
MANUAL

Integration for Simulink

Integration for Simulink

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 3rd-Party Tool Integrations .. 

 Integration for Simulink ... 1

 History .. 4

 Introduction ... 4

 Installation ... 5

 System Requirements 5

 License Requirements 5

 Installing the TRACE32 Integration for Simulink 5

 Updating the TRACE32 Integration for Simulink 6

 Deinstallation ... 7

 Select Connectivity API .. 8

 Custom Toolchains ... 9

 rtiostream API .. 10

 Demo Project 10

 Functional Overview 13

 Navigate to C/C++ Code - From Simulink to TRACE32 14

 Navigate to Model - From TRACE32 to Simulink 15

 Run until C/C++ Code using Temporary Breakpoints 16

 Set Breakpoint to C/C++ Code 18

 Remove Breakpoint for C/C++ Code 21

 Stop the Simulation 21

 Build Process 22

 Configuration of Models 23

 Code Coverage Measurement 25

 Code Execution Profiling 26

 Customize Execution Profiling 26

 Stack Profiling 26

 Customize Stack Profiling 26

 Report of Profiling Results 27

 Stack Memory Information 27

 PRACTICE Callbacks 28

 Customizing Callbacks 28
Integration for Simulink | 2©1989-2024 Lauterbach

 Callback Interface 28

 Callback Implementation 29

 Callback Events 29

 Enabling Callbacks 29

 Headless Mode 30

 DebugIOTool Debugger Abstraction Interface ... 31

 Board Descriptions ... 32

 Configuration of Models 33

 Troubleshooting .. 34

 Known Issues 35

 Help Us Help You - Export TRACE32 Information 36
Integration for Simulink | 3©1989-2024 Lauterbach

Integration for Simulink

Version 06-Jun-2024

History

28-Mar-2024 Add QT version conflicts to “Troubleshooting”, page 34.

23-Jan-2024 Add support for Linux.

23-Jan-2024 Installer executable is replaced by MATLAB toolbox.

Introduction

This document describes how to install, configure, and use the TRACE32 Integration for Simulink.

It is now common to perform simulation and verification of designs before committing to hardware. Such
solution can be achieved using tools like MATLAB and Simulink especially for the control engineering
market. It can save a lot of time and effort if the control loop can be tested for the effects of many variables
before finalizing the design. Simulink integrates the capability of generating code automatically from a
model; this feature can be used to check that the program behaves the same way on the control hardware
as in the simulation.

After creating the control algorithms and testing them with Simulink, the corresponding program code for the
processor of the control hardware can be generated from the control blocks using the Embedded Coder.
Using a TRACE32 debugger, the generated code can be loaded into the control hardware and tested in-situ.

Intended Audience

The users of the TRACE32 Integration for Simulink have to be familiar with TRACE32, MATLAB, and
Simulink.
Integration for Simulink | 4©1989-2024 Lauterbach

Installation

System Requirements

• Microsoft Windows or Linux

• TRACE32 installation from 02/2024

• MATLAB release R2014b or newer [rtiostream API]

• MATLAB release R2021a or newer [DebugIOTool Debugger Abstraction Interface]

• Additional MathWorks products:

- MATLAB

- Simulink

- Embedded Coder

- MATLAB Coder

- Simulink Coder

- Simulink Coverage [Code Coverage Measurement Only]

• MATLAB-supported compiler for MEX files

• TRACE32-supported cross compiler

• The command line tool t32cast. For more information, see “Application Note for t32cast”
(app_t32cast.pdf).

License Requirements

Using the TRACE32 Integration for Simulink requires additional licenses. Please contact your local sales
office or sales@lauterbach.com for additional details.

Installing the TRACE32 Integration for Simulink

To install the TRACE32 Integration for Simulink:

1. Start MATLAB.

2. Drag and drop the toolbox ~~/demo/env/matlabsimulink/t32xil.mltbx into the MATLAB
command window.
Integration for Simulink | 5©1989-2024 Lauterbach

http://www.lauterbach.com/clist.html
mailto:sales@lauterbach.com

Updating the TRACE32 Integration for Simulink

To update the TRACE32 Integration for Simulink:

1. Navigate to the subfolder ~~/demo/env/matlabsimulink of your TRACE32 installation
directory.

2. Place the newer version of the MATLAB toolbox into this subfolder.

3. Start MATLAB.

4. Drag and drop the toolbox ~~/demo/env/matlabsimulink/t32xil.mltbx into the MATLAB
command window to update the TRACE32 Integration for Simulink.
Integration for Simulink | 6©1989-2024 Lauterbach

Deinstallation

To uninstall the TRACE32 Integration for Simulink:

1. Start MATLAB

2. Select the MATLAB add-on “t32xil” for deinstallation.
Integration for Simulink | 7©1989-2024 Lauterbach

Select Connectivity API

TRACE32 XIL supports both the MATLAB rtiostream API and DebugIOTool debugger abstraction
interface for PIL target connectivity. After installation of TRACE32 XIL users can switch freely between both
interfaces.

