LAUTERBACH A

Hypervisor Awareness Manual
Wind River Hypervisor

Hypervisor Awareness Manual Wind River Hypervisor

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
L V7o T=TaVIE=ToT gl 11 o 0T T |15V r—~
Hypervisor Awareness ManuUalScccccucmmmmniiemmrmmnissssmnsss s s sss s s sesssasss s snnnsan r—~
Hypervisor Awareness Manual Wind River Hypervisorcccccivcmmmnnimmnnnnmmsnnnsssssnnns 1
L0 T T 4
Terminology 4
Brief Overview of Documents for New Users 4
Supported Versions 5

L0 o 1o 11 = 1o o N 6
Quick Configuration Guide 6
Hooks and Internals in Wind River Hypervisor 7
=T 11 = 8
Display of Hypervisor Resources 8
Task Stack Coverage 8
Task-Related Breakpoints 9
Task Context Display 10
MMU Support 11
Space IDs 12
MMU Declaration 12
Scanning System and Processes 14
Symbol Autoloader 15
SMP Support 17
Dynamic Task Performance Measurement 17
Task Runtime Statistics 18
Function Runtime Statistics 19
Wind River Hypervisor specific Menu 20
Debugging Wind River Hypervisor COmponentsccccccecmermnismmmsmnnesssnmsssssmsssssns 21
Hypervisor 21
Downloading the image 21
Debugging the hypervisor 22
Virtual Boards 22
Debugging a virtual board 22

Start Debugging a virtual board from its entry point 23

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 2

Wind River Hypervisor Commandscccccciemmmmniismmmmmnssssmssss s sssssssssssssssssssssnss 24

TASK.ThrList Display hypervisor threads 24
TASK.VirtBoard Display virtual boards 24
TASK.ConfigVec Display configuration vector files 25
TASK.REGistry Display registry 25
TASK.SyslInfo Display system information 25
TASK.CoreState Display core information 25
Wind River Hypervisor PRACTICE FUNCLIONScccciiiiimmnninsnemir s s sssssms s e 26
TASK.CONFIG() Configuration information 26
TASK.PRIV2HYP() Linear address 26
TASK.THREAD.ID() ID of thread 26
TASK. THREAD.MAGIC() Magic of thread 27
TASK.THREAD.PC() PC of thread 27
TASK.THREAD.TTB() TTB address of thread 27
TASK.VIRTBOARD.BASE() Physical base address of virtual board 27
TASK.VIRTBOARD.ID() ID of virtual board 28
TASK.VIRTBOARD.MAGIC() Magic of virtual board 28
TASK.VIRTBOARD.START() Start address of virtual board 28

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 3

Hypervisor Awareness Manual Wind River Hypervisor

Version 06-Jun-2024

Overview

The Hypervisor Awareness for Wind River Hypervisor contains special extensions to the TRACE32
Debugger. This manual describes the additional features, such as additional commands and statistic

evaluations.
NOTE: This documentation is outdated and will be replaced soon by a newer version.
It is especially not suitable for Wind River Helix.
Terminology

The Wind River Hypervisor manages “virtual boards” and “threads”. If not otherwise specified, the TRACE32
term “task” corresponds to Hypervisor “thread”, while a Hypervisor “virtual board” corresponds to a “space
ID” in TRACES32.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACES32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 4

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently Wind River Hypervisor is supported for the following versions:
. Version 2.x on ARM, PowerPC and x64
. Version 3.x on ARM and x64

NOTE: This document is outdated and will be replaced soon by a newer version.
It is especially not suitable for Wind River Helix.
For proper configuration please ask Lauterbach for assistance.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor |

5

Configuration

The TASK.CONFIG command loads an extension definition file called “wrhv.t32” (directory
“~~/demo/<arch>/kernel/wrhv”). It contains all necessary extensions.

Automatic configuration tries to locate the hypervisor internals automatically. For this purpose the symbols of
the hypervisor kernel must be loaded and accessible at any time the Hypervisor Awareness is used (see
also “Hooks & Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the Hypervisor
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time the Hypervisor Awareness is used. Each of the TASK.CONFIG arguments can be substituted by
‘0, which means that this argument will be searched and configured automatically. For a fully automatic
configuration omit all arguments:

Format: TASK.CONFIG ~~/demo/<arch>/kernel/wrhv/wrhv.t32

(Note: “~~” refers to the TRACES32 installation directory)

Note that the symbols of the hypervisor must be loaded into the debugger. See Hooks & Internals for
details on the used symbols. See also the examples in the demo directories “~~/demo/<arch>/kernel/wrhv”.

