LAUTERBACH A

Integration for eXDI2 on Windows
CE Platform Builder

Integration for eXDI2 on Windows CE Platform Builder

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
3rd-Party Tool INtegrationscccccccccmmmmiiiiiiiii e r—~
Integration for eXDI2 on Windows CE Platform Builderccccciiiimmicciincscnmnnscsnncessssennnas 1
[0 Y= = 3
Concept of hardware-assisted debuggingcccccciiiiriccminninss s 4
How hardware-assisted debugging modifies eXDI Architecture?cccccounviemrrnnsiacennnnns 5
Driver installation and configuration ... ——— 7
Getting necessary files ... —————— 10
Creating OS DESIgNcicccccceriiirssrrrisissrriisisss s risssssss s s sssm s sassams s s ea s sm s s s e e s s samm e e ea s s mmn e e ea s ammnnnnas 11
Downloading Windows CE image to target and booting systemccccciviiiccmrniiicnnnnnn. 16
Adding example application to Windows CE imagecccccccmminnimmrnnnnsemmnnnnssmssssssssssesns 19
Debugging Windows CEcciiiiimmmimmissssrmnsssssssssss s sss s sssss s sssssssssssssssmss s snssssmsssnnas 22
Loading EXE/DLL modules symbols in TRACE32 22
Preparing Windows CE image 23
Driver configuration 23
Debugging session 24
Debugging hardware BriNg-UPccccciiiirimmmmmiiesnnisesssssssss s ssssss s sssssssssssmsssseas 30
Hardware-assisted debugging and KITLcccoocmiiiiiimmmnnmrnnnessnsssssss s sssssssmssnnas 32
Using TRACE32 FDX for KITL Kernel TransSportcccceuivmmmmmnnsmmmsmmsssssssssssssssssssasssssnas 33
FDX Overview 34
Architecture of KITL over FDX 34
Enabling KITL over FDX 35

D T3] Lo = o =T =T T . 38
(9 T3 01U T T T1 ¢ Vo I 1] 011 4T £ 39
1LY 0 Lo TV o= e 5 1 ' 39
QLo 10 o1 =T 4 Lo T {3 T 40

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 2

Integration for eXDI2 on Windows CE Platform Builder

Version 06-Jun-2024

Overview

Microsoft Platform Builder for Windows CE contains an interface that allows the Platform Builder (PB)
internal debugger to drive external hardware debuggers. This interface is called eXdi2. Lauterbach
developed an eXdi2 driver that allows the PB internal debugger to use TRACES32 as a hardware backend to

the target.

NOTE: This integration uses internally the TRACE32 Remote APL.
The Remote API has restrictions if TRACES32 runs in demo mode.

Please see there for further details.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 3

Concept of hardware-assisted debugging

Platform Builder enables you to use Extended Debugging Interface (eXDI) for hardware-assisted debugging
to control the execution of a target device and to examine and modify the state of the device.

Hardware-assisted debugging enables debugging not supported by the default debugger in Platform Builder.
For example, you can use hardware-assisted debugging to debug code used in hardware bring-up, boot
loading and to debug execution that occurs prior to the start of the kernel.

Lauterbach provides the required hardware and software to perform hardware-assisted debugging in
Platform Builder.

Hardware-assisted debugging extends the debugging capabilities of Platform Builder beyond the potential of
traditional software debuggers. Because hardware-assisted debugging is independent of the OS, you can,
for example, isolate low-level problems that may arise in drivers and OAL code.

You can also use hardware-assisted debugging to debug other kinds of code, such as drivers and
applications with the same ease of use as with the Platform Builder kernel debugger, the software probe
solution for system-wide debugging or with native application debuggers.

For detailed information about benefits of eXDI hardware-assisted debugging, please refer to following
location: http://msdn2.microsoft.com/en-us/library/aa935533.aspx

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 4

How hardware-assisted debugging modifies eXDI Architecture?

Standard eXDI architecture with Kernel Debugger (KdStub):

eXDI| Architecture

Platform Builder IDE

System Debugger

ITarget Controll (CES H)I
F

I Cebug r\i'lessage |

05 Access Senvice exXDl Service
Senrvice Host Ul KDEG

Desktop Host

Target Device

Target Control Service

Bootstrap Sernvice

ChaMszg Senvice

S >
Hardware-assisted debugging (without Kernel Debugger):
- ™
eXDI Architecture
Platform Builder IDE
Systemn Debuggerl ITarget Controll (CES H)I I Debug Message |
05 Access Senvice Target Control Service
- Datastore
exXDl Senvice
Service Host Ul DbgMsg Senvice
Cust
Cg?nﬁnrgnioation KITL Service Bootstrap Sernvice
Link
Desktop Host
Target Device
JTAG/BDM
o5
Motification
e w

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

5

Above diagrams show that hardware-assisted debugging changes the way of “EXDI Service”
communication with Target Device. Below pictures show the general difference:

Standard eXDlI architecture with Kernel Debugger (KdStub):

PC

Platform Builder

TRACE32 SW

KITL owver
Ethernet/
LsBf
COMY/

WInCE

Target

JTAGBOM

TRACE32 HW

Hardware-assisted debugging (without Kernel Debugger):

Platform Builder

PC
COM

T32API

-l — P XDI2 Driver

-f— P TRACE32 SW

WInCE

JTAG/BOM

Target

P TRACE32 HW

Using hardware-assisted debugging allows to remove KITL (Kernel Independent Transport Layer)

connection from the WinCE target. Debugging features such as Break, Go, all kinds of steps, memory
dumps, watches and breakpoints are still available as with KITL. Additionally, it is possible to debug all kind
of code that is not available in standard debugging using “Kernel Debugger”. This includes hardware bring-

up, boot loading, and code execution that occurs prior to the start of the kernel.

It is also possible to keep KITL connection. In this case KITL can be used for launching applications,
downloading files, etc.

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

6

Driver installation and configuration

Follow these steps to install the eXdi2 intergration driver:

1. Close Platform Builder.

2. Close TRACE32.

3. Start installation program of the eXdi2 driver - t32exdi2_setup_CEn00.msi. This name can vary

for different eXdi2 drivers provided for different Windows CE Platform Builder versions.

Please make sure that you have installed MS Platform Builder first.

4. Driver communicates with TRACE32 through T32API over UDP local port.

Please choose free port (for example 20000) and set it as below.

&) T325tart V2.1.6

=NEEn X

Settings
+ 1 Global Settings
=7 Default Advanced Settings

Usze Part: no
Max UDP Packet Size: 1024
Use Auta Increment Port: yes
Part Start Value: 20000
#-£1 Intercom Port
B-F] StartupSeript
E-F Example Configuration
EH-:" 1: Podbus Device Chain
E| 1: Power Debug USE
@] ConnectionType: USB
USE Settings
-dga 10 Core
@ Target ARM A5 caled) anus
E|E] Advanced Settings
-3 Paths
-7 Display
6 AP |
£ Intercom Port
-] StartupScript

ID: Root

Add...

Instances...
Information...
Save and Exit
Save

Help

In case of using more than one TRACES32 simultaneously, please remember to set different API port

numbers for each configuration.

If, for some reason, T32Start is not used, API port number can be set in “config.t32” configuration file.
This file can be found in local TRACES32 directory. Please add following lines to this file:

RCL=NETASSIST
PACKLEN=1024
PORT=20000

Due to internal issues, please place empty lines between added section and other sections (entries)

in this file.

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

7

[C:\T32_SIM_ARMiconfig.t32 - Hotepad2] B [

File Edit View Settings 7

DEOH 9 e $aBRlas = aaal

PBI=SIH

; Printer settings
PRINTER=WINDOWS

SCREEH=
UFULL
FONT=SHALL

RCL=HETASSIST
PACKLEN=1824
PORT=200808

4| 1l | L

Ln14:14 Coll Seld 124 Bytes AN CR+LF Ir

5. Start Platform Builder.

6. Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity

options” dialog box.

7. Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on
the left side of the dialog box. Set “Kernel Download”, “Kernel Transport” and “Kernel Debugger”

services to the values shown on below screenshot.

& Target Device Connectivity Options

Device Configuration
Add Device Target Device:

| CE Device j

Delete Device

Download:

Service Canfiguration [Mone =l

Kernel Service Map

Core Service Settings
Tranzport:

Service Status Mare j

Debugger:

|Kd8tub TRACE32 EXDI 2 Driver for CEB.D j Settings

[PORT: 20000, Autoload medules: no, KITL-Fdx:

Cloze Help

8. Click “Settings” button to configure “Kernel Debugger” service:

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder

8

KdStub TRACE32 EXDI 2 Driver Settings

TRACESZ API pork Log
20000 Default

[~ Enable lag

X

TRACESZ Startup scripk

—

Target memory caching

I Enable caching

Align accessesto! |4 bytes =

™ Autoload modules' symbols in TRACES2
[After attach, open KITL-FD¥ control panel

o]

| CrikdstubT3z.log

Iv ‘Warnings
¥ Errors

Copyright {C) Lauterbach GmbH, Version: 1,211 {Mar 3 2011}

o

Set or change “TRACES32 API port” (exactly like in T32Start or ’config.t32’ file). By pressing “Default’
button, you will always restore the default port number 20000.

Other options will be explained later. Please, leave them unchanged.

Press “OK” to save changes.

9. Press “Apply” in “Target Device Connectivity options” dialog box to save changes.

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

9

Getting necessary files

This documentation uses TRACE32SIMARM BSP for TRACE32 ARM Instruction Set Simulator, created by
Lauterbach to show the capabilities of Windows CE debugging.

The download script described in chapter “Downloading Windows CE image to target and booting
system?” (int_exdi2.pdf) uses several files additionally (virtual hardware library, autoloader script and WinCE

awareness files).

To get access to the TRACES32 Simulator BSP and the example files used in this guide, send an email with
your specific request to: support@lauterbach.com

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 10

Creating OS Design

Start Platform Builder (for Windows CEB, Platform Builder is a plug-in of Visual Studio 2005).

From menu, select File->New->Project. Select project type “Platform Builder for CE 6.0,
template “OS Design” and name “ExampleDesign”. Click OK.

- ATL

- CLR

- General

- MFC

- Smart Device
- Win32

Other Project Types
| Platform Builder for CE 6.0

Hew Project @éj
Praject types: Templates: [
= Visual C++ Visual Studio installed templates

% 05 Design |

My Termnplates

.} Search Online Templates...

A project for creating a Windows Embedded CE 6.0 operating system

MName: | ExampleDesign i
Location: C:\WINCE600',05Designs -

Solution Mame: ExampleDesign

Create directory for solution

ok || canc |

In welcome window of OS Design Wizard click “Next”.

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

11

4. Select BSP and click next.
Windows Embedded CE 6.0 OS Design Wizard (2 [|

‘ , Board Support Packages
S

Available BSPs:

[] Aruba Board: ARMy41 A BSP contains a set of device drivers that are added
[] Device Emulatar: ARMy41 to your 35 design.

[C] HeSample OMAP2420: ARMI4T Select one or more BSPs For your O5 design,

[T HICOARMZ

Mainstonelll PXAZTX: ARMY4L
RACESZSIMARM BSP.

Mote: Only BSPs supported by installed CPUs are
displayed in the list,

< Previous

Cancel

5. As design template select “Small footprint device” and click “Finish”. OS Design will be created.
[Windows Embedded CE 6.0 05 Design Wizard (2. [z |
Py
- Design T lat:
‘.. J esign Templates
Available design templates:
Consurmer Media Device A design template is a set of predefined
Cuskom Device catalog items.
Industrial Device
PO& Device Choose the design template that is most
i closely aligned with the purpose of your
| |target device.
Provides the starting point For the smallest
functional Windows Embedded CE run-time
image,
[< Previous] [Mext =] |[Einish]l [Cancel]
6. From menu select View->Other Windows->Catalog Items View.

From item “Core OS -> CEBASE” select below components:

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 12

Catalog Items View =]
[Z|Filter ~ | |#] | <Search> LS|

ExampleDesign -

B eensi|

- Applications - End User

- Applications and Services Development
- Communication Services and Metworking
1 Care 05 Services

- Device Management

-1 File Systems and Data Store

.1 Fants

- Graphics and Multimedia Technologies
1 International

1 Internet Client Services

w1 Security

-5 Shell and User Interface 52

'@Solution Explorer@ Catalog Items View

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 13

7.

Core OS Services / Display Support

Core OS Services / Kernel Functionality / Target Control Support

File Systems and Data Store / File and Database Replication / Bit-based

File Systems and Data Store / File System - Internal / RAM and ROM File System

File Systems and Data Store / Registry Storage / Hive-based Registry

Graphics and Multimedia Technologies / Graphics / Gradient Fill Support

Shell and User Interface / Shell / AYGShell API Set

Shell and User Interface / Shell / Command Shell / Console Window

Shell and User Interface / Shell / Graphical Shell / Standard Shell

Shell and User Interface / User Interface / Overlapping Menus

Solution Explorer - ExampleDesign

=)

=]
[Solution ‘ExampleDesign’ {1 project)

=P ExampleDesi

n
o

+ “ C/WING [ZE Build ExampleDesign

+ [Paramet
- [= SDKs
L 3= Subpraj

'—'IjSqution Explarer

""" ‘fi’ Favarite Rebuild ExampleDesign

Clean ExampleDesign

Advanced Build Commands

Copy Files to Release Directory

IMake Run-Time Image

Open Release Directory in Build Windaw
Global Build Settings

Targeted Build Settings

Set as StartUp Project

Remave

3

3

Properties

In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu.

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

14

8. In “Build Options” tab of ExampleDesign properties dialog disable Kernel Debugger and KITL.

ExampleDesign Property Pages

[

Configuration: | Active(TRACE32SIMARM Dy w [Platform: | FUA

Configuration Manager...]

[#- Common Properties
- Configuration Properties

Locale

Environment

Customn Build Actions

i Subproject Image Settings

Build options:

g

Buffer tracked events in Rak [IMGOSCAPTURE=1]

Enable eboot zpace in memory (IMGEBOOT=1]

Enable event tracking during boot [IMGCELOGEMABLE=1]

Enable hardware-assizsted debugging support [IMGHDSTUE=1]
& el de o JODEBUGGER=1]

Wwrite run-time image to flash memary IMGFLASH=1]

Enable profiling [IMGPROFILER=1]

Flush tracked events to releaze directory [IMGAUTOFLUSH=1]

Run-time image can be larger than 32 MB [IMGRAMEB4=1]

Usge wcopy instead of links to populate release directory [(BUILDREL_USE_COPY=1]

[ok || Anulj |[Zastosu |

9. In “Environment” tab of ExampleDesign properties dialog add variable
BSP_TERMINAL_DCC-=1. This variable turns on TRACE32 Terminal support and is specific for

used BSP.

ExampleDesign Property Pages

(2] =]|

Configuration: | Active(TRACE32SIMARM Dy « [Platform: | FOA

Configuration Manager...]

[#- Common Properties

=8 Caonfiguration Properties
General

Locale

Build Options
Environment
Custom Build Actions

i Subproject Image Settings

Environment wariables:

Wa

riable Walue

Environment Variable

) |

‘W ariable name:
BSP_TERMINAL_DCC

‘W ariable walue:
1

[(] 3] [Cancel

4
Mew.. Edit... Remove

[ok |[Anulj | [Zastosu |

10. At this point OS Design is ready to perform Sysgen. From menu select “Build -> Advanced Build

Commands -> Sysgen”.

