
MANUAL

Integration for eXDI2 on Windows
CE Platform Builder

Integration for eXDI2 on Windows CE Platform Builder

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 3rd-Party Tool Integrations .. 

 Integration for eXDI2 on Windows CE Platform Builder ... 1

 Overview .. 3

 Concept of hardware-assisted debugging .. 4

 How hardware-assisted debugging modifies eXDI Architecture? 5

 Driver installation and configuration ... 7

 Getting necessary files ... 10

 Creating OS Design ... 11

 Downloading Windows CE image to target and booting system 16

 Adding example application to Windows CE image .. 19

 Debugging Windows CE ... 22

 Loading EXE/DLL modules symbols in TRACE32 22

 Preparing Windows CE image 23

 Driver configuration 23

 Debugging session 24

 Debugging hardware bring-up ... 30

 Hardware-assisted debugging and KITL ... 32

 Using TRACE32 FDX for KITL Kernel Transport .. 33

 FDX Overview 34

 Architecture of KITL over FDX 34

 Enabling KITL over FDX 35

 Download service .. 38

 Debugging timings .. 39

 Memory caching .. 39

 Troubleshooting .. 40
Integration for eXDI2 on Windows CE Platform Builder | 2©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

Version 06-Jun-2024

Overview

Microsoft Platform Builder for Windows CE contains an interface that allows the Platform Builder (PB)
internal debugger to drive external hardware debuggers. This interface is called eXdi2. Lauterbach
developed an eXdi2 driver that allows the PB internal debugger to use TRACE32 as a hardware backend to
the target.

NOTE: This integration uses internally the TRACE32 Remote API.
The Remote API has restrictions if TRACE32 runs in demo mode.
Please see there for further details.
Integration for eXDI2 on Windows CE Platform Builder | 3©1989-2024 Lauterbach

Concept of hardware-assisted debugging

Platform Builder enables you to use Extended Debugging Interface (eXDI) for hardware-assisted debugging
to control the execution of a target device and to examine and modify the state of the device.

Hardware-assisted debugging enables debugging not supported by the default debugger in Platform Builder.
For example, you can use hardware-assisted debugging to debug code used in hardware bring-up, boot
loading and to debug execution that occurs prior to the start of the kernel.

Lauterbach provides the required hardware and software to perform hardware-assisted debugging in
Platform Builder.

Hardware-assisted debugging extends the debugging capabilities of Platform Builder beyond the potential of
traditional software debuggers. Because hardware-assisted debugging is independent of the OS, you can,
for example, isolate low-level problems that may arise in drivers and OAL code.

You can also use hardware-assisted debugging to debug other kinds of code, such as drivers and
applications with the same ease of use as with the Platform Builder kernel debugger, the software probe
solution for system-wide debugging or with native application debuggers.

For detailed information about benefits of eXDI hardware-assisted debugging, please refer to following
location: http://msdn2.microsoft.com/en-us/library/aa935533.aspx
Integration for eXDI2 on Windows CE Platform Builder | 4©1989-2024 Lauterbach

How hardware-assisted debugging modifies eXDI Architecture?

Standard eXDI architecture with Kernel Debugger (KdStub):

Hardware-assisted debugging (without Kernel Debugger):
Integration for eXDI2 on Windows CE Platform Builder | 5©1989-2024 Lauterbach

Above diagrams show that hardware-assisted debugging changes the way of “EXDI Service”
communication with Target Device. Below pictures show the general difference:

Standard eXDI architecture with Kernel Debugger (KdStub):

Hardware-assisted debugging (without Kernel Debugger):

Using hardware-assisted debugging allows to remove KITL (Kernel Independent Transport Layer)
connection from the WinCE target. Debugging features such as Break, Go, all kinds of steps, memory
dumps, watches and breakpoints are still available as with KITL. Additionally, it is possible to debug all kind
of code that is not available in standard debugging using “Kernel Debugger”. This includes hardware bring-
up, boot loading, and code execution that occurs prior to the start of the kernel.

It is also possible to keep KITL connection. In this case KITL can be used for launching applications,
downloading files, etc.
Integration for eXDI2 on Windows CE Platform Builder | 6©1989-2024 Lauterbach

Driver installation and configuration

Follow these steps to install the eXdi2 intergration driver:

1. Close Platform Builder.

2. Close TRACE32.

3. Start installation program of the eXdi2 driver - t32exdi2_setup_CEn00.msi. This name can vary
for different eXdi2 drivers provided for different Windows CE Platform Builder versions.

Please make sure that you have installed MS Platform Builder first.

4. Driver communicates with TRACE32 through T32API over UDP local port.

Please choose free port (for example 20000) and set it as below.

