LAUTERBACH A

General Commands Reference
Guide V

General Commands Reference Guide V

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUIde Vccciiiiciiiiniinnmis s s e s 1
L 1= (o 5

R - 6
Var HLL variables and expressions 6
Overview Var 6
Symbol Prefix and Postfix 6
Symbol Paths 7
Search Paths 7
Mangled Names and C++ Classes 8
Function Return Values 8
Special Expressions 8
Calling Functions 11
Display Formats 12
Functions 23
Var.AddSticker Add variable sticker to source listing window 23
Var.AddWatch Add variable to Var.Watch window 24
Var.AddWatchPATtern Add variables to Var.Watch window using wildcards 24
Var.Assign Assignment to a variable 25
Var.Break Breakpoint on variable 26
Var.Break.Delete Delete breakpoint on variable 26
Var.Break.direct Set temporary breakpoint on HLL expression 28
Var.Break.Pass Define pass condition for breakpoint 29
Var.Break.Set Set breakpoint to HLL expression 30
Var.Call Call a new procedure 31
Var.CHAIN Display linked list 32
Var.DelWatch Delete variable from watch 33
Var.DRAW Graphical variable display 33
Var.DRAWXY Graphical variable display 37
Var.DUMP Memory dump 38
Var.Eval Evaluate high-level expression 39
Var.EXPORT Export variables in CSV format to file 39
Var.FixedCHAIN Display linked list 41
©1989-2024 Lauterbach General Commands Reference Guide V 2

Var.FixedTABle Display table 41
Var.Go Real-time emulation 43
Var.Go.Back Re-run program backwards until variable access (CTS) 43
Var.Go.Change Real-time emulation till expression changes 44
Var.Go.direct Real-time emulation with breakpoint 45
Var.Go.Till Real-time emulation till expression true 46
Var.IF PRACTICE conditional branching 47
Var.INFO View information about HLL variable or HLL expression 48
Var.Local Local variables 49
Var.LOG Log variables 50
Var.NEW Creates a TRACE32-internal variable 52
Var.NEWGLOBAL Creates a global TRACE32-internal variable 53
Var.NEWLOCAL Creates a local TRACE32-internal variable 54
Var.OBJECT Pretty printing for C++ objects 56
Var.PATtern Display variables allowing wildcards for symbol name and type 58
Var.PRINT Display variables 59
Var.PROfile Graphical display of variable 60
Var.Ref Referenced variables 61
Var.set Modify variable 62
Var.Step Step 65
Var.Step.BackChange Step back till expression changes 65
Var.Step.BackTill Step back till expression true 65
Var.Step.Change Step till expression changes 66
Var.Step.Till Step till expression true 66
Var.TABle Display table 67
Var.TREE Display variables in the form of a tree structure 68
Var.TYPE Display variable types 69
Var.View Display variables 70
Var.Watch Open Var.Watch window 72
Var.WHILE PRACTICE loop construction 73
Var.WRITE Write variables to file 74
0L 75
VCO Clock generator 75
VCO.BusFrequency Control bus clock 75
VCO.Down Frequency down 75
VCO.Frequency Control VCO clock 76
VCO.Rate VCOrate 76
VCO.RESet VCO reset 77
VCO.state State display 77
VCO.TimeBaseFrequency Set the time base clock 77
VCO.Up Frequency up 78
0L S 79
VCU VCU registers (Vector Computational Unit) 79
©1989-2024 Lauterbach General Commands Reference Guide V 3

VCU.Init Initialize VCU registers 79
VCU.RESet Reset VCU registers 79
VCU.Set Set VCU register 80
VCU.view Display VCU registers 80

1 S, 81
VE Virtual execution mode 81
VE.OFF Turn off virtual execution mode 81
VE.ON Turn on virtual execution mode 81
7 2 R 82
VPU Vector Processing Unit (VPU) 82
VPU.Init Initialize VPU registers 82
VPU.Set Modify VPU registers 83
VPU.view Display ALTIVEC register window 84
©1989-2024 Lauterbach General Commands Reference GuideV | 4

General Commands Reference Guide V

Version 06-Jun-2024

History

23-Jan-2023 VPU commands support different architectures other than PowerPC.