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

15

Downloading Windows CE image to target and booting system

In previous chapter OS was sysgened and Windows CE image was created at the and of sysgen process.
This chapter describes how to download OS image to target without using download service provided by
Platform Builder.

To download and boot Windows CE image, a PRACTICE script needs to be created. PRACTICE is a
scripting language used by TRACE32. Please refer to documentation of TRACES32 for detailed information
about PRACTICE commands.

Below script (wince.cmm) downloads Windows CE image to target (in this case, TRACES32 Instruction Set
Simulator) and boots OS until it reaches OEMIdle() function. Target is stopped at OEMIdle and further
debugging, using TRACES?2 interface, can be performed.

; Set build directory localization and physical/virtual addresses of 0OS image

&build_directory="C:\WINCE600\OSDesigns\ExampleDesign\ExampleDesign\RelDir\TRACE32SIMARM ARMV4I_Debug"

&physical=0x20000000
&virtual=0x84000000

; Debugger Reset
screen.always
winpage.reset
area.reset
WINPOS 0. 25. 84. 8. 0. 0.
area

print "resetting..."

RESet
SIM.UNLOAD

; setup of Debugger
print "initializing..."
SYStem.CPU ARM926EJ

SIM.LOAD virtual_hardware.dll O0xFF000000 520. 300. 1 2 3 0

SYStem.Option.DACR ON ; give Debugger global write permissions
TrOnchip.Set DABORT OFF ; used by wince for page miss!
TrOnchip.Set PABORT OFF ; used by wince for page miss!
TrOnchip.Set UNDEF OFF ; used to detect not present FPU
SYStem.Option.MMUSPACES ON ; enable space IDs to virtual addresses
SETUP.IMASKASM ON ; lock interrupts while single stepping
SYStem.Up

SIM.CACHE.ON
SIM.CACHE.SETS DC 0
SIM.CACHE.SETS IC O
; Target Setup: initialize DRAM controller and peripherals

print "target setup..."

; set CP1l5 registers

PER.SET C15:0x0 $LONG 0x41069263 // identity code
PER.SET C15:0x100 $%LONG 0x1D112152 // cache type
PER.SET C15:0x1 $LONG 0x5727E // cache control (round robin)

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 16

; Load the Windows CE image

print "loading Windows CE image...

&offset=0x1000

; download the image to physical address

Data.LOAD.EXE &build_directory\nk.bin &physical-&virtual

; set PC to physical start address
Register.Set pc &physical+&offset

; We'd like to see something,
WINPOS 0. 0. 84. 19. 20. 1.

Data.List

; Declare the MMU format to the debugger

; table format is "WINCE6"
; skip root table (0)

; declare default translation for kernel

open a code window.

MMU.FORMAT WINCE6 0 &virtual++0x07ffffff &physical

i

ROM DLL, shared heap and kernel addresses are common to all processes

MMU . COMMON 0x40000000--0x5£££££££||0x70000000--OxEEEEEEEE

; debugger uses a table walk to decode virtual addresses

MMU.TableWalk ON

; switch on debugger(!) address translation

MMU . ON

; Initialize RTOS Support

print "initializing Windows CE support..."

TASK.CONFIG wince6
MENU.ReProgram wince6
HELP.FILTER.Add rtoswince

loads WinCE awareness (wince6.t32)
loads WinCE menu (wince6.men)
add WinCE awareness manual to help

; switch on autoloader and add path to symbol files to source path list

sYmbol .AutoLOAD.CHECKWINCE

sYmbol.SourcePATH &build_directory
sYmbol .SourcePATH C:\WINCE600

"do "+0S.PresentPracticeDirectory+"/autoload "

for symbol files (dll/pdb)
for source files (c/cpp)

; Group kernel area to be displayed with red bar
GROUP.Create "winceos" 0x80000000--Oxffffffff /RED

; Open debug output terminal

TERM.METHOD DCC3
TERM.Mode ASCII
TERM.SIZE 80. 1000.
TERM.SCROLL ON

WINPOS 0.5 38. 84. 9. 0. 0.

TERM.GATE

; Boot Windows CE

Go

print "booting Windows CE..."
wait 1.s

Break

; Now let's start Windows CE!

TASK.sYmbol.LoadRM "nk.exe"

Go OEMIdle

print "starting Windows CE...

wait !run()

load OAL symbols

(please wait)"

; Change current TRACE32 directory to &build_directory

cd &build_directory

enddo

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

17

To start PRACTICE script in TRACE32, execute below command:

I CD.DO wince.cmm

Below screenshot shows TRACE32 after wince.cmm script finished execution. Target is stopped at OEMidle
and Virtual Display is showing booted Windows CE desktop.

A TRACE32 (=[=] =]

File Edit Wiew WYar Break Run CPU Misc Trace Perf Cov ARM Windows CE Window Help |

(MR deee|rn|EH 2RO HEN eS| @ L] 1

] 8::Data,List [=]=]=]
[MiStep |[M Over || Mewt | qu!etum][¢up |[pGo]w Break |] Mode | Find:
addr/Tine Source | =
/¢ az the kemel w111 prefer OEMIdleEx ([OEMIdleEx has hetter per .
void OEMIdle(DWORD dwIdleParam!
-t i
/¢ Fill in idle code here.
TINT32 haseMSec, idleMSec;
255 INT32 uzedCountz, idleCountz=0;
TLARGE_INTEGER idle;
TINT32 =setas
258 TRACEY |m | TRACE3? - Virtual Display (| B [l
/¢ Return =4
261 if (g_tim
{
263 returs
+
1
= |Biarea

Toading Windows CE 1mage...

file "C:\WINCEBODWOSDesignsyExamp
initializing Windows CE support..
booting Windows CE...

Module nk.exe symbols Toaded.
file "C:\WINCEEODWOSDesignshExamp
file "C:\WINCEEODWOSDesignsyExamp
starting Windows CE... (please wa
<[

™ B TERM. GATE 2:21 PM

Grow Gdi handle table from 192 to| | M Num B Caps M Scroll [C] Always on top

[NOTIFY] CeRunAppAtEvent - clearing SYSLGW EVERE TRaTeCration for \L.Weciricacr—roo

onsyNamedEventsiTaskbarTimechangeEvent
[NOTIFY] SetUserMotification (or replacing 00000000)
[MOTIFY] SetUserMotification::Registring system watch: event 1 app “\.\Motificat
ions\MNamedEventsiTaskbarTimeChangeEvent args AppRunéfterTimechange
4 LS
[ermilate][trigger][devices][trace][Data][War][other][previons]
SR:0000:540071E4 Shnktimer\OER MK EXE-Rundpps [stopped at breakpaint | | | B P

This example script shows general procedure needed to download and boot Windows CE.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 18

Adding example application to Windows CE image

This chapter describes how to create and add example application to Windows CE image. This application
will be used in later chapters to show debugging feautures.

1.

2.

In Solution Explorer right-click on Subprojects and select “Add New Subproject”.

Solution Explorer - Solution 'ExampleDasign’ (1 project) @

=

Solution "ExampleDesign’ (1 project)
L p g proj
= ExampleDesign

P g

& C/WINCEG00
‘fg Favarites
[Parameter Files
=1 SDKs

i ,;J

Add Mew Subproject...

L“iSqution Explare

Add Existing Subproject...

