LAUTERBACH A

Integration for X-Tools and X32



Integration for X-Tools and X32

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES  ....cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
3rd-Party Tool INtegrations ........cccccccccmmmmiiiiiiiii e r—~
Integration for X-Tools and X32 .......ccccoimiirmmrmmminsmrrmnnss s s sss s s ssss s s e sass s sennas 1
0 Y= = 3
Brief Overview of Documents for New USErS ........ccccccciiininimninnnssssnnnsssss s sssssssssssnans 3

L0 T T=T - 1 To o RN 1= o o 4
1= =11 14T o 4

£ T (0 o3RS =T o 1T Vo N 5
1= o T IO T 13T = 1 Lo L= 6
Set Breakpoint Set breakpoint on current line 6
Delete Breakpoint Delete breakpoint on current line 6

List of all Breakpoints Lists the breakpoints 6

Go Continue application 6
Break Stop application 6

Go until Cursor Continue application until this line 7

Step Over Step over function call 7

Step Into Step into function call 7
Watch Variable Add variable to watch window 7
Working with the X-TOOLS eXtensioNns ........ccccciicmmiismminissmmssnsissss s ssssssssssssssssssssasssnsas 8
8 o T T o e o = 1 T 9

©1989-2024 Lauterbach Integration for X-Tools and X32 | 2



Integration for X-Tools and X32

Version 06-Jun-2024

Overview

This interface integrates the X-TOOLS / X32 tool series (blue river software GmbH) and TRACE32. Current
supported versions are:

X-TOOLS Version 4.03
X32 Version 2.0

Hosts: Windows95, Windows NT

In the further description, both X-TOOLS Classic and X32 are referred to as X-TOOLS.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach Integration for X-Tools and X32 | 3



Operation Theory

X-TOOLS provides an additional menu, which allows to control TRACE32 main features via X-TOOLS. To
access these menu items, you have to install an helper application ("WxT32.exe") that manages the
communication between X-TOOLS and TRACE32. X-TOOLS passes all requests via DDE messages to the
helper application. This application converts the requests and sends them to the TRACES32 display driver via
sockets (important: WINSOCK has to be installed!). The display driver transports the requests to the
TRACE32. The answer goes exactly the same way backwards.

X-TOOLS --> WxT32 --> t32 --> TRACE32

NOTE: This integration uses internally the TRACE32 Remote APL.
The Remote API has restrictions if TRACES32 runs in demo mode.
Please see there for further details.

Installation

Follow these steps to install the X-TOOLS extension for TRACE32:
1. Copy the file "~~/demo/env/xtools/wxt32.exe" to your X-TOOLS directory.

2. Edit your "config.t32" file: Add between two empty lines the following statements, if not already
there:

RCL=NETASSIST
PACKLEN=1024

No "PORT=" line should follow. The port defaults to 20000, and this is the only one currently
usable.

3. Start X-TOOLS, select menu Extras->Tools...
Press the “Add” button and choose “WxT32.exe”.
Press “OK”.

4. If you like, you can add the startup call for your TRACE32 debugger to the “Tools” menu.

©1989-2024 Lauterbach Integration for X-Tools and X32 | 4



Startup Sequence

For the first try on the X-TOOLS integration, follow the steps below. If you once got experienced, you can
customize your own startup sequence, e.g. starting the WxT32 only, when it is needed.

1. Switch on power on TRACE32 and your target.

2 Start the TRACES32 debugger.

3 Change the directory inside TRACE32 to your application.
4. Setup TRACE32 and load your application.
5

Start X-TOOLS. If you followed the installation steps above, the “Tools” menu should contain an
item called “WxT32”.

6. Start WxT32 by choosing this menu item. WxT32 will automatically establish a DDE connection
to X-TOOLS and connect to the TRACE32 debugger. X-TOOLS then loads the current source file
and places the cursor to the line that represents the current program counter address.

7. After the application came up, try "Step", “Go” etc.

©1989-2024 Lauterbach Integration for X-Toolsand X32 | 5



Menu Commands

X-TOOLS provides a menu (“Debugger’) to control TRACE32. The functionality of these menu items are
described in the online help of X-TOOLS. Please see there for details. This chapter contains additional
information for each menu item.

