
MANUAL

NAND FLASH Programming
User’s Guide

NAND FLASH Programming User’s Guide

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 FLASH Programming .. 

 NAND FLASH Programming User's Guide ... 1

 Introduction ... 5

 How This Manual is Organized 5

 Related Documents 6

 Contacting Support 6

 List of Abbreviations ... 8

 Background Information ... 8

 What is a NAND Flash Device? 8

 About Blocks, Pages, Main Area, and Spare Area 9

 About Bad Block Markers 10

 About NAND Flash Controllers 11

 Standard Approach ... 12

 Identifying and Running Scripts for NAND Flash Programming 12

 If There Is No Script 14

 Scripts for NAND Flash Programming .. 15

 Establishing Communication between Debugger and Target CPU 17

 Configuring the NAND Flash Controller 18

 Resetting Default Values 20

 Identifying the Type of NAND Flash Controller 21

 Informing TRACE32 about the NAND Flash Register Addresses 23

 Informing TRACE32 about the NAND Flash Programming Algorithm 25

 Identifying the Correct Driver Binary File for a NAND Flash Device 27

 File Name Convention for NAND Flash Drivers 28

 Finding the <nandflash_code> of a NAND Flash Device 29

 Examples for Generic NFCs 31

 Example for CPU-Specific NFCs 33

 Checking the Identification from the NAND Flash Device 34

 Erasing the NAND Flash Device 35

 Programming the NAND Flash Device 36

 Programming the Main Area 37

 Verifying the Main Area 38
NAND FLASH Programming User’s Guide | 2©1989-2024 Lauterbach

 Other Useful Commands (NAND) 39

 Writing Other File Formats to the Main Area 39

 Modifying the Main Area 39

 Copying the Main Area 41

 Programming the Spare Area 43

 Programming the ECC Code to the Spare Area 46

 Reading/Saving the NAND Flash Device 47

 Reading the Main/Spare Area 47

 Full Examples: Generic NAND Flash Programming 51

 Example 1 51

 Example 2 53

 Full Example: CPU-Specific NAND Flash Programming 55

 About OneNAND Flash Devices ... 56

 Scripts for OneNAND Flash Devices ... 57

 Establishing Communication between Debugger and Target CPU 59

 Configuring the OneNAND Flash Bus 59

 Resetting Default Values 60

 Informing TRACE32 about the OneNAND Flash Address 60

 Informing TRACE32 about the OneNAND Flash Programming Algorithm 61

 Identifying the Correct OneNAND Flash Driver for a OneNAND Device 63

 Naming Convention for OneNAND Flash Drivers 63

 Checking the Identification from the OneNAND Flash Device 65

 Erasing the OneNAND Flash Device 66

 Programming the OneNAND Flash Device 67

 Programming the Main Area (OneNAND) 67

 Verifying the Main Area (OneNAND) 68

 Other Useful Commands (OneNAND) 69

 Copying the Main Area (OneNAND) 69

 Modifying the Main Area (OneNAND) 71

 Programming the Spare Area (OneNAND) 72

 Reading/Saving the OneNAND Flash Device 75

 Reading the Main/Spare Area (OneNAND) 75

 Saving the Main Area (OneNAND) 76

 Saving the Spare Area (OneNAND) 77

 Full Example 79

 Appendix A: ECC (Error Correction Code) ... 80

 How to Generate ECC and to Detect Error 80

 3bytes per 256bytes ECC codes 82

 3bytes per 512bytes ECC Codes 83

 Appendix B: Spare Area Schemes .. 84

 Linux MTD NAND Driver Default Spare Area Schemes 84

 SAMSUNG Standard Spare Area Schemes 86
NAND FLASH Programming User’s Guide | 3©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide | 4©1989-2024 Lauterbach

NAND FLASH Programming User’s Guide

Version 06-Jun-2024

Introduction

This manual describes the basic concept of NAND and OneNAND Flash programming.

There are many similarities between NAND Flash programming and OneNAND Flash programming, but
also important differences. For reasons of clarity and user-friendliness, this manual covers NAND Flash
programming and OneNAND Flash programming in separate chapters.

How This Manual is Organized

• Background Information: Provides information about important terms in NAND Flash
programming, including the different types of NAND Flash controllers (NFC).

• Standard Approach: Describes the fastest way to get started with NAND Flash programming. All
you need to do is to identify and run the correct script.

Demo scripts for NAND Flash programming are available in the folder:

~~/demo/<architecture>/flash/<cpu_name>-<nand_flash_code>.cmm

e.g. omap3430-nand.cmm, imx31-nand2g08.cmm …

• Scripts for NAND Flash Programming: Describes how you can create a script if there is no
demo script for the NFC type you are using.

• About OneNAND Flash Devices: Explains the difference between OneNAND Flash and NAND
Flash.

• Scripts for OneNAND Flash Devices: Describes how you can create scripts for OneNAND Flash
programming based on the template script provided by Lauterbach.

• Appendix A and B: Provide information about ECC (error correction code) and spare area
schemes.
NAND FLASH Programming User’s Guide | 5©1989-2024 Lauterbach

Related Documents

A complete description of all NAND Flash programming commands can be found in chapter “FLASHFILE”
in “General Commands Reference Guide F” (general_ref_f.pdf).

The manual “List of Supported FLASH Devices” (flashlist.pdf) provides the following information:

• A list of the supported NAND and OneNAND Flash devices.

• A list of the supported on-chip NAND Flash controllers.

The Lauterbach home page provides an up-to-date list of

• Supported NAND and OneNAND Flash devices under:
https://www.lauterbach.com/ylist.html

• Supported on-chip NAND Flash controllers under:
https://www.lauterbach.com/ylistnand.html

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

• To contact your local TRACE32 support team directly.

• To register and submit a support ticket to the TRACE32 global center.

• To log in and manage your support tickets.

• To benefit from the TRACE32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.
NAND FLASH Programming User’s Guide | 6©1989-2024 Lauterbach

https://www.lauterbach.com/ylist.html
https://www.lauterbach.com/ylistnand.html
https://support.lauterbach.com

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.

NOTE: In case of missing script files (*.cmm), please proceed as requested in “If There
is No Script”.
NAND FLASH Programming User’s Guide | 7©1989-2024 Lauterbach

List of Abbreviations

Background Information

This chapter of the manual is aimed at users who are new to NAND Flash programming; it does not address
experts with many years of expertise in this area. This chapter gives you a brief overview of important terms
in NAND Flash programming, such as NAND Flash device, block, page, main area, spare area, bad block
marker, generic NFC, CPU-specific NFC.

What is a NAND Flash Device?

A NAND Flash device (short: NAND Flash) is a non-volatile storage chip that can be electrically erased and
reprogrammed. It is used in data-storage applications such as cell phones and multi-media devices.
Reasons why NAND Flash devices have become widespread include:

• Smaller interface pins than NOR Flash

• High density at low-cost per bit

• Faster than NOR Flash

ALE Address latch enable

CLE Command latch enable

CS Chip selection

ECC Error correction code

NFC NAND Flash controller

SP Spare area
NAND FLASH Programming User’s Guide | 8©1989-2024 Lauterbach

About Blocks, Pages, Main Area, and Spare Area

A NAND Flash consists of blocks. Each block is subdivided into 32, 64, or 128 pages, and each page has a
main and a spare area; see example diagram below.

Block A block is the minimum size unit for erasing.

Page A page is the minimum size unit for reading and writing.
There are two types of pages:
• Small pages
• Large pages

Type Main Area* Spare Area* Total*

Small Page 256 8 264

512 16 528

Large Page 2048 64 2112

4096 128 4224

*) in Bytes

Main area The main area of each page can have a size of 512, 2048, or 4096 Bytes and
contains the real code or data.

Spare area The spare area of each page can have a size of 16, 32, 64, or 128 Bytes and
contains the following:
• Bad block marker for a bad block (mandatory)
• ECC codes (optional)
• User-specific metadata (optional)

...

Block n

NAND Flash

...Block 1

Main Area

Spare

Page 1

Main Area

Page 128

*) 32, 64 or 128 pages

Area

Spare
Area

*

NAND FLASH Programming User’s Guide | 9©1989-2024 Lauterbach

About Bad Block Markers

If a block is bad, then data cannot be erased or read from or written to the bad block. To flag a bad block,
one or two bad block markers are used:

• The 1st marker is located in the spare area of the 1st page.

• The 2nd marker is located in the spare area of the 2nd page.

Bad block markers are stored in different byte positions, depending on the type of page (large or small):

• Large page NAND: The bad block marker is stored in the 1st byte.

• Small page NAND: The bad block marker is stored in the 6th byte.

The figure below shows the 64-byte spare areas of the first two pages of a large page NAND. The
FLASHFILE.DUMP window visualizes the individual pages using alternating colors for pages - white and
gray.

A Spare area of a large page NAND

B ECC code

C, D • FF = The block that these first two pages (white and gray) belong to is intact.
• If [C] or [D] or both do not read FF, as shown above, then the system considers the

block to be bad.
Byte position of a 1st bad block marker in the 1st page = [D].
Byte position of a 2nd bad block marker in the 2nd page = [C].

NOTE: The /EraseBadBlocks option of the FLASHFILE.Erase command can only
erase faked bad blocks, but not real bad blocks.
A faked bad block is a block where the user has modified an FF value to a
non-FF value in the byte position [C] or [D] or in both byte positions.

1st page

2nd page

A B

C

D

NAND FLASH Programming User’s Guide | 10©1989-2024 Lauterbach

About NAND Flash Controllers

Access to the NAND Flash is performed by an on-chip NAND Flash controller. There are two types of NAND
Flash controllers (NFC):

• Generic NAND Flash controllers
These NFC types are typically manufactured by Samsung Semiconductor, Atmel Corporation,
STMicroelectronics, Marvell, Inc., and Texas Instruments.

• CPU-specific NAND Flash controllers
These NFC types are typically manufactured by Qualcomm, Freescale Semiconductor, NVIDIA
Corporation, and Renesas Technology, Corp.

The architecture of systems featuring generic NFCs is shown in the block diagram below.

The architectures of systems featuring CPU-specific NFCs may vary considerably. The following block
diagram illustrates an example of a typical architecture. Data from/to the NAND Flash is buffered in a data
buffer.

NAND

Processor/
Chip

NFCNFC

Command Latch Enable

Address Latch Enable
Flash

Data I/O

Figure: System with a Generic NAND Flash Controller (NFC)

Memory
Core

NAND

Processor/
Chip

NFC
Command Latch Enable

Address Latch Enable
Flash

Data I/O

Figure: Example of a System with a CPU-specific NAND Flash Controller (NFC)

Data
Buffer

Memory
Core
NAND FLASH Programming User’s Guide | 11©1989-2024 Lauterbach

Standard Approach

The chapter “Standard Approach” provides a compact description of the steps required to program NAND
Flash memory. This description is intentionally restricted to standard use cases.