Quick Configuration Guide

To fully configure the Hypervisor Awareness for Wind River Hypervisor, please use one of the demo startup
scripts as template. Find the templates in the directory ~~/demo/<arch>/kernel/wrhv.

Follow this roadmap:
1. Carefully read the demo startup scripts (~~/demo/<arch>/kernel/wrhv).
2. Make a copy of the appropriate script. Modify the file according to your application.

3. Run the modified version in your application. This should allow you to display the hypervisor
resources and use the trace functions (if available).

Now you can access the Hypervisor extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 6

Hooks and Internals in Wind River Hypervisor

No hooks are used in the kernel.

For retrieving the kernel data structures, the Hypervisor Awareness uses the global kernel symbols of the
Wind River Hypervisor. This means that every time, when features of the Hypervisor Awareness are used,
the symbols of the hypervisor must be available and accessible.

The image project of your hypervisor application creates a symbol file called “hypervisor” in the object
directory. Load the symbols to space ID zero with the command:

Data.LOAD.El1f <path_to_project>/obj/hypervisor 0:0 /NoCODE

“rootOS” guest image called “vxWorks”. The load procedure is a little bit complicated (see example scripts).
rootOS need to be loaded to machine ID one (1:::0).

Please also look at the demo start-up script wrhv.cmm, how to load the kernel symbols and the symbols of
your application.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 7

Features

The Hypervisor Awareness for Wind River Hypervisor supports the following features.

Display of Hypervisor Resources

The extension defines new commands to display various hypervisor resources. Information on the following
Wind River Hypervisor components can be displayed:

TASK.ThrList Hypervisor threads
TASK.VirtBoard Virtual boards

TASK.SyslInfo System Information
TASK.ConfigVec Configuration vector files
TASK.REGistry Registry

TASK.CoreState Hypervisor core state information

For a description of the commands, refer to chapter “Wind River Hypervisor Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 8

NOTE: The stack coverage analysis will only show valid results for Hypervisor threads that
are not bound to a virtual board.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 9

you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same

code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Example for a task-related breakpoint, equivalent to the Break.Set <function> /TASK <task> command:

a B::Break.5et EI@
dd i .
a\\in:;s\; o j— name of function
i breakpoint is set on
type options method
@ Program [EXclude [] Temporary
") ReadWrite [CInomMARK [C] D1Sable action
7 Read [C] D1SableHIT | | |stop -
D Wirite DATA click on “advanced”
- # 59_"_ .
- defalt [)| | adan to get more options
[ok] [Add Delete | [cancel |
memory / reqgister / var
_) ProgramPass HLL
_ ProgramFail
afiestiiie | — TASK COUNT name of thread
init2"] = related to this breakpoint
CONDition
[WIHLL [Cléssm
CMD
+ [VIRESUME
a B::Break.List F =] @
([3% Dekete All|[O Disable All[@ Enabe Al @ Init [2 1mpl..Y|[52 store...)[52 Load... [B set.
address types impl taszk |
NR : 0001 : 00013904 [Program SOFT Tcomms0" usrRoot P
NR:0003 : 00020000 | Program SOFT "init2"” YWhinit2imainimain
NR : 0005 :OOOZOOOOJPr‘Dgr‘a.m SOFT "init4"” YWhinitdimainimain 1
Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the

application (Step or Go), the debugger will switch back to the current context.

©1989-2024 Lauterbach

Hypervisor Awareness Manual Wind River Hypervisor | 10

To display a specific task context, use the command:

I Frame.TASK [<iask>] Display task context.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.

& B:Frame /Task "Dispatch2” EI@
1. Up Dowr| [#Args [¥Locals [Caller Task: "serialPipe” -
msc?edﬂlerRun() n

= lock = 64

-001|[receive(
+ rmsg = 0Ox0,
= rlen = 0,
+ info = 0x0,
+ ct1 = 0x0)
= msg5tatus = 0
= lock = 0

m

msgSize = pMsg-»data.buffer.len;
}

/* How to handle copying the message depends on the following four
-002||addPipeInit()

+ __FUNCTION__ = "_addPipeInit”
3
for(;{;:- Call stack frame of a thread,
_|opy o prEcEve (NULL, O, NULL, NULL); _ | showing the calling line and
I ' local variables.
MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU and TRANSIation commands refer to this necessity.