©1989-2024 Lauterbach General Commands Reference GuideV | 5

Var

Var HLL variables and expressions
See also
B Var.AddSticker B Var.AddWatch B Var.AddWatchPATtern B Var.Assign
B Var.Break B Var.Call B Var.CHAIN B Var.DelWatch
B Var.DRAW M Var.DRAWXY M Var.DUMP W Var.Eval
B Var.EXPORT M Var.FixedCHAIN W Var.FixedTABle W Var.Go
W VarlF M VarINFO W Var.Local M VarLOG
B VarNEW B VarNEWGLOBAL B VarNEWLOCAL B Var.OBJECT
B Var.PATtern B Var.PRINT W Var.PROfile B Var.Ref
B Var.set B Var.Step B Var.TABle B Var.TREE
B VarTYPE M Var.View B Var.Watch B VarWHILE
B VarWRITE B SETUP.Var B sYmbol.CASE 1 Var ADDRESS()
1 Var.END() 1 Var.RANGE() 1 Var.SIZEOF() 3 Var.STRing()
1 Var.TYPEOF() 1 Var.VALUE()
A ’Var Functions’ in 'General Function Reference’

A ’Release Information’ in’Legacy Release History’

Overview Var

Lower and upper case letters are distinguished in symbol names. The command sYmbol.CASE switches
off this differentiation. The length of symbol names is limited to 255 characters. The maximum number of

symbols depends on the size of the system memory.

Symbol Prefix and Postfix

Most of the compilers add a special character (for example “” or

« 9

) in front of or behind the users symbol

names. The user does not need to enter this character. The symbol management automatically adds the

character, if necessary.

Example for the processing of prefix/postfix characters.

Symbol Table Entry HLL-Windows Assembler windows
_vfloat _vfloat or vfloat _vfloat
vfloat
©1989-2024 Lauterbach General Commands Reference GuideV | 6

Symbol Paths

There are two modes during entry a symbol name: entering a complete symbol path or solely a symbol
name. If only a symbol name is used, the access will occur to the symbol valid for the used program part (if
symbol names are used more than once, local symbols are preferred to symbols of higher blocks).

By specifying a complete symbol path access to any symbol is possible. Each part of the symbol path is
separated by a '\'. A complete path has to begin with a '\'. The following path versions are allowed:

\modul\global ...
\modul\modul-local ...

\\program\modul ...

If the specified symbol represents a function, the access to local variables of this function and of nested
functions will be possible:

...\function\local

...\function\function ...

If using PASCAL, as many functions as chosen will be nested.
Line numbers can be specified in the following way:

\linenumber
\linenumber\columnnumber
\module\linenumber
\\program\module\linenumber

.\function\relative_linenumber

The address of the high level language block containing the specified line number is returned by this
operation.

Search Paths

If no complete path is entered, the symbol will be searched in the following sequence

1. Local symbols (interior block ... exterior block)
2 Static symbols of block

3 Static symbols of module

4. Global symbols of current program

5 All other static symbols

©1989-2024 Lauterbach General Commands Reference GuideV | 7

Mangled Names and C++ Classes

The class of a method can be left out, if this method exists only in one class and the names are ANSI
mangled. The class is always required, if the constructor, destructor or an overloaded operator must be
accessed. The quotation marks can help to allow special characters if the C++ name is used in the regular
TRACE32 syntax. They are not required in the Var command group. However they can be used when
specifying a local symbol. The command sYmbol.MATCH can control the behavior if an overloaded method
is not specified with the prototype.