In Subproject Wizard select template “WCE Application” and change Subproject name to

“ExampleApplication”. Click “Next”.

f n |
Windows Embadded CE Subproject Wizard @l&]
A‘ , Select name, location and template
Available templates: Subproject name:
WCE Application Exampleapplication
WCE Console Application
WCE Dynamic-Link Library Location:
WCE Static Library . - -
WCE TUX Dynamic-Link Library CHWINCESO0OSDesignstExampleDesigniExamplal

Mext =][Einish][Cancel

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

19

3. Select “A typical ‘Hello World’ application” and click Finish.

Windows Embeadded CE Subproject Wizard @l&]

L' , Auto-generated subproject files

‘what kind of Windows Embedded CE application would you like to create?

1 An empty subproject
1 A simple Windows Embedded CE application

@ A typical "Hello World" application

< Previous Finish] I Cancel
4. If below dialog will appear, click OK and reload OS Design project, by closing and opening entire

solution. Further dialog boxes of this type can be ignored.

Microsoft Visual Studio &

. The project consists entirely of configurations that require support
| For platForms which are not installed on this machine, The project
= cannot be loaded,

5. Build ExampleApplication. In Solution Explorer right-click on ExampleApplication in Subprojects
tree and select “Build”.

6. Create a new text file on your desktop machine (in this case in “C:\” location) and name it
“ExampleApplication.txt”.

7. Edit created file by opening in some editor and include text from below frame.

31#\Windows\ExampleApplication.exe

8. Change extension of the file to “.Ink”.
9. Open platform.bib from “Solution Explorer” and add the following line in the FILES section of the
file:

ExampleApplication.LNK C:\ExampleApplication.LNK NK

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 20

10. Open platform.dat from “Solution Explorer” and add the following line:

Directory ("\Windows\Desktop") : -File ("ExampleApplication.lnk","\Windows\ExampleApplication.lnk")

11. In “Solution Explorer” click “Sysgen” in context menu of tree element:
ExampleDesign->C:/WINCE600->PLATFORM->TRACE32SIMARM

12. From Platform Builder menu select “Build->Copy Files to Release Directory”.

13. From Platform Builder menu select “Build->Make Run-Time Image”.

14. Download and boot Windows CE as in “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf). After system is up, ExampleApplication can be launched by clicking
shortcut.

|8] TRACE32 - Virtual Display (| B [

. Windows Embedded CE 6.C

11:23 AM

HENum M Caps N Scroll [C] Always on top

|8] TRACE32 - Virtual Display (| B [
Hello wiorld!

ﬂstart IExampIeAppIication 11:24 AM

HNum M Caps HScroll [C] Always on top

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 21

Debugging Windows CE

This chapter describes how to debug Windows CE from Platform Builder with hardware-assisted debugger.

Loading EXE/DLL modules symbols in TRACE32

For purpose of debugging, “Autoload modules symbols in TRACE32” feature of eXDI2 driver need to be
used. Enabling this functionality causes driver to automatically load symbols in TRACE32 environment for
EXE/DLL modules that are loaded and executed in Windows CE.

When Windows CE loads an EXE/DLL module, the hardware-assisted debugger that is a part of Windows
CE, notifies Platform Builder about this event. The driver uses these notifications and causes TRACES32 to
load the apropriate *.PDB (Program Database) file specific for the module currently being loaded. It allows
the user to see source code in TRACES32 as well as in Platform Builder.

NOTE: Alternative method for loading EXE/DLL symbols is using Autoloader that is a part of
TRACE32 Windows CE Awareness. In that case, the last line of the download script
from chapter “Downloading Windows CE image to target and booting system”
(int_exdi2.pdf) that changes TRACE32 current directory, is not necessary.

For more information about Autoloader, please refer to chapter “Symbol Auto-
loader” of Windows CE5 Awareness documentation (rtos_windows_ce.pdf) or
Windows CE6 Awareness documentation (rtos_windows_ce6.pdf)

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 22

Preparing Windows CE image

1.

In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu.

In “Build Options” tab of ExampleDesign properties dialog enable hardware-assisted debugging
support.

NOTE Platform Builder for Windows CE 5.0 doesn’t have special option to enable hard-

ware-assisted debugger. Instead, environment variable need to be defined.

Select Platform->Settings from Platform Builder menu. Go to “Environment” tab
and add new variable “IMGHDSTUB” with value “1”.

Platform Settings §|

Configuration:
HICO.4RM3-1: ARMY4_Debug v

General | Locale | Build Options | Environment | Custom Build Actions || In ¢ *

Environment wariables:

‘W ariable Walue
[MGHDSTUE 1

[Ok] [Cancel

3.

From Platform Builder menu select “Build->Make Run-Time Image”.

Driver configuration

1.

Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity
options” dialog box.

Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on
the left side of the dialog box. Set Kernel Debugger service to “KdStub TRACE32 EXDI 2 Driver
for CE6.0”

Click “Settings” button to configure Kernel Debugger. Check option “Autoload modules symbols
in TRACE32”. Click OK.

If needed, “TRACE32 Startup script“ can be used to specify PRACTICE cmm script (other than
download script). This script is intended for general-purpose use, and is executed at the
beginning of Attach.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 23

Debugging session

1. Download and boot Windows CE (see “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf)).

2. Assuming that target is halted, Platform Builder can be attached. From menu of Platform Builder
select “Target -> Attach Device”.

On successfull attach “Output” window in Platform Builder should output log from “Windows CE

Debug” similar to this example:

PB Debugger
PB Debugger

PB Debugger
PB Debugger
PB Debugger
PB Debugger
PB Debugger
PB Debugger
PB Debugger
PB Debugger
PB Debugger
PB Debugger
PB Debugger

PB Debugger
PB Debugger
PB Debugger

The Kernel Debugger is waiting to connect with target.
The Kernel Debugger connection has been established (Target CPU is ARM) .

Target

Probe name:

Kernel
Binary
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded

Loaded
Loaded
Loaded

name: CE Device
KdStubT32

debugger connected.
Image should be loaded at 0x84001000 / Data relocated at 0x84d36000

symbols
symbols
symbols
symbols
symbols
symbols
symbols

symbols
symbols
symbols

for
for
for
for
for
for
for

for
for
for

"€
Cs
Cs
"€
€3
Cs
"€

Cs
Cs
ICs

\WINCE600\. .
\WINCE600\. .
\WINCE600\. .
\WINCE600\. .
\WINCE600\. .
\WINCE600\. .
\WINCE600\. .

\WINCE600\. .
\WINCE600\. .
\WINCE600\. .

.\TRACE32SIMARM_ ARMV4I_DEBUG\NK.EXE'
.\TRACE32SIMARM_ARMV4I_DEBUG\UDEVICE.EXE'
.\TRACE32SIMARM ARMV4I_DEBUG\EXPLORER.EXE'
.\TRACE32SIMARM_ARMV4I_DEBUG\SERVICESD.EXE'
.\TRACE32SIMARM_ARMV4I_DEBUG\COREDLL.DLL"
.\TRACE32SIMARM ARMV4I_DEBUG\CESHELL.DLL'
.\TRACE32SIMARM ARMV4I_ DEBUG\TIMESVC.DLL'

.\TRACE32SIMARM_ARMV4I_DEBUG\KERNEL.DLL"'
.\TRACE32SIMARM ARMV4I_DEBUG\K.COREDLL.DLL"'
.\TRACE32SIMARM ARMV4I_DEBUG\DEVMGR.DLL'

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder | 24

Please read below notes and see screenshots that show Platform Builder and TRACE32 after attach.

NOTE

In this integration Platform Builder is a master debugger. That is why TRACE32
cannot be simultaneously used with Platform Builder to debug code. “Go” com-
mand, all types of Step commands and setting breakpoints manually in
TRACE32 are not monitored by driver, and can cause unpredictable behavior of
“Platform Builder - Driver - TRACES32” connection.

NOTE

If after Attach or Break commands Current Statement Pointer (yellow arrow) is invis-
ible, right-click any source code and select “Show Next Statement”.