Overview of the Standard Approach:

• Identify and run the required script for NAND Flash programming based on information on our
website.

• What to do if there is no script for NAND Flash programming.

The following step-by-step procedures describe the standard approach in detail.

A detailed description of the NAND Flash programming concepts is given in “Scripts for NAND Flash
Programming”.

Identifying and Running Scripts for NAND Flash Programming

Demo scripts (*.cmm) for NAND Flash programming are provided by Lauterbach. They can be found in the
TRACE32 installation directory, which contains scripts developed for generic and CPU-specific NFC types.

Path and file name convention of scripts for generic and CPU-specific NFC types:

~~/demo/<architecture>/flash/<cpu_name>-<prefix_of_nand_flash_code>.cmm

To identify and run the required script:

1. Make a note of the <cpu_name> printed on the CPU; for example, at91sam9xe

2. For information about supported Flash devices, access the Lauterbach website.

3. Click the + tree button next to Tool Chain, and then click Supported Flash Devices
(https://www.lauterbach.com/ylist.html).

4. On the Supported Flash Devices page, select the required company from the drop-down list.
NAND FLASH Programming User’s Guide | 12©1989-2024 Lauterbach

http://www.lauterbach.com/
https://www.lauterbach.com/ylist.html

5. Use the type printed on the Flash device to retrieve the <nand_flash_code> from the web page.

For example, NAND Flash type = MT29F2G08
//

Result: <prefix_of_nand_flash_code> nand2g08 = nand

6. Put the <cpu_name> and the prefix together to form the script name:
at91sam9xe-nand2g08.cmm

The script file resides in this folder: ~~/demo/arm/flash/at91sam9xe-nand2g08.cmm

Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

If the folder does not contain the script you are looking for, see “If There Is No Script” on page 14.

7. Run the script in TRACE32 by doing one of the following:

- Choose File > Run Script <cmm_script_name>

- In the command line, type DO <cmm_script_name>

Example

NOTE: Each script (*.cmm) includes a reference to the required NAND Flash
programming algorithm (*.bin).
You do not need to program or select the algorithm.

; <code_range> <data_range> <algorithm_file>
FLASHFILE.TARGET 0x80008000++0x3fff 0x8000C000++0x4FFF

~~/demo/arm/flash/byte/nand2g08_imx.bin
NAND FLASH Programming User’s Guide | 13©1989-2024 Lauterbach

If There Is No Script

If there is no script for your device in this directory (~~/demo/<architecture>/flash/), then please send a
request to support@lauterbach.com using the e-mail template below.

E-Mail Template:

Be sure to include detailed system information about your TRACE32 configuration. For information about
how to create a system information report, see “Contacting Support”.

Normally we can provide support for a new device in two weeks.

If our support cannot provide you with a PRACTICE script, you will have to create your own PRACTICE
script (*.cmm).

For more information, see “Scripts for NAND Flash Programming” on page 14.

Chip name: ______________________

Name of NAND Flash device: ________

Provide the CPU datasheet for us: ___________

Lend the target board to us by sending it to the address given in “Contacting Support”: ________

<system_information>
NAND FLASH Programming User’s Guide | 14©1989-2024 Lauterbach

Scripts for NAND Flash Programming

This chapter describes how you can create your own scripts for chips that are equipped with generic or
CPU-specific NAND Flash controllers.

The steps and the framework (see below) provide an overview of the process. Both, steps and framework,
are described in detail in the following sections.

The following steps are necessary to create a new script:

1. “Establishing Communication between Debugger and Target CPU”, page 17

2. “Configuring the NAND Flash Controller”, page 18

3. “Resetting Default Values”, page 20

4. “Identifying the Type of NAND Flash Controller”, page 21

5. “Informing TRACE32 about the NAND Flash Register Addresses”, page 23

6. “Informing TRACE32 about the NAND Flash Programming Algorithm”, page 25

7. “Checking the Identification from the NAND Flash Device”, page 34

8. “Erasing the NAND Flash Device”, page 35

9. “Programming the NAND Flash Device”, page 36
NAND FLASH Programming User’s Guide | 15©1989-2024 Lauterbach

The following framework can be used as base for NAND Flash programming:

An ellipsis (…) in the framework indicates that command parameters have been omitted here for space
economy.

; Establish the communication
; between the target CPU and the
; TRACE32 debugger.

; Configure the NAND Flash
; controller.

FLASHFILE.RESet ; Reset the NAND Flash environment
; in TRACE32 to its default values.

FLASHFILE.CONFIG … ; Inform TRACE32 about the
; NAND Flash register addresses.

FLASHFILE.TARGET … ; Specify the NAND Flash
; programming algorithm and where
; it runs in the target RAM.

FLASHFILE.GETID ; Get the ID values of the NAND
; Flash device.

FLASHFILE.Erase … ; Erase the NAND Flash.

FLASHFILE.LOAD <main_file> … ; Program the file to the NAND
; Flash (main area).

NOTE: The parametrization of FLASHFILE.CONFIG and FLASHFILE.TARGET
requires expert knowledge.
NAND FLASH Programming User’s Guide | 16©1989-2024 Lauterbach

Establishing Communication between Debugger and Target CPU

NAND Flash programming with TRACE32 requires that the communication between the debugger and the
target CPU is established. The following commands are available to set up this communication:

SYStem.CPU <cpu> Specify your target CPU.

SYStem.Up Establish the communication between the
debugger and the target CPU.

SYStem.CPU OMAP3430 ; Select OMAP3430 as the target CPU.

SYStem.Up ; Establish the communication between the
; debugger and the target CPU.
NAND FLASH Programming User’s Guide | 17©1989-2024 Lauterbach

Configuring the NAND Flash Controller

Programming a NAND Flash device requires a proper initialization of the NAND Flash controller. The
following settings might be necessary:

• Enable the NAND Flash controller or bus.

• Configure the communication signals (clock, timing, etc.).

• Inform the NAND Flash controller about the NAND Flash device (large/small page, ECC, spare,
etc.).

• Configure the NAND Flash pins if they are muxed with other functions of the CPU.

• Disable the write protection for the NAND Flash.

Use the PER.view command to check the settings for the NAND Flash controller.
NAND FLASH Programming User’s Guide | 18©1989-2024 Lauterbach

Example: NAND Flash controller configuration for the OMAP3430.

PER.Set SD:0x6E0000A8 %LE %Long 0x870 ; Enable CS1 and define
; the base address of
; CS1(NAND Flash).
; LE = little endian

PER.Set SD:0x6E000098 %LE %Long 0x60401
PER.Set SD:0x6E00009C %LE %Long 0x5010801

; Define the NAND Flash
; access timing.

PER.Set SD:0x6E000090 %LE %Long 0x0800 ; Define CS1 for 8 bit
; NAND Flash.

PER.Set SD:0x6E000050 %LE %Long 0x10 ; Disable the write
; protection of the NAND
; Flash device.
NAND FLASH Programming User’s Guide | 19©1989-2024 Lauterbach

Resetting Default Values

The following command is used to reset the NAND Flash environment in TRACE32 to its default values.
o

FLASHFILE.RESet Reset the NAND Flash environment
in TRACE32 to its default values.
NAND FLASH Programming User’s Guide | 20©1989-2024 Lauterbach

Identifying the Type of NAND Flash Controller

You need to know which NFC type you are dealing with because NAND Flash programming differs
depending on the NFC type:

• Generic NAND Flash controllers

• CPU-specific NAND Flash controllers

To identify the type of controller:

1. Access the Lauterbach website.

2. Click the + tree button next to Tool Chain, and then click Supported NAND/Serial Flash
Controller.

3. Select the required company from the drop-down list.

4. Locate the desired CPU.

The Controller column indicates whether the NFC type is generic or CPU-specific or a hybrid. The
following three examples cover all possible options.

Example 1: CPU = OMAP3530

The entry in the Controller column reads generic, and the entry in the Comment column reads
NAND. That means that this CPU is equipped with a generic NAND Flash controller.
NAND FLASH Programming User’s Guide | 21©1989-2024 Lauterbach

http://www.lauterbach.com/

Example 2: CPU = AT91SAM3U4

The entry in the Controller column reads generic (cortexm3), and the entry in the Comment column
reads NAND, Thumb2.

That means that this CPU is equipped with a generic NAND Flash controller, too. The term in
parentheses tells you the architecture of the processor core, here (cortexm3). This processor core
requires that the NAND Flash driver binary file is compiled using a special instruction set,
hereThumb2.

Example 3: CPU = I.MX31

The entry in the Controller column contains the controller name (imx), and the entry in the Comment
column reads NAND. That means that this CPU is equipped with a CPU-specific NAND Flash
controller.
NAND FLASH Programming User’s Guide | 22©1989-2024 Lauterbach

Informing TRACE32 about the NAND Flash Register Addresses

The parametrization of FLASHFILE.CONFIG differs for generic and CPU-specific NFCs.

In the case of generic NAND Flash controllers:

The NAND Flash device can be programmed by operating the command, address, and I/O registers. As
a result:

1. A generic NAND Flash programming driver can be used.

2. The command FLASHFILE.CONFIG always requires the parameters
<cmd_reg> <addr_reg> <io_reg>

For information about the register addresses of the command, address, and data I/O register, refer to the
manufacturer’s processor manual.

Example 1:

Example 2:

In the case of CPU-specific NAND Flash controllers:

For information about the NAND Flash base register, refer to the manufacturer’s processor manual.

FLASHFILE.CONFIG <cmd_reg> <addr_reg> <io_reg> Inform TRACE32 about the NAND
Flash register addresses.

Parameters for FLASHFILE.CONFIG command – generic NAND Flash programming

<cmd_reg> Register address of the command register

<addr_reg> Register address of the address register

<io_reg> Register address of the data I/O register

; Register addresses of the generic NAND Flash controller in the OMAP3530
FLASHFILE.CONFIG 0x6E00007C 0x6E000080 0x6E000084

; Register addresses of the generic NAND Flash controller in the OMAP3430
FLASHFILE.CONFIG 0x6E0000AC 0x6E0000B0 0x6E0000B4

FLASHFILE.CONFIG <nfc_base_address> , , Specify the start address of the
NAND Flash base register.
, represents don’t-care parameters.
NAND FLASH Programming User’s Guide | 23©1989-2024 Lauterbach

Example:

; NFC base address of the CPU-specific NAND Flash controller
; in the i.MX31.
FLASHFILE.CONFIG 0xB8000000 , ,
NAND FLASH Programming User’s Guide | 24©1989-2024 Lauterbach

Informing TRACE32 about the NAND Flash Programming Algorithm

The following command is available to inform TRACE32 about the NAND Flash programming algorithm
(*.bin):

Parameters

• <code_range>

Define an address range in the target´s RAM to which the NAND Flash programming algorithm is
loaded.