To select the rtiostream API:

1. Choose one of the files sl_customization_custom_toolchain.p or
sl_customization_template_makefile.p and rename it to sl_customization.p.

2. Restart MATLAB

3. Execute the MATLAB command:

To select the DebugIOTool debugger abstraction interface:

1. Choose the file sl_customization_debugio.p and rename it to sl_customization.p.

2. Restart MATLAB

3. Execute the MATLAB command:

sl_refresh_customizations

sl_refresh_customizations
Integration for Simulink | 8©1989-2024 Lauterbach

Custom Toolchains

TRACE32 XIL comes with a set of custom build toolchains:

These toolchains coupled with a set of utility scripts can be found in the directory t32xil/toolchain:

To register your custom toolchain please create a new toolchain definition file and extend the provided utility
scripts. Additional information can be found here.

Toolchain Toolchain Configuration

TRACE32 XIL v1.0 | gmake makefile t32xil_tc.m

TRACE32 XIL GCC arm-none-eabi Cortex-R |
gmake makefile

t32xil_tc_gcc_arm_none_eabi_cortex_r.m

TRACE32 XIL GCC arm-none-eabi Cortex-M |
gmake makefile

t32xil_tc_gcc_arm_none_eabi_cortex_m.m

Utility Description

RegisterToolchains.m This script creates and registers ToolchainInfo
object for all custom toolchains located in the
folder "toolchain". m-files containing custom
toolchains need to start with "t32xil_tc".

rtwTargetInfo.m Custom toolchains can be registered after creation
of a ToolchainInfo object. To register an m-file with
name "rtwTargetInfo" has to be on the MATLAB
path.
Integration for Simulink | 9©1989-2024 Lauterbach

https://www.mathworks.com/help/coder/custom-toolchain-registration.html

rtiostream API

TRACE32 XIL is a fully integrated plug-in for Simulink that builds on the MATLAB rtiostream API for PIL
Target Connectivity to run processor-in-the-loop simulations with Simulink. Generated code can be easily
cross-compiled, deployed, executed and debugged on custom targets. Execution and stack profiling via
code instrumentation and execution of PRACTICE callbacks is supported during simulation.To quickly
switch between elements of your model and the corresponding sections of C/C++ and object code, you
can use the navigation features of the TRACE32 XIL plug-in.

The key features are:

• TRACE32 Remote API for generic target support

• Compatible with TRACE32 Instruction Set Simulator for easy testing on virtual targets

• Support for built-in target connectivity capabilities like code execution profiling and code
coverage

• Use TRACE32 features to diagnose errors on the target platform

• Bidirectional navigation between model and generated code

Demo Project

Lauterbach provides a demo project in the folder ~~/demo/env/matlabsimulink/t32xil/demos. We
recommend that you familiarize yourself with the TRACE32 XIL plug-in for Simulink by taking your first steps
in our demo project.

To run the demo project:

1. Double-click the *.exe to install the demo project.

2. Close all open TRACE32 instances.

3. Before you start TRACE32 for the first time from within Simulink, enable the port for
code-to-model navigation in the TRACE32 configuration file by taking these steps:

- Navigate to
~~/demo/env/matlabsimulink/t32xil/simulinktemplate.config.t32

- Delete the two comment signs (;) from the block shown below.

4. Start the demo project in Simulink by double-clicking this file
~~/demo/env/matlabsimulink/t32xil/demos/pil_referenced/rm57/r2018b/ini
t_model.m

; --------------------------(4)------------------------------
SIMULINK=NETASSIST <-- delete comment sign here
; Port for code-to-model navigation
PORT=20000 <-- delete comment sign here
Integration for Simulink | 10©1989-2024 Lauterbach

5. Once Simulink has started, double-click the file pil_topmodel_<target_board>.slx [A]:

6. Open the file trace32_settings.m [B] and increase the communication timeout value of
cfg.Timeout_Transfer.

This is to prevent error messages in Simulink while you are debugging an application in TRACE32.
The default timeout value is 10 seconds. Here, we have set the timeout value to 10000 seconds.