If the same situation occurs in disassembly window (menu Debug->Windows->Dis-
assembly) right-click on assembiler listing and select “Show current statement®.

NOTE

Screenshot from TRACE32 shows in breakpoints list window that after attach Plat-
form Builder sets breakpoint at location OsAxsHwTrap+0x14. This breakpoint is
used by hardware-assisted debugger for OS notifications, such modules load-
ing/unloading, exceptions in target, etc. When, for example, module is loaded, target
executes OsAxsHwTrap function and breakpoint is hit. Platform Builder detects this
condition and reads all needed information from target. When all data is read, exe-
cution is resumed. This is transparent for user, and user should not resume execu-
tion by pressing “GO” in TRACES2, regardless of amount of time the target stays at
this breakpoint.

NOTE

It is possible to attach to target from Platform Builder while target is running. In
this case, after attach user has to break execution from Platform Builder. When
user breaks execution, Platform Builder reads target state (loaded modules, pro-
cesses list, threads list) and sets OS notifications breakpoint in OsAxsHwTrap
function, exactly like when attaching to already halted target.

NOTE

It may happen that during during debugging Windows CE5 or Windows Mobile
5/6, Platform Builder will try to read/write memory at an address that is not prop-
erly handled by TRACES2. This is due to the fact that the debugger translation
table needs to be refreshed befure such memory accesses. In that case the
driver will use the command TASK.MMU.SCAN to refresh the debugger transla-
tion table. This command is a part of TRACE32 Windows CE Awareness, which
needs to be activated as given in the example scripts and described in the Win-
dows CE5 Awareness documentation (rtos_windows_ce.pdf)

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder | 25

% ExampleDesign (Debugging) - Microsoft Visual Studio

e |s[E]

13 IF] o 5= [F % @-=
SHd %R & - »

Solution Explorer - E.. » & X timer.c

{Unknown Scope) -
[4 Solution 'ExampleDesign’ {
B- #) ExampleDesign

& C/WINCEG0D i/
ﬂg Favorites Hwoid OEMIdle (DWORD dwIdleParam)
[Parameter Files 2|

=1 SDKs ff Fill in idle code here.
=1 Subprojects

UINT3Z baseMiec, idleMSec:

ULARGE INTEGER idle;
UINT3Z set:

4¢3 fen oo demmrn ooevEleheiEe

TS

INT32 usedCounts, idleCounts=0;

File Edit View Project Build Debug Target Tools Window Community Help

s [@c. [Fc. [=r.. |« L [

Output
Show output from: Windows CE Debug - = | =

4| 1]

- X

Jf If you implement OEMIdleEx, vyou can leave this function in a st
/f a3 the kernel will prefer OEMIdleEx [(OEMIdleEx has better perfm‘

TRACE3Z VH TIMER REGS P pTimerRegs = g_timer.pTimerRegs;

4| 11 | 3 /f Return, if we are waiting for restoring timer period

> 0 x

PE Debugger Loaded symbols for 'C:\WINCE&S0O0Y,O0SDESIGNS)EXAMPLEDESIGH, EXAMPLEDESIGHN RELDIR, TRACESZSTMATRM Al
PE Debugger Loaded symbols for 'C:\WINCES0O0YOSDESIGHNS) EXAMPLEDESIGH, EXAMPLEDESIGH, RELDIR, TRACE3ZSTMATRM A
PE Debugger Loaded symbols for 'C:\WINCESDD\DSDESIGNS\EXAI‘IPLEDESIGN\EXAI‘IPLEDESIGN\RELDIR\TRACESZSIHARI‘I_A]|_|

3

=
R

-

&2 Find Symbol Results
Ready Ln 257 Col 15 Ch 16 NS

h

Processes @

% 3l & @i

Hara= hFrosess Ba=z=Ftx Tl=Us=H22k Tl=UselL3fk CurZc
explorer.exs Ox021F0002 Ox00010000 Ox00000000 2 Ox0000002F Ox00C
nk.=x= Ox00400002 OxS4001000 0Ox00000000 Ox0000000F Ox00C
servicesd.exs Ox022E0002 Ox00010000 Ox00000000 2 Ox0000002F Ox00C
udevrize. axe Ox017E0002 Ox00010000 Ox00000000 2 Ox0000000F Ox00C
udevrize. axe Ox012 60006 Ox00010000 Ox00000000 Ox0000001F Ox00C
4| 1] k

Threads (5]
Process: [explorer.exe '] % i @ @ 5 oft
hThread pThread FunZtate InfoStatus

ak, FPunElkd T

KEFNEL !DoWaitForOkh jects (unsignad long Ox00000001, _HDATA *
KEFNEL !NEWaitForMultipleChjects (un=xigned long OxEEffFFFFF,

KEFNEL ! UE_WaitForMultiplefhijects (unsigned long Ox000000O01,

4| 1]

wroid * con=t * Oxi(

K.COREDLL !uxx_WaitForSBingleChiject (woid * Ox00d10007, un=igned long OxEEEEEEd T

Wait3tate nver *

* OxdOSSEfade, uns=

wroid * con=t * O3

3

Callstack

=)

Process: [nk.exe '] Thread: [UHUU5?UUU2

v] & @i

.NK!OEHIdle[unsigned long Ox844260£0) lin= 251

KEFNEL ! OEMTIdle (un=ignad long Ox0000114k) lin= 94

KEFNEL !HandleException(_THREAD * Ox8kbEf£f8c0c, int Ox00000000,
KEFPMNEL !2aveindPexchedule + 58 byte=x

4 1] |

unsigned long OxdC

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

26

A TRACE22 [E=EN

File Edit Wiew WYar Break Run CPU Misc Trace Perf Cov ARM Windows CE Window Help

ME([deee(ru[FE e oaumscs @ L1

B::Data,List == =]
[MStep |[M Over || $MNewt |[¢ Retun [¢ Up |[BGo]w Break |] Mode | Find:
addr/Tine Source
/7 az the kernel will prefer OEMIdleEx (UEMIdleEx has betfer per .
I
roid OEMIdle(IWORD dwIdleParam)
251
/¢ Fill in idle code here.
TINT32 haseMSec, idleMSec;
255 INT32 uzedCountz, idleCountz=0;
TLARGE_INTEGER idle;
TINT3Z =zet;
258 TRACE3Z_VH_TIMER_REGS_P pTimerRegs = g_timer.pTimerRegs;
o =S|
[Delete o[O Disable 21l @ Enable At [@ Init [Select...|[53 Store.. | 52 Load... || Bl Set.. |
Lype imp] |
R:0000:84D36094) [[Program ACCESS QsfxsHWTrap+0:14 | -
J 4 }
Gr
Explorer(W2.0) taskbar thread started.
[MOTIFY] CeRundppAtEvent - clearing system event registration for 3\ .\Motificati
onsyNamedEventsiTaskbarTimechangeEvent
[NOTIFY] SetUserMotification (or replacing 00000000)
[MOTIFY] SetUserMotification::Registring system watch: event 1 app “\.\Motificat
ions\MNamedEventsiTaskbarTimeChangeEvent args AppRunéfterTimechange

4 [}

F::

[ermilate] [trigger] [devices] [trace] [Data] [War] [other] [previons]
SR:0000:840071E4 \nkMimer\OE |MK.EXE:Rundpps stopped at breakpaint HLL P
o B TASK.Process [= =[]

magic handTe hame spacetd [#thr [prio main thread
S4D38AA0F (00400002 [NK.EXE ooog |35, 10. [BBFFADZ4 SystemStartupFunc -