Required size for the code is: size_of(<file>) + 32 byte

• <data_range>

Define the address range in the target´s RAM where the programming data is buffered for the
programming algorithm.

The argument buffer used for the communication between the TRACE32 software and the
programming algorithm is located at the first 64 bytes of <data_range>. The 256 byte stack is
located at the end of <data_range>.

<buffer_size> = size_of(<data_range>) - 64 byte argument buffer - 256 byte stack

<buffer_size> is the maximum number of bytes that are transferred from the TRACE32 software
to the NAND Flash programming algorithm in one call.

FLASHFILE.TARGET <code_range> <data_range> <file> Specify the NAND Flash
programming algorithm and
where it runs in the target
RAM.

Flash algorithm

Figure: Memory mapping for the <code_range>

32 byte

64 byte argument buffer

Figure: Memory mapping for the <data_range>

buffer for programming data

256 byte stack
NAND FLASH Programming User’s Guide | 25©1989-2024 Lauterbach

• <file>

Lauterbach provides ready-to-run driver binary files for NAND Flash programming. They are located
in the TRACE32 installation directory:

~~/demo/<architecture>/flash/<bus_width>/

Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

For detailed information about how to determine the <file> parameter, see “Identifying the
Correct Driver Binary File for a NAND Flash Device” on page 26.
NAND FLASH Programming User’s Guide | 26©1989-2024 Lauterbach

Identifying the Correct Driver Binary File for a NAND Flash Device

There are two ways to find the correct *.bin file:

• You can identify the *.bin file via our website, as described in this section.

• Alternatively, run a PRACTICE script (*.cmm), as described in “Finding the <nandflash_code>
of a NAND Flash Device”, page 29.

To identify the correct *.bin file:

1. For information about supported Flash devices, access the Lauterbach website.

2. Click the + tree button next to Tool Chain, and then click Supported NAND/Serial Flash
Controller (https://www.lauterbach.com/ylistnand.html).

3. Open Supported Flash Devices in a separate window or tab
(https://www.lauterbach.com/ylist.html).

4. On the Supported Flash Devices page, select the required company from the drop-down list.

5. Locate the desired Flash device.

You need the name of the Flash device to be able to identify the correct driver binary file.

6. Identify the correct *.bin file based on the name of the Flash device. The following examples
illustrate how to do this.

- Examples for Generic NFCs

- Example for CPU-Specific NFCs

- The file name convention for driver binary files (*.bin) is explained below.
NAND FLASH Programming User’s Guide | 27©1989-2024 Lauterbach

https://www.lauterbach.com/
https://www.lauterbach.com/ylistnand.html
https://www.lauterbach.com/ylist.html

File Name Convention for NAND Flash Drivers

The NAND Flash drivers for the various NFC types use the following file name convention:

“xs” = eXtra spare area

Page Size (bytes) Block Size Device Size Bus Width File Name

Main area Spare area

512 16 32 pages <= 2048 blocks 8 Nand5608.bin

16 Nand5616.bin

512 16 32 pages > 2048 blocks 8 Nand1208.bin

16 Nand1216.bin

2048 64 64 pages <= 1024 blocks 8 Nand1g08.bin

16 Nand1g16.bin

2048 64 64 pages > 1024 blocks 8 Nand2g08.bin

16 Nand2g16.bin

2048 64 128 pages > 1024 blocks 8 NandLAg08.bin

4096 128 64 pages > 1024 blocks 8 Nand8g08.bin

4096 218 Nand8g08xs.bin

4096 128 128 pages > 1024 blocks 8 NandLBg08.bin

4096 218 NandLBg08xs.bin
NAND FLASH Programming User’s Guide | 28©1989-2024 Lauterbach

Finding the <nandflash_code> of a NAND Flash Device

The following step-by-step procedure helps you find the <nandflash_code> of your NAND Flash device.
Based on the <nandflash_code>, you can then identify the correct *.bin file.

To find the <nandflash_code>:

1. Run the following PRACTICE script file (*.cmm) from the TRACE32 demo folder:

If this demo script is missing, you can download it from www.lauterbach.com/scripts.html.

The Find nandflash code dialog opens.

2. Under Nandflash parameters, make your settings.

- You can find the required information in the NAND Flash data sheet of the manufacturer.

- The values selected in the screenshot are based on the Illustration of a NAND Flash Array
Organization.

3. Click Find.

- The code box displays the <nandflash_code> of your NAND flash device.

- If the code box displays unknown, then proceed as described in “If There is No Script”.

4. Make a note of the displayed <nandflash_code>; for example, nand2g08.

5. Click End to close the Find nandflash code dialog.

6. Identify the correct *.bin file based on the <nandflash_code>. The following examples illustrate how to
do this.

- Examples for Generic NFCs

- Example for CPU-Specific NFCs

CD.DO ~~/demo/etc/flash/find_nanddef.cmm

;The path prefix ~~ expands to the system directory of TRACE32,
;by default C:\t32.
NAND FLASH Programming User’s Guide | 29©1989-2024 Lauterbach

www.lauterbach.com/scripts.html

Illustration of a NAND Flash Array Organization

The terms highlighted in bold correspond to the drop-down lists and radio options of the Find nandflash
code dialog box (below).
You can find the required information in the NAND Flash data sheet of the manufacturer.

“Find nandflash code” Dialog Box

cycle I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0

1st CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0

2nd LOW LOW LOW LOW CA11 CA10 CA9 CA8

3rd RA19 RA18 RA17 RA16 RA15 RA14 RA13 RA12

4th RA27 RA26 RA25 RA24 RA23 RA22 RA21 RA20

5th LOW LOW LOW LOW LOW LOW LOW RA28

����

cycle

Row

cycle

2048 blocks

per device

1 block (64 pages)

= (2K+64) bytes x 64 pages

= (128K + 4K) bytes

2048 64

I/O [0]

I/O [7]

2112 bytes

1 page = (2K + 64 bytes)

PageSize Main

PageSize Spare

Bus Width

PageNum per Block

CA = Column address
RA = Row address

COL Num

ROW Num

[B] The type box displays the
<nandflash_code> of your NAND
Flash device.

[A] Once you have entered the
information found in the NAND
Flash data sheet of the
manufacturer, click Find.

A

B

NAND FLASH Programming User’s Guide | 30©1989-2024 Lauterbach

Examples for Generic NFCs

The names of the required NAND Flash driver binary files consist of information from the Controller and/or
Code columns. The following example illustrate how you can combine this information from the Lauterbach
website to form the correct file name.

Example 1 – target:

• CPU S3C6410 with a generic NFC

• NAND Flash device MT29F2G16

The Code column identifies the name of the NAND Flash driver binary file: nand2g16.bin.
Note that the information in the Controller column is not part of the file name in this case.

The number 16 in the file name indicates the bus width and the folder where the file resides, i.e. in the word
folder.

The binary file resides in this folder: ~~/demo/arm/flash/word

Whereas ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.
NAND FLASH Programming User’s Guide | 31©1989-2024 Lauterbach

Example 2 – target:

• CPU AT91SAM3U4 with a generic (cortexm3) NFC.

Remember that NFCs flagged like this in the Controller column—generic (name)—require binary
files that are compiled with a special instruction set, here Thumb2; see figure below.

• NAND Flash device MT29F2G08

Taken together, the Code column and the Controller column make up the file name of this particular NAND
Flash driver binary file: nand2g08_cortexm3.bin

The number 8 in the file name indicates the bus width and the folder where the file resides, i.e. in the word
folder.

The binary file resides in this folder: ~~/demo/arm/flash/byte

Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

This results in the following command line:

; Specify the NAND Flash programming algorithm and where it runs in
; the target RAM. <code_range> <data_range> <file>
FLASHFILE.TARGET 0x20000000+0x1fff 0x20002000++0x1fff

~~/demo/arm/flash/byte/nand2g08_cortexm3.bin
NAND FLASH Programming User’s Guide | 32©1989-2024 Lauterbach

Example for CPU-Specific NFCs

Target:

• CPU i.MX31 with a CPU-specific controller

• NAND Flash device MT29F2G16

Taken together, the Code column and the Controller column make up the file name of the NAND Flash
driver binary file: nand2g16_imx.bin

The number 16 indicates the bus width and the folder where the file resides, i.e. in the word folder.

The file resides in this folder: ~~/demo/arm/flash/word

Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.
NAND FLASH Programming User’s Guide | 33©1989-2024 Lauterbach

Checking the Identification from the NAND Flash Device

The following command can be used to check if TRACE32 can access the NAND Flash device:

FLASHFILE.GETID Get the ID values, page size, block
size, and the NAND Flash code
from the NAND Flash device.

; Open the TRACE32 AREA window.
AREA.view

; Get the ID values, page size, block size, and the NAND Flash code
; from the NAND Flash device.
FLASHFILE.GETID
NAND FLASH Programming User’s Guide | 34©1989-2024 Lauterbach

Erasing the NAND Flash Device

The following commands are available to erase NAND Flash devices:

Example 1:

Example 2:

FLASHFILE.Erase <range> Erase NAND Flash except bad blocks.

FLASHFILE.Erase <range> /EraseBadBlocks Erase NAND Flash including bad blocks.

; Erase 1MB starting from 0x0 except bad blocks.
FLASHFILE.Erase 0x0--0xFFFFF

; Erase 1MB starting from 0x0 including bad blocks.
; Afterwards all bad block data is erased.
FLASHFILE.Erase 0x0--0xFFFFF /EraseBadBlocks

MAIN SP

FLASHFILE.Erase …

Bad

FLASHFILE.Erase … /EraseBadBlocks

1

2

3

5

N

4

MAIN SP

Bad4

MAIN SP

Bad

1

2

3

5

N

4

MAIN SP

Result (1) Result (2)
NAND FLASH Programming User’s Guide | 35©1989-2024 Lauterbach

Programming the NAND Flash Device

In a NAND Flash device, each page consists of two areas:

• The main area contains the data which is accessed by the CPU.

• The spare area contains the bad block information and the ECC data.
For background information about ECC, see “Appendix: ECC (Error Correction Code) on
page 80.

The main and spare area are programmed independently.

All CPU-specific NAND Flash controllers generate the ECC data automatically when data is programmed to
the main area. Therefore, the spare area does not need to be programmed explicitly.
NAND FLASH Programming User’s Guide | 36©1989-2024 Lauterbach

Programming the Main Area

The following commands are available to program the NAND Flash main area:

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

Example 1

Example 2

FLASHFILE.LOAD <file> [<address> | <range>] Program NAND Flash except
bad blocks.

FLASHFILE.LOAD <file> [<address> | <range>] /WriteBadBlocks Program NAND Flash
including bad blocks.