A

B

Integration for Simulink | 11©1989-2024 Lauterbach

7. In Simulink, click the Run button to compile the Simulink model.

- Simulink establishes a connection to the required TRACE32 instance.

- TRACE32 displays the state “stopped” in the state line. TRACE32 stays in the state “running”
if you have set the simulation stop time to inf in Simulink. To end the simulation in Simulink
and the application execution in TRACE32, click Stop in Simulink.

Additionally in our demo project, the following happens after the connection has been
established:

- The PRACTICE script trace32_<target_board>_startup.cmm is executed in TRACE32. For
convenient access to the script file, double-click it in Simulink’s Current Folder window pane.

- A List.Mix window opens in the main window of TRACE32 PowerView because the List.Mix
command is included in the PRACTICE script trace32_<target_board>_startup.cmm. The
List.Mix window displays the source code Simulink has generated based on your model.

Next:

• Functional Overview
Integration for Simulink | 12©1989-2024 Lauterbach

Functional Overview

In this section:

• Navigate to C/C++ Code, i.e. Simulink block -> Code in TRACE32

• Navigate to Model, i.e. Code in TRACE32 -> Simulink block

• Run until C/C++ Code using Temporary Breakpoints

• Set Breakpoint to C/C++ Code

• Remove Breakpoint for C/C++ Code

• Stop the Simulation
Integration for Simulink | 13©1989-2024 Lauterbach

Navigate to C/C++ Code - From Simulink to TRACE32

You can navigate from a Simulink block to TRACE32 to view the code generated from this block.

• Right-click a Simulink block, and then select TRACE32 XIL > Navigate to C++ Code.

A List window opens in TRACE32 PowerView, displaying the code generated from the selected
Simulink block.

The code generated from a single Simulink block may be found at more than one location within the source
code. For this reason more than one List window opens if Navigate to C++ Code is executed for some
Simulink blocks.

Integration for Simulink | 14©1989-2024 Lauterbach

Navigate to Model - From TRACE32 to Simulink

You can navigate from the source code displayed in a List window of TRACE32 PowerView back to the
corresponding Simulink block.

This navigation is made possible by navigation tags within the source code. A navigation tag is a special
comment containing the name of the Simulink block to which the generated code belongs. The required
navigation tags are created and updated by Simulink during the code generation phase.

Prerequisite(s):

Add this command to your PRACTICE start-up script (*.cmm) if code-to-model navigation is frequently used.

In our demo project, the PRACTICE start-up script is called trace32_<target_board>_startup.cmm. For
convenient access to the script file, double-click it in Simulink’s Current Folder window pane.

To navigate from TRACE32 to the respective block of the Simulink model:

• In a TRACE32 List window, right-click a comment line containing a navigation tag [A], and then
select Navigate to Model from the popup menu.

If the ECA data made available to TRACE32 is out of date, then TRACE32 disables the navigation
back to Simulink. That is, the Navigation to Model option is hidden in the popup menu.

The Simulink window is brought to the front, and the corresponding Simulink block blinks briefly.

sYmbol.ECA.LOADALL /SkipErrors

A

Integration for Simulink | 15©1989-2024 Lauterbach

Run until C/C++ Code using Temporary Breakpoints

From within Simulink, you can instruct TRACE32 PowerView to execute the software up to the code which
was generated from the corresponding Simulink block. This is useful for debugging an individual time step in
the Simulink model while the application is running in TRACE32.

On the TRACE32 PowerView side, this is done by automatically setting temporary breakpoint(s) and
executing a Go. Temporary breakpoints are automatically deleted once the temporary breakpoint has been
reached.

To run until C/C++ Code using temporary breakpoints:

1. In Simulink, enter the simulation stop time.

In case of our demo project, enter inf as the simulation stop time in the window of the
pil_topmodel_<target_board>.

2. In Simulink, click Run.

In case of our demo project, click Run in the window of the pil_topmodel_<target_board>.

- The model is now being executed in Simulink [A].

- The application code is now running in TRACE32, see state line at the bottom of the
TRACE32 PowerView window [B].

3. In Simulink, right-click a block, and then select TRACE32 XIL > Run until C/C++ Code from the
popup menu.

- TRACE32 stops the application execution at the temporary breakpoint you have just set from
within Simulink. The TRACE32 state line displays stopped at breakpoint.

- The GUI controls (popup menu, buttons, etc.) in Simulink are deactivated.

- If the code generated from the Simulink block is located at different source code positions,
software execution will stop in TRACE32 at the first temporary breakpoint which is hit.