GBFEBEBS |0D17C0002
ABF25600 |01260006
GBEAFBAC |D21F0002

udevice.exe 01?c |3 251. [BBFBE2DC

udeyvice.exe 0126 [1. |251. |38BF25180

explorer.exe 021F 4. 250, |BBEAFBCH
3

SBFI7DAC [022BO00Z |servicesd.exe 0228 251, |BBEBC138 -

4 1} 3

o B TASK, Thread [==]==]

magic handTe owner state prio_start address [current process

GEESFZEE [02A3000Z [expTlorer.exe |[blocked [251. (00015824 explOrer.exe A

GBEGI000 |02A30002 |explorer.exe |blocked |251. |0001S66C HK.EXE

SBEASEIZ (02600002 |explorer.exe |blocked [251. |40944F74 explorer.exe

SBEAFBC4 (02200002 |explorer.exe |blocked |251. |00014FDC HK.EXE

GBEGI7CE (02410002 |servicesd.exe sleeping |251. |00018AAC servicesd.exe

SBEG9588 02400002 |servicesd.exe |blocked |251. |404E3008 seryicesd.exe

SBEBC138 02200002 |servicesd.exe |blocked |251. [00014F74 seryicesd.exe

4 1} 3

&= B::var.Frame /Locals /Caller =n =R ==
t. Up "F Down [¥] &rgs Locals Caller Task: -

-O00][[0EHIALe) -

-001]||0EMIdle()
= dwIdleParam = 4427

g_pOenGlobal->pinldle (dwldleParam);
-002]|[HandleException()
E3 pth = Ox8BFFECOC

m

=id =10
= addr = 3496523448
= info =7

OEMIdle (g_pNKGlohal->dwNextReschedTime - g_pNKGlohal-»dwC
-003]||5avesndreschedula{asm)

— |end of frame -

J(Tl 3

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

27

3. Resume target execution by pressing go in Platform Builder.

4. In Platform Builder open ExampleApplication.cpp source code and set breakpoint at WinMain
function.
NOTE When breakpoint is set in Platform Builder, it takes one of two possible states:

not instantiated (set in Platform Builder, but not set in target) and instantiated
(set in both Platform Builder and target). Below picture shows these both types
of breakpoints. First one is instantiated and second is not instantiated break-
point.

/4 Get current system timer counter
-] | baseM3ec = CurMSec:

/¢ Compute the remaining idle time
idleMSec = dwReschedTime - haseMiec:

Q|
When software debugger is used, breakpoints set at code belonging to loaded
module are instantiated (set in target) immediately through KITL connection.

When hardware-assisted debugger is used, breakpoints cannot be instantiated
when target is running. Setting breakpoint at loaded module requires halted tar-
get to give hardware-assisted debugger opportunity to instantiate that break-
point. After that, execution can be resumed, and breakpoint will behave in usual
way.

When target hits OS notification breakpoint, Platform Builder instantiates all
breakpoints that belong to loaded modules. This is the only case when break-
points instantiation is transparent to user.

5. Start ExampleApplication by clicking shortcut on Windows CE Desktop. Target will hit breakpoint
set at WinMain function.

ExampleApplication.cpp | timer.c - X

{Unknown Scope) -
L
int WINAPI WinMain (HINSTANCE hInstance,
HIN3TANCE hPFrevInstance,
LFTSTE 1pCmdLine,
=] int nCmd3how)

K

#/4 TODO: Place code here.
M3G msg;
HACCEL hhiccelTable;

/¢ Initialize global strings
Load3tring(hInstance, ID3 APP TITLE, =szTitle, MAX LOADSTRIN .

4 1 b

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 28

= [B::Data.List] = e]

Ml Step | M Over |[$Nest |[@ Reum | @ Up || pGo ||j Break |L;£|Mode | Find:

addr/Tine Source |

ETOH MyRegizterClass (HINSTAHNCE hInztance]; -
BOOL InitInztance (HINSTANCE, int);
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

m

int WINAPT WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LFTSTR IpCwdLine,

int nCndShaw)

2301

/¢ TODO: Flace code here.

MSG mags

HACCEL hiccelTahle;

/¢ Initialize global strings
29 LoadString(hInztance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING
30 LoadString(hInstance, IDC_Examplehpplication, szWindowClass,
31 MyRegisterClassz(hInstance);

J 4 1 3
6. In contrast to software debugger, when breakpoint is hit when debugging with hardware-assisted

debugger, target is completely stopped. Despite of that, Platform Builder is able to show all

information about target: processes, threads, loaded modules, memory and registers content. It

gives possibility to debug all kind of code that cannot be debugged by software debugger:
hardware bring-up before kernel start, interrupt handlers, drivers, KITL, etc. To show this
functionality open interrupt handler source code from below location and set breakpoint at
OEMInterruptHandler. After breakpoint is set, resume execution by pressing GO.

C:\WINCEG600\PLATFORM\TRACE32SIMARM\src\oal\oallib\intr.c

Target hits breakpoint at interrupt handler:

{u

intr.c | ExampleApplication.cpp ' timer.c - X
nknown Scope) - -
return 0O; i

-

o

i

F DWORD OEMInterruptHandler (DWORD dAwEPC)

i dwEPC = Ouffffc7el
UINT3Z irg = QAL INTE_IRQ UNDEFINED:
UINT3Z sysIntr = SYIINTE _NOP:
irg = INREG3Z (&g pIntoRegs->ISTAT):

OUTREG3Z (& (g_pIntcRegs-»IDIS), lul << irqg):

1 }

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

29

Debugging hardware bring-up

As hardware-assisted debugging doesn’t need KITL connection, it is possible to debug system boot from
very early phase.

Let’s assume that debugging of OEMInit function is needed. Please follow below procedure to perform
debugging session. This is one of possible scenarios.

1. Platform Builder can properly attach to target only when OS jumps to Kernel Space (addresses
0x80000000--0xFFFFFFFF) and after minimal initialization is made. This happens before
OEMInit. To make target to stop at OEMInit function below change in OEMiInit is needed
(C:\WINCE600\PLATFORM\TRACE32SIMARMA\src\oal\oallib\init.c):

BEFORE:

void OEMInit (void)

{
RemapOALGlobalFunctions () ;
SetOALGlobalVariables () ;

}

AFTER:

#ifdef DEBUG

static int OEMInit_stop = 1;
#endif

void OEMInit (void)

{

#ifdef DEBUG
while (OEMInit_stop);

#endif
RemapOALGlobalFunctions () ;
SetOALGlobalVariables() ;

2. Change wince.cmm download script (see “Downloading Windows CE image to target and
booting system” (int_exdi2.pdf)) at the end of file:

Solution Explorer - Solution 'ExampleDes... @

=l
J Solution ‘ExampleDesign’ (L project) -
- @ ExampleDesign
= & C/WINCES00
_ 3 PLATFORM
] +- (2 ARUBABOARD
+ =1 COMMON
+ [DEVICEEMULATOR
7 (3] HASAMPLE
- (31 HICOARMO
+ 51 MAINSTOMEDT

m

o I
5. [PRIVATE Build
" o Rebuild
S Soluti.. [@ Catal... B} Cla Sysgen
Build and Sysgen

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 30

; Now let's start Windows CE!

TASK.sYmbol.LoadRM "nk.exe" ; load OAL symbols

//Go OEMIdle

//print "starting Windows CE... (please wait)"

//wait !run()

var.set OEMInit_stop=0

; Change current TRACE32 directory to &build_directory

cd &build_directory

enddo

Execute wince.cmm script in TRACE32 and attach Platform Builder to target (Target -> Attach

Device).

init.c | BampleApplication.cpp
{Unknown Scope) -

O #ifdef DEEUG
Lstatic int OEMInit_stop = 1;
#endif

Flwoid OEMInit (woid)
{
- #ifdef DEEUG
1 | o while (OEMInit_stop):

l#endif OEMInit_stop = 0x00000000

RemapCilGlobalFunctionsi) ;
SetOALGlobalVariables ()

OALCacheGlobalsInit ()

OALIntrInit () ;
4 1

K

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

31

Hardware-assisted debugging and KITL

KITL connection between Platform Builder and target can work together with hardware-assisted debugger.
In this case Platform Builder has access to processes list and threads list in real-time. Additionaly, remote
tools such as “File Viewer” or “Heap Walker” can be used. To perform debugging session with KITL follow
below steps. Because simulator, on which this example is running on, does not have physical connection
such as USB or Ethernet, the below steps are just demonstrative. To use KITL without communication
channel (USB, Ethernet, Serial) on simulator or debugger connected to real target see “Using TRACE32
FDX for KITL Kernel Transport” (int_exdi2.pdf).