; Program contents of my_file.bin to NAND Flash main area starting at
; address 0x0.
; If a block is bad, the data is programmed to the next valid block.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF

; Program contents of my_file.bin to NAND Flash main area starting
; at address 0x0.
; Even if a block is bad, data will be programmed.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF /WriteBadBlock

Result (1) Result (2)

My_file NAND

FLASHFILE.LOAD …

1

2

3

5

N

4

1

2

3

4

N-1

Bad

Main SP
My_file NAND

Bad

1

2

3

5

N

4

1

2

3

5

N

4

Main SP

FLASHFILE.LOAD … /WriteBadBlock
NAND FLASH Programming User’s Guide | 37©1989-2024 Lauterbach

Verifying the Main Area

The following command is used to compare the NAND Flash main area with the specified target file:

The data from <file> is compared to the address range specified by <range>. If no <range> or <address> is
specified, comparing starts at address 0x0.

Example 1

Example 2

FLASHFILE.LOAD <file> [<address> | <range>] /ComPare

; Verify the contents of my_file.bin against the NAND Flash main area,
; starting at address 0x0.
; If a block is bad, then the data in the file is verified against
; the next valid block up to the end of the specified range.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF /ComPare

; Verify the contents of my_file.bin against NAND Flash main area,
; starting at address 0x0.
; Even if a block is bad, the data will be verified against the bad block
; data.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF /WriteBadBlock /ComPare
NAND FLASH Programming User’s Guide | 38©1989-2024 Lauterbach

Other Useful Commands (NAND)

Writing Other File Formats to the Main Area

The following commands are available to load IntelHex and S-Record files:

Modifying the Main Area

The following command is available to modify the contents of the NAND Flash memory. The maximum
range that one FLASHFILE.Set command can modify is only one block of the Flash memory. If you want to
modify three blocks, you need three FLASHFILE.Set commands, etc. See below for an example.

Example 1

Example 2

FLASHFILE.LOAD.IntelHex <file> Program an intelhex file to the
NAND Flash.

FLASHFILE.LOAD.S1record <file>
FLASHFILE.LOAD.S2record <file>
FLASHFILE.LOAD.S3record <file>

Program an S-record file to
the NAND Flash.

FLASHFILE.Set [<address> | <range>] %<format> <data> Modify the contents of the NAND
Flash.

; Write 4 bytes of data 0x12345678 to the address 0x100000.
; LE = little endian
FLASHFILE.Set 0x100000 %LE %Long 0x12345678

; Write data 0x0 to the address range 0x100000++0xFFF.
FLASHFILE.Set 0x100000++0xFFF %Byte 0x0

Result (1)
NAND FLASH Programming User’s Guide | 39©1989-2024 Lauterbach

Example 3

; A NAND Flash has 128KB per block (0x20000).
; Write data 0x0 from 0x100000 to 0x15FFFF in the NAND Flash.
FLASHFILE.Set 0x100000++0x1ffff %Byte 0x0
FLASHFILE.Set 0x120000++0x1ffff %Byte 0x0
FLASHFILE.Set 0x140000++0x1ffff %Byte 0x0

Result (2)
NAND FLASH Programming User’s Guide | 40©1989-2024 Lauterbach

Copying the Main Area

The following command is available to copy:

• Any data from any CPU memory area to the NAND Flash, or

• Any data from one address range of the NAND Flash to another address range within the same
NAND Flash; for example, for backup purposes.

Example 1

Result (1)

Example 2

FLASHFILE.COPY <source range> <target addr> Copy data from the source range
to the defined address of the
NAND Flash.

FLASHFILE.COPY <source range> <target addr> /ComPare Verify the source range data
against the target range data.

; Copy the 2MB virtual memory data at 0x0 to the NAND Flash address
; at 0x100000.
; Bad blocks are skipped, data is written to the next valid block.
; VM: The virtual memory of the TRACE32 software.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000

; Verify the data between virtual memory and NAND Flash.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000 /ComPare

Data is copied from the
CPU to the NAND Flash
NAND FLASH Programming User’s Guide | 41©1989-2024 Lauterbach

Example 3

; Copy the 4MB NAND Flash data at 0x0 to the NAND Flash
; at 0x800000.
; Bad blocks are skipped, data is written to the next valid block.
FLASHFILE.COPY 0x0--0x3FFFFF 0x800000

; Verify the 4MB NAND Flash data between 0x0 and 0x800000.
FLASHFILE.COPY 0x0--0x3FFFFF 0x800000 /ComPare
NAND FLASH Programming User’s Guide | 42©1989-2024 Lauterbach

Programming the Spare Area

The following commands are available to write a bad block marker, ECC codes, and special customer data
to the NAND Flash spare area:

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

Program the NAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>]

Program the NAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks

Compare the NAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /ComPare

Compare the NAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks /ComPare

NOTE: • You need a third-party tool to create the spare file (<file>).
• Be careful when you specify <range>: You should input <range> in the

spare area address format, not in the main area format (see figure
below).

0x0--0x1FF

0x10--0x1F

0x20--0x2F

0x0--0xF

0x50--0x5F

0x30--0x3F

0x40--0x4F

N>>5--(N>>5)+0xF

0x200--0x3FF

0x400--0x5FF

0x600--0x7FF

0x800--0x9FF

0xA00--0xBFF

0xC00--0xDFF

N--(N+0x1FF)

0x60--0x6F

Spare Area AddrMain Area Addr 2
5

Small Page NAND

0x0--0x7FF

0x40--0x7F

0x80--0xBF

0x0--0x3F

0x140--0x17F

0xC0--0xFF

0x100--0x13F

N>>5--(N>>5)+0x3F

0x800--0xFFF

0x1000--0x17FF

0x1800--0x1FFF

0x2000--0x27FF

0x2800--0x2FFF

0x3000--0x37FF

N--(N+0x7FF)

0x180--0x1BF

Spare Area AddrMain Area Addr 2
5

Large Page NAND
NAND FLASH Programming User’s Guide | 43©1989-2024 Lauterbach

Example 1

Example 2: When specifying the address range, remember to use the address format of the spare area.

Example 3

Example 4

; Write my_spare.bin to the NAND Flash spare area.
; Start at the address 0x0 of the spare area.
; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my_spare.bin 0x0

; Write 32KB of my_spare.bin to the specified address range
; of the spare area.
; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my_spare.bin 0x0--0x7FFF

; Write my_spare.bin to the spare area.
; Start at the address 0x0 of the spare area.
; Include the bad blocks of my_spare.bin.
FLASHFILE.LOADSPARE my_spare.bin 0x0 /WriteBadBlock

; Write 32KB of my_spare.bin to the spare area.
; Start at the address 0x0 of the spare area.
; Include the bad blocks of my_spare.bin.
FLASHFILE.LOADSPARE my_spare.bin 0x0--0x7FFF /WriteBadBlock

Bad

FLASHFILE.LOADSPARE …

My_Spare
NAND

Main SP

1

2

3

5

N

4

1

2

3

4

N-1

Bad

FLASHFILE.LOADSPARE … /WriteBadBlock

My_Spare
NAND

Main SP

1

2

3

5

N

4

1

2

3

5

N

4

Result (1 and 2) Result (3 and 4)
NAND FLASH Programming User’s Guide | 44©1989-2024 Lauterbach

Example 5

; Verify the entire file my_spare.bin against the spare area.
; Start at the address 0x0 of the spare area.
FLASHFILE.LOADSPARE my_spare.bin 0x0 /ComPare
NAND FLASH Programming User’s Guide | 45©1989-2024 Lauterbach

Programming the ECC Code to the Spare Area

The following commands are available to generate ECC code file from the NAND Flash main area:

The following command is available to program the generated ECC code file to the NAND Flash spare area:

FLASHFILE.SAVEECC.BCH Save error correction code (ECC) with BCH algorithm

FLASHFILE.SAVEECC.hamming Save ECC with Hamming algorithm

FLASHFILE.SAVEECC.ReedSolomon Save ECC with Reed-Solomon algorithm

FLASHFILE.LOADECC <file> Load ECC file to spare area
NAND FLASH Programming User’s Guide | 46©1989-2024 Lauterbach

Reading/Saving the NAND Flash Device

The CPU cannot read NAND Flash devices directly. But TRACE32 provides special commands for reading
NAND Flash memories. The contents of the NAND Flash are displayed in a window.

Reading the Main/Spare Area

The following commands are provided to read the NAND Flash areas.

Example 1

Example 2

FLASHFILE.DUMP [<address>] [/<format>] Display a hex-dump of the NAND Flash
main area.

FLASHFILE.DUMP [<address> /SPARE [/Track] Display a hex-dump of the NAND Flash
spare area.

; Display a hex-dump of the NAND Flash main area starting at 0x1000.
; Display the information in a 32-bit format (Long option).
FLASHFILE.DUMP 0x1000 /Long

; Display a hex-dump of the NAND Flash spare area.
; The cursor in the spare area display follows the cursor movements in
; the main area display (Track option).
FLASHFILE.DUMP /SPARE /Track

Result (1)

Result (2)
NAND FLASH Programming User’s Guide | 47©1989-2024 Lauterbach

Saving the Main Area

The following commands are available to save the contents of the NAND Flash main area to a file.

Example 1

Example 2

FLASHFILE.SAVE <file> <range> Save the contents of the NAND Flash
main area into <file>, bad blocks are
saved.

FLASHFILE.SAVE <file> <range> /SkipBadBlocks Save the contents of the NAND Flash
main area into <file>, bad blocks are
skipped.

; Save 1MB of the NAND Flash main area starting at 0x0 to the file
; my_dump.bin.
; The contents of bad block are also saved.
FLASHFILE.SAVE my_dump.bin 0x0--0xFFFFF

; Save 1MB of the NAND Flash main area starting at 0x0 to the file
; my_dump.bin.
; The contents of bad block are skipped.
FLASHFILE.SAVE my_dump.bin 0x0--0xFFFFF /SkipBadBlocks

Bad

FLASHFILE.SAVE …

my_dump.bin
NAND

Main SP

Bad

1

2

3

4

N

1

2

3

4

N

Bad

FLASHFILE.SAVE … /SkipBadBlocks

my_dump.bin
NAND

Main SP

1

2

3

4

N-1

1

2

3

4

N

Result (1) Result (2)
NAND FLASH Programming User’s Guide | 48©1989-2024 Lauterbach

Saving the Spare Area

The following commands are available to save the contents of the NAND Flash spare area to a file.

Please be careful when you specify <range>: You should input <range> in the spare area address format,
not in the main area format (see figure below).

Example 1

Example 2

FLASHFILE.SAVESPARE <file> <range> Save the contents of the NAND
Flash spare area into <file>, bad
blocks are saved.

FLASHFILE.SAVESPARE <file> <range> /SkipBadBlocks Save the contents of the NAND
Flash spare area into <file>, bad
blocks are skipped.