- If the code generated from the block cannot be reached at all, the software execution won’t stop,
i.e. the target stays in the state running.

A B
Integration for Simulink | 16©1989-2024 Lauterbach

4. To view the current location of the PC (program counter), open a List.Mix window by typing
List.Mix at the TRACE32 command line.

5. To restore the full GUI control to Simulink, you need to stop the simulation as described in “Stop
the Simulation”, page 21.

Variation:

• For the List.Mix window to open automatically in TRACE32, include the List.Mix command in
your PRACTICE start-up script (*.cmm); see “Demo Project”, page 10.
Integration for Simulink | 17©1989-2024 Lauterbach

Set Breakpoint to C/C++ Code

From within Simulink, you can instruct TRACE32 PowerView to set breakpoints at the code sections which
were generated from the corresponding Simulink block. You can view the successful execution of this task
by opening a Break.List window in TRACE32.

Breakpoints set with the function Set Breakpoint to C/C++ Code are not deleted automatically by
TRACE32 once such a breakpoint has been reached in TRACE32.

By double-clicking a breakpoint in the Break.List window, you can view code and breakpoint in a List
window.

NOTE: • Clicking Run in Simulink deletes all existing breakpoints in TRACE32
because the entire code is re-generated. Therefore, you should set
breakpoints from within Simulink while the simulation is running in Simu-
link.

• Alternatively, you can specify breakpoints in your PRACTICE start-up
script (*.cmm). In this case you need to set the breakpoints to symbols
rather than addresses. These breakpoints are re-set when the model is
re-built.
Example: Break.Set pil_target_rm57 /Program

A Breakpoint address.

B Function name (which is the same as the \<module_name> in our demo project)

D

B

B C

E

A

Integration for Simulink | 18©1989-2024 Lauterbach

To set a breakpoint to C/C++ code:

1. In Simulink, enter the simulation stop time.

In case of our demo project, enter inf as the simulation stop time in the window of the
pil_topmodel_<target_board>.

2. In Simulink, click the Run button.

In case of our demo project, click the Run button in the window of the
pil_topmodel_<target_board>.

3. In Simulink, right-click a block, and then select TRACE32 XIL > Set Breakpoint to C/C++ Code
from the popup menu.

The block to which you have set a breakpoint is highlighted in orange.

4. In TRACE32, open a Break.List window to view the result.

C Number of lines between function name and breakpoint (line number offset).

D \<module_name>\<absolute_line_number>. Please note the leading backslash at the module
name.

E Red bars visualize breakpoints. Here a breakpoint in line 32.
Integration for Simulink | 19©1989-2024 Lauterbach

- The code generated from a single Simulink block may be found at more than one location
within the source code. For this reason more than one breakpoint is set if Set Breakpoint to
C/C++ Code is executed for some Simulink blocks [A].

- The GUI controls (popup menu, buttons, etc.) in Simulink are deactivated.

5. To view the current location of the PC (program counter), open a List.Mix window by typing
List.Mix at the TRACE32 command line.

6. To continue in TRACE32, click Go.

7. To restore the full GUI control to Simulink, you need to stop the simulation as described in “Stop
the Simulation”, page 21.

Variation:

• For the List.Mix window to open automatically in TRACE32, include the List.Mix command in
your PRACTICE start-up script (*.cmm); see “Demo Project”, page 10.

• The same tip applies to the Break.List window.

A Breakpoint addresses. B Function names.

C Number of lines between function name and breakpoint (line number offset).

D Any breakpoint that stops the application execution in TRACE32 is highlighted in yellow in
the Break.List window.

B

A

C

D

Integration for Simulink | 20©1989-2024 Lauterbach

Remove Breakpoint for C/C++ Code

Orange Simulink blocks indicate that breakpoints exist for the associated source code in TRACE32. If you no
longer need a breakpoint in the source code for particular orange block, you can delete this breakpoint from
within Simulink.

To delete breakpoints in the source code of TRACE32 from within Simulink:

• Right-click an orange Simulink block, and then select TRACE32 XIL > Remove Breakpoint for
C/C++ Code from the popup menu.

Result:

- In Simulink, a previously orange block then turns white again.

- In TRACE32, the deleted breakpoints are removed from the Break.List window.

Stop the Simulation

The GUI controls (popup menu, buttons, etc.) in Simulink are deactivated if the following two conditions
apply:

• The simulation is running in Simulink.

• The application execution in TRACE32 is stopped by a breakpoint or a temporary breakpoint.

To restore the full GUI control to Simulink, you need to stop the simulation as described in the steps
below.