In case of using more than one TRACE32 simultaneously, please remember to set different API port
numbers for each configuration.

If, for some reason, T32Start is not used, API port number can be set in “config.t32” configuration file.
This file can be found in local TRACE32 directory. Please add following lines to this file:

Due to internal issues, please place empty lines between added section and other sections (entries)
in this file.

RCL=NETASSIST
PACKLEN=1024
PORT=20000
Integration for eXDI2 on Windows CE Platform Builder | 7©1989-2024 Lauterbach

5. Start Platform Builder.

6. Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity
options” dialog box.

7. Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on
the left side of the dialog box. Set “Kernel Download”, “Kernel Transport” and “Kernel Debugger”
services to the values shown on below screenshot.

8. Click “Settings” button to configure “Kernel Debugger” service:
Integration for eXDI2 on Windows CE Platform Builder | 8©1989-2024 Lauterbach

Set or change “TRACE32 API port” (exactly like in T32Start or ’config.t32’ file). By pressing “Default”
button, you will always restore the default port number 20000.

Other options will be explained later. Please, leave them unchanged.

Press “OK” to save changes.

9. Press “Apply” in “Target Device Connectivity options” dialog box to save changes.
Integration for eXDI2 on Windows CE Platform Builder | 9©1989-2024 Lauterbach

Getting necessary files

This documentation uses TRACE32SIMARM BSP for TRACE32 ARM Instruction Set Simulator, created by
Lauterbach to show the capabilities of Windows CE debugging.

The download script described in chapter “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf) uses several files additionally (virtual hardware library, autoloader script and WinCE
awareness files).

To get access to the TRACE32 Simulator BSP and the example files used in this guide, send an email with
your specific request to: support@lauterbach.com
Integration for eXDI2 on Windows CE Platform Builder | 10©1989-2024 Lauterbach

Creating OS Design

1. Start Platform Builder (for Windows CE6, Platform Builder is a plug-in of Visual Studio 2005).

2. From menu, select File->New->Project. Select project type “Platform Builder for CE 6.0”,
template “OS Design” and name “ExampleDesign”. Click OK.

3. In welcome window of OS Design Wizard click “Next”.
Integration for eXDI2 on Windows CE Platform Builder | 11©1989-2024 Lauterbach

4. Select BSP and click next.

5. As design template select “Small footprint device” and click “Finish”. OS Design will be created.

6. From menu select View->Other Windows->Catalog Items View.

From item “Core OS -> CEBASE” select below components:
Integration for eXDI2 on Windows CE Platform Builder | 12©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder | 13©1989-2024 Lauterbach

7. In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu.

Core OS Services / Display Support

Core OS Services / Kernel Functionality / Target Control Support

File Systems and Data Store / File and Database Replication / Bit-based

File Systems and Data Store / File System - Internal / RAM and ROM File System

File Systems and Data Store / Registry Storage / Hive-based Registry

Graphics and Multimedia Technologies / Graphics / Gradient Fill Support

Shell and User Interface / Shell / AYGShell API Set

Shell and User Interface / Shell / Command Shell / Console Window

Shell and User Interface / Shell / Graphical Shell / Standard Shell

Shell and User Interface / User Interface / Overlapping Menus
Integration for eXDI2 on Windows CE Platform Builder | 14©1989-2024 Lauterbach

8. In “Build Options” tab of ExampleDesign properties dialog disable Kernel Debugger and KITL.

9. In “Environment” tab of ExampleDesign properties dialog add variable
BSP_TERMINAL_DCC=1. This variable turns on TRACE32 Terminal support and is specific for
used BSP.

10. At this point OS Design is ready to perform Sysgen. From menu select “Build -> Advanced Build
Commands -> Sysgen”.
Integration for eXDI2 on Windows CE Platform Builder | 15©1989-2024 Lauterbach

Downloading Windows CE image to target and booting system

In previous chapter OS was sysgened and Windows CE image was created at the and of sysgen process.
This chapter describes how to download OS image to target without using download service provided by
Platform Builder.

To download and boot Windows CE image, a PRACTICE script needs to be created. PRACTICE is a
scripting language used by TRACE32. Please refer to documentation of TRACE32 for detailed information
about PRACTICE commands.

Below script (wince.cmm) downloads Windows CE image to target (in this case, TRACE32 Instruction Set
Simulator) and boots OS until it reaches OEMIdle() function. Target is stopped at OEMIdle and further
debugging, using TRACE32 interface, can be performed.