ID, guest translations...).

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 11

Space IDs

Different virtual boards may use identical virtual addresses. To distinguish those addresses, the debugger
uses an additional identifier, the so-called space ID (memory space ID) that specifies, to which virtual
memory space the address refers to. The command SYStem.Option.MMUSPACES ON enables the use of
the space ID. For all hypervisor threads using the hypervisor address space, the space ID is zero. For virtual
boards and their owning threads, the space ID corresponds to the board ID.

You may scan the whole system for space IDs using the command TRANSIation.ScanlD. Use
TRANSIation.ListID to get a list of all recognized space IDs.

The function task.virtboard.id(task.virtboard.magic(“<virtboard>") returns the ID for a given virtual board.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range> Define MMU
<physical_kernel_address>]] table structure
<format> Options for ARM:
<format> Description
STD Standard format defined by the CPU
TINY MMU format using a tiny page size of only 1024 bytes

<format> Options for PowerPC:

<format> Description

STD Standard format defined by the CPU

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 12

<format> Options for RISC-V:

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

Sv48 48-bit page table format (for SV64 targets only)

Sv48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

<format> Options for x86:

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAEG4L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

©1989-2024 Lauterbach

Hypervisor Awareness Manual Wind River Hypervisor

13

<base_address>

<base_address> is currently unused. Specify zero.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

Enable the debugger’s table walk with TRANSIation.TableWalk ON, and switch on the debugger's MMU
translation with TRANSIation.ON.

Example: ARM with 512 MB at physical address zero:

MMU.FORMAT STD hv_pageTable
TRANSlation.Create 0x0:0x0--Ox1fffffff
TRANSlation.TableWalk ON
TRANSlation.ON

; hypervisor translation

Example: x64 with EPT:

MMU . FORMAT EPT

TRANSlation.Create N:0x0:0x0--0xff7fffff ; hypervisor translation
TRANSlation.TableWalk ON

TRANSlation.ON

Please see also the sample scripts in the ~~/demo directory.

Scanning System and Processes

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. You can either scan the MMU tables and place a copy of them into the
debugger’s address translation table, or you can use a table walk, where the debugger walks through the
MMU tables each time it accesses a virtual address.

walk.

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCAN ALL to go through all space IDs and scan their MMU settings. Note that on some
systems, this may take a long time. In this case you may scan a single Virtual Board (see below).

To scan the address translation of a specific Virtual Board, use the command MMU.SCAN TaskPageTable
<space_id>:0. . This command scans the space ID of the specified virtual board. E.g:

MMU.SCAN TaskPageTable 3:0

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 14

TRANSIation.List shows the address translation table for all scanned space IDs.

If you set TRANSIation.TableWalk ON, the debugger tries first to look up the address translation in its own
table (TRANSIation.List). If this fails, it walks through the target MMU tables to find the translation for a
specific address. This feature eliminates the need of scanning the MMU each time it changes, but walking
through the tables for each address may result in a very slow reading of the target. The address translations
found with the table walk are only temporarily valid (i.e. not stored in TRANSIation.List), and are invalidated
at each Go or Step.

See also chapter “Debugging WR Hypervisor and Virtual Boards”.

Symbol Autoloader

The Hypervisor Awareness for Wind River Hypervisor contains a “Symbol Autoloader”, which automatically
loads symbol files corresponding to applications running in virtual boards. The autoloader maintains a list of
address ranges, corresponding to virtual boards and the appropriate load command. Whenever the user
accesses an address within an address range specified in the autoloader (e.g. via Data.List), the debugger
invokes the command necessary to load the corresponding symbols to the appropriate addresses (including
relocation). This is usually done via a PRACTICE script.

In order to load symbol files, the debugger needs to be aware of the currently loaded components. This
information is available in the hypervisor data structures and can be interpreted by the debugger. The
command sYmbol.AutoLOAD.CHECK defines, when these kernel data structures are read by the
debugger (only on demand or after each program execution).

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

The loaded components can change over time, when virtual boards are started and stopped. The command
sYmbol.AutoLOAD.CHECK configures the strategy, when to “check” the hypervisor data structures for
changes in order to keep the debugger’s information regarding the components up-to-date.

(no arguments) The sYmbol.AutoLOAD.CHECK command immediately updates the
component information by reading the hypervisor data structures. This
information includes the component name, the load address and the space
ID and is used to fill the autoloader list (shown via sYmbol.AutoLOAD.List).