To stop the simulation:

1. Open the Break.List window to check if any breakpoints are still enabled.

- Enabled breakpoints: Their font color is black.

- Disabled breakpoints: Their font color is gray.

2. Disable all breakpoints by clicking Disable All.

3. Click Go in any List.* window or click Go on the TRACE32 toolbar.

Since TRACE32 is now in the state running again, the GUI controls in Simulink are also re-activated.

4. In Simulink, click Stop.

The stop of the simulation in Simulink also causes TRACE32 to stop the application execution. The
TRACE32 state line displays stopped.
Integration for Simulink | 21©1989-2024 Lauterbach

Build Process

TRACE32 XIL has built-in support for both template makefiles used for building legacy models and custom
toolchains. Custom toolchains require MATLAB R2015b and newer.

To switch between both configurations the plug-in registration of TRACE32 XIL has to be altered.
The following steps are required:

1. Select the plug-in registration:

2. Delete or rename the current plug-in registration sl_customization.p.

3. Change the filename of the selected plug-in registration to sl_customization.p.

Build Method Plug-in Registration

Template Makefile sl_customization_template_makefile.p

Custom Toolchain sl_customization_custom_toolchain.p

NOTE: Starting with MATLAB R2018b TRACE32 XIL is configured to use custom
toolchains during the build process. However, template makefiles are used by
default for older versions.
Integration for Simulink | 22©1989-2024 Lauterbach

Configuration of Models

TRACE32 XIL is automatically selected for the execution of PIL simulations when top level model and its sub
and referenced modules are configured properly.

To configure a model for use, the following steps are necessary:

1. Open the dialog Model Configuration Parameters.

2. Configure the settings in the dialog Hardware Implementation for your target.

3. Select a supported system target file in the dialog Code Generation:

4. Configure the build process in the dialog Code Generation.

- Select a supported template makefile and a make command when building using template
makefile:

Model Type System Target File

AUTOSAR autosar.tlc

Embedded Coder ert.tlc

trace32_target_ert.tlc

Architecture Template Makefiles

ARM trace32_arm_tmf.tmf

C2000 trace32_c2000_tmf.tmf

Power Architecture trace32_mpc_tmf.tmf

RH850 trace32_rh850_tmf.tmf

TriCore trace32_tc_tmf.tmf

V800 trace32_v850_tmf.tmf
Integration for Simulink | 23©1989-2024 Lauterbach

- Select a supported toolchain when building using custom toolchains:

5. Add the template makefile to the MATLAB search path and configure it for your build toolchain.

6. Create a PRACTICE start-up script for your target:

7. Create a TRACE32 configuration file for your target:

- Select a TRACE32 operation mode (Instruction Set Simulator, ICD via USB, ...).

- Configure two ports for the TRACE32 Remote API.

8. Create a TRACE32 XIL settings file and add it to the search path.

Ready-to-run examples for the TRACE32 Instruction Set Simulator are located in the directory
~~/demo/env/matlabsimulink/t32xil/demos.

Toolchain Toolchain Configuration

TRACE32 XIL v1.0 | gmake makefile t32xil_tc.m

TRACE32 XIL GCC arm-none-eabi Cortex-R |
gmake makefile

t32xil_tc_gcc_arm_none_eabi_cortex_r.m

TRACE32 XIL GCC arm-none-eabi Cortex-M |
gmake makefile

t32xil_tc_gcc_arm_none_eabi_cortex_m.m

TRACE32 XIL TASKING VX-toolset for Tri-
Core | gmake makefile

t32xil_tc_tasking_ctc.m

TRACE32 XIL HighTec TriCore Development
Platform | gmake makefile

t32xil_tc_hightec_tricore_gcc.m

NOTE: This step is only required if you have configured the build process for template
makefiles. It can be omitted when a custom toolchain is used.

HELP.FILTER.Add intsimulink

ENTRY %LINE &ELF_FILE ;do not modify this line

IF (!OS.FILE(&ELF_FILE))
(
 PRINT %ERROR "The target binary location must be passed to the
script."
 ENDDO
)

...

ENDDO
Integration for Simulink | 24©1989-2024 Lauterbach

Code Coverage Measurement

To measure the code coverage during simulation Simulink Coverage is required. It can be configured via the
dialog “Coverage” in “Model Configuration Parameters”.
Integration for Simulink | 25©1989-2024 Lauterbach

Code Execution Profiling

To measure the duration of function calls and tasks code execution profiling can be used. The measurement
is performed during simulation by supplementing the generated code with instrumentation probes that track
the execution time by evaluation of the target’s hardware timers. After completion an execution profile of
functions and tasks can be viewed within MATLAB.

