. Cycles

- ROW Num: Cycles

e
code . —
nand2g08 Eng [B] The type box displays the
<nandflash_code> of your NAND

Flash device.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 30

Examples for Generic NFCs

The names of the required NAND Flash driver binary files consist of information from the Controller and/or
Code columns. The following example illustrate how you can combine this information from the Lauterbach
website to form the correct file name.

Example 1 — target:

. CPU S3C6410 with a generic NFC

J NAND Flash device MT29F2G16

The Code column identifies the name of the NAND Flash driver binary file: nand2g16 .bin.

Note that the information in the Controller column is not part of the file name in this case.

El Tool Chain l Samsung Semiconductor

[T Supported Compilers

CPU CONTROLLER COMMENT
[” Supported Host -
Operating Systems S3C24XK generic MNAND
[T Supported Flash Devices S3CE6410 s53c6410 OneMAND
[[T Supported NAND/Serial Flash 53CE410 53c6410 eMMC
Controller generic
|: ypoorded To
" E Tool Chain

[T Supported Compilers
[T Supported Host
Operating Systems

Micron Technology, Inc.
f [~ Supported Flash Devices l gy

I Supported NAND/Serial Flash TYPE COMPANY CODE COMMENT
Contraller 28FO0AMZOEW MICRON M29EW 16-bit mode
" Supported Target M29EWE 8-bit mode
OPEEIE SRS 28FO0AP30 MICRON 128F200P3F
" Supported Tool Integrations . 5 5
[T Supported Simulators/Virtual
PrototypesiTarget Servers MT29F1G16 MICRON NAND1G16 NAND Flash
MT29F2G08 MICRON NAND2GO08 NAND Flash
MT29F2G16 FHERGH NAND2G16 NAND Flash
WTZ0F4G08 MICRON NAND2G08 NAND Flash

The number 16 in the file name indicates the bus width and the folder where the file resides, i.e. in the word
folder.

The binary file resides in this folder: ~~/demo/arm/flash/word

Whereas ~~ is expanded to the TRACES32 installation directory, which is c:/t32 by default.

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide | 31

Example 2 — target:

J CPU AT91SAM3U4 with a generic (cortexm3) NFC.

Remember that NFCs flagged like this in the Controller column—generic (name)—require binary
files that are compiled with a special instruction set, here Thumb2; see figure below.

. NAND Flash device MT29F2G08

Taken together, the Code column and the Controller column make up the file name of this particular NAND
Flash driver binary file: nand2g08_cortexm3 .bin

B Tool Chain l Atmel Corporation
[T Supported Compilers
[Supported Host cPU CONTROLLER COMMENT

Operating Systems
[” Supported Flash Devices

[T Supported NAND/Serial Flash
Controller

[F . :
B Tool Chain l Micron Technology, Inc.

ATI1SAM3U4 generic (cortexma3) MAMD, Thumb2

AT91SAM3U4 atd1sam SPI
AT91SAM3U4 atd1sam eMMC

| [Supported Compilers \
A SupportedHost TYPE COMPANY CODE COMMENT
Operating Systems 2BFD0AM29EW MICRON M29EW 16-bit mode
[[” Supported Flash Devices MZ29EWB &-bit mode
- Supported MAND/Serial Flash - -
Controller . . . =
[Supported Target MT29F1G16 MICRON NAND1G16 NAND Flash
Operating Systems MT29F2G03 SRR NAND2GO8) NAND Flash
[Supported Tool Integrations MT29F2G16 MICRON NAND2G16 NAND Flash
I Supported Simulators/Virual MT29F4G08 MICRON NAND2G08 NAND Flash
PrototypesiTarget Servers
MT29F4G16 MICRON NAND2G16 NAND Flash
Support

The number 8 in the file name indicates the bus width and the folder where the file resides, i.e. in the word
folder.

The binary file resides in this folder: ~~/demo/arm/flash/byte
Where ~~ is expanded to the TRACE32 installation directory, which is ¢:/t32 by default.

This results in the following command line:

; Specify the NAND Flash programming algorithm and where it runs in

; the target RAM. <code_range> <data_range> <file>

FLASHFILE.TARGET 0x20000000+0x1fff 0x20002000++0x1fff
~~/demo/arm/flash/byte/nand2g08_ cortexm3.bin

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 32

Example for CPU-Specific NFCs

Target:
. CPU i.MX31 with a CPU-specific controller
. NAND Flash device MT29F2G16

Taken together, the Code column and the Controller column make up the file name of the NAND Flash
driver binary file: nand2g16_imx.bin

& Tool Chain l Freescale Semiconductor, Inc.
[” Supported Compilers
[Supported Host cPU CONTROLLER COMMENT
Operating Systems 1.MX21 imx MAND

™ Supported Flash Devices |31 | { imx Y : MNAND |
[" Supported NAND/Serial Flash LMX31 imx SPI{CSPI)
Controll
e LX35 NAND

imx25
[” Supported Target

i LMX35 imx3s5 SPI(CSPI)
™ Supported Tool Integrations MPC5121 mpcstio NAND
I Supported Simulators/Virtual MPC8313 mpca i NAND
PrototvneciTarns oy MDhQATT mnrQ vy MARKID
B Tool Chain
™ [Supported Compilers l Micron Technology, Inc.
I Supported Host \
Operaling Systems TYPE COMPANY CODE COMMENT
(T supported Fiash Devices 28FO0AM29EW MICRON H29EW 16-bit mode
T Supported NAND/Serial Flash LS b moda
Controller MT29F2G03 MICRON NAND2GOS NAND Flash
[Supported Target MT29F2G16 FHEREH NAND2G16 NAND Flash
Operating Systems MT29F4G08| MICRON NAND2GOS MAND Flash
I Supported Tool Integrations MT29F4G16 MICRON NAND2G16 NAND Flash
I Supported Simulators/Virtual MT29F8G03 MICRON NAND2GOS NAND Flash
PrototypesiTarget Servers
MT29F8GOSMAD MICRON NANDSGOSM NAND Flash, 4KB/2138,
S“ppon MTIOC2™4E RALTD L BIAKICVIT AR BIAKICY Clach

The number 16 indicates the bus width and the folder where the file resides, i.e. in the word folder.
The file resides in this folder: ~~/demo/arm/flash/word

Where ~~ is expanded to the TRACE32 installation directory, which is ¢:/t32 by default.

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide |

33

Checking the Identification from the NAND Flash Device

The following command can be used to check if TRACE32 can access the NAND Flash device:

FLASHFILE.GETID Get the ID values, page size, block
size, and the NAND Flash code

from the NAND Flash device.

; Open the TRACE32 AREA window.
AREA.view

Get the ID values, page size, block size, and the NAND Flash code

from the NAND Flash device.

7

7

FLASHFILE.GETID

[A% H
IManufacturer = MICRON{0x2C) , Dewvice ID = 0xDS (0x94, 0x3E, 0x74) |

dala byLes per page : U< 1000 L4kDJ
data bytes per block: 0x80000 {512kE3}
hand type: handlbg08xs
w

<

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide |

34

Erasing the NAND Flash Device

The following commands are available to erase NAND Flash devices:

FLASHFILE.Erase <range> Erase NAND Flash except bad blocks.
FLASHFILE.Erase <range> [EraseBadBlocks Erase NAND Flash including bad blocks.
Example 1:

; Erase 1MB starting from 0x0 except bad blocks.
FLASHFILE.Erase 0x0--0xFFFFF

Example 2:

; Erase 1MB starting from 0x0 including bad blocks.
; Afterwards all bad block data is erased.
FLASHFILE.Erase 0x0--0xFFFFF /EraseBadBlocks

|
Result (1) | Result (2)
MAIN SP MAIN SP : MAIN SP MAIN SP
1 | 1
2 | 2
3 | 3
4 -Bad 4 -Bad | 4 -Bad
5 — l 5 —
; | ;
: I
N | N
FLASHFILE.Erase .. : FLASHFILE.Erase .. /EraseBadBlocks

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 35

Programming the NAND Flash Device

In a NAND Flash device, each page consists of two areas:

. The main area contains the data which is accessed by the CPU.

. The spare area contains the bad block information and the ECC data.
For background information about ECC, see “Appendix: ECC (Error Correction Code) on
page 80.

The main and spare area are programmed independently.

All CPU-specific NAND Flash controllers generate the ECC data automatically when data is programmed to
the main area. Therefore, the spare area does not need to be programmed explicitly.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 36

Programming the Main Area

The following commands are available to program the NAND Flash main area:

FLASHFILE.LOAD <file> [<address> | <range>] Program NAND Flash except
bad blocks.

FLASHFILE.LOAD <file> [<address> | <range>] /WriteBadBlocks Program NAND Flash
including bad blocks.

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

Example 1

; Program contents of my file.bin to NAND Flash main area starting at
; address 0x0.

; If a block is bad, the data is programmed to the next valid block.
FLASHFILE.LOAD my file.bin 0x0--0xFFFFF

Example 2

; Program contents of my file.bin to NAND Flash main area starting
; at address 0x0.

; Even if a block is bad, data will be programmed.

FLASHFILE.LOAD my file.bin 0x0--0xFFFFF /WriteBadBlock

Result (1) Result (2)

My_file —— » NAND My_file ——p NAND

|
|
\
Main SP : Main SP
1 1 | 1 1
2 2 \ 2 2
3 3 \ 3 3
4 - Bad \ 4 4 - Bad
5 4 : 5 5
. |
N N-1 | N N
FLASHFILE.LOAD .. 1 FLASHFILE.LOAD .. /WriteBadBlock

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide | 37

Verifying the Main Area

The following command is used to compare the NAND Flash main area with the specified target file:

I FLASHFILE.LOAD <file> [<address> | <range>] /[ComPare

The data from <file> is compared to the address range specified by <range>. If no <range> or <address> is
specified, comparing starts at address 0xO.

Example 1

; Verify the contents of my file.bin against the NAND Flash main area,
; starting at address 0xO0.

; If a block is bad, then the data in the file is verified against

; the next valid block up to the end of the specified range.
FLASHFILE.LOAD my file.bin 0x0--0xFFFFF /ComPare

Example 2

; Verify the contents of my file.bin against NAND Flash main area,
; starting at address 0xO0.