; Save 32KB of the NAND Flash spare area starting at 0x0 to the file
; my_dump_spare.bin.
; The contents of bad block are also saved.
FLASHFILE.SAVESPARE my_dump_spare.bin 0x0--0x7FFF

; Save 32KB of the NAND Flash spare area starting at 0x0 to the file
; my_dump_spare.bin.
; The contents of bad block are skipped.
FLASHFILE.SAVESPARE my_dump_spare.bin 0x0--0x7FFF /SkipBadBlocks

0x0--0x1FF

0x10--0x1F

0x20--0x2F

0x0--0xF

N>>5--(N>>5)+0xF

0x200--0x3FF

0x400--0x5FF

N--(N+0x1FF)

Spare Area AddrMain Area Addr
2

5

Small Page NAND

0x0--0x7FF

0x40--0x7F

0x80--0xBF

0x0--0x3F

N>>5--(N>>5)+0x3F

0x800--0xFFF

0x1000--0x17FF

N--(N+0x7FF)

Spare Area AddrMain Area Addr
2

5

Large Page NAND
NAND FLASH Programming User’s Guide | 49©1989-2024 Lauterbach

Bad

FLASHFILE.SAVESPARE …

my_dump_spare.bin
NAND

Main SP

Bad

1

2

3

4

N

1

2

3

4

N

Bad

FLASHFILE.SAVESPARE … /SkipBadBlocks

my_dump_spare.bin
NAND

Main SP

1

2

3

4

N-1

1

2

3

4

N

Result (1) Result (2)
NAND FLASH Programming User’s Guide | 50©1989-2024 Lauterbach

Full Examples: Generic NAND Flash Programming

Example 1

CPU: OMAP3430 (Texas Instruments) based on an ARM11 core.

NAND Flash: MT29F1G08ABA (Micron)

NAND FLASH connected to the CS1 (Chip Selection 1) pin

Internal SRAM: 0x40200000

<cmd_reg>: 0x6E0000AC

<addr_reg>: 0x6E0000B0

<io_reg>: 0x6E0000B4

; Select OMAP3430 as target CPU.
SYStem.CPU OMAP3430

; Establish the communication between the debugger and the target CPU.
SYStem.Up

; Disable watchdog.
DO disable_watchdog.cmm

; Enable CS1 and define the base address of CS1(NAND Flash).
; LE = little endian
PER.Set SD:0x6E0000A8 %LE %Long 0x870

; Define the NAND Flash access timing.
PER.Set SD:0x6E000098 %LE %Long 0x60401
PER.Set SD:0x6E00009C %LE %Long 0x05010801

; Define CS1 for 8 bit NAND Flash.
PER.Set SD:0x6E000090 %LE %Long 0x0800 ; GPMC_CONFIG1_1

; Disable write protection for the NAND Flash device.
PER.Set SD:0x6E000050 %LE %Long 0x10 ; GPMC_CONFIG

; Reset the Flash declaration within TRACE32.
FLASHFILE.RESet

; Inform TRACE32 about the NAND Flash register addresses.
FLASHFILE.Config 0x6E0000AC 0x6E0000B0 0x6E0000B4

; Specify the NAND Flash programming algorithm and where it runs in the
; target RAM.
FLASHFILE.TARGET 0x40200000++0x3fff 0x40204000++0x3fff

~~/demo/arm/flash/byte/nand1g08.bin

; Check NAND Flash ID value.
FLASHFILE.GETID
NAND FLASH Programming User’s Guide | 51©1989-2024 Lauterbach

; Erase NAND Flash including bad block.
FLASHFILE.Erase 0x0--0xFFFFF /EraseBadBlocks

; Program my_file.bin to NAND Flash main area.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF

ENDDO
NAND FLASH Programming User’s Guide | 52©1989-2024 Lauterbach

Example 2

CPU: The STM32F103 is based on a Cortex-M3 core, which only runs Thumb-2
code. For this reason, a NAND Flash programming driver in thumb code is
required.

NAND Flash: Numonyx NAND512W3A2C (512 bytes per page), lock supported

NAND Flash connect to FSMC_NCE2, NAND Flash I/O

<cmd_reg>: 0x70020000

<addr_reg>: 0x70010000

<io_reg>: 0x70000000

Target RAM: 20 KB SRAM at 0x20000000
NAND FLASH Programming User’s Guide | 53©1989-2024 Lauterbach

; Select STM32F103 as target CPU.
SYStem.CPU STM32F103ZE

; Establish the communication between the debugger and the target CPU.
SYStem.Up

; Clock enable to use FSMC and GPIO group related with NAND Flash.
PER.Set SD:0x40021014 %Long 0x114 ; FSCM clock enable
PER.Set SD:0x40021018 %Long 000001E0 ; GPIOD, GPIOE, GPIOF, GPIOG enable
; GPIO configuration CLE, ALE, D0->D3, NOE, NWE and NCE2
; (Output 50Mhz AF_PP), NWAIT((input pull-up) NAND pin configuration
PER.Set SD:0x40011400 %Long 0xB8BB44BB ; GPIOD_CRL
PER.Set SD:0x40011404 %Long 0xBB4BB444 ; GPIOD_CRH
PER.Set SD:0x4001140C %Long 0x00000040 ; GPIOD_ODR pin6
; D4->D7 NAND pin configuration (output 50Mhz AF_PP)
PER.Set SD:0x40011800 %Long 0xB4444444 ; GPIOE
PER.Set SD:0x40011804 %Long 0x44444BBB ; GPIOE
; INT2 NAND pin configuration (input pull-up)
PER.Set SD:0x40012000 %Long 0x48444444 ; GPIOG pin6
PER.Set SD:0x4001200C %Long 0x00000040 ; GPIOG_ODR pin6
; memory timing register
PER.Set SD:0xA0000068 %Long 0x01020301 ; FSMC_PMEM2
PER.Set SD:0xA000006C %Long 0x01020301 ; FSMC_PATT2
; Define & enable NAND Flash, 512 byte per page, ECC enable,
; 8 bit data width.
PER.Set SD:0xA0000060 %Long 0x0002004E ;FSMC_PCR2

; Declarations for NAND Flash programming
FLASHFILE.RESet
FLASHFILE.CONFIG 0x70020000 0x70010000 0x70000000
FLASHFILE.TARGET 0x20000000++0x1fff 0x20002000++0x1fff
 ~~/demo/arm/flash/byte/nand1208_cortexm3.bin

; Unlock, erase and program.
FLASHFILE.GETID
FLASHFILE.UNLOCK 0x000000++0xFFFFFF
FLASHFILE.Erase 0x00000++0xFFFFFF /EraseBadBlocks
FLASHFILE.LOAD my_main_file.bin
ENDDO
NAND FLASH Programming User’s Guide | 54©1989-2024 Lauterbach

Full Example: CPU-Specific NAND Flash Programming

CPU: i.MX31 (Freescale)

NAND Flash: MT29F1G08 (Micron)

NAND Flash connected to the NFCE (Flash Chip Enable) pin

<base_address>: 0xB8000000

Target RAM: 16KB SRAM at 0x1FFFC000

; Select i.MX31 as target CPU and establish communication between
; debugger and i.MX31.
SYStem.RESet
SYStem.CPU MCIMX31
SYStem.Option.ResBreak OFF
SYStem.JtagClock RTCK
SYStem.Up

; Declare the NAND Flash Controller.
&nand_ctrl_base_addr=0xB8000000
FLASHFILE.RESet
FLASHFILE.CONFIG &nand_ctrl_base_addr , ,
FLASHFILE.TARGET 0x1FFFC000++0x1FFF 0x1FFFE000++0x1FFF
 ~~/demo/arm/flash/byte/nand1g08_imx.bin

; Erase and program.
FLASHFILE.GETID
FLASHFILE.Erase 0x0++0xFFFFF /EraseBadBlocks
FLASHFILE.LOAD C:\T32\my_file.bin 0x0++0xFFFFF

ENDDO
NAND FLASH Programming User’s Guide | 55©1989-2024 Lauterbach

About OneNAND Flash Devices

A OneNAND Flash is a special NAND Flash type:

• A OneNAND Flash has a NOR Flash programming interface between the CPU and the OneNAND.

• The NAND Flash controller logic is part of the OneNAND Flash, so the target CPU does not need
an integrated NAND Flash controller.

Buffer RAM

Boot RAM

Data RAM

State Machine

NAND

FLASH

Array
Internal Registers
(Address/Command
/Configuration/Status
Registers)

Error

Logic
Correction

B
u

s In
te

rfa
ce

Figure: OneNAND Flash Block Diagram
NAND FLASH Programming User’s Guide | 56©1989-2024 Lauterbach

Scripts for OneNAND Flash Devices

This chapter describes how to create scripts for OneNAND Flash programming.

The steps and the framework (see below) provide an overview of the process. They are described in detail in
the following sections.

The following steps are necessary to create a new script:

1. Establish communication between debugger and target CPU.

2. Configure the OneNAND Flash bus.

3. Reset the NAND Flash environment in TRACE32 to its default values.

4. Inform TRACE32 about the OneNAND Flash address (Flash declaration).

5. Inform TRACE32 about the OneNAND Flash programming algorithm.

6. Check the identification from the OneNAND Flash device.

7. Erase the OneNAND Flash device.

8. Program the OneNAND Flash device.
NAND FLASH Programming User’s Guide | 57©1989-2024 Lauterbach

The following framework can be used as base for OneNAND Flash programming:

An ellipsis (…) in the framework indicates that command parameters have been omitted here for space
economy.

A template script (*.cmm) for OneNAND Flash programming is provided by Lauterbach. It can be found in
the TRACE32 installation directory.

~~/demo/<architecture>/flash/onenand.cmm

Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

; Establish the communication
; between the CPU and the TRACE32
; debugger.

; Configure the OneNAND Flash
; controller.

FLASHFILE.RESet ; Reset the OneNAND Flash
; declaration within TRACE32.

FLASHFILE.CONFIG … ; Inform TRACE32 about the
; OneNAND Flash register addresses.

FLASHFILE.TARGET … ; Specify the OneNAND Flash
; programming algorithm and where
; it runs in target RAM.

FLASHFILE.GETID ; Get the ID values of the OneNAND
; Flash.

FLASHFILE.Erase … ; Erase the OneNAND Flash.

FLASHFILE.LOAD <main_file> … ; Program the file to the OneNAND
; Flash (main area).

NOTE: The parametrization of FLASHFILE.CONFIG and FLASHFILE.TARGET
requires expert knowledge.
NAND FLASH Programming User’s Guide | 58©1989-2024 Lauterbach

Establishing Communication between Debugger and Target CPU

OneNAND Flash programming with TRACE32 requires that the communication between the debugger and
the target CPU is established. The following commands are available to set up this communication:

Configuring the OneNAND Flash Bus

Programming an off-chip OneNAND Flash devices requires a proper initialization of the external bus
interface. The following settings in the bus configuration might be necessary:

• Definition of the base address of the OneNAND Flash devices

• Definition of the size of the OneNAND Flash devices

• Definition of the data bus width that is used to access the OneNAND Flash devices

• Definition of the timing (number of wait states for the access to the OneNAND Flash devices)

• Definition of the bus type of the OneNAND Flash devices (for example, muxed mode)

Example: Define the bus configuration registers for the OneNAND Flash device.