Customize Execution Profiling

Enabling execution profiling requires the following steps:

1. Specify a hardware timer for the PIL target connectivity API via the MATLAB Code Replacement
Tool.

2. Specify the name of the timer object in the TRACE32 XIL settings file.

Please refer to the MATLAB documentation for additional information on how to set up code execution
profiling for PIL simulations.

Stack Profiling

To measure the utilization of the stack memory on the target platform stack profiling can be applied. Stack
profiling reports the maximum amount of used stack memory after completion of the simulation.
The measurement is performed by marking the complete stack memory area with a byte pattern prior to the
start and verifying its integrity after the simulation has been completed.

Customize Stack Profiling

Enabling stack profiling requires the following configuration steps:

1. Create a variable on the MATLAB workspace with stack memory information for the current
target platform.

2. Specify the name of the variable in the TRACE32 XIL settings file.

3. Modify the PRACTICE start-up script to halt the target after completion of the initialization.

NOTE: TRACE32 XIL version 2.1747 or newer is required for code coverage
measurement. To check your version enter the command ver in the MATLAB
command prompt.
Integration for Simulink | 26©1989-2024 Lauterbach

Report of Profiling Results

After the end of the simulation a report of the stack profiling is displayed:

In addition the contents of the stack memory information are updated with the profiling results.

Stack Memory Information

Information about the stack memory section of the target is provided as MATLAB structure array:

Field description:

name Sets the display name of the stack memory section

startAddress Sets the starting address of the stack memory section in hexadecimal
notation

endAddress Sets the end address of the stack memory section in hexadecimal
notation

growthDirection Sets the growth direction of used stack memory during execution. The
values UP and Down are supported.

pattern Sets the byte pattern for marking unused stack memory in
hexadecimal notation.

maxUsageInBytes Is updated after completion of the simulation with the maximum
number of used stack memory bytes.

maxUsageInPercent Is updated after completion of the simulation with the percentage of
used stack memory bytes.
Integration for Simulink | 27©1989-2024 Lauterbach

PRACTICE Callbacks

To support complex analysis tasks with TRACE32, a number of callbacks can be configured to trigger the
execution of PRACTICE scripts at certain events during a simulation run. Passing and returning data
between MATLAB and TRACE32 is useful to model complex workflows.

Customizing Callbacks

Setting up PRACTICE callbacks requires the following steps:

1. Create one or more containers on the MATLAB workspace that reflect the callback interface for
data exchange with TRACE32.

2. Create PRACTICE script(s) that provide the implementation for the required callbacks.

3. Enable the callbacks in the TRACE32 XIL settings file.

Callback Interface

The callback interface is represented by a MATLAB structure array that consists of key-value pairs. Fields
can be either defined as input whose value is transferred to TRACE32 or as output whose value is updated
by TRACE32.

The example above defines the following callback interface:

The value type determines if a filed is interpreted as input or output. Input values must have type string,
whereas all outputs must be defined as empty arrays.

interface = struct('in1', 'input1', ...
 'in2', 'input2', ...
 'in3', 'input3', ...,
 'out1', [], ...
 'out2', []);

variable type value

in1 Input input1

in2 Input input2

in3 Input input3

out1 Output -

out2 Output -
Integration for Simulink | 28©1989-2024 Lauterbach

Callback Implementation

The PRACTICE script that is executed is responsible for processing the input arguments and returning its
results. Input and output argument are exchanged as a single string with key-value pairs.

Callback Events

The following simulation events are currently supported:

For each event callback implementation and callback interface can be defined via the TRACE32 XIL
settings file.

Enabling Callbacks

Callbacks can be configured via the function SetPracticeCallbacks() in the TRACE32 XIL settings file:

Each callback has the following parameters:

PRIVATE &in1
PRIVATE &in2
PRIVATE &in3

PARAMETERS ¶meters
&in1=STRing.SCANAndExtract("¶meters","IN1=","")
&in2=STRing.SCANAndExtract("¶meters","IN2=","")
&in3=STRing.SCANAndExtract("¶meters","IN3=","")

; Callback implementation here

PRINT " OUT1=output1 OUT2=output2 "

ENDDO

PreInit Simulation run is prepared, but has not started.

PostTerm Simulation run is completed.