; Set build directory localization and physical/virtual addresses of OS image

&build_directory="C:\WINCE600\OSDesigns\ExampleDesign\ExampleDesign\RelDir\TRACE32SIMARM_ARMV4I_Debug"

 &physical=0x20000000
 &virtual=0x84000000

; Debugger Reset

 screen.always
 winpage.reset
 area.reset
 WINPOS 0. 25. 84. 8. 0. 0.
 area

 print "resetting..."

 RESet
 SIM.UNLOAD

; setup of Debugger

 print "initializing..."

 SYStem.CPU ARM926EJ

 SIM.LOAD virtual_hardware.dll 0xFF000000 520. 300. 1 2 3 0

 SYStem.Option.DACR ON ; give Debugger global write permissions
 TrOnchip.Set DABORT OFF ; used by wince for page miss!
 TrOnchip.Set PABORT OFF ; used by wince for page miss!
 TrOnchip.Set UNDEF OFF ; used to detect not present FPU
 SYStem.Option.MMUSPACES ON ; enable space IDs to virtual addresses
 SETUP.IMASKASM ON ; lock interrupts while single stepping

 SYStem.Up

 SIM.CACHE.ON
 SIM.CACHE.SETS DC 0
 SIM.CACHE.SETS IC 0

; Target Setup: initialize DRAM controller and peripherals

 print "target setup..."

 ; set CP15 registers
 PER.SET C15:0x0 %LONG 0x41069263 // identity code
 PER.SET C15:0x100 %LONG 0x1D112152 // cache type
 PER.SET C15:0x1 %LONG 0x5727E // cache control (round robin)
Integration for eXDI2 on Windows CE Platform Builder | 16©1989-2024 Lauterbach

; Load the Windows CE image

 print "loading Windows CE image..."

 &offset=0x1000

 ; download the image to physical address
 Data.LOAD.EXE &build_directory\nk.bin &physical-&virtual

 ; set PC to physical start address
 Register.Set pc &physical+&offset

 ; We'd like to see something, open a code window.
 WINPOS 0. 0. 84. 19. 20. 1.
 Data.List

; Declare the MMU format to the debugger

 ; table format is "WINCE6"
 ; skip root table (0)
 ; declare default translation for kernel
 MMU.FORMAT WINCE6 0 &virtual++0x07ffffff &physical

 ; ROM DLL, shared heap and kernel addresses are common to all processes
 MMU.COMMON 0x40000000--0x5fffffff||0x70000000--0xffffffff

 ; debugger uses a table walk to decode virtual addresses
 MMU.TableWalk ON

 ; switch on debugger(!) address translation
 MMU.ON

; Initialize RTOS Support

 print "initializing Windows CE support..."
 TASK.CONFIG wince6 ; loads WinCE awareness (wince6.t32)
 MENU.ReProgram wince6 ; loads WinCE menu (wince6.men)
 HELP.FILTER.Add rtoswince ; add WinCE awareness manual to help

 ; switch on autoloader and add path to symbol files to source path list
 sYmbol.AutoLOAD.CHECKWINCE "do "+OS.PresentPracticeDirectory+"/autoload "
 sYmbol.SourcePATH &build_directory ; for symbol files (dll/pdb)
 sYmbol.SourcePATH C:\WINCE600 ; for source files (c/cpp)

 ; Group kernel area to be displayed with red bar
 GROUP.Create "winceos" 0x80000000--0xffffffff /RED

; Open debug output terminal

 TERM.METHOD DCC3
 TERM.Mode ASCII
 TERM.SIZE 80. 1000.
 TERM.SCROLL ON
 WINPOS 0.5 38. 84. 9. 0. 0. debugterm
 TERM.GATE

; Boot Windows CE

 Go
 print "booting Windows CE..."
 wait 1.s
 Break

; Now let's start Windows CE!

 TASK.sYmbol.LoadRM "nk.exe" ; load OAL symbols
 Go OEMIdle
 print "starting Windows CE... (please wait)"
 wait !run()

; Change current TRACE32 directory to &build_directory

 cd &build_directory

enddo
Integration for eXDI2 on Windows CE Platform Builder | 17©1989-2024 Lauterbach

To start PRACTICE script in TRACE32, execute below command:

Below screenshot shows TRACE32 after wince.cmm script finished execution. Target is stopped at OEMIdle
and Virtual Display is showing booted Windows CE desktop.

This example script shows general procedure needed to download and boot Windows CE.

CD.DO wince.cmm
Integration for eXDI2 on Windows CE Platform Builder | 18©1989-2024 Lauterbach

Adding example application to Windows CE image

This chapter describes how to create and add example application to Windows CE image. This application
will be used in later chapters to show debugging feautures.