SYStem.CPU <cpu> Specify your target CPU.

SYStem.Up Establish the communication between the
debugger and the target CPU.

SYStem.CPU OMAP3430 ; Select OMAP3430 as target CPU.

SYStem.Up ; Establish the communication between the
; debugger and the target CPU.

PER.Set SD:0x6E0000D8 %Long
0x8000080

; Enable chip selection and define
; 128MB OneNAND Flash size and the
; base address is 0x8000000.

PER.Set SD:0x6E0000C0 %Long 0x1200 ; Define chip selection for 16 bit
; muxed (address & data) for
; OneNAND Flash.
NAND FLASH Programming User’s Guide | 59©1989-2024 Lauterbach

Resetting Default Values

The following command is used to reset the OneNAND Flash environment in TRACE32 to its default values.

Informing TRACE32 about the OneNAND Flash Address

The following command is available to inform TRACE32 about the start address of the OneNAND Flash
base register.

For information about the OneNAND Flash base register, refer to the manufacturer’s processor manual.

Example: base address of the OneNAND Flash controller in the OMAP3430 as target CPU:

FLASHFILE.RESet Reset the OneNAND Flash
environment in TRACE32 to its
default values.

FLASHFILE.CONFIG <base_address> , , Inform TRACE32 about the start
address of the OneNAND Flash
base register.
, represents don’t-care parameters.

; Inform TRACE32 about the start address of the OneNAND Flash
; base register.
FLASHFILE.Config 0x08000000 , ,
NAND FLASH Programming User’s Guide | 60©1989-2024 Lauterbach

Informing TRACE32 about the OneNAND Flash Programming Algorithm

The following command is available to inform TRACE32 about the OneNAND Flash device to be
programmed:

Parameters

• <code_range>

Define an address range in the target´s RAM to which the OneNAND Flash programming
algorithm is loaded.

Required size for the code is: size_of(<file>) + 32 byte

FLASHFILE.TARGET <code_range> <data_range> <file> Specify the OneNAND Flash
programming algorithm and where it
runs in the target RAM.

Flash algorithm

Figure: Memory mapping for the <code_range>

32 byte
NAND FLASH Programming User’s Guide | 61©1989-2024 Lauterbach

• <data_range>

Define the address range in the target´s RAM where the programming data is buffered for the
programming algorithm.

The argument buffer used for the communication between the TRACE32 software and the
programming algorithm is located at the first 64 bytes of <data_range>. The 256 byte stack is
located at the end of <data_range>.

<buffer_size> = size_of(<data_range>) - 64 byte argument buffer - 256 byte stack

<buffer_size> is the maximum number of bytes that are transferred from the TRACE32 software
to the OneNAND programming algorithm in one call.

• <file>

Lauterbach provides ready-to-run driver binary files for OneNAND Flash programming. They are
located in the TRACE32 installation directory:

They are located in the TRACE32 installation directory:

~~/demo/<architecture>/flash/<bus_width>/

Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

The Lauterbach home page provides the same information and is updated more often:
https://www.lauterbach.com/ylist.html.

For detailed information about how to determine the <file> parameter, see “Identifying the
Correct OneNAND Flash Driver for a OneNAND Device” on page 63.

64 byte argument buffer

Figure: Memory mapping for the <data_range>

buffer for programming data

256 byte stack
NAND FLASH Programming User’s Guide | 62©1989-2024 Lauterbach

https://www.lauterbach.com/ylist.html

Identifying the Correct OneNAND Flash Driver for a OneNAND Device

1. For information about supported Flash devices, access the Lauterbach website:
https://www.lauterbach.com/ylist.html.

2. Click the + tree button next to Tool Chain, and then click Supported Flash Devices.

3. Scroll through the list to locate the desired OneNAND Flash device.

Based on the name of the Flash device, you can identify the correct OneNAND Flash driver
binary file.

The Code column identifies the OneNAND Flash driver binary file.

The file onenand2g16.bin resides in this folder ~~/t32/demo/arm/flash/word

Where ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

The number 16 indicates the bus width and the folder where the file resides, i.e. in the word
folder.

Naming Convention for OneNAND Flash Drivers

The name of the OneNAND programming driver depends on:

1. The bus width between the CPU and the OneNAND Flash device.

2. The die, which describes the internal organization of the OneNAND Flash device

A 2 GByte OneNAND Flash, for example, can consist of a single 2 GByte die or of two 1 GByte dies.

Please refer to the datasheet of your OneNAND Flash device to get this information.

Naming examples are given in the table below:

OneNAND Flash Bus Width Die Driver

KFG1G16 16 1 GByte onenand1g16.bin

KFH2G16 16 1 GByte onenand1g16.bin

KFM1G16 16 1 GByte onenand1g16.bin

KFN2G16 16 1 GByte onenand1g16.bin
NAND FLASH Programming User’s Guide | 63©1989-2024 Lauterbach

https://www.lauterbach.com/ylist.html

KFG2G16 16 2 GByte onenand2g16.bin

KFH4G16 16 2 GByte onenand2g16.bin

KFM2G16 16 2 GByte onenand2g16.bin

KFN4G16 16 2 GByte onenand2g16.bin

OneNAND Flash Bus Width Die Driver
NAND FLASH Programming User’s Guide | 64©1989-2024 Lauterbach

Checking the Identification from the OneNAND Flash Device

The following command can be used to check if TRACE32 can access the OneNAND Flash device:

Example

Manufacturer ID: Samsung
Device ID: KFM2G162M

FLASHFILE.GETID Get the ID values for OneNAND
Flash.

; Open the TRACE32 AREA window.
AREA.view

; Check the access to the OneNAND Flash device
; by getting the manufacturer ID and the device ID.
FLASHFILE.GETID
NAND FLASH Programming User’s Guide | 65©1989-2024 Lauterbach

Erasing the OneNAND Flash Device

The following command is used to erase OneNAND Flash devices:

Example 1

Example 2

FLASHFILE.Erase <range> Erase OneNAND Flash except bad blocks.

FLASHFILE.Erase <range> /EraseBadBlocks Erase OneNAND Flash including bad
blocks.

; Erase 1MB starting from 0x0 except bad blocks.
FLASHFILE.Erase 0x0--0xFFFFF

; Erase 1MB starting from 0x0 including bad blocks.
; Afterwards all bad block information is erased.
FLASHFILE.Erase 0x0--0xFFFFF /EraseBadBlocks

MAIN SP

FLASHFILE.Erase …

Bad

FLASHFILE.Erase … /EraseBadBlocks

1

2

3

5

N

4

MAIN SP

Bad4

MAIN SP

Bad

1

2

3

5

N

4

MAIN SP

Result (1) Result (2)
NAND FLASH Programming User’s Guide | 66©1989-2024 Lauterbach

Programming the OneNAND Flash Device

OneNAND Flash devices consist of two areas:

• The main area contains the data which is accessed by the CPU.

• The spare area contains the bad block information and the ECC data.
For background information about ECC, see “Appendix: ECC (Error Correction Code) on
page 80.

The FLASHFILE commands allow to program the main and spare area independently.

Programming the Main Area (OneNAND)

The following commands are available to program the OneNAND Flash main area:

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

Example 1

FLASHFILE.LOAD <file> [<address> | <range>] Program OneNAND Flash
except bad blocks.

FLASHFILE.LOAD <file> [<address> | <range>] /WriteBadBlocks Program OneNAND Flash
including bad blocks.

; Program contents of my_file.bin to the OneNAND Flash main area starting
; at address 0x0.
; If a block is bad, the data is programmed to the next valid block.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF
NAND FLASH Programming User’s Guide | 67©1989-2024 Lauterbach

Example 2

Verifying the Main Area (OneNAND)

The following command is used to compare the OneNAND Flash main area with the specified target file:

The data from <file> is compared to the address range specified by <range>. If no <range> or <address> is
specified, comparing starts at address 0x0.

Example 1

Example 2

; Program the contents of my_file.bin to OneNAND Flash main area starting
; at address 0x0.
; Even if a block is bad, data will be programmed.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF /WriteBadBlock

FLASHFILE.LOAD <file> [<address> | <range>] /ComPare

; Verify the contents of my_file.bin against the NAND Flash main area,
; starting at address 0x0.
; If a block is bad, then the data in the file is verified against
; The next valid block up to the end of the range specified.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF /ComPare

; Verify the contents of my_file.bin against NAND Flash main area,
; starting at address 0x0.
; Even if a block is bad, the data will be verified against the bad block
; data.
FLASHFILE.LOAD my_file.bin 0x0--0xFFFFF /WriteBadBlock /ComPare

My_file OneNAND My_file OneNAND

Bad

 FLASHFILE.LOAD … /WriteBadBlockFLASHFILE.LOAD …

1

2

3

5

N

4

1

2

3

5

N

4

1

2

3

4

N-1

1

2

3

5

N

4Bad

Result (1) Result (2)

NAND FLASH Programming User’s Guide | 68©1989-2024 Lauterbach

Other Useful Commands (OneNAND)

Copying the Main Area (OneNAND)

The following command is available to copy:

• Any data from any CPU memory area to the OneNAND Flash, or

• Any data from one address range of the OneNAND Flash to another address range within the
same OneNAND Flash; for example, for backup purposes.

Example 1

Result (1):

FLASHFILE.COPY <source range> <target addr> Copy data from the source range
to the defined address of the
OneNAND Flash.

FLASHFILE.COPY <source range> <target addr> /ComPare Verify the source range data
against the target range data.

; Copy the 2MB virtual memory data at 0x0 to the OneNAND Flash address
; at 0x100000.
; Bad blocks are skipped, data is written to the next valid block.
; VM: stands for virtual memory.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000

Data is copied from the
CPU to the OneNAND Flash
NAND FLASH Programming User’s Guide | 69©1989-2024 Lauterbach

Example 2

Example 3

; Verify the data between virtual memory and OneNAND Flash.
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000 /ComPare

; Copy the 4MB OneNAND Flash data at 0x0 to the OneNAND Flash
; at 0x800000.
; Bad blocks are skipped, data is written to the next valid block.
FLASHFILE.COPY 0x0--0x3FFFFF 0x800000

; Verify the 4MB OneNAND Flash data between 0x0 and 0x800000.
FLASHFILE.COPY 0x0--0x3FFFFF 0x800000 /ComPare
NAND FLASH Programming User’s Guide | 70©1989-2024 Lauterbach

Modifying the Main Area (OneNAND)

The following command is available to modify the contents of the OneNAND Flash. The maximum range
that one FLASHFILE.Set command can modify is only one block of the Flash memory. If you want to modify
three blocks, you need three FLASHFILE.Set commands, etc.