%% ### Start: User adaptable values ###
hooks.PreInit = {'', ''}; % Triggered once immediately before the
 % simulation is started
hooks.PostTerm = {'callback', 'interface'}; % Triggered once after the
 % simulation has
 % terminated
% ### End: User adaptable values ###

Callback Implementation Path of the PRACTICE script implementing the callback

Callback Interface Name of the MATLAB structure array implementing the callback
interface
Integration for Simulink | 29©1989-2024 Lauterbach

To enable a callback both parameters must be provided. Callbacks are disabled by using two empty strings
as parameters.

Headless Mode

When running in headless mode the operation of TRACE32 XIL is optimized for use with environment for
continuous integration/deployment. Functions of TRACE32 XIL that are not required in those environments
are disabled. Headless mode can be enabled via the TRACE32 XIL settings file:

cfg.HeadlessMode = struct('Enabled', true);
Integration for Simulink | 30©1989-2024 Lauterbach

DebugIOTool Debugger Abstraction Interface

TRACE32 XIL supports use of the DebugIOTool debugger abstraction interface for the execution of PIL
simulations. At the time of writing the debugger abstraction interface offers fewer capabilities than the
rtiostream API.

The key features are:

• TRACE32 Remote API for generic target support

• Compatible with TRACE32 Instruction Set Simulator for easy testing on virtual targets

• Support for built-in target connectivity capabilities like code execution profiling and code
coverage
Integration for Simulink | 31©1989-2024 Lauterbach

Board Descriptions

TRACE32 XIL comes with a set of board descriptions:

The utility script with these board descriptions can be found in the directory t32xil/debugio:

To register your board please create the required hardware information classes inside MATLAB and extend
the provided utility script. Additional information can be found here.

Board Processor

TRACE32 DebugIO for Arm ARM Compatible-ARM Cortex

TRACE32 DebugIO for TriCore Infineon-TriCore

Utility Description

t32boards.m Custom boards that use the TRACE32 DebugIO
interface can be registered here.
Integration for Simulink | 32©1989-2024 Lauterbach

https://www.mathworks.com/help/ecoder/ref/target.board-class.html

Configuration of Models

TRACE32 XIL is automatically selected for the execution of PIL simulations when top level model and its sub
and referenced modules are configured properly.

To configure a model for use, the following steps are necessary:

1. Open the dialog Model Configuration Parameters.

2. Configure the settings in the dialog Hardware Implementation for your target.

3. Select a supported board description with the dialog element Hardware board.

4. Open the dialog Code Generation.

5. Select a supported toolchain with the dialog element Toolchain.

6. Create a PRACTICE start-up script for your target:

7. Create a TRACE32 configuration file for your target:

- Select a TRACE32 operation mode (Instruction Set Simulator, ICD via USB, ...).

- Configure two ports for the TRACE32 Remote API.

8. Create a TRACE32 XIL settings file and add it to the search path.

HELP.FILTER.Add intsimulink

ENTRY %LINE &ELF_FILE ;do not modify this line

IF (!OS.FILE(&ELF_FILE))
(
 PRINT %ERROR "The target binary location must be passed to the
script."
 ENDDO
)

...

ENDDO
Integration for Simulink | 33©1989-2024 Lauterbach

Troubleshooting

Switching from Toolchain Approach to Makefile-based Build Process for T32XIL by
modifying System Target Files

To permanently switch from toolchain approach for builds to a makefile-based build process the header of
the active system target file must be modified. The toolchain approach is selected with a header format as
shown below:

To select a makefile-based build process please modify the header of the system target file as shown below:

Please reselect the active system target file in the model configuration dialog before using the makefile-
based build process.

Switching from Toolchain Approach to Makefile-based Build Process for T32XIL
without modifying System Target Files

To switch from toolchain approach for builds to a makefile-based build process without modifying the active
system target file the model configuration has to be changed. The following configuration parameters of the
model determine the build process:

• GenerateMakefile

• MakeCommand

• TemplateMakefile

Settings one of these parameters to a non-default value unlocks the makefile-based build process e. g.

Additional modifications can be performed as required via command line or graphical configuration dialog.

%% SYSTLC: <file>
%% TMF: ert_default_tmf MAKE: make_rtw EXTMODE: no_ext_comm

%% SYSTLC: <file>
%% TMF: trace32_target_ert MAKE: make_rtw EXTMODE: no_ext_comm

set_param(getActiveConfigSet(gcs),'MakeCommand', 'make_rtw "USE_TMF=1"')
Integration for Simulink | 34©1989-2024 Lauterbach

Known Issues

This section is updated regularly with a list of common issues and workarounds.