ON The debugger automatically reads the component information each time the
larget stops executing (even after assembly steps), having to assume that
the component information might have changed. This significantly slows
down the debugger which is inconvenient and often superfluous, e.g. when
stepping through code that does not load or unload components.

ONGO The debugger checks for changed component info like with ON, but not when
performing single steps.
OFF No automatic read is performed. In this case, the update has to be triggered

manually when considered necessary by the user.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 15

NOTE: The autoloader covers only components that are already started. Components that
are not in the current task or library table are not covered.

When configuring the Hypervisor Awareness for Wind River Hypervisor, set up the symbol autoloader with
the following command:

I sYmbol.AutoLOAD.CHECKCoMmanD " <action>"

<action> action to take for symbol load, e.g. “do autoload ”

The command sYmbol.AutoLOAD.CHECKCoMmanD is used to define which action is to be taken, for
loading the symbols corresponding to a specific address. The action defined is invoked with specific
parameters (see below). With Wind River Hypervisor, the pre-defined action is to call the script
~~/demo/<arch>/kernel/wrhv/autoload.cmm.

NOTE: The action parameter needs to be written with quotation marks (for the parser itis a
string).

Note that defining this action, does not cause its execution. The action is executed on demand, i.e. when the
address is actually accessed by the debugger e.g. in the Data.List or Trace.List window. In this case the
autoloader executes the <action> appending parameters indicating the name of the component, its type
(virtual board), the load address and space ID.

For checking the currently active components use the command sYmbol.AutoLOAD.List. Together with the
component name, it shows details like the load address, the space ID, and the command that will be
executed to load the corresponding object files with symbol information. Only components shown in this list
are handled by the autoloader.

% BusYmbol.AutoLoad.List EI@
2% Delete Al @ Check

address name dyn [load [cmd |
C:0001:00000100--01FFFFFF [commsD ‘ y |[do ~—/demo/arm/kernel /wrhv/autoToad "comms0” Ox1 Ox100 Ox0 Ox1 .

C:0002 :00000100--001FFFFF |init do ~~/demo/arm/kernel fwrhv/autoload "init" Ox1 Ox100 Ox0 Ox2
C:0003 :00000100--001FFFFF [init2 do ~/demo/arm/kernel fwrhv/autoload "init2" Ox1 0x100 Ox0 Ox3
C: 0004 : 00000100--001FFFFF [init3 do ~/demo/arm/kernel fwrhv/autoload "init3™ Ox1 0x100 Ox0 Oxd
do ~/demo/arm/kernel fwrhv/autoload "init4™ Ox1 O0x100 Ox0 Ox5

L L L L

C:0005 :00000100--001FFFFF |[init4

NOTE: The GNU compiler generates different code if an application is built with debug info
(option “-g”), even if the optimization level is the same. Ensure that you always use
the debug version on both sides, the target where you start the application, and the
debugger where you load the symbol file.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 16

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 17

= BuPERFListTASK =n| Wl <
[&stup... | 28 Config... [Goto...|[Bl Detaied || O, View][julProfile || @ Inik][O Disable]| @ Arm |
core n;;;e: ratio 1% 2% 5% 10% 20% 50% 100 |
0 ‘oﬁ 87.214% ~
(] ns 12.786%
0 core0HMMgr 0. 000%
0 corekgro 0. 000%
0 Dispatcho 0. 000%
ﬁ excMgr 0. 000%
4 }

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 18

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 19

Wind River Hypervisor specific Menu

The menu file “wrhv.men” contains a menu with Wind River Hypervisor specific menu items. Load this menu
with the MENU.ReProgram command.

You will find a new menu called Hypervisor.

Perf Cov | Hypervisor | Window Help

=i
= e

Display Threads e |
Display Virtual Boards

Display System Info
Display Config Vector
Display Core States

Stack Coverage L4

The Display menu items launch the hypervisor resource display windows. See chapter “Display
of Hypervisor Resources”.

The Stack Coverage submenu starts and resets the Hypervisor specific stack coverage and
provides an easy way to add or remove threads from the stack coverage window.

Use the Symbol Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only thread switches (if any) or thread switches together with the default display.

The Perf menu contains additional submenus for thread runtime statistics or thread related
function runtime statistics, if a trace is available. See also chapter “Task Runtime Statistics”.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 20

Debugging Wind River Hypervisor Components

The hypervisor itself typically runs on physical addresses or with a static address translation. In contrast,
each virtual board gets its own virtual address space when loaded, mapped to any physical RAM area that
is currently free. Due to this address translations, debugging the hypervisor and the virtual boards requires
some settings to the debugger.