; Even if a block is bad, the data will be verified against the bad block
; data.

FLASHFILE.LOAD my file.bin 0x0--0xXFFFFF /WriteBadBlock /ComPare

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 38

Other Useful Commands (NAND)

Writing Other File Formats to the Main Area

The following commands are available to load IntelHex and S-Record files:

FLASHFILE.LOAD.IntelHex <file>

FLASHFILE.LOAD.S1record <file>
FLASHFILE.LOAD.S2record <file>
FLASHFILE.LOAD.S3record <file>

Modifying the Main Area

Program an intelhex file to the
NAND Flash.

Program an S-record file to
the NAND Flash.

The following command is available to modify the contents of the NAND Flash memory. The maximum
range that one FLASHFILE.Set command can modify is only one block of the Flash memory. If you want to
modify three blocks, you need three FLASHFILE.Set commands, etc. See below for an example.

FLASHFILE.Set [<address> | <range>] Y%<format> <data>

Example 1

; LE = little endian

FLASHFILE.Set 0x100000 %LE %Long 0x12345678

Result (1)

2= B::FLASHFILE.DUMP 0x100000
0x100000

[Track [+]

AN w Long R

address 4 g C 0123456789ABCDEF '
DDDDDDDDDI 0o0oo [+ IFFFFFFF FFFFFFFF FFFFFFFF W4LRREREEERRREE A

000000000
0000000000100020

FFFFFFF FFFFFFFF FFFFFFFF £EE
FEFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
0000000000100050 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

ERRR LR LB LR

FFFFFFFFFF

FEFFFEFFEFE

FFFFFFFFFF
EFE FEFFFEFFEFE
FF FFFFFFFFFF
EFE FEFFFEFFEFE
FF FFFFFFFFFF
EFE FEFFFEFFEFE
FF FFFFFFFFFF
EFE FEFFFEFFEFE
FF FFFFFFFFFF

R)

Example 2

7

FLASHFILE.Set 0x100000++O0xFFF %Byte 0x0

Modify the contents of the NAND
Flash.

Write 4 bytes of data 0x12345678 to the address 0x100000.

Write data 0x0 to the address range 0x100000++0xFFF.

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 39

Result (2)

2= B::FLASHFILE.DUMP 0x100F 80

0%100F80 MAIN v Long | [Track[¥]
address i 4 & ¢ 0123456759ABCDER
I T TR T Ty [T .
100FS0 | 00000000 00000000 DODDOOOD OOODOOOD [3HEEEEEEEEEEEEY
100FAD | 00000000 00000000 DODDOOOD 0OODOOOD [N
100FED | 00000000 00000000 0ODDOOOD 00000000 [3HEEEEEEEEEEEEEY &
100FCO | 00000000 00000000 DODDDOOD 0000000 [AHEEEEEEEEEEEEEY A
100FD0 | 00000000 00000000 DODDOOOD 0OOOOOOD [N
00000000 00000000 00000000 00000000 J355555555E588888
00000000 00000000 00000000 00000000 J35555EEEEEEEEEEE
I N NN A A4 4 4 4 4 4 4 a4 4 4 14
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEEEEEEEE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEEEEEEEE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEEEEEEEE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEEEEEEEE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEEEEEEEE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEEEEEEEE
0000000000101070 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEEEEEEEE o

Example 3

; A NAND Flash has 128KB per block (0x20000) .
; Write data 0x0 from 0x100000 to Ox15FFFF in the NAND Flash.
FLASHFILE.Set 0x100000++0x1ffff %Byte O0xO0
FLASHFILE.Set 0x120000++0x1ffff %Byte 0x0

FLASHFILE.Set 0x140000++0x1ffff %Byte 0x0

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 40

Copying the Main Area

The following command is available to copy:

Any data from any CPU memory area to the NAND Flash, or

Any data from one address range of the NAND Flash to another address range within the same
NAND Flash; for example, for backup purposes.

Example 1

FLASHFILE.COPY <source range> <target addr>

FLASHFILE.COPY <source range> <target addr>/ComPare

Copy data from the source range
to the defined address of the
NAND Flash.

Verify the source range data
against the target range data.

Copy the 2MB virtual memory data at 0x0 to the NAND Flash address
at 0x100000.
Bad blocks are skipped, data is written to the next valid block.
VM: The virtual memory of the TRACE32 software.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000

Result (1)

[
10

- 0x0 Long | [JE [JTrack [#]Hex
address 0 4 5 ¢ 0123456789ABCDEF
V00000000 [+4ESE533B 7EES5220 BFESVY3ES 7SZ203ABE :SWN_Revision:ou s
YM:00000010 | GFEEGBEE DADDEE?? 3BOADDIE 43504020 nknownk; &k; MPC
YM:00000020 | 58353535 43504D2F 58363535 43504D2F 555%/MPCGSER/MPC
YM:00000030 | 58333535 504D202C 33363543 532F4D78 553X, _MPCIEIRM/S ¥
YM:00000040 | 36354350 75784033 GF4D2820 GFE3616E PCSE3Mxx_(Monaco
YM:00000050 | 4D202C23 36354350 00203437 20203B0A
YM:00000060 | 20202020 20202020 20202020 20202020
YM:00000070 | 20202020 20202020 20202020 20202020
M:00000080 | 20202020 20202020 20202020 20202020 0100000 MAIN v Long v| [Track FH
YM:00000030 | 0AOD202D GF432038 20206572 20202020
YM:000000A0 | 20202020 32652034 OD203030 4D203B0A address 0 4 8 € 0123456783ABCDEF
WM:000000B0 | BEFSEERY 75746361 20726572 46203420 O000000000100000 [+4E56533B 7EES5220 BFESY3ES 7O203AEE :SWN_Revision:_u A~
MBI S36mas72 AoacRIRd RNADDRD IeBADDZD 0000000000100010 | GFEEGBEE DAODEE?? 3BOAND3E 43504020 nknowngk; Sk; MPC
WMECTTTEI| ~aomaon SOUoERRS 20202020 3A202090 . 0000000000100020 | 53353535 43504D2F 58363535 43504D2F 555%/MPCSSER/MPC
VBT Goum220 3EMADDN B174530 20737574 0000000000100030 | 53333535 5040202C 33363543 532F4D78 5534, _MPCSEIXM/S ¥
WM 20205050 3A202020 ECES290 B5YIRIES 0000000000100040 | 36354350 78784033 GF4D2320 GFE3E16E PCIEIMxx_(Monaca
BT 5002054 20205038 202hYDD hebaDsD 0000000000100050 | 40202C29 36354350 00203437 2D203B0A), MPCIE74LEE; -
MR 20202050 20205000 2050200 3DDaDD 000000000010000 | 20202020 20202020 20202020 20202020 -—-------m-
TR 20202050 20205020 2050200 SDDaDaD 0000000000100070 | 20202020 20202020 20202020 20202020 -
MBI 20202050 20205020 ROADD 43504020 0000000000100080 | 20202020 20202020 20202020 20202020 =
WEETTTIE| Saccanas 23294020 DADDZOZS AIDAIDZD 0000000000100030 | 0AOD2020 EF43203B 20206572 20202020 - 55} C0r8ee.
0000000000100040 | 20202020 32652034 00203030 4DZ03B0A i e200_55; M
00000000001000B0 | GE7SEEE1 75746361 20726572 46203420 anufacturer .:_F
00000000001000C0 | 73656572 656C6163 3BOANDZ0 3BOAND20 reescale th; Gh;
0000000000100000 | 74754120 20726FE8 20202020 34202020 _AULROT e
0000DODOOT000ED | 49455220 3B0ADD2D 61743320 20737574 REL-fh;-Status..
. . 00000000001000F0 | 20202020 34202020 ECES7220 E5736165 —oooi_release
Data is copied from the 0000000000100100 | DAODZ0E4 20202038 202D2D2D 202D2D2D
0000000000100110 | 20202020 20202020 20202020 20202020
CPU to the NAND Flash 0000000000100120 | 202D2D2D 2D2D202D 20202020 2D2D2D2D
0000000000100130 | 20202020 20202020 3B0AND20 43504020 _Eb s MPC
0000000000100140 | 53583535 23234020 0A0D2029 62040020 55X B(H)_Ch_tth v
Example 2
; Verify the data between virtual memory and NAND Flash.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000 /ComPare
©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 41

Example 3

Copy the 4MB NAND Flash data at 0x0 to the NAND Flash

at 0x800000.
; Bad blocks are skipped, data is written to the next valid block.

FLASHFILE.COPY 0x0--0x3FFFFF 0x800000

I

I

; Verify the 4MB NAND Flash data between 0x0 and 0x800000.
FLASHFILE.COPY 0x0--0x3FFFFF 0x800000 /ComPare

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 42

Programming the Spare Area

The following commands are available to write a bad block marker, ECC codes, and special customer data
to the NAND Flash spare area:

Program the NAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>]

Program the NAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks

Compare the NAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] IComPare

Compare the NAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks /ComPare

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

NOTE:

You need a third-party tool to create the spare file (<file>).
Be careful when you specify <range>: You should input <range> in the
spare area address format, not in the main area format (see figure

below).

Main Area Addr

Spare Area Addr

0x0--Ox1FF

0x0--0xF

0x200--0x3FF

0x10--Ox1F

0x400--0x5FF

0x20--0x2F

0x600--0x7FF

0x30--0x3F

0x800--0x9FF

0x40--0x4F

0xA00--0xBFF

0x50--0x5F

0xCO00--0xDFF

0x60--0x6F

N--(N+0x1FF)

N>>5--(N>>5)+0xF

Small Page NAND

Main Area Addr

0x0--Ox7FF
0x800--OxFFF
0x1000--0x17FF
0x1800--0x1FFF
0x2000--0x27FF
0x2800--0x2FFF
0x3000--0x37FF

N--(N+0x7FF)

Spare Area Addr

0x0--0x3F

0x40--0x7F

0x80--0xBF

0xCO0--0xFF

0x100--0x13F

0x140--0x17F

0x180--0x1BF

N>>5--(N>>5)+0x3F

Large Page NAND

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 43

Example 1

; Write my_spare.bin to the NAND Flash spare area.
; Start at the address 0x0 of the spare area.

; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my_ spare.bin 0x0

Example 2: When specifying the address range, remember to use the address format of the spare area.

; Write 32KB of my_ spare.bin to the specified address range
; of the spare area.

; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my spare.bin 0x0--0x7FFF

Example 3

; Write my_ spare.bin to the spare area.

; Start at the address 0x0 of the spare area.

; Include the bad blocks of my_ spare.bin.
FLASHFILE.LOADSPARE my spare.bin 0x0 /WriteBadBlock

Example 4

; Write 32KB of my_spare.bin to the spare area.

; Start at the address 0x0 of the spare area.

; Include the bad blocks of my_spare.bin.
FLASHFILE.LOADSPARE my_ spare.bin 0x0--0x7FFF /WriteBadBlock

Result (1 and 2) Result (3 and 4)

FLASHFILE.LOADSPARE .. FLASHFILE.LOADSPARE .. /WriteBadBlock

|
|
|
NAND | NAND
My_Spare Main SP \ My_Spare Main SP
1 1 | 1 1
2 2 : 2 2
3 3 ‘ 3 3
4 — - Bad \ 4 — - Bad
5 4 \ 5 5
: | : :
N N-1 : N N
|

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 44

Example 5

; Verify the entire file my_spare.bin against the spare area.
; Start at the address 0x0 of the spare area.
FLASHFILE.LOADSPARE my_ spare.bin 0x0 /ComPare

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 45

Programming the ECC Code to the Spare Area

The following commands are available to generate ECC code file from the NAND Flash main area:

FLASHFILE.SAVEECC.BCH Save error correction code (ECC) with BCH algorithm
FLASHFILE.SAVEECC.hamming Save ECC with Hamming algorithm
FLASHFILE.SAVEECC.ReedSolomon Save ECC with Reed-Solomon algorithm

The following command is available to program the generated ECC code file to the NAND Flash spare area:

I FLASHFILE.LOADECC <file> Load ECC file to spare area

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 46

Reading/Saving the NAND Flash Device

The CPU cannot read NAND Flash devices directly. But TRACES32 provides special commands for reading
NAND Flash memories. The contents of the NAND Flash are displayed in a window.

Reading the Main/Spare Area

The following commands are provided to read the NAND Flash areas.

FLASHFILE.DUMP [<address>] [/<format>] Display a hex-dump of the NAND Flash
main area.
FLASHFILE.DUMP [<address> /SPARE [/Track] Display a hex-dump of the NAND Flash
spare area.
Example 1

; Display a hex-dump of the NAND Flash main area starting at 0x1000.
; Display the information in a 32-bit format (Long option).
FLASHFILE.DUMP 0x1000 /Long

Example 2

; Display a hex-dump of the NAND Flash spare area.

; The cursor in the spare area display follows the cursor movements in
; the main area display (Track option).

FLASHFILE.DUMP /SPARE /Track

Result (1)

2= B::FLASHFILE.DUMP 0x1000 /long

0x1000 MAIN v

—— 4 8 =
0000000000007000 E59F0298 E3ANT000 E3A02003
0000000000001010 | E3A03007 EBFFFOD3 E3A00001 E1401000
0000000000001020 | ES9F2280 ES9F3274 EBFFFDDG EBFFFDBC
0000000000001030 | E3A01010 E3A02003 E3A03001 E1AD5204
0000000000001040 | E1A07000 ES9F0258 EBFFFDCE E3A

0000000000001050 | ESIF2250 ES9F3244 E3A00002 EE R IRl siaMat e a1

0000000000001060 | ES3F0244 E3ADT01E EIADZO05 E3P | ——
0000000000001070 | EEFFFDEC ESSFO0244 E3A01000 EBPIUKU SPARE v I
0000000000001080 | E3A0004 EEFFFDE? EO&74005 ESS ————
3333833338881838 EEQE&S?E E%QB?BBS 53233332 B oe0000000000000G s FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
N0000000000010R0 | ERFFFDAC E594300¢ ES9F020a E2410000000000000010 | FF FF FF FF FF FF FF FF OC FO CC FF FF FF FF FF
N0000000000010C0 | E3A02005 EBFFFDAT E7373005 E5a)0000000000000020 | FF FF FF FF FF FF FF FF 33 F3 30 FF FF FF FF FF
N000000000001000 | E3A01008 E3402008 EBFFFDA? E5a)0000000000000030 | FF FF FF FF FF FF FF FF FF FO CC FF FF FF FF FF
N0000000000010ED | ES9FO1E4 E34D1000 E3auz00r ERA|0000000000000040 | FF FF FF FF FF FF FF FF 95 A3 69 FF FF FF FF FF
N0000000000010FD | 5343008 ESGF01AB E3aninis £3A0000000000000050 | FF FF FF FF FF FF FF FF 3C 00 CF FF FF FF FF FF
N000000000001100 | ERFFFDSS ES3F0198 Eaaninin E2Al0000000000000060 | FF FF FF FF FF FF FF FF CF FF OF FF FF FF FF FF
N000000000001110 | E3A03007 EBFFFDA3 Eaanono? Ei14)0000000000000070 | FF FF FF FF FF FF FF FF OC CC 30 FF FF FF FF FF
N000000000001120 | ES9F2180 ES9F3174 EGFFFDAG EpAl0000000000000080 | [@F FF FF FF FF FF FF FF CC 30 FF FF FF FF FF FF
N000000000001130 | E3A01000 E3AD2005 EQG04006 E140000000000000030 | FF FF FF FF FF FF FF FF GA 54 96 FF FF FF FF FF
N000000000001140 | F594300C ESAF0184 EBFFFD@E £7a)00000000000000A0 | FF FF FF FF FF FF FF FF SA 94 99 FF FF FF FF FF
0000000000001150 | ESAFO017C E3AD1008 E3AU200R ERAN00000000000000BO | FF FF FF FF FF FF FF FF AR A9 BA FF FF FF FF FF
N000000000001160 | F5343004 ESAF016E Eaanioon £3A00000000000000C0 | FF FF FF FF FF FF FF FF CO 00 33 FF FF FF FF FF
N000000000001170 | ERFFFDTC E3AD1004 E5943008 E14/00000000000000D0 | FF FF FF FF FF FF FF FF SE 6A 95 FF FF FF FF FF

00000000000000E0 | FF FF FF FF FF FF FF FF 53 A& 56 FF FF FF FF FF
00000000000000F0 | FF FF FF FF FF FF FF FF 63 63 93 FF FF FF FF FF
‘0000000000000100 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Result (2)

¥

0000000000000110 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000000000000120 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000000000000130 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000000000000140 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

<

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 47

Saving the Main Area

The following commands are available to save the contents of the NAND Flash main area to a file.

FLASHFILE.SAVE <file> <range>

Example 1

FLASHFILE.SAVE <file> <range> /SkipBadBlocks

Save the contents of the NAND Flash
main area into <file>, bad blocks are
saved.

Save the contents of the NAND Flash
main area into <file>, bad blocks are
skipped.

; Save 1MB of the NAND Flash main area starting at 0x0 to the file

; my dump.bin.

; The contents of bad block are also saved.

FLASHFILE.SAVE my dump.bin 0x0--O0xFFFFF

Example 2

; Save 1MB of the NAND Flash main area starting at 0x0 to the file

; my_dump.bin.

; The contents of bad block are skipped.
FLASHFILE.SAVE my dump.bin 0x0--0xXFFFFF /SkipBadBlocks

Result (1)

NAND

Main SP my_dump.bin

FLASHFILE.SAVE ..

Result (2)

NAND

Main SP my_dump.bin

3 —
- Bad

4

B N EA RN R

N

FLASHFILE.SAVE .. /SkipBadBlocks

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 48

Saving the Spare Area

The following commands are available to save the contents of the NAND Flash spare area to a file.

FLASHFILE.SAVESPARE <file> <range> Save the contents of the NAND
Flash spare area into <file>, bad
blocks are saved.

FLASHFILE.SAVESPARE <file> <range> /SkipBadBlocks Save the contents of the NAND
Flash spare area into <file>, bad
blocks are skipped.

Please be careful when you specify <range>: You should input <range> in the spare area address format,
not in the main area format (see figure below).

5

2
Main Area Addr -&——® Spare Area Addr

5

2
Main Area Addr -&—® Spare Area Addr

\
\
|
0x0--Ox1FF 0x0--0xF \ 0x0--Ox7FF 0x0--0x3F
0x200--0x3FF 0x10--0x1F | 0x800--OxFFF 0x40--0x7F
0x400--0x5FF 0x20--0x2F | 0x1000--0x17FF 0x80--0xBF
: I | : I
N--(N+O0x1FF) N>>5--(N>>5)+0xF | N--(N+0x7FF) N>>5--(N>>5)+0x3F
Small Page NAND : Large Page NAND

Example 1

; Save 32KB of the NAND Flash spare area starting at 0x0 to the file
; my_ dump_spare.bin.

; The contents of bad block are also saved.

FLASHFILE.SAVESPARE my dump_ spare.bin 0x0--0x7FFF

Example 2

; Save 32KB of the NAND Flash spare area starting at 0x0 to the file
; my_dump_spare.bin.

; The contents of bad block are skipped.

FLASHFILE.SAVESPARE my dump_spare.bin 0x0--0x7FFF /SkipBadBlocks

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 49

Result (1)

NAND

Main SP my_dump_spare.bin

1

3

4

N

FLASHFILE.SAVESPARE ...