1. In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu. In “Build Options” tab of ExampleDesign properties dialog select “Enable KITL". From
menu select “Build -> Make Run-Time Image”.

2. In download script from chapter “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf) comment below lines at the end of file:

; Now let's start Windows CE!

TASK.sYmbol .LoadRM "nk.exe" ; load OAL symbols
//Go OEMIdle
//print "starting Windows CE... (please wait)"

//wait !run()
; Change current TRACE32 directory to &build_directory
cd &build_directory

enddo

3. Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity
options” dialog box.

4. Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on
the left side of the dialog box. Set “Kernel Transport” service to “Ethernet”.

5. In Settings dialog of Ethernet Kernel Transport set “Device KITL Name” to “TRACE32SIMARM”.

@) Ethernet KITL Settings 5

Device KITL Mame:

TRACESZSIMARMl -
IP Address: 0.0.0.0

Active Devices:

Use device name from bootloader

[O] | Cancel |

6. Execute wince.cmm download script in TRACES32.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 32

7. From menu of Platform Builder select “Target -> Attach Device”.
8. Press “Go” in Platform Builder to resume target execution.

9. “Output” window in Platform Builder should display Debug Messages from target. Remote tools
are also available.

Output @

Show output from: Windows CE Debug - = | =

4794767E96 PID:0 TID:0 Setting wup softlog at OxSbffb000 for Ox200 entries -~
4234767E96 PID:0 TID:0 Booting Windows CE wersion 6.00 for (ARM)

4234767E96 PID:0 TID:0 &pTOC = 24d7lcle, pTOC = 24cEf0£0, pTOC-=ulBawmFree = 24475000, M
423476796 PID:0 TID:O

0ld or inwvalid wersion stamp in kernel structures - starting clean!

4294767296 PID:0 TID:0 Configuring: Primary pages: 29300, Secondary pages: 0, Filesyste|s
423476796 PID:0 TID:O

Booting kernel with clean memory configuration:

479476796 PID:0 TID:0 Memory Sections:

4234767E96 PID:0 TID:0 [0] : start: 84478000, extension: 0000£000, length: 07274000
479476796 PID:0 TID:0 MNEStartup done, starting up kernel.
& PID:0 TID:0 Windows CE Kernellnit -
4 m 3
f |
[3) windaws CE Remote File Viewer =NECE X
File Wiew Connection Help
2| On Th[| 2 m|a)|x] i 4]
E|-- Default Device 1 Desktop cetllaitl.(lll
; [Release 1 Favarites cetlstub.(lll
[Recycled _IFonts close.?.bp
& Application Data ia Pragrams close.wav
{3 My Dacuments _1Recent cmil.exe
{3 Pragram Files 1 StartUp 3 emd.Ink
[Documents and Settings [afd.dll N commctrl.(lll
2 Temp app(lata.lm comm(llg.(lll
i [asterisk.wav console.(lll
g B a}fgshell.(lll control.exe
a Seartllp A boat.hw control.lnl-.
o Fonts. [busenum.dll cop}frts.txt
) (et ["3 ceconfig.h [coredil.dll
{20 Recent 3 ceddk.dll [cour.utf
{0 Programs [cefwcli.exe cplmain.cpl
@ Desktop [ceshell.dll critical.wa‘,r
4 | 3
Ready MU
L

Using TRACE32 FDX for KITL Kernel Transport

eXDI2 driver can be used to implement KITL over Fast Data Exchange (FDX) mechanism. It doesn’t require
any communication hardware such as Ethernet, Serial or USB. All KITL transfers are performed through
JTAG/BDM connection with target.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 33

FDX Overview

The Fast Data Exchange (FDX) enables transfering universal data between the target and the host. The
protocol implementation on target side is included in the target application. The source code (C) is provided
by Lauterbach. On the host side the transmitted data can be processed by a user application communicating
with the T32 Application Interface or through Named Pipes.

The basic packet transport method differs dependent on the target. T32 supports memory mapped buffered
transfer through dualport memory access or normal access at breakpoints or spot breakpoints. Some target
devices support a Debug Communication Channel (DCC), which can be used to transfer FDX data in real
time.

Architecture of KITL over FDX

Core Connectivity Infrastructure

Local TCPIIP
Loopback

127.0.0.1

Ethernet Transport

USB Transport

T32 API: T32_Fdx_Send(}

Serial Transport A
T32_Fdx_Receive()

[Tt

Wi doe o0 3 W 0088 W

TARGET

|||'|'”' | poverbebug w | USB

I JTAS/ BOM,

kitl.dll KITLTransportSendFrame {

T32_Fdx_Send{);

3
KITLTransportRecvFrame(} {

T32_Fdx_Receive();

KITL over FDX uses standard Ethernet Transport provided by Platform Builder Core Connectivity
Infrastructure. On the target side KITL is implemented as calls to T32_Fdx_Send and T32_Fdx_Receive
functions provided by Lauterbach. These functions send and receive packets from TRACE32 software
through communication channels. eXDI2 integration driver is a bridge between target and Ethernet
transport.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 34

Enabling KITL over FDX

1. In “Solution Explorer” right-click “ExampleDesign” project and select “Properties” from context
menu. In “Build Options” tab of ExampleDesign properties dialog select “Enable KITL".

2. In “Environment” tab of the ExampleDesign properties dialog, delete variable
BSP_TERMINAL_DCC that was added in step “Creating OS Design” (int_exdi2.pdf). The
reason is that terminal uses the same communication channel that we want to use for FDX.

3. In “Environment” tab of the ExampleDesign properties dialog, add one of the below mentioned
variables. For TRACE32SIMARM BSP select BSP_KITL_FDX_DCC_ARMO9.

BSP_KITL_FDX_MEMBUFF=1 This variable enables FDX in memory buffers mode.

BSP_KITL_FDX_DCC_ARM7=1 This variable enables FDX in DCC mode for ARM7 target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).

BSP_KITL_FDX_DCC_ARM9=1 This variable enables FDX in DCC mode for ARM9 target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).

BSP_KITL_FDX_DCC_ARM11=1 This variable enables FDX in DCC mode for ARM11 target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).

BSP_KITL_FDX_DCC_XSCALE=1 This variable enables FDX in DCC mode in XSCALE target.

BSP_TERMINAL_DCC=1 is not allowed in this mode (see
“Creating OS Design” (int_exdi2.pdf)).

4. Rebuild TRACE32SIMARM BSP by selecting “Rebuild” in context menu in Solution Explorer.

5. Modify download script from chapter “Downloading Windows CE image to target and booting
system” (int_exdi2.pdf) as below:

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 35

For BSP_KITL_FDX_MEMBUFF:

; Now let's start Windows CE!

TASK.sYmbol.LoadRM "nk.exe" ; load OAL symbols
//Go OEMIdle

//print "starting Windows CE... (please wait)"
//wait !run()

FDX.DISABLE
FDX.RESET

FDX.METHOD BUFFERC V.VALUE (KITLSynchronizeFDX)

FDX.OutChannel KITLfdxToHostChannel
FDX.InChannel KITLfdxToTargetChannel

FDX.CLEAR KITLfdxToHostChannel
FDX.CLEAR KITLfdxToTargetChannel

BREAK.SET KITLSynchronizeFDX

; Change current TRACE32 directory to &build_directory

cd &build_directory

enddo

For BSP_KITL_FDX_DCC_*:

; Open debug output terminal

//TERM.METHOD DCC3

//TERM.Mode ASCII

//TERM.SIZE 80. 1000.