1. In Solution Explorer right-click on Subprojects and select “Add New Subproject”.

2. In Subproject Wizard select template “WCE Application” and change Subproject name to
“ExampleApplication”. Click “Next”.
Integration for eXDI2 on Windows CE Platform Builder | 19©1989-2024 Lauterbach

3. Select “A typical ‘Hello World’ application” and click Finish.

4. If below dialog will appear, click OK and reload OS Design project, by closing and opening entire
solution. Further dialog boxes of this type can be ignored.

5. Build ExampleApplication. In Solution Explorer right-click on ExampleApplication in Subprojects
tree and select “Build”.

6. Create a new text file on your desktop machine (in this case in “C:\” location) and name it
“ExampleApplication.txt”.

7. Edit created file by opening in some editor and include text from below frame.

8. Change extension of the file to “.lnk”.

9. Open platform.bib from “Solution Explorer” and add the following line in the FILES section of the
file:

31#\Windows\ExampleApplication.exe

ExampleApplication.LNK C:\ExampleApplication.LNK NK
Integration for eXDI2 on Windows CE Platform Builder | 20©1989-2024 Lauterbach

10. Open platform.dat from “Solution Explorer” and add the following line:

11. In “Solution Explorer” click “Sysgen” in context menu of tree element:

ExampleDesign->C:/WINCE600->PLATFORM->TRACE32SIMARM

12. From Platform Builder menu select “Build->Copy Files to Release Directory”.

13. From Platform Builder menu select “Build->Make Run-Time Image”.

14. Download and boot Windows CE as in “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf). After system is up, ExampleApplication can be launched by clicking
shortcut.

Directory("\Windows\Desktop"):-File("ExampleApplication.lnk","\Windows\ExampleApplication.lnk")
Integration for eXDI2 on Windows CE Platform Builder | 21©1989-2024 Lauterbach

Debugging Windows CE

This chapter describes how to debug Windows CE from Platform Builder with hardware-assisted debugger.

Loading EXE/DLL modules symbols in TRACE32

For purpose of debugging, “Autoload modules symbols in TRACE32” feature of eXDI2 driver need to be
used. Enabling this functionality causes driver to automatically load symbols in TRACE32 environment for
EXE/DLL modules that are loaded and executed in Windows CE.

When Windows CE loads an EXE/DLL module, the hardware-assisted debugger that is a part of Windows
CE, notifies Platform Builder about this event. The driver uses these notifications and causes TRACE32 to
load the apropriate *.PDB (Program Database) file specific for the module currently being loaded. It allows
the user to see source code in TRACE32 as well as in Platform Builder.

NOTE: Alternative method for loading EXE/DLL symbols is using Autoloader that is a part of
TRACE32 Windows CE Awareness. In that case, the last line of the download script
from chapter “Downloading Windows CE image to target and booting system”
(int_exdi2.pdf) that changes TRACE32 current directory, is not necessary.

For more information about Autoloader, please refer to chapter “Symbol Auto-
loader“ of Windows CE5 Awareness documentation (rtos_windows_ce.pdf) or
Windows CE6 Awareness documentation (rtos_windows_ce6.pdf)
Integration for eXDI2 on Windows CE Platform Builder | 22©1989-2024 Lauterbach

Preparing Windows CE image

1. In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu.

2. In “Build Options” tab of ExampleDesign properties dialog enable hardware-assisted debugging
support.

3. From Platform Builder menu select “Build->Make Run-Time Image”.

Driver configuration

1. Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity
options” dialog box.

2. Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on
the left side of the dialog box. Set Kernel Debugger service to “KdStub TRACE32 EXDI 2 Driver
for CE6.0”

3. Click “Settings” button to configure Kernel Debugger. Check option “Autoload modules symbols
in TRACE32”. Click OK.

4. If needed, “TRACE32 Startup script“ can be used to specify PRACTICE cmm script (other than
download script). This script is intended for general-purpose use, and is executed at the
beginning of Attach.

NOTE Platform Builder for Windows CE 5.0 doesn’t have special option to enable hard-
ware-assisted debugger. Instead, environment variable need to be defined.

Select Platform->Settings from Platform Builder menu. Go to “Environment” tab
and add new variable “IMGHDSTUB” with value “1”.
Integration for eXDI2 on Windows CE Platform Builder | 23©1989-2024 Lauterbach

Debugging session

1. Download and boot Windows CE (see “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf)).

2. Assuming that target is halted, Platform Builder can be attached. From menu of Platform Builder
select “Target -> Attach Device”.

On successfull attach “Output” window in Platform Builder should output log from “Windows CE
Debug” similar to this example:

PB Debugger The Kernel Debugger is waiting to connect with target.
PB Debugger The Kernel Debugger connection has been established (Target CPU is ARM).