Result (2)
NAND

Main SP my_dump_spare.bin

1 1

2

3 3

- Bad 4

4 | T ™ ;

: N-1

N

FLASHFILE.SAVESPARE ... /SkipBadBlocks

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

50

Full Examples: Generic NAND Flash Programming

Example 1
CPU: OMAP3430 (Texas Instruments) based on an ARM11 core.
NAND Flash: MT29F1GO08ABA (Micron)
NAND FLASH connected to the CS1 (Chip Selection 1) pin
Internal SRAM: 0x40200000
<cmd_reg>: 0x6E0000AC
<addr_reg>: 0x6E0000B0
<io_reg>: 0x6E0000B4

; Select OMAP3430 as target CPU.
SYStem.CPU OMAP3430

; Establish the communication between the debugger and the target CPU.
SYStem.Up

; Disable watchdog.
DO disable_watchdog.cmm

; Enable CS1 and define the base address of CS1(NAND Flash) .
; LE = little endian
PER.Set SD:0x6E0000A8 %LE %Long 0x870

; Define the NAND Flash access timing.
PER.Set SD:0x6E000098 %LE %Long 0x60401
PER.Set SD:0x6E00009C %LE %Long 0x05010801

; Define CS1 for 8 bit NAND Flash.
PER.Set SD:0x6E000090 %LE %Long 0x0800 ; GPMC_CONFIG1_1

; Disable write protection for the NAND Flash device.
PER.Set SD:0x6E000050 %LE %Long 0x10 ; GPMC_CONFIG

; Reset the Flash declaration within TRACE32.
FLASHFILE.RESet

; Inform TRACE32 about the NAND Flash register addresses.
FLASHFILE.Config 0xX6E0000AC O0x6E0000BO 0x6E0000B4

; Specify the NAND Flash programming algorithm and where it runs in the

; target RAM.

FLASHFILE.TARGET 0x40200000++0x3fff 0x40204000++0x3fff
~~/demo/arm/flash/byte/nandlg08.bin

; Check NAND Flash ID value.
FLASHFILE.GETID

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 51

; Erase NAND Flash including bad block.
FLASHFILE.Erase 0x0--0xXFFFFF /EraseBadBlocks

; Program my_ file.bin to NAND Flash main area.
FLASHFILE.LOAD my file.bin 0x0--0xFFFFF

ENDDO

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 52

Example 2

CPU: The STM32F103 is based on a Cortex-M3 core, which only runs Thumb-2
code. For this reason, a NAND Flash programming driver in thumb code is
required.

NAND Flash: Numonyx NAND512W3A2C (512 bytes per page), lock supported

NAND Flash connect to FSMC_NCE2, NAND Flash 1/0

<cmd_reg>: 0x70020000

<addr_reg>: 0x70010000

<io_reg>: 0x70000000

Target RAM: 20 KB SRAM at 0x20000000

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 53

; Select STM32F103 as target CPU.
SYStem.CPU STM32F103ZE

; Establish the communication between the debugger and the target CPU.
SYStem.Up

; Clock enable to use FSMC and GPIO group related with NAND Flash.
PER.Set SD:0x40021014 %Long 0x114 ; FSCM clock enable

PER.Set SD:0x40021018 %Long 000001E0 ; GPIOD, GPIOE, GPIOF, GPIOG enable
; GPIO configuration CLE, ALE, D0->D3, NOE, NWE and NCE2

; (Output 50Mhz AF_PP), NWAIT((input pull-up) NAND pin configuration

PER.Set SD:0x40011400 %Long 0xB8BB44BB ; GPIOD_CRL
PER.Set SD:0x40011404 %Long 0xBB4BB444 ; GPIOD_CRH
PER.Set SD:0x4001140C %Long 0x00000040 ; GPIOD_ODR pin6
; D4->D7 NAND pin configuration (output 50Mhz AF_PP)
PER.Set SD:0x40011800 %Long 0xB4444444 ; GPIOE

PER.Set SD:0x40011804 %Long 0x44444BBB ; GPIOE

; INT2 NAND pin configuration (input pull-up)

PER.Set SD:0x40012000 %Long 0x48444444 ; GPIOG piné6
PER.Set SD:0x4001200C %Long 0x00000040 ; GPIOG_ODR pin6
; memory timing register

PER.Set SD:0xA0000068 %Long 0x01020301 ; FSMC_PMEM2
PER.Set SD:0xA000006C %Long 0x01020301 ; FSMC_PATT2

; Define & enable NAND Flash, 512 byte per page, ECC enable,
; 8 bit data width.
PER.Set SD:0xA0000060 %Long 0x0002004E ;FSMC_PCR2

; Declarations for NAND Flash programming

FLASHFILE.RESet

FLASHFILE.CONFIG 0x70020000 0x70010000 0x70000000

FLASHFILE.TARGET 0x20000000++0x1fff 0x20002000++0x1fff
~~/demo/arm/flash/byte/nand1208_cortexm3.bin

; Unlock, erase and program.

FLASHFILE.GETID

FLASHFILE.UNLOCK 0x000000++0xXxFFFFFF
FLASHFILE.Erase 0x00000++0xXFFFFFF /EraseBadBlocks
FLASHFILE.LOAD my main file.bin

ENDDO

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 54

Full Example: CPU-Specific NAND Flash Programming

CPU: i.MX31 (Freescale)

NAND Flash: MT29F1G08 (Micron)

NAND Flash connected to the NFCE (Flash Chip Enable) pin
<base_address>: 0xB8000000

Target RAM: 16KB SRAM at Ox1FFFCO000

; Select 1.MX31 as target CPU and establish communication between
; debugger and i.MX31.

SYStem.RESet

SYStem.CPU MCIMX31

SYStem.Option.ResBreak OFF

SYStem.JtagClock RTCK

SYStem.Up

; Declare the NAND Flash Controller.

&nand_ctrl base_ addr=0xB8000000

FLASHFILE.RESet

FLASHFILE.CONFIG &nand ctrl_ base addr , ,

FLASHFILE.TARGET O0x1FFFC000++0x1FFF Ox1FFFEO000++0x1FFF
~~/demo/arm/flash/byte/nandlg08_imx.bin

; Erase and program.

FLASHFILE.GETID

FLASHFILE.Erase 0x0++0xXFFFFF /EraseBadBlocks
FLASHFILE.LOAD C:\T32\my file.bin 0x0++0xFFFFF

ENDDO

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 55

About OneNAND Flash Devices

A OneNAND Flash is a special NAND Flash type:
J A OneNAND Flash has a NOR Flash programming interface between the CPU and the OneNAND.

. The NAND Flash controller logic is part of the OneNAND Flash, so the target CPU does not need
an integrated NAND Flash controller.

Buffer RAM

— Data RAM

Boot RAM | |« State Machine

aoepelU| sng

Internal Registers
(Address/Command
/Configuration/Status
Registers)

-
NAND
FLASH
Array
Error
Correction
Logic

Figure: OneNAND Flash Block Diagram

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

56

Scripts for OneNAND Flash Devices

This chapter describes how to create scripts for OneNAND Flash programming.

The steps and the framework (see below) provide an overview of the process. They are described in detail in
the following sections.

The following steps are necessary to create a new script:

1. Establish communication between debugger and target CPU.

Configure the OneNAND Flash bus.

Reset the NAND Flash environment in TRACES2 to its default values.
Inform TRACES32 about the OneNAND Flash address (Flash declaration).
Inform TRACE32 about the OneNAND Flash programming algorithm.
Check the identification from the OneNAND Flash device.

Erase the OneNAND Flash device.

© N o o~ w D

Program the OneNAND Flash device.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 57

The following framework can be used as base for OneNAND Flash programming:

; Establish the communication
; between the CPU and the TRACE32
; debugger.

; Configure the OneNAND Flash
; controller.

FLASHFILE.RESet ; Reset the OneNAND Flash
; declaration within TRACE32.

FLASHFILE.CONFIG ... ; Inform TRACE32 about the
; OneNAND Flash register addresses.

FLASHFILE.TARGET .. ; Specify the OneNAND Flash
; programming algorithm and where
; 1t runs in target RAM.

FLASHFILE.GETID ; Get the ID values of the OneNAND
; Flash.

FLASHFILE.Erase .. ; BErase the OneNAND Flash.

FLASHFILE.LOAD <main file> .. ; Program the file to the OneNAND

; Flash (main area).

An ellipsis (...) in the framework indicates that command parameters have been omitted here for space
economy.

NOTE: The parametrization of FLASHFILE.CONFIG and FLASHFILE.TARGET
requires expert knowledge.

A template script (*.cmm) for OneNAND Flash programming is provided by Lauterbach. It can be found in
the TRACES32 installation directory.

~~/demo/<architecture>/flash/onenand.cmm

Where ~~ is expanded to the TRACES32 installation directory, which is c:/t32 by default.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 58

Establishing Communication between Debugger and Target CPU

OneNAND Flash programming with TRACE32 requires that the communication between the debugger and
the target CPU is established. The following commands are available to set up this communication:

SYStem.CPU <cpu> Specify your target CPU.

SYStem.Up Establish the communication between the
debugger and the target CPU.

SYStem.CPU OMAP3430 ; Select OMAP3430 as target CPU.

SYStem.Up ; Establish the communication between the
; debugger and the target CPU.

Configuring the OneNAND Flash Bus

Programming an off-chip OneNAND Flash devices requires a proper initialization of the external bus
interface. The following settings in the bus configuration might be necessary:

o Definition of the base address of the OneNAND Flash devices

. Definition of the size of the OneNAND Flash devices

J Definition of the data bus width that is used to access the OneNAND Flash devices
. Definition of the timing (number of wait states for the access to the OneNAND Flash devices)
J Definition of the bus type of the OneNAND Flash devices (for example, muxed mode)

Example: Define the bus configuration registers for the OneNAND Flash device.

PER.Set SD:0x6E0000D8 %$Long ; Enable chip selection and define
0x8000080 ; 128MB OneNAND Flash size and the
; base address is 0x8000000.

PER.Set SD:0x6E0000CO0 %Long 0x1200 ; Define chip selection for 16 bit
; muxed (address & data) for
; OneNAND Flash.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 59

Resetting Default Values

The following command is used to reset the OneNAND Flash environment in TRACES32 to its default values.

FLASHFILE.RESet Reset the OneNAND Flash
environment in TRACE32 to its
default values.

Informing TRACE32 about the OneNAND Flash Address

The following command is available to inform TRACES32 about the start address of the OneNAND Flash
base register.

FLASHFILE.CONFIG <base_address>, , Inform TRACE32 about the start
address of the OneNAND Flash
base register.