Example 1

Example 2

Example 3

FLASHFILE.Set [<address> | <range>] %<format> <data> Modify the contents of the
OneNAND Flash.

; Write 4 bytes of data (= 0x12345678) to the address 0x100000.
; LE = little endian
FLASHFILE.Set 0x100000 %LE %Long 0x12345678

; Write data 0x0 to the address range 0x100000++0xFFF.
FLASHFILE.Set 0x100000++0xFFF %Byte 0x0

; A OneNAND Flash has 128KB per block (0x20000).
; Write data 0x0 from 0x100000 to 0x15FFFF in the OneNAND Flash.
FLASHFILE.Set 0x100000++0x1ffff %Byte 0x0
FLASHFILE.Set 0x120000++0x1ffff %Byte 0x0
FLASHFILE.Set 0x140000++0x1ffff %Byte 0x0

Result (1)

Result (2)
NAND FLASH Programming User’s Guide | 71©1989-2024 Lauterbach

Programming the Spare Area (OneNAND)

The following commands are available to program the OneNAND Flash spare area:

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0x0. Currently only binary files can be programmed.

Program the OneNAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>]

Program the OneNAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks

Compare the OneNAND Flash spare area except bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /ComPare

Compare the OneNAND Flash spare area including bad blocks.

FLASHFILE.LOADSPARE <file> [<address> | <range>] /WriteBadBlocks /ComPare

NOTE: • You need a third-party tool to create the spare file (<file>).
• Be careful when you specify <range>: You should input <range> in the

spare area address format, not in the main area format (see figure
below).

0x0--0x1FF

0x10--0x1F

0x20--0x2F

0x0--0xF

0x50--0x5F

0x30--0x3F

0x40--0x4F

N>>5--(N>>5)+0xF

0x200--0x3FF

0x400--0x5FF

0x600--0x7FF

0x800--0x9FF

0xA00--0xBFF

0xC00--0xDFF

N--(N+0x1FF)

0x60--0x6F

Spare Area AddrMain Area Addr 2
5

Small Page OneNAND

0x0--0x7FF

0x40--0x7F

0x80--0xBF

0x0--0x3F

0x140--0x17F

0xC0--0xFF

0x100--0x13F

N>>5--(N>>5)+0x3F

0x800--0xFFF

0x1000--0x17FF

0x1800--0x1FFF

0x2000--0x27FF

0x2800--0x2FFF

0x3000--0x37FF

N--(N+0x7FF)

0x180--0x1BF

Spare Area AddrMain Area Addr 2
5

Large Page OneNAND
NAND FLASH Programming User’s Guide | 72©1989-2024 Lauterbach

Example 1

Example 2

When specifying the address range, remember to use the address format of the spare area.

Example 3

Example 4

; Write my_spare.bin to the OneNAND Flash spare area.
; Start at the address 0x0 of the spare area.
; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my_spare.bin 0x0

; Write 32KB of my_spare.bin to the specified address range
; of the spare area.
; The bad blocks of my_spare.bin are excluded.
FLASHFILE.LOADSPARE my_spare.bin 0x0--0x7FFF

; Write my_spare.bin to the spare area.
; Start at the address 0x0 of the spare area.
; Include the bad blocks of my_spare.bin.
FLASHFILE.LOADSPARE my_spare.bin 0x0 /WriteBadBlock

; Write 32KB of my_spare.bin to the spare area.
; Start at the address 0x0 of the spare area.
; Include the bad blocks of my_spare.bin.
FLASHFILE.LOADSPARE my_spare.bin 0x0--0x7FFF /WriteBadBlock
NAND FLASH Programming User’s Guide | 73©1989-2024 Lauterbach

Example 5

; Compare the entire file my_spare.bin with the spare area.
; Start at the address 0x0 of the spare area.
FLASHFILE.LOADSPARE my_spare.bin 0x0 /ComPare

NOTE: OneNAND Flash controllers generate the ECC data automatically when data is
programmed to the main area, so the ECC codes in the spare area do not need to
be programmed.

Bad

FLASHFILE.LOADSPARE …

My_Spare
OneNAND
Main SP

1

2

3

5

N

4

1

2

3

4

N-1

Bad

FLASHFILE.LOADSPARE … /WriteBadBlock

My_Spare
OneNAND
Main SP

1

2

3

5

N

4

1

2

3

5

N

4

Result (1 and 2) Result (3 and 4)
NAND FLASH Programming User’s Guide | 74©1989-2024 Lauterbach

Reading/Saving the OneNAND Flash Device

The CPU cannot read OneNAND Flash devices directly. But TRACE32 provides special commands for
reading OneNAND Flash devices. The contents of the OneNAND Flash are displayed in a window.

Reading the Main/Spare Area (OneNAND)

The following commands are available to read the OneNAND Flash areas.

Example 1

Example 2

FLASHFILE.DUMP [<address>] [/<format>] Display a hex-dump of the OneNAND
Flash main area.

FLASHFILE.DUMP [<address> /SPARE [/Track] Display a hex-dump of the OneNAND
Flash spare area.

; Display a hex-dump of the OneNAND Flash main area starting at 0x1000.
; Display the information in a 32-bit format (Long option).
FLASHFILE.DUMP 0x1000 /Long

; Display a hex-dump of the OneNAND Flash spare area.
; The cursor in the spare area display follows the cursor movements in
; the main area display (Track option).
FLASHFILE.DUMP /SPARE /Track

Result (1)

Result (2)
NAND FLASH Programming User’s Guide | 75©1989-2024 Lauterbach

Saving the Main Area (OneNAND)

The following commands are available to save the contents of the OneNAND Flash main area to a file.

Example 1

Example 2

FLASHFILE.SAVE <file> <range> Save the contents of the OneNAND Flash
main area into <file>, bad blocks are
saved.

FLASHFILE.SAVE <file> <range> /SkipBadBlocks Save the contents of the OneNAND Flash
main area into <file>, bad blocks are
skipped.

; Save 1MB of the OneNAND Flash main area starting at 0x0 to the file
; my_dump.bin.
; The contents of bad blocks are also saved.
FLASHFILE.SAVE my_dump.bin 0x0--0xFFFFF

; Save 1MB of the OneNAND Flash main area starting at 0x0 to the file
; my_dump.bin.
; The contents of bad blocks are skipped.
FLASHFILE.SAVE my_dump.bin 0x0--0xFFFFF /SkipBadBlocks

Bad

FLASHFILE.SAVE …

my_dump.bin
OneNAND
Main SP

Bad

1

2

3

4

N

1

2

3

4

N

Bad

FLASHFILE.SAVE … /SkipBadBlocks

my_dump.bin
OneNAND
Main SP

1

2

3

4

N-1

1

2

3

4

N

Result (1) Result (2)
NAND FLASH Programming User’s Guide | 76©1989-2024 Lauterbach

Saving the Spare Area (OneNAND)

The following commands are available to save the contents of the OneNAND Flash spare area to a file.

Please be careful when you specify <range>:

You should input <range> in the spare area address format, not in the main area format (see figure below).

Example 1

Example 2

FLASHFILE.SAVESPARE <file> <range> Save the contents of the OneNAND
Flash spare area into <file>, bad
blocks are saved.

FLASHFILE.SAVESPARE <file> <range> /SkipBadBlocks Save the contents of the OneNAND
Flash spare area into <file>, bad
blocks are skipped.

; Save 32KB of the OneNAND Flash spare area starting at 0x0 to the file
; my_dump_spare.bin.
; The contents of bad blocks are also saved.
FLASHFILE.SAVESPARE my_dump_spare.bin 0x0--0x7FFF

; Save 32KB of the OneNAND Flash spare area starting at 0x0 to the file
; my_dump_spare.bin.
; The contents of bad blocks are skipped.
FLASHFILE.SAVESPARE my_dump_spare.bin 0x0--0x7FFF /SkipBadBlocks

0x0--0x1FF

0x10--0x1F

0x20--0x2F

0x0--0xF

N>>5--(N>>5)+0xF

0x200--0x3FF

0x400--0x5FF

N--(N+0x1FF)

Spare Area AddrMain Area Addr
2

5

Small Page OneNAND

0x0--0x7FF

0x40--0x7F

0x80--0xBF

0x0--0x3F

N>>5--(N>>5)+0x3F

0x800--0xFFF

0x1000--0x17FF

N--(N+0x7FF)

Spare Area AddrMain Area Addr
2

5

Large Page OneNAND
NAND FLASH Programming User’s Guide | 77©1989-2024 Lauterbach

Bad

FLASHFILE.SAVESPARE …

my_dump_spare.bin
OneNAND
Main SP

Bad

1

2

3

4

N

1

2

3

4

N

Bad

FLASHFILE.SAVESPARE … /SkipBadBlocks

my_dump_spare.bin
OneNAND
Main SP

1

2

3

4

N-1

1

2

3

4

N

Result (1) Result (2)
NAND FLASH Programming User’s Guide | 78©1989-2024 Lauterbach

Full Example

OneNAND Flash controllers generate the ECC data automatically when data is programmed to the main
area, so the spare area does not need to be programmed.

CPU: OMAP3430

OneNAND Flash: KFM2G162M(SAMSUNG)

Bus width: 16-bit muxed

Die: 2 GByte

; Select OMAP3430 as target CPU.
SYStem.CPU OMAP3430

; Establish the communication between the debugger and the target CPU.
SYStem.Up

; Define CS2 for 16 bit muxed (address & data) OneNAND Flash.
PER.Set SD:0x6E0000C0 %l 0x1200 ; GPMC_CONFIG1_2

; Enable CS2 and define 128 MB size and the base address is 0x8000000.
PER.Set SD:0x6E0000D8 %l 0x848 ; GPMC_GPMC_CONFIG7_2

; Reset the Flash declaration.
FLASHFILE.RESet

; Specify the OneNAND Flash base address.
FLASHFILE.Config 0x08000000 , ,

; Specify the OneNAND Flash programming algorithm and where it runs
; in the target RAM.
FLASHFILE.TARGET 0x40200000++0x1fff 0x40202000++0x1fff
 ~~/demo/arm/flash/word/onenand2g16.bin

; Check OneNAND Flash ID value.
FLASHFILE.GETID

; Erase OneNAND Flash including bad blocks.
FLASHFILE.Erase 0x0--0xfffff /EraseBadBlocks

; Program my_file.bin to OneNAND Flash main area.
FLASHFILE.LOAD my_file.bin 0x0--0xfffff

ENDDO
NAND FLASH Programming User’s Guide | 79©1989-2024 Lauterbach

Appendix A: ECC (Error Correction Code)

The NAND Flash devices are arranged as an array of pages. Each page consists of 256/512/ 2048 byte
data and 8/16/64 byte spare (out of band) area. The spare area is used to store ECC (error correction code),
bad block information, and file system dependent data. The ECC location in the spare area is flexible,
depending on the customer’s flash file system.