Set Breakpoint Set breakpoint on current line

Equivalent debugger command: Break.Set

Sets a program breakpoint on the line currently marked by the cursor.

Delete Breakpoint Delete breakpoint on current line

Equivalent debugger command: Break.Delete

Deletes the program breakpoint on the line currently marked by the cursor.

List of all Breakpoints Lists the breakpoints

No actions on TRACE32 performed.

X-TOOLS lists all breakpoints known by itself.

Go Continue application

Equivalent debugger command: Go.direct

This command starts the application. The helper application watches the state of TRACES32 and informs X-
TOOLS of an eventual break (e.g. due to a breakpoint).

Break Stop application

Equivalent debugger command: Break.direct

This command stops the application.

©1989-2024 Lauterbach Integration for X-Toolsand X32 | 6



Go until Cursor Continue application until this line

Equivalent debugger command: Go.Till
A temporary program breakpoint is set on the marked HLL line and the application is continued. As soon as

a breakpoint is hit (either the temporary breakpoint or another set breakpoint), the application is stopped,
and the temporary breakpoint is deleted.

Step Over Step over function call

Equivalent debugger command: Step.Over

Performs an HLL single step. If a function is called, the emulation will stop when the function returned to the
caller.

Step Into Step into function call

Equivalent debugger command: Step.Hll

Performs an HLL single step. If a function is called, the emulation will stop at the beginning of this function.

Watch Variable Add variable to watch window

Equivalent debugger command: Var.View

Adds the variable marked or selected by the cursor to the watch window inside the TRACE32 display. A view
window is created for each variable to watch.

©1989-2024 Lauterbach Integration for X-Tools and X32 | 7



Working with the X-TOOLS extensions

You have to keep some things in mind, when working with the integration. It is not dangerous to use both - X-
TOOLS Extension and TRACE32 debugger - to control the emulator. However in some cases the editor gets
confused.

X-TOOLS tracks the program counter when single stepping or breaking through its menu. It does not
recognize any action done in the TRACE32 debugger. That means, if you perform steps in TRACE32, X-
TOOLS will show you the wrong program line. But that is harmless, because performing the next “Step Into”
inside X-TOOLS will get you back to the right line.

The WxT32 integration tool has its own breakpoint management. Breakpoints that should be displayed in X-
TOOLS, MUST be setin X-TOOLS and MUST be deleted in X-TOOLS. X-TOOLS will not show breakpoints
set in the TRACE32 debugger. We strongly recommend to use EITHER the X-TOOLS extensions for
breakpoints OR the breakpoint commands in the display driver BUT NOT both mixed together.

©1989-2024 Lauterbach Integration for X-Toolsand X32 | 8



Known Problems

- Multiple HLL breakpoints on single ASM lines

The breakpoint management inside WxT32 works on HLL lines, while the breakpoint system inside
TRACE32 works on hardware addresses. If you set two breakpoints on different HLL lines, which represent
the same hardware address (e.g. comments), X-TOOLS will have two breakpoints, while TRACE32 will have
one. Deleting one of the HLL breakpoints will delete the hardware breakpoint. That means, in X-TOOLS
there is one breakpoint remaining, while TRACES32 has no breakpoint left.

Workaround: Set breakpoints only on code lines. When detecting multiple breakpoints on a single address,
delete all that breakpoints.

©1989-2024 Lauterbach Integration for X-Toolsand X32 | 9



	Integration for X-Tools and X32
	Overview
	Brief Overview of Documents for New Users
	Operation Theory
	Installation
	Startup Sequence
	Menu Commands
	Set Breakpoint      Set breakpoint on current line
	Delete Breakpoint      Delete breakpoint on current line
	List of all Breakpoints      Lists the breakpoints
	Go      Continue application
	Break      Stop application
	Go until Cursor      Continue application until this line
	Step Over      Step over function call
	Step Into      Step into function call
	Watch Variable      Add variable to watch window

	Working with the X-TOOLS extensions
	Known Problems