List “classl::methodl’

List methodl //access to same method (ANSI
// mangled)

List “classl::classl’ //creator of class classl

List “classl::~classl’ //destructor of class classl

List “classl::operator++ //overloaded operator

List “classl::operator+ (int) " //overloaded operator with

// prototype

Var.set “classl::operator+ (int)\i" //local variable of function

Function Return Values

The return value of a function is entered in the symbol list as a local variable of the function. It has always the
name 'return’.

Special Expressions

The expression interpreter accept some extensions to the language. All type checks and range checks are
handled as free as possible. Accessing data beyond the array limits is allowed.

A dereference of a plain number will assume that it is a pointer to character:

Var.set *0x2000 = 1 //set byte at location 2000 (decimal)

All labels (typeless symbols) can be used in expressions. They are taken as variables of the type void. They
can be cast directly to the wanted type.

Var.set _ HEAP //displays nothing (if _ HEAP is a label)
Var.set *__ HEAP //assumes __ HEAP as a pointer to character
Var.set (long)__ HEAP //takes _ HEAP as a 'long' variable

©1989-2024 Lauterbach General Commands Reference GuideV | 8

Function calls can be made to plain addresses or typeless symbols. The return value is assumed to be

'void'.
Var.set (0x2000) (1,2,3) //calls the function at 2000 (hex)
Var.set _ HEAP(1,2,3) //calls the function at the label __ HEAP

Extracts of arrays can be made with 'range' expressions. The operations allowed with such extracts is
limited. This allows display of zero sized arrays and display of pointers to arrays.

Var.set flags[2..4] //display elements 2 to 4

Var.set vdblarray[2..4][i-1..i+1] //display part of two-dimensional
//array

Var.set vpchar[0..19] //display array at pointer 'vpchar'

Var.set (&vchar)[0..19] //takes the location of one element
//to build up an array

Var.set vpchar[0..23][0..79] //display a two dimensional array

//at the pointer

Extracts of arrays can be assigned or compared to members of the array.

Var.set flags[O..

1 //clears the array to 0
Var.set flags[5..9

//results a non-zero number if all
//elements are 0

9]=
]:

0
0

Assigning strings can cause two different reactions. If the string is assigned to a NULL pointer, the target
function 'malloc' is called to gather memory for the string and the resulting address is assigned to the pointer
variable. If the string is assigned to a non zero pointer or an array, then the contents of the string are copied
over the old contents of the array.

|
o

Var.set vpchar =
Var.set vpchar = "abc" //will call the 'malloc' function

Var.set vpchar = 0x100
Var.set vpchar = "abc" //copy the string "abc" to location 0x100

Comparing a pointer or array against a string compares the contents of the string.

Var.Go.Till pname=="TEST" //execute program till string equal

Strings used in arguments to functions are allocated on the stack.

Var.set strlen("abc") //the string will reside on the stack

©1989-2024 Lauterbach General Commands Reference GuideV | 9

A type alone can be an expression. This is especially useful for the Var.TYPE command to display the layout

of a structure or C++ class.

Var.TYPE %$Multiline Tree

//displays the layout of class 'Tree'

Elements of unions can be accessed by indexing the union like an array. The first element of the union is

accessed with index 0.

struct
{
enum evtype type;
union
{
struct sysevent sys;
struct iocevent io;
struct winevent win;
struct lanevent lan;
}
content;

3

signal;

Var.View signal.content[signal.type]

Structures or limited arrays may be assigned or compared with multiple members.

Var.set ast=(1,2,3)
Var.IF point==(0,0)

Var.set £flg[0..2]1=(1,2,3)

//assigns the first three members

// values

//condition is true when first elements
// are zero

//assigns the first three elements

// values

Pointers to nested C++ classes may be converted into a pointer to the most derived class of the object. If this
is not possible the operation returns the regular pointer.