, represents don’t-care parameters.

For information about the OneNAND Flash base register, refer to the manufacturer’s processor manual.
Example: base address of the OneNAND Flash controller in the OMAP3430 as target CPU:

; Inform TRACE32 about the start address of the OneNAND Flash
; base register.
FLASHFILE.Config 0x08000000 , ,

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 60

Informing TRACE32 about the OneNAND Flash Programming Algorithm

The following command is available to inform TRACE32 about the OneNAND Flash device to be

programmed:

FLASHFILE.TARGET <code_range> <data_range> <file> Specify the OneNAND Flash
programming algorithm and where it
runs in the target RAM.

Parameters
. <code_range>

Define an address range in the target’s RAM to which the OneNAND Flash programming
algorithm is loaded.

Flash algorithm

32 byte

Figure: Memory mapping for the <code_range>

Required size for the code is: size_of(<file>) + 32 byte

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide | 61

. <data_range>

Define the address range in the target’s RAM where the programming data is buffered for the
programming algorithm.

64 byte argument buffer
buffer for programming data
256 byte stack

Figure: Memory mapping for the <data_range>

The argument buffer used for the communication between the TRACE32 software and the
programming algorithm is located at the first 64 bytes of <data_range>. The 256 byte stack is
located at the end of <data_range>.

<buffer_size> = size_of(<data_range>) - 64 byte argument buffer - 256 byte stack

<buffer_size> is the maximum number of bytes that are transferred from the TRACE32 software
to the OneNAND programming algorithm in one call.

o <file>

Lauterbach provides ready-to-run driver binary files for OneNAND Flash programming. They are
located in the TRACES32 installation directory:

They are located in the TRACES32 installation directory:
~~/demo/<architecture>/flash/<bus_width>/

Where ~~ is expanded to the TRACE32 installation directory, which is ¢:/t32 by default.

The Lauterbach home page provides the same information and is updated more often:
https://www.lauterbach.com/ylist.html.

For detailed information about how to determine the <file> parameter, see “Identifying the
Correct OneNAND Flash Driver for a OneNAND Device” on page 63.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 62

https://www.lauterbach.com/ylist.html

Identifying the Correct OneNAND Flash Driver for a OneNAND Device

1. For information about supported Flash devices, access the Lauterbach website:

https://www.lauterbach.com/ylist.html.

2. Click the + tree button next to Tool Chain, and then click Supported Flash Devices.

3. Scroll through the list to locate the desired OneNAND Flash device.

Based on the name of the Flash device, you can identify the correct OneNAND Flash driver

binary file.

B Tool Chain SH7086 REMESAS FZTAT processorinternal
7 Supported Compilers SH725XX REMNESAS TARGET processorinternal
[T Supported Host

Operating Systems

[—u—vﬁ Samsung Semiconductor
[" Supported Flash Devices l 9
[Supported NAND/Serial Flash TYPE COMPANY CODE COMMENT

Controller K543240Y SAMSUNG AM29LV100 16-bit mode
[7 Supported Target AM29LYV100B 8-bit mode
Operating Systems B
[” Supported Tool Integrations . . M
I ST e T E SAMSUNG ONENAND2G16 OneNAND, 2Gb-die
PrototypesiTarget Servers
KFN2G16 SAMSUNG OMEMNAND1G16 OneMAND, 2*1Gb-c

Support

The Code column identifies the OneNAND Flash driver binary file.

The file onenand2g16.bin resides in this folder ~~/t32/demo/arm/flash/word
Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

The number 16 indicates the bus width and the folder where the file resides, i.e. in the word

folder.

Naming Convention for OneNAND Flash Drivers

The name of the OneNAND programming driver depends on:

1. The bus width between the CPU and the OneNAND Flash device.

2. The die, which describes the internal organization of the OneNAND Flash device

A 2 GByte OneNAND Flash, for example, can consist of a single 2 GByte die or of two 1 GByte dies.

Please refer to the datasheet of your OneNAND Flash device to get this information.

Naming examples are given in the table below:

OneNAND Flash Bus Width Die Driver

KFG1G16 16 1 GByte onenand1g16.bin
KFH2G16 16 1 GByte onenand1g16.bin
KFM1G16 16 1 GByte onenand1g16.bin
KFN2G16 16 1 GByte onenand1g16.bin

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 63

https://www.lauterbach.com/ylist.html

OneNAND Flash Bus Width Die Driver

KFG2G16 16 2 GByte onenand2g16.bin
KFH4G16 16 2 GByte onenand2g16.bin
KFM2G16 16 2 GByte onenand2g16.bin
KFN4G16 16 2 GByte onenand2g16.bin

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

64

Checking the Identification from the OneNAND Flash Device

The following command can be used to check if TRACE32 can access the OneNAND Flash device:

FLASHFILE.GETID Get the ID values for OneNAND
Flash.

Example

; Open the TRACE32 AREA window.
AREA.view

Check the access to the OneNAND Flash device
by getting the manufacturer ID and the device ID.

7

7

FLASHFILE.GETID
Manufacturer ID: Samsung
Device ID: KFM2G162M

[Manufacturer = SAMSUNGLO=EC) , Device ID = Ox40 (0x0, 0x0, O=z00]

I :

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 65

Erasing the OneNAND Flash Device

The following command is used to erase OneNAND Flash devices:

FLASHFILE.Erase <range> Erase OneNAND Flash except bad blocks.
FLASHFILE.Erase <range> [EraseBadBlocks Erase OneNAND Flash including bad
blocks.
Example 1

; Erase 1MB starting from 0x0 except bad blocks.
FLASHFILE.Erase 0x0--0xFFFFF

Example 2

; Erase 1MB starting from 0x0 including bad blocks.
; Afterwards all bad block information is erased.
FLASHFILE.Erase 0x0--0xFFFFF /EraseBadBlocks

Result (1) Result (2)

MAIN SP MAIN SP MAIN SP MAIN SP

Bad

Bad 4 - Bad

Z|---loa|srlw|d|=

Z o h|w|Nd|=

FLASHFILE.Erase .. FLASHFILE.Erase .. /EraseBadBlocks

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 66

Programming the OneNAND Flash Device

OneNAND Flash devices consist of two areas:

. The main area contains the data which is accessed by the CPU.

. The spare area contains the bad block information and the ECC data.
For background information about ECC, see “Appendix: ECC (Error Correction Code) on
page 80.

The FLASHFILE commands allow to program the main and spare area independently.

Programming the Main Area (OneNAND)

The following commands are available to program the OneNAND Flash main area:

FLASHFILE.LOAD <file> [<address> | <range>] Program OneNAND Flash
except bad blocks.

FLASHFILE.LOAD <file> [<address> | <range>] IWriteBadBlocks Program OneNAND Flash
including bad blocks.

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

Example 1

; Program contents of my_file.bin to the OneNAND Flash main area starting

; at address 0x0.
; If a block is bad, the data is programmed to the next valid block.
FLASHFILE.LOAD my file.bin 0x0--0xFFFFF

©1989-2024 Lauterbach NAND FLASH Programming User's Guide |

67

Example 2

; Program the contents of my file.bin to OneNAND Flash main area starting
; at address 0x0.

; Even i1f a block is bad, data will be programmed.
FLASHFILE.LOAD my file.bin 0x0--0xFFFFF /WriteBadBlock

Result (1) : Result (2)
My _file OneNAND \ My _file OneNAND

\

1 ‘ 1 1

2 \ 2 2

3 3 \ 3 3

4 |—» I Bad } 4 |—=| 4 |1 Bad

5 4 | 5 5

. . ‘ : :

N N-1 \ N N

FLASHFILE.LOAD .. | FLASHFILE.LOAD .. /WriteBadBlock

|

Verifying the Main Area (OneNAND)

The following command is used to compare the OneNAND Flash main area with the specified target file:

I FLASHFILE.LOAD <file> [<address> | <range>] /[ComPare

The data from <file> is compared to the address range specified by <range>. If no <range> or <address> is
specified, comparing starts at address 0xO.

Example 1

; Verify the contents of my file.bin against the NAND Flash main area,
; starting at address 0x0.

; If a block is bad, then the data in the file is verified against

; The next valid block up to the end of the range specified.
FLASHFILE.LOAD my file.bin 0x0--0xFFFFF /ComPare

Example 2

; Verify the contents of my file.bin against NAND Flash main area,
; starting at address 0xO0.

; Even if a block is bad, the data will be verified against the bad block
; data.

FLASHFILE.LOAD my file.bin 0x0--0xXFFFFF /WriteBadBlock /ComPare

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 68

Other Useful Commands (OneNAND)

Copying the Main Area (OneNAND)

The following command is available to copy:

J Any data from any CPU memory area to the OneNAND Flash, or

. Any data from one address range of the OneNAND Flash to another address range within the

same OneNAND Flash; for example, for backup purposes.

FLASHFILE.COPY <source range> <target addr>

FLASHFILE.COPY <source range> <target addr>/ComPare

Example 1

Copy data from the source range
to the defined address of the
OneNAND Flash.

Verify the source range data
against the target range data.

; Copy the 2MB virtual memory data at 0x0 to the OneNAND Flash address

; at 0x100000.

; Bad blocks are skipped, data is written to the next valid block.