Techniques used to detect and correct error bits include the Hamming, BCH, and Reed Solomon codes.

Hamming codes are most widely used for error detection and correction. According to the Hamming ECC
principle, the ECC codes consist of 3 bytes per 256 Kbyte or 3 bytes per 512 Kbyte. ECC codes allow the
NAND Flash controller to verify the data and in some cases to correct corrupted data.

How to Generate ECC and to Detect Error

The Hamming ECC can be applied to data sizes of 1 byte, 8 bytes 16 bytes, and so on. The following
paragraph shows a simple example for 1 byte (8 bit).

ECC Generation

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P4 P4’

P2 P2’ P2 P2’

P1 P1’ P1 P1’ P1 P1’P1 P1’

P4=Bit7(+)Bit6(+)Bit5(+)Bit4 P4’=Bit3(+)Bit2(+)Bit1(+)Bit0

P2=Bit7(+)Bit6(+)Bit3(+)Bit2 P2’=Bit5(+)Bit4(+)Bit1(+)Bit0

P1=Bit7(+)Bit5(+)Bit3(+)Bit1 P1’=Bit6(+)Bit4(+)Bit2(+)Bit0

(+) : XOR
NAND FLASH Programming User’s Guide | 80©1989-2024 Lauterbach

Error Detection with ECC

• P4, P2, P1 = column parity and the error bit position

• P2048, P1024, ..., P8 = line parity and the error byte position

For example, if you get an ECC result like this 01001100 110 (P1024, P512, ..., P2, P1) in the 256byte ECC
generation, it means that the error is located in the 6th bit of the 76th Byte.

Original Data:

P4 P4’ P2 P2’ P1 P1’

1 0 0 1 0 1

P4 P4’ P2 P2’ P1 P1’Changed Data:

P4 P4’ P2 P2’ P1 P1’

0 0 0 0 0 0

P4 P4’ P2 P2’ P1 P1’

P4 P4’ P2 P2’ P1 P1’

1 0 0 1 0 1

P4 P4’ P2 P2’ P1 P1’

So, the error location is at the P4, P2, P1 values (1 0 0 = Bit4)

XOR

1 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

Half bits (3/6) are different -> the error is correctable
All bits are ’0’ -> no error
NAND FLASH Programming User’s Guide | 81©1989-2024 Lauterbach

3bytes per 256bytes ECC codes

(+) : XOR

22bit ECC Code = 16bit line parity + 6 bit column parity

P8=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)bit2(+)bit1(+)bit0(+)P8

P1024=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)bit2(+)bit1(+)bit0(+)P1024

ECC0 ECC0~P64 ~P64’ ~P32 ~P32’ ~P16 ~P16’ ~P8 ~P8’

ECC0I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0

ECC1 ECC0~P1024 ~P1024’ ~P512 ~P512’ ~P256 ~P256’ ~P128 ~P128’

ECC2 ECC0~P4 ~P4’ ~P2 ~P2’ ~P1 ~P1’ 1 1

22-bit ECC Code Assignment Table
NAND FLASH Programming User’s Guide | 82©1989-2024 Lauterbach

3bytes per 512bytes ECC Codes

24bit ECC Code = 18bit line parity + 6bit column parity

ECC0 ECC0~P64 ~P64’ ~P32 ~P32’ ~P16 ~P16’ ~P8 ~P8’

ECC0I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0

ECC1 ECC0~P1024 ~P1024’ ~P512 ~P512’ ~P256 ~P256’ ~P128 ~P128’

ECC2 ECC0~P4 ~P4’ ~P2 ~P2’ ~P1 ~P1’ ~P2048 ~P2048’

24-bit ECC Code Assignment Table
NAND FLASH Programming User’s Guide | 83©1989-2024 Lauterbach

Appendix B: Spare Area Schemes

Linux MTD NAND Driver Default Spare Area Schemes

256 Byte Page Size

512 Byte Page Size

Offset Content Comment

0x0 ECC Byte 0 Error correction code byte 0

0x1 ECC Byte 1 Error correction code byte 1

0x2 ECC Byte 2 Error correction code byte 2

0x3 Autoplace 0

0x4 Autoplace 1

0x5 Bad Block
Marker

If any bit in this byte is zero, then
this block is bad.

0x6 Autoplace 2

0x7 Autoplace 3

Offset Content Comment

0x0 ECC Byte 0 Error correction code byte 0 of the
lower 256 Byte data in this page

0x1 ECC Byte 1 Error correction code byte 1 of the
lower 256 Bytes of data in this page

0x2 ECC Byte 2 Error correction code byte 2 of the
lower 256 Bytes of data in this page

0x3 ECC Byte 3 Error correction code byte 0 of the
upper 256 Bytes of data in this page

0x4 Reserved Reserved

0x5 Bad Block
Marker

If any bit in this byte is zero, then
this block is bad.
NAND FLASH Programming User’s Guide | 84©1989-2024 Lauterbach

2048 Byte Page Size

0x6 ECC Byte 4 Error correction code byte 1 of the
upper 256 Bytes of data in this page

0x7 ECC Byte 5 Error correction code byte 2 of the
upper 256 Bytes of data in this page

0x08 - 0x0F Autoplace 0 - 7

Offset Content Comment

0x0 Bad block
marker

If any bit in this byte is zero, then
this block is bad.

0x1 Reserved Reserved

0x02-0x27 Autoplace 0 -
37

0x28-0x2A ECC Byte 0-2 Error correction code 3 bytes of the
first 256 Byte data in this page

0x2B-0x2D ECC Byte 3-5 Error correction code 3 bytes of the
second 256 Byte data in this page

0x2E-0x30 ECC Byte 6-8 Error correction code 3 bytes of the
third 256 Byte data in this page

0x31-0x33 ECC Byte 9-11 Error correction code 3 bytes of the
fourth 256 Byte data in this page

0x34-0x36 ECC Byte 12-14 Error correction code 3 bytes of the
fifth 256 Byte data in this page

0x37-0x39 ECC Byte 15-17 Error correction code 3 bytes of the
sixth 256 Byte data in this page

0x3A-0x3C ECC Byte 18-20 Error correction code 3 bytes of the
seventh 256 Byte data in this page

0x3D-0x3F ECC Byte 21-23 Error correction code 3 bytes of the
eighth 256 Byte data in this page
NAND FLASH Programming User’s Guide | 85©1989-2024 Lauterbach

SAMSUNG Standard Spare Area Schemes

512B(Small Page): 16Byte Spare Area

2048B(Large Page): 64 Byte Spare Area

Description of the Spare Area

Offset Content Comment

0x0-0x2 LSN 0-2 Logical Sector Number

0x3-0x4 WC 0-1 Status flag against sudden power
failure during write

0x5 BI Bad block marker

0x6-0x8 ECC Byte 0-2 ECC code for 512KB main area data

0x9-0x0A S-ECC Byte 0-1 ECC code for LSN data

0x0B-0x0F Reserved Reserved

Offset Content Comment

0x0 BI 1st bad block marker

0x1 Reserved Reserved

0x2-0x4 LSN 0-2 Logical sector number

0x5 Reserved Reserved

0x6-0x7 WC 0-1 Status flag against sudden power
failure during write

0x8-0x0A ECC Byte 0-2 ECC code for first 512KB main area data

2048 Byte

Main Area Spare
Area

1st page Main 2nd page Main 3rd page Main 4th page Main

1st page spare

2nd page spare
3rd page spare

4th page spare
NAND FLASH Programming User’s Guide | 86©1989-2024 Lauterbach

0x0B-0x0C S-ECC Byte 0-1 ECC Code for first LSN data

0x0D-0x0F Reserved Reserved

0x10-0x1F 2nd page spare structure is the same as
the 1st page spare

0x20-0x2F 3rd page spare structure is the same as
the 1st page spare

0x30-0x3F 4th page spare structure is the same as
the 1st page spare
NAND FLASH Programming User’s Guide | 87©1989-2024 Lauterbach

	NAND FLASH Programming User’s Guide
	Introduction
	How This Manual is Organized
	Related Documents
	Contacting Support

	List of Abbreviations
	Background Information
	What is a NAND Flash Device?
	About Blocks, Pages, Main Area, and Spare Area
	About Bad Block Markers
	About NAND Flash Controllers

	Standard Approach
	Identifying and Running Scripts for NAND Flash Programming
	If There Is No Script

	Scripts for NAND Flash Programming
	Establishing Communication between Debugger and Target CPU
	Configuring the NAND Flash Controller
	Resetting Default Values
	Identifying the Type of NAND Flash Controller
	Informing TRACE32 about the NAND Flash Register Addresses
	Informing TRACE32 about the NAND Flash Programming Algorithm
	Identifying the Correct Driver Binary File for a NAND Flash Device
	File Name Convention for NAND Flash Drivers
	Finding the <nandflash_code> of a NAND Flash Device
	Examples for Generic NFCs

	Checking the Identification from the NAND Flash Device
	Erasing the NAND Flash Device
	Programming the NAND Flash Device
	Programming the Main Area
	Verifying the Main Area

	Other Useful Commands (NAND)
	Writing Other File Formats to the Main Area
	Modifying the Main Area
	Copying the Main Area
	Programming the Spare Area
	Programming the ECC Code to the Spare Area
	Reading/Saving the NAND Flash Device
	Reading the Main/Spare Area

	Full Examples: Generic NAND Flash Programming
	Example 1
	Example 2

	Full Example: CPU-Specific NAND Flash Programming

	About OneNAND Flash Devices
	Scripts for OneNAND Flash Devices
	Establishing Communication between Debugger and Target CPU
	Configuring the OneNAND Flash Bus
	Resetting Default Values
	Informing TRACE32 about the OneNAND Flash Address
	Informing TRACE32 about the OneNAND Flash Programming Algorithm
	Identifying the Correct OneNAND Flash Driver for a OneNAND Device
	Naming Convention for OneNAND Flash Drivers

	Checking the Identification from the OneNAND Flash Device
	Erasing the OneNAND Flash Device
	Programming the OneNAND Flash Device
	Programming the Main Area (OneNAND)
	Verifying the Main Area (OneNAND)

	Other Useful Commands (OneNAND)
	Copying the Main Area (OneNAND)
	Modifying the Main Area (OneNAND)
	Programming the Spare Area (OneNAND)
	Reading/Saving the OneNAND Flash Device
	Reading the Main/Spare Area (OneNAND)
	Saving the Main Area (OneNAND)
	Saving the Spare Area (OneNAND)

	Full Example

	Appendix A: ECC (Error Correction Code)
	How to Generate ECC and to Detect Error
	3bytes per 256bytes ECC codes
	3bytes per 512bytes ECC Codes

	Appendix B: Spare Area Schemes
	Linux MTD NAND Driver Default Spare Area Schemes
	SAMSUNG Standard Spare Area Schemes