Var.set *this //displays the “regular” object
Var.set *[this] //displays the most derived class of the object

The syntax for MODULA2/PASCAL expressions has been extended for type casts and hexadecimal

numbers.
Var.View flags[0] := 12H //standard MODULA hexadecimal syntax
Var.View flags[0] := 0x12 //also accepted (like 'C'")
Var.View CARDINAL(1.24) //typecast like 'C': (CARDINAL) 1.23
Var.View ~CARDINAL (0x10 //typecast like 'C': (CARDINAL *) 0x10
©1989-2024 Lauterbach General Commands Reference Guide V. | 10

Calling Functions

In expressions it is possible to call functions of the target. This feature should be used very carefully, as not
proper working code in the target may be executed with the function call. Calling functions is only possible
with the commands Var.set and Var.Call. The Var.Call command can be used to test a function with
different parameters. If a function call fails, or was stopped by a breakpoint the original values of the CPU
registers can be recalled with the Frame.SWAP command. The proper function call cannot be guaranteed

for all processors and compiler options.

©1989-2024 Lauterbach General Commands Reference Guide V. | 11

Display Formats

TRACE32 provides the following <format> parameters:

[Yo<format>] ... all
Ascii [.on | .OFF]
BiNary [.on | .OFF]
Compact [.on | .OFF]
Decimal [.on | .OFF]
DEFault
DUMP [.on | .OFF]
runtimE [.on | .OFF]
Fixed [.on | .OFF]
Hex [.on | .OFF]
Hidden [.on | .OFF]
Index [.on | .OFF]
INherited [.on | .OFF]
INheritedName [.on | .OFF]
Location [.on | .OFF]
MEthods [.on | .OFF]
Multiline [.<nesting_level>][.on | .OFF]
Name [.on | .OFF]
Open[on|.OFF|.11.21.31.41.51.6!.71.81.91.ALL]
PDUMP [.on | .OFF]
Recursive [.on | .OFF | .2 | .3 | .4]
SCALED [.on | .OFF]
SHOW [.on | .OFF]
SPaces [.on | .OFF]
SpotLight [.on | .OFF]
STanDard
String [.on | .OFF]
sYmbol [.on | .OFF]
TREE [.on | .OFF | .OPEN]
Type [.on | .OFF]
WideString [.on | .OFF]

The format parameters modify the input or output format of variables:

E::Var.Watch ‘B: :lvar.Watch ¥Decimal.on

[[eka il formats |i <var> | [[ok] || al || DEFault |[STanDard || Decimal || Hex || BNary || Asci || Dump |
| —————————] L

. A format parameter affects only the variables that are listed behind it.

. Multiple format parameters can be combined (e.g. %Decimal and %Hex), causing the variable
to be output in multiple formats.

o Format parameters can be turned off selectively using the .OFF postfix.

J The SETUP.Var command defines the default settings. See also DEFault below.

For an illustration of the first three rules, see example below.

©1989-2024 Lauterbach General Commands Reference Guide V. | 12

Example:

Var .Watch %Decimal.on

%Hex.on i

%Hex.OFF k

&% BuVarWatch %Decimal.on %Hexon i %Hex.OFF k

(=[O el

- (&)

1= 0x1

16
£ IBI

;
T

A Decimal and hex for variable i

B Decimal only for variable k

all

all is a set of the following format options:

o Type

L Decimal

. Hex

L Ascii

. Recursive
. String

. Index

o sYmbol

. Compact
J Multiline

You can format the display of variables with all of these format options by using just all.

&of| BuVarView %all ast

(=[O el

c str

el J W

count = 12346 2 0x303A
~uct structl *)

structl #) right = Ox
. fieldl = 1 2 Ox1 2 "J0%%°,
« (unsigned int:3) field2 = 2 2 0x2 2 "¥4%%")

2 — NULL,

ME T

«[m

-

Teft = 0x583C 2 ast —» ((unsigned char *)
0a
N

See also: DEFault, STanDard

©1989-2024 Lauterbach

General Commands Reference Guide V

13

Ascii

Display of values as ASCII characters. This effects simple variables only. The String format can be used to
display zero-terminated strings. If multiple type base formats are defined, the formats are displayed
simultaneously.