; VM: stands for virtual memory.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000

Result (1):

Long % [JE [Track Hex

address C 0123456733ABCOEF
WM:00000000 #4ESE533E 7EES5220 GFEI7363 75203AGE ;SWH_Revision:iu a
WM:00000010 | 6FGEEBEE OAODEE?? 3BOAODIB 43504020 nknowngk; £ i MPC
WM:00000020 | 58353535 43504D2F 58363535 43504D2F 555K/MPCISER/MPC
WM:00000030 | 58333535 5040202C 33363543 332F4D078 553X, _MPCIE3xM/S ¥
WM:00000040 | 36354350 78784033 6F4D2820 GFE3616E PCSEIMxx_(Monaco A
WM:00000050 | 40202C29 36354350 00203437 20203B0A 3, MP

WM:00000060 | 20202020 20202020 2D2D2020 202D2D20 -----
WM:00000070 | 20202020 20202020 2D2D2D20 202D2D2D

WM:00000030 | DADD202D GF43203B 20206572 20202020 ad
WM:000000AD | 20202020 32652034 00203030 4D203BOA oot agdress]

WM:00000080 | 20202020 20202020 2D2D2D20 202D2D2D -1/ 0100000 MAIN %

Long % [Track [#]H
4 g 0123456789ABCDEF |

~

UM:000000B0 | 667S6ERT 75746361 20726572 46203420 anufadl000000000100000 [»4E5E533E
UM:000000C0 | 73656572 GSECE163 3BOAOD20 3B0AODZ0 reescd0000000000100010) EFEEEBEE
UM:000000D0 | 74754120 20726F6E 20202020 34202020 _Authg0000000000100020) 58353535
UM:DODDOOED | 49455220 3B0A0D20 61745320 20737574 _RET.§0000000000100030) 58333535
UM:000000F0 | 20202020 34202020 6CES7220 65736165jj0000000000100040 | 36354350
UM:00000100 | DAOD20G4 2D2D203F 20202020 20202020 d.gy;Jj0000000000100050) 4p202C29
UM:00000110 | 20202020 20202020 20202020 20202020 - 0000000000100060 | 20202020
UM:00000120 | 20202020 20202020 20202020 20202020 - 0000000000100070 | 20202020
YM:00000130 | 20202020 20202020 3B0AOD20 43504020 - 0000000000100080 | 20202020

5 “donooooooon1o00an | 0ANDZ0ZD
WM:00000140 | 58583535 23284020 0AOD2029 620A0D20 55Kk N0000000001000A0 | 20202020

00000000001000B0 | 6E7SEER1
00000000001000C0 | 73656572
00000000001000D0 | 74754120
00000000001000ED | 43455220

; ; 00000000001000F0 | 20202020
Data is copied from the 0000000000100100 | DADDZ0E4

0000000000100110| 202D2D2D
CPU to the OneNAND Flash 0000000000100120 | 202D2D2D
0000000000100130 | 20202020
0000000000100140 | 58583535

FBES5220 BFE97369 75203AGE ;SVH_Rewision:iu A
0A0DEE?? 3BOA0OD3E 43504020 nknownghs g MPC

4350402F 58363535 4350402F 555K/ MPCSSER/MPC

50402020 33363543 S32F4D78 553K, MPCSE3xM/S ¥
78784033 GF4D2820 GFE3E16E PCSE3IMyx_(Monaco A
36354350 00203437 2D203B0A I, MPCSE74 5k o-

20202020 20202020 20202020 --——-----------=

20202020 20202020 20202020 -
20202020 20202020 2D2D202D o
EF432038 20206572 20202020 -_&%) CO0rBenn
32652034 00203030 4D203B0A oo e2000%k;.
75746361 20726572 46203420 anufacturero.:oF
E56CE163 3B0A0ODZ0 3BOADD20 reescalecgh; RS
20726FE8 20202020 34202020 _AUthoroccooooo:
3BOAOD20 B1745320 20737574 _REI gk _Status.
34202020 BCES7220 B5736165 coceeooiorelease
20202038 20202020 20202020
20202020 20202020 20202020
20202020 20202020 20202020
20202020 3BOA0ODZ0 43504020
23284020 0A0D2029 620A0020

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 69

Example 2

; Verify the data between virtual memory and OneNAND Flash.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000 /ComPare

Example 3

Copy the 4MB OneNAND Flash data at 0x0 to the OneNAND Flash

at 0x800000.
; Bad blocks are skipped, data is written to the next valid block.

FLASHFILE.COPY 0x0--0x3FFFFF 0x800000

I

I

; Verify the 4MB OneNAND Flash data between 0x0 and 0x800000.
FLASHFILE.COPY 0x0--0x3FFFFF 0x800000 /ComPare

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 70

Modifying the Main Area (OneNAND)

The following command is available to modify the contents of the OneNAND Flash. The maximum range
that one FLASHFILE.Set command can modify is only one block of the Flash memory. If you want to modify
three blocks, you need three FLASHFILE.Set commands, etc.

FLASHFILE.Set [<address> | <range>] %<format> <data> Modify the contents of the
OneNAND Flash.

Example 1

; Write 4 bytes of data (= 0x12345678) to the address 0x100000.
; LE = little endian
FLASHFILE.Set 0x100000 %LE %Long 0x12345678

Example 2

; Write data 0x0 to the address range 0x100000++0xFFF.
FLASHFILE.Set 0x100000++0xXFFF %Byte 0x0

Example 3

; A OneNAND Flash has 128KB per block (0x20000).

; Write data 0x0 from 0x100000 to Ox15FFFF in the OneNAND Flash.
FLASHFILE.Set 0x100000++0x1ffff %Byte 0x0

FLASHFILE.Set 0x120000++0x1ffff %Byte 0x0

FLASHFILE.Set 0x140000++0x1ffff %Byte 0x0

Result (1)

2= B::FLASHFILE.DUMP 0x100000

0%100000 Long v | [OTrack [¥]

address 4 B C_0123456789ABCDEF
FFFFFFF FFFFFFFF FEFFFFFF mu43t
........ SFFFFFFF FFFFFFFF FFFFFFFF EECEE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEE
FFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
0000000000100050 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

ATy

Result (2)

0x100F80
address

GGG

00FS0 | 00000000 00000000 00000000 000000DO
00FAQ | 00000000 00000000 00000000 00000000
O0FEQ | 00000000 00000000 00000000 00000000
00FCO | 00000000 00000000 00000000 00000000
00FDO | 000000DO 00000000 00000000 00000000
O0FEQ | 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
CCECCECC ECCECCEE CECEECCE CECCEECE
FEEFEREE FERRFFRE FEFRRFEE FRFREFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
0000000000101070 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide | 71

Programming the Spare Area (OneNAND)

The following commands are available to program the OneNAND Flash spare area:

Program the OneNAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>]

Program the OneNAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks

Compare the OneNAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] IComPare

Compare the OneNAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks /ComPare

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

NOTE: . You need a third-party tool to create the spare file (<file>).
. Be careful when you specify <range>: You should input <range> in the
spare area address format, not in the main area format (see figure
below).

5 5

|

Main Area Addr 4_2> Spare Area Addr | Main Area Addr 4_2> Spare Area Addr
0x0--Ox1FF 0x0--OxF : 0x0--0x7FF 0x0--0x3F
0x200--0x3FF 0x10--Ox1F | 0x800--0xFFF 0x40--0x7F
0x400--0x5FF 0x20--0x2F ‘ 0x1000--0x17FF 0x80--0xBF
0x600--0x7FF 0x30--0x3F | 0x1800--0x1 FFF 0xCO0--OxFF
0x800--0x9FF 0x40--0x4F | 0x2000--0x27FF 0x100--0x13F
0xA00--0xBFF 0x50--0x5F | 0x2800--O0x2FFF 0x140--0x17F
0xC00--0xDFF 0x60--0X6F | 0x3000--0x37FF 0x180--0x1BF
I Z | I I

N--(N+0x1FF) N>>5--(N>>5)+0xF | N--(N+Ox7FF) N>>5--(N>>5)+0x3F

\

|

Small Page OneNAND

Large Page OneNAND

©1989-2024 Lauterbach

NAND FLASH Programming User’'s Guide |

72

Example 1

; Write my_spare.bin to the OneNAND Flash spare area.
; Start at the address 0x0 of the spare area.

; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my_ spare.bin 0x0

Example 2
When specifying the address range, remember to use the address format of the spare area.

; Write 32KB of my_spare.bin to the specified address range
; of the spare area.

; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my_ spare.bin 0x0--0x7FFF

Example 3

; Write my_spare.bin to the spare area.

; Start at the address 0x0 of the spare area.

; Include the bad blocks of my_spare.bin.
FLASHFILE.LOADSPARE my spare.bin 0x0 /WriteBadBlock

Example 4

; Write 32KB of my spare.bin to the spare area.

; Start at the address 0x0 of the spare area.

; Include the bad blocks of my_ spare.bin.
FLASHFILE.LOADSPARE my spare.bin 0x0--0x7FFF /WriteBadBlock

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 73

Result (1 and 2)

OneNAND
My_Spare Main SP
1 1
2
3 3
R
5 4
N N-1
FLASHFILE.LOADSPARE ..
Example 5

My_Spare

3
— - Bad

SO [W N | =

N

Result (3 and 4)

OneNAND
Main SP

1

5

N

FLASHFILE.LOADSPARE .. /WriteBadBlock

; Compare the entire file my_spare.bin with the spare area.

; Start at the address 0x0 of the spare area.
FLASHFILE.LOADSPARE my spare.bin 0x0 /ComPare

NOTE:

OneNAND Flash controllers generate the ECC data automatically when data is
programmed to the main area, so the ECC codes in the spare area do not need to
be programmed.

©1989-2024 Lauterbach

NAND FLASH Programming User’'s Guide | 74

Reading/Saving the OneNAND Flash Device

The CPU cannot read OneNAND Flash devices directly. But TRACES32 provides special commands for
reading OneNAND Flash devices. The contents of the OneNAND Flash are displayed in a window.

Reading the Main/Spare Area (OneNAND)

The following commands are available to read the OneNAND Flash areas.

FLASHFILE.DUMP [<address>] [/<format>] Display a hex-dump of the OneNAND
Flash main area.
FLASHFILE.DUMP [<address> /SPARE [/Track] Display a hex-dump of the OneNAND

Flash spare area.
Example 1

; Display a hex-dump of the OneNAND Flash main area starting at 0x1000.
; Display the information in a 32-bit format (Long option).
FLASHFILE.DUMP 0x1000 /Long

Example 2

; Display a hex-dump of the OneNAND Flash spare area.

; The cursor in the spare area display follows the cursor movements in
; the main area display (Track option).