To distinguish those different memory mappings, TRACE32 uses space IDs, defining individual address
translations for each ID. The hypervisor is attached to the space ID zero. Each virtual board gets a space ID
that corresponds to its board ID.

See also chapter “MMU Support”.

Hypervisor

When building the image project, you typically get a “system.elf” file that contains the startup code, the
hypervisor and any given virtual board with its applications.

Additionally, the Hypervisor Awareness needs the symbols of the hypervisor. Please see section “Hooks &
Internals” how to find the symbol files of the hypervisor.

Downloading the image

If you start the hypervisor image from Flash, or if you download the image using a bootloader, do this as you
are doing it without debugging.

If you want to download the hypervisor image using the debugger, simply download the generates
“system.elf” file to the target. The target has to be initialized when downloading. Please also see the
example scripts.

Example:

Data.Load.Elf system.elf ; downloading ELF image

When downloading the image via the debugger, remember to set startup parameters that the hypervisor
requires before booting. Usually the bootloader passes these parameters to the image.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 21

Debugging the hypervisor

For debugging the hypervisor itself, and for using the Hypervisor Awareness, you have to load the symbols
of the hypervisor into the debugger. The symbol file is usually named “hypervisor” and is placed in the object
directory of the image project. Load the hypervisor symbols onto space ID zero.

E.g.

Data.Load.Elf hypervisor 0:0 /NoCODE

Virtual Boards

Each virtual board in Wind River Hypervisor gets its own virtual memory space. To distinguish the different
memory spaces, the debugger assigns a space ID, which correlates to the board ID. Using this space ID, it is
possible to address a uniqgue memory location, even if several virtual boards use the same virtual address.

Note that at every time the Hypervisor Awareness is used, it needs the hypervisor symbols. Please see the
chapters above, how to load them. Hence, load all symbols of virtual boards with the option /NoClear, to
preserve the hypervisor symbols.

Ensure that you load the symbol file containing debug information, i.e. the “unstripped” version.

Debugging a virtual board

To correlate the symbols of virtual board with the virtual addresses of this board, it is necessary to load the
symbols into its space ID.

Manually Load Virtual Board Symbols:

For example, if you've got a a virtual board called “hello” with the board ID 12 (the dot specifies a decimal
number!):

Data.LOAD.E1f hello.elf 12.:0 /NoCODE /NoClear

The board ID may also be calculated by using the PRACTICE functions TASK.VIRTBOARD.MAGIC() and
TASK.VIRTBOARD.ID() (see chapter “Wind River Hypervisor PRACTICE Functions”).

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 22

Using the Symbol Autoloader:
If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be

automatically loaded when accessing an address inside the virtual board. You can also force the loading of
the symbols of a virtual board with

sYmbol . AutoLOAD.CHECK
sYmbol .AutoLOAD.TOUCH "hello"

Using the Menus:

Select “Display Virtual Boards”, right click on the “magic” of a virtual board, and select “Load symbols”.

Start Debugging a virtual board from its entry point

The script “wait_for_vb_start.cmm” in the ~~/demo directory can be used to halt the debugger at the
entry point of a virtual board, right after when it was created. Call the script with the name of the virtual board
first, then start the board within the hypervisor. The script waits for the board to be started and halts the
debugger at the entry point. You can then load the symbols of the virtual board as shown above.

Example:

Wait for virtual board "hello" to be started

’

LOCAL &vb &spaceid
&vb="hello"

DO ~~/demo/arm/kernel/wrhv/wait for vb_start &vb
Load the symbols of the virtual board to appropriate space ID

’

&spaceid=task.virtboard.id(task.virtboard.magic ("&vb"))
Data.LOAD.ELF workspace/HIP/obj/&vb.elf &spaceid:0 /NoCODE /NoClear

; and "Go" to "main"

Go \\&vb\\main

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 23

Wind River Hypervisor Commands

TASK.ThrList Display hypervisor threads

Format: TASK.ThrList [<thread>]

Displays the thread table of Wind River Hypervisor, or detailed information about one specific thread.
Without any arguments, a table with all created threads will be shown.

Specify a thread magic number, ID or name to display detailed information on that thread.

“magic” is a unique ID used by the Hypervisor Awareness to identify a specific thread (address of the context

struct).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.VirtBoard Display virtual boards

Format: TASK.VirtBoard [<board>]

Displays the table of virtual boards or detailed information about one specific board.