&of| B:VarView %Asciion %0pen2 %Compact.on %Hex.on %Decimal.on ast EI@
=35t =0 ox0 —» NULL, <—— multiple formats
ST Sontaae PO R .| (hex, decimal, ascii)
#word = 0x0, o , <—/—— pointers are always in hex
- count = 12346 2 0x303A 2 "1%0:", . . N
3 'Iefﬁ = 0x583C, <— simple variable displayed
right = 0x0, . .
. ﬁ'gml =1 2 0xl 2 SN, in decimal, hex and ASCII
- field2 = 2 2 0x2 2 "UNNRT), 2
I3
BINary
Binary display Oy...
&off B:VarView %BINary.on %:Open.2 ast EI@
Slast = (~

slword = 0x0 — NULL,

= count = Oy00000000.00000000.00110000.00111010,

- left = 0x583C = (
#word = 0x0,
- count = Oy00000000.00000000.00110000.00111010,
left = 0x583C,
right = 0x0,
- fieldl = Oy00000000. 00000000, 00000000, 00000001,
- field2 = 0Oy00000000. 00000000, 00000000, 00000010) , -

m

Compact

Produces a very compact output format in combination with Multiline.

ﬁj BuVarView %Compact.on %Recursive.2 %0pen.3 ast EI@

= ast = (~ <+—— gtructure members are
I‘!SESQOI%ZE,”“LL’ | displayed below the
= Teft = 0x383C —+ (i structure name

=slword = 0x0 — NULL,
- count = 12346,
- left = 0x583C = (
#word = 0x0 — NULL,
- count = 12346,
left = 0x583C — (word = 0x0 — NULL, count = 12346, Tlef
right = Ox0 — NULL,

- fieldl =1,
- field2 = 2),
= right = Ox0 — NULL -
4 10 2

©1989-2024 Lauterbach General Commands Reference Guide V. | 14

Decimal

Display of values in decimal format.

&off B:VarView %Decimal.on %Hex.on %BINary.on %Open.2 ast EI@
Slast = (~
slword = 0x0 — NULL,
- count = 12346 2 0x303A 2 0y00000000.00000000.00110000. 001110
- left = 0x583C = (E
#word = 0x0,
- count = 12346 = 0x303A 2 0y00000000.00000000. 00110000. 0011
left = 0x583C,

right = 0x0,
- fieldl = 1 = 0x1 = 0y00000000. 00000000. 00000000. 00000001,
- field2 = 2 2 0x2 = 0y00000000. 00000000. 00000000. 00000010), -
4 m 3
DEFault

Applies all the format options that you have set to ON in the SETUP.Var window.

You can format the display of variables with all of these format options by using just DEFault.

ff| B:VarView %DEFault ast == 5
Slast = (~
=l word = 0x0 — NULL,
- count = 12346 = 0x303A,
= left = Ox583C — (
+ word = 0x0,
- count = 12346 2= 0x303A,
left = 0x583C,

m

right = 0x0,
- fieldl = 1 =2 Ox1,
- field2 = 2 2 0x2), -

See also: all, STanDard.

DUMP

Additional display of a short hex dump of each variable.
6off B:VarView %DUMP.on viloat vdouble =n| Wl <
- vfloat = 1.6 2 «CD CC CC 3F> .

- vdouble = 1.6000000000000001 = <99 99 F9 3F 9A 99 99 99>

E

Access to static variables through the emulation memory. By this option global or static variables may be

displayed during the real-time emulation. As this dual-port access cannot access target memory, this option

allows 'save' memory accesses, as illegal pointer values cannot cause wrong accesses to the target.

©1989-2024 Lauterbach

General Commands Reference Guide V

15

Fixed

Fixed width fields for all numeric values. Useful for two-dimensional arrays.