FLASHFILE.DUMP /SPARE /Track

Result (1)

2= B::FLASHFILE.DUMP 0x1000 /long

%1000 MaIN v | long % F]meHa
AECDEF

HiREE RE

Uoo0s =0z
SHAEH1AE
HUOZ UOO 1
DFFEEFFE
SDFEEDFE Result (2)
SDRELRRE
H-o0zF'Oq

4 g —
ESIF0298 E3ADT000 E3ACZ003 §

0000000000001010 | E3AD3007 EBFFFDD3 E3AD0O001 E1AO01000
k=3

o

1

o

T
D
0
0000000000001020 | ES3F2280 ES3F3274 EBFFFDDE EBFFFDBC 3
0000000000001030 | E3A01010 E3AD2003 E3A03001 E1ADS204
0000000000001040 | E1A07000 ES3FO0258 EBFFFDCE E3

0000000000001050 | ES9F2250 ES9F3244 E3A00002
0000000000001060 | ES3FO0244 E3AD1018 E3AD2005 E3f
0000000000001070 | EBFFFDBC ES3FO0244 E3AD1000 E3f
0000000000001080 | E3AD3004 EBFFFDBE? E0874005 E5C
0000000000001090 | E3A01000 E3A02005 E3A03009 EBH A 1525 e S 0 0 O G S B LS I GO

0000000000000000 [»FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
I | E e B e A 0000000000000 | FF FF FF FE FF EF FF FF OC FD CC FF FF FF FF FF

0000000000000020 | FF FF FF FF FF FF FF FF 33 F3 30 FF FF FF FF FF
3333833333881858 E%QB?BBS ESEEEEQE EEEEEE&S Egg 0000000000000030 | FF FF FF FF FF FF FF FF FF FO CC FF FF FF FF FF
N0000000000010ED | ES9FO1E4 E34D1000 E3auz00r ERA|0000000000000040 | FF FF FF FF FF FF FF FF 95 A3 69 FF FF FF FF FF
N0000000000010FD | 5343008 ESGF01AB E3aninis £3A0000000000000050 | FF FF FF FF FF FF FF FF 3C 00 CF FF FF FF FF FF
N000000000001100 | ERFFFDSS ES3F0198 Eaaninin E2Al0000000000000060 | FF FF FF FF FF FF FF FF CF FF OF FF FF FF FF FF
N000000000001110 | E3A03007 EBFFFDA3 Eaanono? Ei14)0000000000000070 | FF FF FF FF FF FF FF FF OC CC 30 FF FF FF FF FF
N000000000001120 | ES9F2180 ES9F3174 EGFFFDAG EpAl0000000000000080 | [@F FF FF FF FF FF FF FF CC 30 FF FF FF FF FF FF
N000000000001130 | E3A01000 E3AD2005 EQG04006 E140000000000000030 | FF FF FF FF FF FF FF FF GA 54 96 FF FF FF FF FF
N000000000001140 | F594300C ESAF0184 EBFFFD@E £7a)00000000000000A0 | FF FF FF FF FF FF FF FF SA 94 99 FF FF FF FF FF
0000000000001150 | ESAFO017C E3AD1008 E3AU200R ERAN00000000000000BO | FF FF FF FF FF FF FF FF AR A9 BA FF FF FF FF FF
N000000000001160 | F5343004 ESAF016E Eaanioon £3A00000000000000C0 | FF FF FF FF FF FF FF FF CO 00 33 FF FF FF FF FF
N000000000001170 | ERFFFDTC E3AD1004 E5943008 E14/00000000000000D0 | FF FF FF FF FF FF FF FF SE 6A 95 FF FF FF FF FF

00000000000000E0 | FF FF FF FF FF FF FF FF 53 A& 56 FF FF FF FF FF
00000000000000F0 | FF FF FF FF FF FF FF FF 63 63 93 FF FF FF FF FF
‘0000000000000100 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

F
F
A
o
a
3
A
o

b o3 iz e ¢

1
o

Byte A

¥

0000000000000110 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000000000000120 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000000000000130 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000000000000140 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

<

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 75

Saving the Main Area (OneNAND)

The following commands are available to save the contents of the OneNAND Flash main area to a file.

FLASHFILE.SAVE <file> <range>

Example 1

FLASHFILE.SAVE <file> <range> /SkipBadBlocks

Save the contents of the OneNAND Flash
main area into <file>, bad blocks are
saved.

Save the contents of the OneNAND Flash
main area into <file>, bad blocks are
skipped.

; Save 1MB of the OneNAND Flash main area starting at 0x0 to the file

; my dump.bin.

; The contents of bad blocks are also saved.

FLASHFILE.SAVE my dump.bin 0x0--O0xFFFFF

Example 2

; Save 1MB of the OneNAND Flash main area starting at 0x0 to the file

; my_dump.bin.

; The contents of bad blocks are skipped.
FLASHFILE.SAVE my dump.bin 0x0--0xXFFFFF /SkipBadBlocks

Result (1)
OneNAND
Main SP my_dump.bin
1 1
3 — 3
4 4
N N

FLASHFILE.SAVE ..

Result (2)
OneNAND

Main SP my_dump.bin

1 1

2

3 — 3

- Bad 4

4 :

: N-1
N

FLASHFILE.SAVE .. /SkipBadBlocks

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 76

Saving the Spare Area (OneNAND)

The following commands are available to save the contents of the OneNAND Flash spare area to a file.

FLASHFILE.SAVESPARE <file> <range> Save the contents of the OneNAND
Flash spare area into <file>, bad
blocks are saved.

FLASHFILE.SAVESPARE <file> <range> /SkipBadBlocks Save the contents of the OneNAND
Flash spare area into <file>, bad
blocks are skipped.

Please be careful when you specify <range>:

You should input <range> in the spare area address format, not in the main area format (see figure below).
\

5

2
Main Area Addr -&—® Spare Area Addr

5

2
Main Area Addr -€&——® Spare Area Addr

|
|
0x0--Ox1FF 0x0--0OxF | 0x0--0x7FF 0x0--0x3F
0x200--0x3FF 0x10--Ox1F | 0x800--OxFFF 0x40--0x7F
0x400--0X5FF 0x20--0x2F | 0x1000--0x17FF 0x80--0xBF
: : o 5
N--(N+0x1FF) N>>5--(N>>5)+0xF | N--(N+0x7FF) N>>5--(N>>5)+0x3F
Small Page OneNAND : Large Page OneNAND

Example 1

; Save 32KB of the OneNAND Flash spare area starting at 0x0 to the file
; my_ dump_spare.bin.

; The contents of bad blocks are also saved.

FLASHFILE.SAVESPARE my dump_ spare.bin 0x0--0x7FFF

Example 2

; Save 32KB of the OneNAND Flash spare area starting at 0x0 to the file
; my_dump_spare.bin.

; The contents of bad blocks are skipped.

FLASHFILE.SAVESPARE my dump spare.bin 0x0--0x7FFF /SkipBadBlocks

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 77

Result (1)

OneNAND

Main SP my_dump_spare.bin

1

3

4

N

FLASHFILE.SAVESPARE ...

Result (2)
OneNAND
Main SP my_dump_spare.bin
1 1
2
3 3
- Bad 4
4 | T ™ ;
: N-1
N

FLASHFILE.SAVESPARE ... /SkipBadBlocks

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

78

Full Example

CPU: OMAP3430

OneNAND Flash: KFM2G162M(SAMSUNG)
Bus width: 16-bit muxed

Die: 2 GByte

; Select OMAP3430 as target CPU.
SYStem.CPU OMAP3430

; Establish the communication between the debugger and the target CPU.
SYStem.Up

; Define CS2 for 16 bit muxed (address & data) OneNAND Flash.
PER.Set SD:0x6E0000CO0 %1 0x1200 ; GPMC_CONFIG1_2

; Enable CS2 and define 128 MB size and the base address is 0x8000000.
PER.Set SD:0x6E0000D8 %1 0x848 ; GPMC_GPMC_CONFIG7_2

; Reset the Flash declaration.
FLASHFILE.RESet

; Specify the OneNAND Flash base address.
FLASHFILE.Config 0x08000000 , ,

; Specify the OneNAND Flash programming algorithm and where it runs

; in the target RAM.

FLASHFILE.TARGET 0x40200000++0x1fff 0x40202000++0x1fff
~~/demo/arm/flash/word/onenand2gl6.bin

; Check OneNAND Flash ID value.
FLASHFILE.GETID

; Erase OneNAND Flash including bad blocks.
FLASHFILE.Erase 0x0--Oxfffff /EraseBadBlocks

; Program my file.bin to OneNAND Flash main area.
FLASHFILE.LOAD my file.bin 0x0--O0xfffff

ENDDO

OneNAND Flash controllers generate the ECC data automatically when data is programmed to the main
area, so the spare area does not need to be programmed.

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 79

Appendix A: ECC (Error Correction Code)

The NAND Flash devices are arranged as an array of pages. Each page consists of 256/512/ 2048 byte
data and 8/16/64 byte spare (out of band) area. The spare area is used to store ECC (error correction code),
bad block information, and file system dependent data. The ECC location in the spare area is flexible,
depending on the customer’s flash file system.

Techniques used to detect and correct error bits include the Hamming, BCH, and Reed Solomon codes.

Hamming codes are most widely used for error detection and correction. According to the Hamming ECC
principle, the ECC codes consist of 3 bytes per 256 Kbyte or 3 bytes per 512 Kbyte. ECC codes allow the
NAND Flash controller to verify the data and in some cases to correct corrupted data.

How to Generate ECC and to Detect Error

The Hamming ECC can be applied to data sizes of 1 byte, 8 bytes 16 bytes, and so on. The following
paragraph shows a simple example for 1 byte (8 bit).

ECC Generation

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 Bit0

P PY P PY o PP P PT . (). XoR

P4=Bit7(+)Bit6(+)Bit5(+)Bit4 P4’=Bit3(+)Bit2(+)Bit1(+)Bit0
P2=Bit7(+)Bit6(+)Bit3(+)Bit2 P2’=Bit5(+)Bit4(+)Bit1(+)Bit0
P1=Bit7(+)Bit5(+)Bit3(+)Bit] P1’=Bit6(+)Bit4(+)Bit2(+)Bit0

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 80

Error Detection with ECC

Original Data: 10101010 P4 | P4 | P2 | P2 | P1 | PT

ChangedData: 10111010 P4 | P4 | P2 | P2 | P1 | PY’

P4 | P4 | P2 |P2 | P1|PT
1]olo]|1]o0]1

Half bits (3/6) are different -> the error is correctable
All bits are 0’ -> no error

So, the error location is at the P4, P2, P1 values (1 0 0 = Bit4)

. P4, P2, P1 = column parity and the error bit position

. P2048, P1024, ..., P8 = line parity and the error byte position

For example, if you get an ECC result like this 01001100 110 (P1024, P512, ..., P2, P1) in the 256byte ECC
generation, it means that the error is located in the 6th bit of the 76th Byte.