PB Debugger Target name: CE Device
PB Debugger Probe name: KdStubT32
PB Debugger Kernel debugger connected.
PB Debugger Binary Image should be loaded at 0x84001000 / Data relocated at 0x84d36000
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\NK.EXE'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\UDEVICE.EXE'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\EXPLORER.EXE'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\SERVICESD.EXE'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\COREDLL.DLL'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\CESHELL.DLL'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\TIMESVC.DLL'

......

PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\KERNEL.DLL'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\K.COREDLL.DLL'
PB Debugger Loaded symbols for 'C:\WINCE600\...\TRACE32SIMARM_ARMV4I_DEBUG\DEVMGR.DLL'
Integration for eXDI2 on Windows CE Platform Builder | 24©1989-2024 Lauterbach

Please read below notes and see screenshots that show Platform Builder and TRACE32 after attach.

NOTE In this integration Platform Builder is a master debugger. That is why TRACE32
cannot be simultaneously used with Platform Builder to debug code. “Go” com-
mand, all types of Step commands and setting breakpoints manually in
TRACE32 are not monitored by driver, and can cause unpredictable behavior of
“Platform Builder - Driver - TRACE32” connection.

NOTE If after Attach or Break commands Current Statement Pointer (yellow arrow) is invis-
ible, right-click any source code and select “Show Next Statement”.
If the same situation occurs in disassembly window (menu Debug->Windows->Dis-
assembly) right-click on assembler listing and select “Show current statement“.

NOTE Screenshot from TRACE32 shows in breakpoints list window that after attach Plat-
form Builder sets breakpoint at location OsAxsHwTrap+0x14. This breakpoint is
used by hardware-assisted debugger for OS notifications, such modules load-
ing/unloading, exceptions in target, etc. When, for example, module is loaded, target
executes OsAxsHwTrap function and breakpoint is hit. Platform Builder detects this
condition and reads all needed information from target. When all data is read, exe-
cution is resumed. This is transparent for user, and user should not resume execu-
tion by pressing “GO” in TRACE32, regardless of amount of time the target stays at
this breakpoint.

NOTE It is possible to attach to target from Platform Builder while target is running. In
this case, after attach user has to break execution from Platform Builder. When
user breaks execution, Platform Builder reads target state (loaded modules, pro-
cesses list, threads list) and sets OS notifications breakpoint in OsAxsHwTrap
function, exactly like when attaching to already halted target.

NOTE It may happen that during during debugging Windows CE5 or Windows Mobile
5/6, Platform Builder will try to read/write memory at an address that is not prop-
erly handled by TRACE32. This is due to the fact that the debugger translation
table needs to be refreshed befure such memory accesses. In that case the
driver will use the command TASK.MMU.SCAN to refresh the debugger transla-
tion table. This command is a part of TRACE32 Windows CE Awareness, which
needs to be activated as given in the example scripts and described in the Win-
dows CE5 Awareness documentation (rtos_windows_ce.pdf)
Integration for eXDI2 on Windows CE Platform Builder | 25©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder | 26©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder | 27©1989-2024 Lauterbach

3. Resume target execution by pressing go in Platform Builder.

4. In Platform Builder open ExampleApplication.cpp source code and set breakpoint at WinMain
function.

5. Start ExampleApplication by clicking shortcut on Windows CE Desktop. Target will hit breakpoint
set at WinMain function.

NOTE When breakpoint is set in Platform Builder, it takes one of two possible states:
not instantiated (set in Platform Builder, but not set in target) and instantiated
(set in both Platform Builder and target). Below picture shows these both types
of breakpoints. First one is instantiated and second is not instantiated break-
point.

When software debugger is used, breakpoints set at code belonging to loaded
module are instantiated (set in target) immediately through KITL connection.

When hardware-assisted debugger is used, breakpoints cannot be instantiated
when target is running. Setting breakpoint at loaded module requires halted tar-
get to give hardware-assisted debugger opportunity to instantiate that break-
point. After that, execution can be resumed, and breakpoint will behave in usual
way.

When target hits OS notification breakpoint, Platform Builder instantiates all
breakpoints that belong to loaded modules. This is the only case when break-
points instantiation is transparent to user.
Integration for eXDI2 on Windows CE Platform Builder | 28©1989-2024 Lauterbach

6. In contrast to software debugger, when breakpoint is hit when debugging with hardware-assisted
debugger, target is completely stopped. Despite of that, Platform Builder is able to show all
information about target: processes, threads, loaded modules, memory and registers content. It
gives possibility to debug all kind of code that cannot be debugged by software debugger:
hardware bring-up before kernel start, interrupt handlers, drivers, KITL, etc. To show this
functionality open interrupt handler source code from below location and set breakpoint at
OEMInterruptHandler. After breakpoint is set, resume execution by pressing GO.