&off B:VarView %Open.on %Fixed.on vdblarray %Fixed.OFF vdblarray EI@

= vdblarray = (
(255,

[=] o l=lele]
HOOoOOoOOo

)
J
J
J
)

0) ;
#(0, 0 .)
= vdblarray =

(255, 0

(=)=}l oo OoOWw

L]

Hex

Display of values in hex format.

tofl B:VarView %Hex.on ast %Hex.OFF ast EI@

ast = (word = 0x0, count = Ox303A, Teft = 0x583C, right = 0x0, fieldl = Ox1, field? = 0x2)

ast = (word = Ox0, count = 12346, left = 0x583C, right = 0x0, fieldl = 1, f1eld2 = 2)

4 m 3
Hidden

Displays hidden members of C++ classes. 'Hidden' members are implementation specific members of
nested classes. They are generated by the C++ 'cfront' preprocessor.

& BuVarView %0pen %Type %Hldden a EI@
2 CA) a=(

® (_ vtbl_ptr_type) _vptr_A = 0x0001AE50,

- (int) i =0,

- (int) j =0,

+ (int) a = 0,

® (char *) p = 0x0)

Index

Displays the index of an array element. The format is either decimal or hexadecimal. If information about the
type of the index is available, the index is displayed according to this information.

tofl B:VarView %lndexon flags %Index.OFF flags EI@
#flags = ([0] =1, [1] =1, [2] =1, [3] =1, [4] =1, [5] =1, [6] =1, [71 =1, [8] =1, [9] =0, [10] =1, [1.
#flags = (1, 1, 1, 1, 1, 1,1, 1,1,0,1,0,0,1,1, 0,0, 1, 0)

Fl nm 3

©1989-2024 Lauterbach General Commands Reference GuideV | 16

INherited

Displays members inherited from other classes (only C++).

bof Bu:VarView %OPEN %INherited.on 12 %INherited OFF 12 =n| Wl <
=x12 = (7
= Xl::1 =0,
+ X2::1 =0,
- j = 0)
Bxl2 =
- j = 0)
4 2
INheritedName

Shows or hides class names of members from inherited classes. This is useful if a class name is very long.

bl B:Var.View %OPEN %lNheritedName.on nestdvar =N Eoh(bl B:Var.View %0PEN %NheritedName. OFF nestdvar
= nestdvar = (~ = nestdvar = (
- nesta::a = 0, -a=0,
- nesta::b =0, = b =0,
- nesta::c = 0, -c =0,
- nesta::i = 0, +i=0,
- nesth::b = 19672, - b = 19672,
- nesth::c =1, - .c=1,
4 I3 4
Location

Displays the location of each variable or record element. The location can be an address or a register name.

&off B:VarView %Openl %Compacton %Location.on ast

(=[O el

= [D:0x583C] ast = (
[D:0x583C] word = 0x0,
- [D:0x5840] count = 12346,
[D:0x5844] left = 0x583C,
[D:0x5848] right = Ox0,
- [D:0x584C.0] fieldl =1,
- [D:0x584C. 2] field2 = 2)

-

MEthods

Displays the names and arguments of member functions (methods).

bof B:VarView %Open %MEthods.on =N Eoh(bof B:VarView %Open %MEthods.OFF a
Ba= - Ba=(
.3 =0, =1 =0,
-j =0, .j =0,
-a=0, -a=0,
®p = 0x0, ®p = 0x0)
foo(),
vfun() = 0, 7]
vfun2() = 0,
vfun3() =1,
operator+(),
bar()) -
©1989-2024 Lauterbach General Commands Reference Guide V. | 17

Multiline

Displays the structure elements in multiple line format. If the elements are in a multidimensional array, the
numeric parameter <nesting_level> defines the number of levels displayed.