©1989-2024 Lauterbach NAND FLASH Programming User’'s Guide | 81

3bytes per 256bytes ECC codes

1stbyte | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1| bit0 | [P8! ;”';1';;5 """ R
2ndbyte | bit7 | bit6 | bit5 | bitd | bit3 | bit2 | bitt | bit0 | (P8) .. .!EP32\E _____
3rdbyte | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | {P8] ; | P1024'
5 : : : : : - - P16 |1 i
Athbyte | bit7 | bit6 | bit5 | bitd | bit3 | bit2 | bit1 | bit0 S
E E E E E E [—
253th byte | bit7 | bit6 | bit5 | bitd | bit3 | bit2 | bit1 | bit0 | P8} 'P'16"
254th byte | bit7 | bit6 | bit5 | bit4 | bit3 [bit2 | bit1] bitd | (B8] ' ___"i | ooy | P1024
255th byte | bit7 | bit6 | bits | bit4 | bit3 | bit2 | bit1 | bit | iP8i
256th byte | bit7 | bit6 b|15 bitd | bit3 [bit2 | bit1 | bito | (P8))
(1) {pxi (P1) {pai (P1) (Pt (1] [P
Cre) (e) [F2]
I B A
P8=bit7(+)bit6(-+)bit5(+)bitd(+)bit3(+)bit2(+)bitl (+)bit0(+)P8
P1024=bit7(+)bit6(+)bit5(+)bitd(+)bit3(+)bit2(+)bit] (+)bit0(+)P1024
(+) : XOR
22bit ECC Code = 16bit line parity + 6 bit column parity
1107 /06 /05 /04 1/03 1/02 1/01 /00
ECCO ~P64 ~P64’ ~P32 ~P32’ ~P16 ~P16’ ~P8 ~P8’
ECC1 ~P1024 ~P1024’ ~P512 ~P512’ ~P256 ~P256’ ~P128 ~P128’
ECC2 ~P4 ~P4’ ~P2 P2 -P1 P’]]

22-bit ECC Code Assignment Table

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

3bytes per 512bytes ECC Codes

24bit ECC Code = 18bit line parity + 6bit column parity

1107 /106 /05 /104 /03 1/102 1/01 /00
ECCO ~P64 ~P64’ ~P32 ~P32’ ~P16 ~P16’ ~P8 ~P8’
ECC1 ~P1024 ~P1024’ ~P512 ~P512’ ~P256 ~P256’ ~P128 ~P128’
ECC2 ~P4 ~P4’ ~P2 ~p2’ ~P1 ~P1’ ~P2048 ~P2048’

24-bit ECC Code Assignment Table

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

83

Appendix B: Spare Area Schemes

Linux MTD NAND Driver Default Spare Area Schemes

256 Byte Page Size

Offset Content Comment

0x0 ECC Byte 0 Error correction code byte 0

0x1 ECC Byte 1 Error correction code byte 1

0x2 ECC Byte 2 Error correction code byte 2

0x3 Autoplace 0

0x4 Autoplace 1

0x5 Bad Block If any bit in this byte is zero, then
Marker this block is bad.

0x6 Autoplace 2

0x7 Autoplace 3

512 Byte Page Size

Offset Content Comment

0x0 ECC Byte 0 Error correction code byte 0 of the
lower 256 Byte data in this page

0x1 ECC Byte 1 Error correction code byte 1 of the
lower 256 Bytes of data in this page

0x2 ECC Byte 2 Error correction code byte 2 of the
lower 256 Bytes of data in this page

0x3 ECC Byte 3 Error correction code byte 0 of the
upper 256 Bytes of data in this page

0x4 Reserved Reserved

0x5 Bad Block If any bit in this byte is zero, then

Marker this block is bad.

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

84

0x6 ECC Byte 4 Error correction code byte 1 of the
upper 256 Bytes of data in this page

0x7 ECC Byte 5 Error correction code byte 2 of the
upper 256 Bytes of data in this page

0x08 - O0xOF Autoplace 0 - 7

2048 Byte Page Size
Offset Content Comment
0x0 Bad block If any bit in this byte is zero, then
marker this block is bad.
0x1 Reserved Reserved
0x02-0x27 Autoplace 0 -
37

0x28-0x2A ECC Byte 0-2 Error correction code 3 bytes of the
first 256 Byte data in this page

0x2B-0x2D ECC Byte 3-5 Error correction code 3 bytes of the
second 256 Byte data in this page

0x2E-0x30 ECC Byte 6-8 Error correction code 3 bytes of the
third 256 Byte data in this page

0x31-0x33 ECC Byte 9-11 Error correction code 3 bytes of the
fourth 256 Byte data in this page

0x34-0x36 ECC Byte 12-14 Error correction code 3 bytes of the
fifth 256 Byte data in this page

0x37-0x39 ECC Byte 15-17 Error correction code 3 bytes of the
sixth 256 Byte data in this page

0x3A-0x3C ECC Byte 18-20 Error correction code 3 bytes of the
seventh 256 Byte data in this page

0x3D-0x3F ECC Byte 21-23 Error correction code 3 bytes of the
eighth 256 Byte data in this page

©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

85

SAMSUNG Standard Spare Area Schemes

512B(Small Page): 16Byte Spare Area

Offset Content Comment
0x0-0x2 LSN 0-2 Logical Sector Number
0x3-0x4 wC 0-1 Status flag against sudden power
failure during write
0x5 BI Bad block marker
0x6-0x8 ECC Byte 0-2 ECC code for 512KB main area data
0x9-0x0A S-ECC Byte 0-1 ECC code for LSN data
0x0B-0x0F Reserved Reserved
2048B(Large Page): 64 Byte Spare Area
2048 Byte
. Spare
Main Area Area

1st page Main

2nd page Main

3rd page Main 4th page Main

Description of the Spare Area

1st page spare —P
2nd page spare
3rd page spare
4th page spare

Offset Content Comment

0x0 BT lst bad block marker

0x1 Reserved Reserved

0x2-0x4 LSN 0-2 Logical sector number

0x5 Reserved Reserved

0x6-0x7 wC 0-1 Status flag against sudden power
failure during write

0x8-0x0A ECC Byte 0-2 ECC code for first 512KB main area data

©1989-2024 Lauterbach

NAND FLASH Programming User's Guide | 86

0x0B-0x0C S-ECC Byte 0-1 ECC Code for first LSN data

0x0D-0x0F Reserved Reserved

0x10-0x1F 2nd page spare structure is the same as
the 1lst page spare

0x20-0x2F 3rd page spare structure is the same as
the 1st page spare

0x30-0x3F 4th page spare structure is the same as
the 1st page spare

©1989-2024 Lauterbach NAND FLASH Programming User's Guide | 87

	NAND FLASH Programming User’s Guide
	Introduction
	How This Manual is Organized
	Related Documents
	Contacting Support

	List of Abbreviations
	Background Information
	What is a NAND Flash Device?
	About Blocks, Pages, Main Area, and Spare Area
	About Bad Block Markers
	About NAND Flash Controllers

	Standard Approach
	Identifying and Running Scripts for NAND Flash Programming
	If There Is No Script

	Scripts for NAND Flash Programming
	Establishing Communication between Debugger and Target CPU
	Configuring the NAND Flash Controller
	Resetting Default Values
	Identifying the Type of NAND Flash Controller
	Informing TRACE32 about the NAND Flash Register Addresses
	Informing TRACE32 about the NAND Flash Programming Algorithm
	Identifying the Correct Driver Binary File for a NAND Flash Device
	File Name Convention for NAND Flash Drivers
	Finding the <nandflash_code> of a NAND Flash Device
	Examples for Generic NFCs

	Checking the Identification from the NAND Flash Device
	Erasing the NAND Flash Device
	Programming the NAND Flash Device
	Programming the Main Area
	Verifying the Main Area

	Other Useful Commands (NAND)
	Writing Other File Formats to the Main Area
	Modifying the Main Area
	Copying the Main Area
	Programming the Spare Area
	Programming the ECC Code to the Spare Area
	Reading/Saving the NAND Flash Device
	Reading the Main/Spare Area

	Full Examples: Generic NAND Flash Programming
	Example 1
	Example 2

	Full Example: CPU-Specific NAND Flash Programming

	About OneNAND Flash Devices
	Scripts for OneNAND Flash Devices
	Establishing Communication between Debugger and Target CPU
	Configuring the OneNAND Flash Bus
	Resetting Default Values
	Informing TRACE32 about the OneNAND Flash Address
	Informing TRACE32 about the OneNAND Flash Programming Algorithm
	Identifying the Correct OneNAND Flash Driver for a OneNAND Device
	Naming Convention for OneNAND Flash Drivers

	Checking the Identification from the OneNAND Flash Device
	Erasing the OneNAND Flash Device
	Programming the OneNAND Flash Device
	Programming the Main Area (OneNAND)
	Verifying the Main Area (OneNAND)

	Other Useful Commands (OneNAND)
	Copying the Main Area (OneNAND)
	Modifying the Main Area (OneNAND)
	Programming the Spare Area (OneNAND)
	Reading/Saving the OneNAND Flash Device
	Reading the Main/Spare Area (OneNAND)
	Saving the Main Area (OneNAND)
	Saving the Spare Area (OneNAND)

	Full Example

	Appendix A: ECC (Error Correction Code)
	How to Generate ECC and to Detect Error
	3bytes per 256bytes ECC codes
	3bytes per 512bytes ECC Codes

	Appendix B: Spare Area Schemes
	Linux MTD NAND Driver Default Spare Area Schemes
	SAMSUNG Standard Spare Area Schemes