Target hits breakpoint at interrupt handler:

C:\WINCE600\PLATFORM\TRACE32SIMARM\src\oal\oallib\intr.c
Integration for eXDI2 on Windows CE Platform Builder | 29©1989-2024 Lauterbach

Debugging hardware bring-up

As hardware-assisted debugging doesn’t need KITL connection, it is possible to debug system boot from
very early phase.

Let’s assume that debugging of OEMInit function is needed. Please follow below procedure to perform
debugging session. This is one of possible scenarios.

1. Platform Builder can properly attach to target only when OS jumps to Kernel Space (addresses
0x80000000--0xFFFFFFFF) and after minimal initialization is made. This happens before
OEMInit. To make target to stop at OEMInit function below change in OEMInit is needed
(C:\WINCE600\PLATFORM\TRACE32SIMARM\src\oal\oallib\init.c):

2. Change wince.cmm download script (see “Downloading Windows CE image to target and
booting system” (int_exdi2.pdf)) at the end of file:

BEFORE:
void OEMInit(void)
{
 RemapOALGlobalFunctions();
 SetOALGlobalVariables();

}
AFTER:
#ifdef DEBUG
static int OEMInit_stop = 1;
#endif

void OEMInit(void)
{
#ifdef DEBUG
 while (OEMInit_stop);
#endif
 RemapOALGlobalFunctions();
 SetOALGlobalVariables();

}

Integration for eXDI2 on Windows CE Platform Builder | 30©1989-2024 Lauterbach

3. Execute wince.cmm script in TRACE32 and attach Platform Builder to target (Target -> Attach
Device).

.....

; Now let's start Windows CE!

 TASK.sYmbol.LoadRM "nk.exe" ; load OAL symbols
 //Go OEMIdle
 //print "starting Windows CE... (please wait)"
 //wait !run()
 var.set OEMInit_stop=0

; Change current TRACE32 directory to &build_directory

 cd &build_directory

enddo
Integration for eXDI2 on Windows CE Platform Builder | 31©1989-2024 Lauterbach

Hardware-assisted debugging and KITL

KITL connection between Platform Builder and target can work together with hardware-assisted debugger.
In this case Platform Builder has access to processes list and threads list in real-time. Additionaly, remote
tools such as “File Viewer” or “Heap Walker” can be used. To perform debugging session with KITL follow
below steps. Because simulator, on which this example is running on, does not have physical connection
such as USB or Ethernet, the below steps are just demonstrative. To use KITL without communication
channel (USB, Ethernet, Serial) on simulator or debugger connected to real target see “Using TRACE32
FDX for KITL Kernel Transport” (int_exdi2.pdf).

1. In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu. In “Build Options” tab of ExampleDesign properties dialog select “Enable KITL”. From
menu select “Build -> Make Run-Time Image”.

2. In download script from chapter “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf) comment below lines at the end of file:

3. Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity
options” dialog box.

4. Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on
the left side of the dialog box. Set “Kernel Transport” service to “Ethernet”.

5. In Settings dialog of Ethernet Kernel Transport set “Device KITL Name” to “TRACE32SIMARM”.

6. Execute wince.cmm download script in TRACE32.

; Now let's start Windows CE!

 TASK.sYmbol.LoadRM "nk.exe" ; load OAL symbols
 //Go OEMIdle
 //print "starting Windows CE... (please wait)"
 //wait !run()

; Change current TRACE32 directory to &build_directory

 cd &build_directory

enddo
Integration for eXDI2 on Windows CE Platform Builder | 32©1989-2024 Lauterbach

7. From menu of Platform Builder select “Target -> Attach Device”.

8. Press “Go” in Platform Builder to resume target execution.

9. “Output” window in Platform Builder should display Debug Messages from target. Remote tools
are also available.

Using TRACE32 FDX for KITL Kernel Transport

eXDI2 driver can be used to implement KITL over Fast Data Exchange (FDX) mechanism. It doesn’t require
any communication hardware such as Ethernet, Serial or USB. All KITL transfers are performed through
JTAG/BDM connection with target.
Integration for eXDI2 on Windows CE Platform Builder | 33©1989-2024 Lauterbach

FDX Overview

The Fast Data Exchange (FDX) enables transfering universal data between the target and the host. The
protocol implementation on target side is included in the target application. The source code (C) is provided
by Lauterbach. On the host side the transmitted data can be processed by a user application communicating
with the T32 Application Interface or through Named Pipes.