ﬁj BuVarView %Multilinel vtripplearray %:Multiline.2 viripplearray EI@
= vtripplearray = (.
= ((1, 4, 0, 0), (3, 0, 0, 0), (0, O, 0, 0)),
= ((2, 0, 0, 0), (0, 0, 0, 0), (O, O, 0, 0)))
= vtripplearray = (
(1, 4, 0, 0),
(3, 0, 0, 0),
(‘f(U, 0, 0, 0)),
(2, 0, 0, 0),
= (0, 0, 0, 0),
= (0, 0, 0, 0)))
4 m 3
Name

Displays the name of structure elements. This is the default. It can be turned OFF to display more structure
elements in one line.

&off BuVarView %Mameon ast %MName.OFF ast EI@
+ ast (word = Ox0, count = 12346, left = Ox583C, right = 0x0, Tieldl = 1, t1eld2 = 2) L
ast (0x0, 12346, Ox583C, O0x0, 1, 2)

4 T b

Open

Display of structures and arrays in multiple lines. The optional number defines the depth of the nesting to be
displayed in multi-line mode. This option allows a clearly arranged display of multi dimensional arrays.
Open.ALL will open nested structures respectively unions only. Pointers will not be followed.

&off B:VarView %Open.2 %Recursivel ast EI@

Slast = (~

slword = 0x0 — NULL,
- count = 12346, E
- left = 0x583C = (

#word = 0x0 — NULL,

- count = 12346,

left = Ox583C = (word = Ox0, count = 12346, left = Ox583C, right = 0x0, fieldl = 1, field2 = 2},

right = Ox0 — NULL, -

4 T b

PDUMP

For pointers displays a short memory dump of the referenced memory.

&ff B:VarView %PDUMP.on %Compact.on %0penl ast EI@
Slast = (p

= word = 0x0 — NULL,

- count = 12346,

- left = 0x583C — <00 00 00 OO0 3A 30 00 00 3C 58 00 00 0O 00 0O 0O,

= right = 0x0 — NULL,

- fieldl =1,

- field2 = 2)

©1989-2024 Lauterbach General Commands Reference GuideV. | 18

Recursive

Display the contents of pointers. The optional number defines the depth of recursion to be displayed. The
command SETUP.VarPtr defines the valid address range for pointers. The contents of pointers outside this

range are not displayed.

&f BuVarView %Multiline.3 %:Recursive.2 ast

(o] 8)

=l ast = (
S word = 0x0 — NULL,
= count = 12346,
= left = 0x252C — (
= word = Ox1EFO0 — 77,
= count = 0,
= left = 0x2540 — (
®word = Ox1EF8 — 84,
= count = 1,

- fieldl = 0,

- fieldz = 0},

right = 0x2518 — (
®word = 0x0 — NULL,
= count = 12346,

il

® right = Ox0 — NULL,
- fieldl = -1,
- fieldz = 2),
- fieldl = 0,
- fieldz = 0),
® right = O0x0 — NULL,
- fieldl = -1,
£

left = 0x2554 — (word = Ox1F00 — 87, count = 2, left = Ox
® right = 0x252C — (word = Ox1EF0 — 77, count = 0, left = 0

® left = 0x252C — (word = Ox1EFO — 77, count = 0, left = Ox

Ll

SCALED

Displays the scaling information of a variable. This type of information can be added to a variable with the

sYmbol.AddInfor.Var command.

Example:

;add information to a variable

9 <variable> <multiplier> <offset> <explanation>
sYmbol .AddInfo.Var vfloat Scaled 1.3 4. " mvolt"
;display scaled variable

Var.View $SCALED.on vfloat $SCALED.OFF vfloat

boff B:VarView %SCALED.on vfloat %SCALED.OFF vfloat =n| Wl <
- vfloat = 1.6 = 6.08000003099 mvolt 7
- wfloat = 1.6

©1989-2024 Lauterbach

General Commands Reference Guide V|

19

SHOW

Boff Bu:VarView %SHOW.OFF ast %:SHOW.on ast =n| Wl <
Hast = (...) p
ast = (word = 0x00123456, count = 12346, left = Ox583C, right = Ox1, fieldl = 1, field2 = 2)

4 M b

SPaces

Selects if white space characters are allowed in expressions or not. When OFF, expressions must be written
compact and blanks separate expressions. If on, spaces are allowed in expressions, and only the semicolon
separates expressions.