Without any arguments, a table with all created virtual boards will be shown.
Specify a board magic number, ID or name to display detailed information on that board.

“magic” is a unique 1D used by the Hypervisor Awareness to identify a specific virtual board (address of the
board struct).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 24

TASK.ConfigVec Display configuration vector files

Format: TASK.ConfigVec

Displays a table with the configuration vector files defined in Wind River Hypervisor.
This command is only available on Hypervisor version 2.x.

TASK.REGistry Display registry

Format: TASK.REGistry

Displays the registry tree of the system.
This command is only available on Hypervisor version 3.x.

TASK.SyslInfo Display system information

Format: TASK.SyslInfo

Displays information about the hypervisor system.

TASK.CoreState Display core information

Format: TASK.CoreState

Displays information about the hardware cores used by Wind River Hypervisor.

@?. B::TASK.CoreState EI@

1d [state booted [tailed |

[=

online [I.
online |1.
online |1.
online |1.

-

o000

1.
2.
3.

4 1 2

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 25

Wind River Hypervisor PRACTICE Functions

There are special definitions for Wind River Hypervisor specific PRACTICE functions.

TASK.CONFIG() Configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the magic number in bytes.

Return Value Type: Hex value.

TASK.PRIV2HYP() Linear address

Syntax: TASK.PRIV2HYP(<address>,<cpu>)

Returns the linear address of the given CPU private address.

Parameter and Description:

<address> Parameter Type: Decimal or hex or binary value.

<cpu> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.THREAD.ID() ID of thread

Syntax: TASK.THREAD.ID(<thread_magic>)

Returns the ID of the given thread.

Parameter Type: Decimal or hex or binary value.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 26

Return Value Type: Hex value.

TASK.THREAD.MAGIC() Magic of thread

Syntax: TASK.THREAD.MAGIC(" <thread_name>")

Returns the “magic” of the given thread.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.THREAD.PC() PC of thread

Syntax: TASK.THREAD.PC(<thread_magic>)

Returns the PC of the given thread.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.THREAD.TTB() TTB address of thread

Syntax: TASK.THREAD.TTB(<thread_magic>)

Returns the TTB address of the given thread.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.VIRTBOARD.BASE() Physical base address of virtual board

Syntax: TASK.VIRTBOARD.BASE(<board_magic>)

Returns the physical base address of the given virtual board.

Parameter Type: Decimal or hex or binary value.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 27

Return Value Type: Hex value.

TASK.VIRTBOARD.ID() ID of virtual board

Syntax: TASK.VIRTBOARD.ID(<board_magic>)

Returns the ID of the given virtual board.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.VIRTBOARD.MAGIC() Magic of virtual board

Syntax: TASK.VIRTBOARD.MAGIC(" <board_name>")

Returns the “magic” of the given virtual board.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.VIRTBOARD.START() Start address of virtual board

Syntax: TASK.VIRTBOARD.START(<board_magic>)

Returns the start address of the given virtual board.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach Hypervisor Awareness Manual Wind River Hypervisor | 28

	Hypervisor Awareness Manual Wind River Hypervisor
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks and Internals in Wind River Hypervisor

	Features
	Display of Hypervisor Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	Wind River Hypervisor specific Menu

	Debugging Wind River Hypervisor Components
	Hypervisor
	Downloading the image
	Debugging the hypervisor

	Virtual Boards
	Debugging a virtual board
	Start Debugging a virtual board from its entry point

	Wind River Hypervisor Commands
	TASK.ThrList Display hypervisor threads
	TASK.VirtBoard Display virtual boards
	TASK.ConfigVec Display configuration vector files
	TASK.REGistry Display registry
	TASK.SysInfo Display system information
	TASK.CoreState Display core information

	Wind River Hypervisor PRACTICE Functions
	TASK.CONFIG() Configuration information
	TASK.PRIV2HYP() Linear address
	TASK.THREAD.ID() ID of thread
	TASK.THREAD.MAGIC() Magic of thread
	TASK.THREAD.PC() PC of thread
	TASK.THREAD.TTB() TTB address of thread
	TASK.VIRTBOARD.BASE() Physical base address of virtual board
	TASK.VIRTBOARD.ID() ID of virtual board
	TASK.VIRTBOARD.MAGIC() Magic of virtual board
	TASK.VIRTBOARD.START() Start address of virtual board