The basic packet transport method differs dependent on the target. T32 supports memory mapped buffered
transfer through dualport memory access or normal access at breakpoints or spot breakpoints. Some target
devices support a Debug Communication Channel (DCC), which can be used to transfer FDX data in real
time.

Architecture of KITL over FDX

KITL over FDX uses standard Ethernet Transport provided by Platform Builder Core Connectivity
Infrastructure. On the target side KITL is implemented as calls to T32_Fdx_Send and T32_Fdx_Receive
functions provided by Lauterbach. These functions send and receive packets from TRACE32 software
through communication channels. eXDI2 integration driver is a bridge between target and Ethernet
transport.
Integration for eXDI2 on Windows CE Platform Builder | 34©1989-2024 Lauterbach

Enabling KITL over FDX

1. In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu. In “Build Options” tab of ExampleDesign properties dialog select “Enable KITL”.

2. In “Environment” tab of the ExampleDesign properties dialog, delete variable
BSP_TERMINAL_DCC that was added in step “Creating OS Design” (int_exdi2.pdf). The
reason is that terminal uses the same communication channel that we want to use for FDX.

3. In “Environment” tab of the ExampleDesign properties dialog, add one of the below mentioned
variables. For TRACE32SIMARM BSP select BSP_KITL_FDX_DCC_ARM9.

4. Rebuild TRACE32SIMARM BSP by selecting “Rebuild” in context menu in Solution Explorer.

5. Modify download script from chapter “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf) as below:

BSP_KITL_FDX_MEMBUFF=1 This variable enables FDX in memory buffers mode.

BSP_KITL_FDX_DCC_ARM7=1 This variable enables FDX in DCC mode for ARM7 target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).

BSP_KITL_FDX_DCC_ARM9=1 This variable enables FDX in DCC mode for ARM9 target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).

BSP_KITL_FDX_DCC_ARM11=1 This variable enables FDX in DCC mode for ARM11 target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).

BSP_KITL_FDX_DCC_XSCALE=1 This variable enables FDX in DCC mode in XSCALE target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).
Integration for eXDI2 on Windows CE Platform Builder | 35©1989-2024 Lauterbach

For BSP_KITL_FDX_MEMBUFF:

For BSP_KITL_FDX_DCC_*:

6. Execute wince.cmm download script in TRACE32.

7. Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity
options” dialog box.

8. Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on

.....

; Now let's start Windows CE!

 TASK.sYmbol.LoadRM "nk.exe" ; load OAL symbols
 //Go OEMIdle
 //print "starting Windows CE... (please wait)"
 //wait !run()

 FDX.DISABLE
 FDX.RESET

 FDX.METHOD BUFFERC V.VALUE(KITLSynchronizeFDX)

 FDX.OutChannel KITLfdxToHostChannel
 FDX.InChannel KITLfdxToTargetChannel

 FDX.CLEAR KITLfdxToHostChannel
 FDX.CLEAR KITLfdxToTargetChannel

 BREAK.SET KITLSynchronizeFDX

; Change current TRACE32 directory to &build_directory

 cd &build_directory

enddo

; Open debug output terminal

 //TERM.METHOD DCC3
 //TERM.Mode ASCII
 //TERM.SIZE 80. 1000.
 //TERM.SCROLL ON
 //WINPOS 0.28571 37.308 84. 9. 0. 0. debugterm
 //TERM.GATE

.....

; Now let's start Windows CE!

 TASK.sYmbol.LoadRM "nk.exe" ; load OAL symbols
 //Go OEMIdle
 //print "starting Windows CE... (please wait)"
 //wait !run()

 FDX.DISABLE
 FDX.RESET

 FDX.METHOD DCC

 FDX.OutChannel
 FDX.InChannel

 FDX.CLEAR

; Change current TRACE32 directory to &build_directory

 cd &build_directory

enddo
Integration for eXDI2 on Windows CE Platform Builder | 36©1989-2024 Lauterbach

the left side of the dialog box. Set “Kernel Transport” service to “Ethernet”.

9. In Settings dialog of Ethernet Kernel Transport set “Device KITL Name” to “TRACE32SIMARM”.

10. In Settings dialog of debugger service “KdStub TRACE32 EXDI 2 Driver for CE6.0“ enable option
“After attach, open KITL-FDX control panel“.

11. From menu of Platform Builder select “Target -> Attach Device”.

12. In KITL-FDX control panel that appears after attach, press “Start FDX” button.

13. Press “Go” in Platform Builder to resume target execution.

14. “Output” window in Platform Builder should display Debug Messages from target. Remote tools
are also available.
Integration for eXDI2 on Windows CE Platform Builder | 37©1989-2024 Lauterbach

Download service

Integration driver contains Download Service - KdStub TRACE32 EXDI 2 Driver for CE6.0 - that can start
wince.cmm download script execution during Attach. Refer to “Downloading Windows CE image to
target and booting system” (int_exdi2.pdf) for detailed description of creating download script.