//TERM.SCROLL ON

//WINPOS 0.28571 37.308 84. 9. 0. 0. debugterm
//TERM.GATE

; Now let's start Windows CE!

TASK.sYmbol .LoadRM "nk.exe" ; load OAL symbols
//Go OEMIdle

//print "starting Windows CE... (please wait)"
//wait !run()

FDX.DISABLE
FDX.RESET

FDX.METHOD DCC

FDX.OutChannel
FDX.InChannel

FDX.CLEAR

; Change current TRACE32 directory to &build_directory

cd &build_directory

enddo
6. Execute wince.cmm download script in TRACES32.
7. Select “Connectivity Options” command from “Target” menu to open “Target Device Connectivity

options” dialog box.

8. Select “Kernel Service Map” option in the “Service Configuration” section in the control panel on

©1989-2024 Lauterbach

Integration for eXDI2 on Windows CE Platform Builder

36

the left side of the dialog box. Set “Kernel Transport” service to “Ethernet”.

9. In Settings dialog of Ethernet Kernel Transport set “Device KITL Name” to “TRACE32SIMARM”.

@) Ethernet KITL Settings 5

Device KITL Mame:

TRACESZSIMARMl -
IP Address: 0.0.0.0

Active Devices:

[T Use device name from bootloader

[OF] [Cancel]

10. In Settings dialog of debugger service “KdStub TRACE32 EXDI 2 Driver for CE6.0" enable option
“After attach, open KITL-FDX control panel®.

11. From menu of Platform Builder select “Target -> Attach Device”.

12. In KITL-FDX control panel that appears after attach, press “Start FDX” button.

KdStub TRACE32 EXDI 2 Driver - KITL over FDX 3

FD¥ Kernel Transport

State: Mot started
Statistics

Traffic to target: 0 packets 0 bytes
Traffic From target: 0 packets 0 bytes

13. Press “Go” in Platform Builder to resume target execution.

14. “Output” window in Platform Builder should display Debug Messages from target. Remote tools
are also available.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 37

Download service

Integration driver contains Download Service - KdStub TRACE32 EXDI 2 Driver for CE6.0 - that can start
wince.cmm download script execution during Attach. Refer to “Downloading Windows CE image to
target and booting system” (int_exdi2.pdf) for detailed description of creating download script.

When Platform Builder attaches to target, download script is started and driver waits untill wince.cmm script
execution is finished. After that, Kernel Debugger connects to target in usual way.

NOTE The download service requires “KdStub TRACE32 EXDI 2 Driver” to be selected
as debugger service.

Device Configuration

2old Device Target Device:

Delete Device |EE Device j

Download:
Fervice Configuration |Kd8tub TRACE32 EXDI 2 Drriver for CEE.O j Seftings |
Kernel Service Map
Core Service Seftings TEwsg KdStub TRACE32 EXDI 2 Driver Settings _|
Service Status ,N_D?
TRACE3Z Download script Log

Debug Ciscriptst 1 wince. crm| J I Enable log
e | CikdStubDownloadT32.log J
[PORT ‘Windows CE image path is passed to Levels

MM download script as parameter, ¥ Verbose v e

WARNING: This download service W Info =l Erers
requires "KdStub TRACE3Z EXDI 2
Driver" to be selected as debugger

SErvice.
OF | Cancel

Copyright {C) Lauterbach GmbH, Version: 1,211 {Mar 3 2011}

Apply Lloze Help

Target device core service settings are updated.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 38

Debugging timings

Platform Builder performs a lot of operations (memory reads, setting breakpoints, etc ...), so commands like
Break, Go, Step Over, Step Into, Step Out and other used during debugging can take some time.

Commands execution time can vary from less than a second up to over a dozen of seconds. Time depends
on used architecture, JTAG speed and host system load. If Platform Builder reads a lot of memory, enabling
memory caching (see “Memory caching” (int_exdi2.pdf)) can speed-up commands execution, too.

Memory caching

Integration driver contains target’s memory caching mechanism that can speed-up memory reads
performed by Platform Builder. To enable this feature click “Enable caching” in settings dialog of debugger
service “KdStub TRACES32 EXDI 2 Driver for CE6.0".

Each memory read address requested by Platform Builder is aligned by cache to 4, 8 or 16 bytes boundary.
Amount of bytes that cache reads from target to create entry is a multiply of 4, 8 or 16. Each cache entry
contains aligned address and data (of size that is multiply of 4, 8 or 16 bytes). When Platform Builder reads
memory from some address, driver returns data from cache only if this address (aligned) matches address
of entry in cache and all data is available in this entry. If address doesn’t match any entry or not all requested
data is available in entry, such entry is deleted from cache, and cache reads data from target. Because of
nature of this algorithm it is important to observe in log how Platform Builder reads data from target. If, for
example Platform Builder reads sequentially 4-bytes data chunks from continuous addresses, it is better to
set align to 8 or 16 bytes, because only one “TRACE32 <-> target” memory read transaction will be
performed instead of 2 or 4 transactions.

Cache is invalidated each time execution is resumed.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder | 39

Troubleshooting

Because of some reasons, installation of Core Connectivity infrastructure or KdStub TRACE32 EXDI 2
Driver can be corrupted. Following list contains possible symptoms of corruption:

1.
2.
3.

“Settings” button in “Connectivity Options” for driver is inactive.

“Connectivity Options” window does not appear.

Message “Could not get ICcService interface from OsAccess!!!” appears when performing Attach

command in Platform Builder.

To repair installation, please close Platform Builder and reinstall KdStub TRACE32 EXDI 2 Driver. If
symptoms still exists, please follow this procedure:

1.
2.

6.

Close Platform Builder.

Make sure that process list (in Task Manager) doesn't contain process CESVCH~1.EXE and
CEPB.EXE. If any of these processes exists, please end it.

Uninstall KdStub TRACE32 EXDI 2 Driver.

Remove directory:

C:\Documents and Settings\Your_Profile_Name\Local Settings\Application Data\Microsoft\CoreCon

Please notice that some directories in above path can be hidden. Additionally some names are
dependent on Your MS Windows language version.

This directory stores Your personal settings of other drivers installed. Those settings will be lost.

Go to directory:

C:\Program Files\Windows CE Platform Builder\5.000\CORECON\SCRIPTS

Run below scripts with parameters:

unregister.bat "C:\Program Files\Windows CE Platform Builder\5.00"
register.bat "C:\Program Files\Windows CE Platform Builder\5.00"

Install KdStub TRACE32 EXDI 2 Driver.

©1989-2024 Lauterbach Integration for eXDI2 on Windows CE Platform Builder |

40

	Integration for eXDI2 on Windows CE Platform Builder
	Overview
	Concept of hardware-assisted debugging
	How hardware-assisted debugging modifies eXDI Architecture?
	Driver installation and configuration
	Getting necessary files
	Creating OS Design
	Downloading Windows CE image to target and booting system
	Adding example application to Windows CE image
	Debugging Windows CE
	Loading EXE/DLL modules symbols in TRACE32
	Preparing Windows CE image
	Driver configuration
	Debugging session

	Debugging hardware bring-up
	Hardware-assisted debugging and KITL
	Using TRACE32 FDX for KITL Kernel Transport
	FDX Overview
	Architecture of KITL over FDX
	Enabling KITL over FDX

	Download service
	Debugging timings
	Memory caching
	Troubleshooting