TRACE32 XIL Cannot Be Used for BigEndian Targets [MATLAB R2016a]

Simulation runs may fail in case of BigEndian targets with the error message:

This behavior is a known issue of MATLAB R2016a. Please see bug report #1404465 on the MathWorks
homepage for additional details and an official workaround.

TRACE32 XIL Cannot Be Used with Code Coverage Measurement and Diab Compiler
[MATLAB R2016b]

Simulation runs may fail in case of code coverage measurement and Diab Compiler:

Please carry out the following steps as workaround for this issue:

1. Go to the “<MATLABROOT>\polyspace\configure\compiler_configuration” folder.

2. Open the original “diab.xml” file and search for the line: "<dialect>diab</dialect>".

3. Replace "<dialect>diab</dialect>" with "<dialect>default</dialect>".

4. Restart MATLAB.

5. Backup the file “<MATLABROOT>\polyspace\verifier\extensions\diab\tmw_builtins\powerpc.h”

6. Replace the file “<MATLABROOT>\polyspace\verifier\extensions\diab\tmw_builtins\powerpc.h”
file with the version in “t32xil\targets\ppc\powerpc.h”.

Error: Invalid payload size (16777216) received during SIL/PIL
communication between Simulink and the target application. Check the
rtiostream implementation for the target application.

 Error: The dialect 'diab' is unknown

NOTE: The modified header file is intended for use with the processor type
PPCE200Z0VES. The use of the function “alloca()” is not supported.
Integration for Simulink | 35©1989-2024 Lauterbach

TRACE32 with QT Screendriver Cannot Be Started [Linux]

Simulation runs may fail with these error messages, if TRACE32 uses the QT screendriver:

Root cause for this error is that the QT version shipping with MATLAB is not compatible with TRACE32. To
circumvent this error, please create a wrapper script for TRACE32 that overloads the environment variable
“LD_LIBRARY_PATH”:

Please convert “/lib/x86_64-linux-gnu/” to the corresponding path for your operating system.

Help Us Help You - Export TRACE32 Information

To help us help you, we need some data about your TRACE32 installation: which TRACE32 revision, which
operating system (32-bit or 64-bit variant), which Lauterbach hardware, which firmware version you use,
which target architecture and CPU you are debugging with etc.

To automatically collect this data, please follow these steps:

1. Download support.cmm from https://www.lauterbach.com/support/static/support.cmm

2. Start TRACE32 as usual. If possible, connect to the target and stop on a breakpoint.

3. Execute the downloaded support script (in TRACE32) with DO support.cmm
(on Windows you can drag and drop it from the Windows Explorer window into the TRACE32
command line).

The script will first show a form for contact data.

4. If this is your first inquiry, please fill in the form.
(Name, Address and Email are vital, to make sure we can reach you with our response).

5. Click the Save to File button.

6. Attach the generated output (the saved text file) in your support request.

Call to service method "open" failed.

TRACE32 DebugIO: Cannot retrieve license.

TRACE32 XIL: Cannot establish connection with TRACE32.

#!/bin/bash
EXENAME=$(readlink -e "$0")

LD_LIBRARY_PATH=/lib/x86_64-linux-gnu/:$LD_LIBRARY_PATH exec ${EXENAME%-
matlab} "$@"
Integration for Simulink | 36©1989-2024 Lauterbach

https://www.lauterbach.com/support/static/support.cmm

	Integration for Simulink
	History
	Introduction
	Installation
	System Requirements
	License Requirements
	Installing the TRACE32 Integration for Simulink
	Updating the TRACE32 Integration for Simulink

	Deinstallation
	Select Connectivity API
	Custom Toolchains
	rtiostream API
	Demo Project
	Functional Overview
	Navigate to C/C++ Code - From Simulink to TRACE32
	Navigate to Model - From TRACE32 to Simulink
	Run until C/C++ Code using Temporary Breakpoints
	Set Breakpoint to C/C++ Code
	Remove Breakpoint for C/C++ Code
	Stop the Simulation

	Build Process
	Configuration of Models
	Code Coverage Measurement
	Code Execution Profiling
	Customize Execution Profiling

	Stack Profiling
	Customize Stack Profiling
	Report of Profiling Results

	Stack Memory Information
	PRACTICE Callbacks
	Customizing Callbacks
	Callback Interface
	Callback Implementation
	Callback Events
	Enabling Callbacks

	Headless Mode

	DebugIOTool Debugger Abstraction Interface
	Board Descriptions
	Configuration of Models

	Troubleshooting
	Known Issues
	Help Us Help You - Export TRACE32 Information