When Platform Builder attaches to target, download script is started and driver waits untill wince.cmm script
execution is finished. After that, Kernel Debugger connects to target in usual way.

NOTE The download service requires “KdStub TRACE32 EXDI 2 Driver” to be selected
as debugger service.
Integration for eXDI2 on Windows CE Platform Builder | 38©1989-2024 Lauterbach

Debugging timings

Platform Builder performs a lot of operations (memory reads, setting breakpoints, etc …), so commands like
Break, Go, Step Over, Step Into, Step Out and other used during debugging can take some time.

Commands execution time can vary from less than a second up to over a dozen of seconds. Time depends
on used architecture, JTAG speed and host system load. If Platform Builder reads a lot of memory, enabling
memory caching (see “Memory caching” (int_exdi2.pdf)) can speed-up commands execution, too.

Memory caching

Integration driver contains target’s memory caching mechanism that can speed-up memory reads
performed by Platform Builder. To enable this feature click “Enable caching” in settings dialog of debugger
service “KdStub TRACE32 EXDI 2 Driver for CE6.0“.

Each memory read address requested by Platform Builder is aligned by cache to 4, 8 or 16 bytes boundary.
Amount of bytes that cache reads from target to create entry is a multiply of 4, 8 or 16. Each cache entry
contains aligned address and data (of size that is multiply of 4, 8 or 16 bytes). When Platform Builder reads
memory from some address, driver returns data from cache only if this address (aligned) matches address
of entry in cache and all data is available in this entry. If address doesn’t match any entry or not all requested
data is available in entry, such entry is deleted from cache, and cache reads data from target. Because of
nature of this algorithm it is important to observe in log how Platform Builder reads data from target. If, for
example Platform Builder reads sequentially 4-bytes data chunks from continuous addresses, it is better to
set align to 8 or 16 bytes, because only one “TRACE32 <-> target” memory read transaction will be
performed instead of 2 or 4 transactions.

Cache is invalidated each time execution is resumed.
Integration for eXDI2 on Windows CE Platform Builder | 39©1989-2024 Lauterbach

Troubleshooting

Because of some reasons, installation of Core Connectivity infrastructure or KdStub TRACE32 EXDI 2
Driver can be corrupted. Following list contains possible symptoms of corruption:

1. “Settings” button in “Connectivity Options” for driver is inactive.

2. “Connectivity Options” window does not appear.

3. Message “Could not get ICcService interface from OsAccess!!!” appears when performing Attach
command in Platform Builder.

To repair installation, please close Platform Builder and reinstall KdStub TRACE32 EXDI 2 Driver. If
symptoms still exists, please follow this procedure:

1. Close Platform Builder.

2. Make sure that process list (in Task Manager) doesn't contain process CESVCH~1.EXE and
CEPB.EXE. If any of these processes exists, please end it.

3. Uninstall KdStub TRACE32 EXDI 2 Driver.

4. Remove directory:

Please notice that some directories in above path can be hidden. Additionally some names are
dependent on Your MS Windows language version.

This directory stores Your personal settings of other drivers installed. Those settings will be lost.

5. Go to directory:

Run below scripts with parameters:

6. Install KdStub TRACE32 EXDI 2 Driver.

C:\Documents and Settings\Your_Profile_Name\Local Settings\Application Data\Microsoft\CoreCon

C:\Program Files\Windows CE Platform Builder\5.00\CORECON\SCRIPTS

unregister.bat "C:\Program Files\Windows CE Platform Builder\5.00"
register.bat "C:\Program Files\Windows CE Platform Builder\5.00"
Integration for eXDI2 on Windows CE Platform Builder | 40©1989-2024 Lauterbach

	Integration for eXDI2 on Windows CE Platform Builder
	Overview
	Concept of hardware-assisted debugging
	How hardware-assisted debugging modifies eXDI Architecture?
	Driver installation and configuration
	Getting necessary files
	Creating OS Design
	Downloading Windows CE image to target and booting system
	Adding example application to Windows CE image
	Debugging Windows CE
	Loading EXE/DLL modules symbols in TRACE32
	Preparing Windows CE image
	Driver configuration
	Debugging session

	Debugging hardware bring-up
	Hardware-assisted debugging and KITL
	Using TRACE32 FDX for KITL Kernel Transport
	FDX Overview
	Architecture of KITL over FDX
	Enabling KITL over FDX

	Download service
	Debugging timings
	Memory caching
	Troubleshooting