Example:

Var.View %SPaces.OFF ast->left flags[5]+1i

Var.View %$SPaces.on ast -> left; flags[5] + 1

f] B::Var.View %SPaces.OFF ast-»left flags[5]+i o=]
ast->left = 0x583C 7
- flags[5]+1 =1

ﬁj Bu:VarView %:5Paces.on ast-»> left; flags[5]+ i EI@
#ast -> left = Ox583C 7
- flags[5] + 1 =1

SpotLight

Highlights changed variable elements. This format includes the TREE format. Highlighted are only elements
for the first objects of a line.

&off B:VarView %Spotlight.on %:Openl ast EI@
Slast = (p

#word = 0x00123456,

= count = y

left = 0x583C,

right = Ox1,

- fieldl =1,

- field2 = 2)

I3

©1989-2024 Lauterbach General Commands Reference Guide V. | 20

STanDard

The STanDard format option overrides all user-defined settings made in the SETUP.Var window. STanDard
is a set of the following format options:

o SCALED.on

. Name.on

L Compact.on

o TREE.on

. SHOW.on

. INherited.on

1

7I::I-| LBl |
6o B:VarView %STanDard ast %Decimal.on %Hex.on %BINary.on %ASCLon %OPENI ast =n| Wl <
ast = Eword = 0x00123456, count = 12, Teft = Ox583C, right = Ox1, Tieldl = 1, tield? = 2) 7
=l ast =

#word = 0x00123456,

. %ognt =12 = 0x0C 2 "1%%%" 2 0y00000000. 00000000. 00000000, 00001100,
+ left = 0x583C,

right = Ox1,

- fieldl =1

- field2

THMNE T

0x1
0x2

0y00000000. 00000000. 00000000. 00000001,
0y00000000. 00000000. 00000000, 00000010)

[k
[[E1k
[[E1k

THNRE
I

2

4 T b

A By using just STanDard, you can format the display of one or more variables with all of the format
options listed above.

B If you require other format options in addition to the ones included in STanDard, then you need to
specify these format options explicitly.

See also: all, DEFault.

String

Displays one byte arrays or pointers to bytes as an zero-terminated ASCII string.

&of| B:VarView %String.OFF flags %String.on flags EI@
= flags = (97, 98, 99, 0, 1, 1, 0, 1,1, 0,1, 0, 0,1, 1, 0, 0, 1, 0) -
flags = "abc"

4

©1989-2024 Lauterbach General Commands Reference Guide V. | 21

sYmbol

Values of pointers are displayed symbolic.

&of BuVar.View %es¥Ymbol funcptr EI@

funcptr = 0x0714 = func3

TREE

Tree view (this is the default). Allows to change some display modes for each member of a structure or array
individually. This replaces the functionality of the Open and Recursive formats. Pressing the menu mouse
button on the “+” or “” sign will open a pull-down menu. This pull-down allows two choose display options for
the shown elements. It is possible to show or hide the contents, display most derived classes, display the

contents as ASCII string or show the first few elements of an array. TREE.OPEN is like TREE.ON, but the
first element is already opened.

The TREE format is automatically selected when the SpotLight format is enabled.

trofl B:Var.View %TREE.OFF ast o -E =]
ast = (word = Ox00123456, count = 12, left = Ox583C, right = Ox1, tieldl = 1, t1eld? = 2)

4 T

boff B:VarView 9%TREE.on ast =n| Wl <
ast = (word = 0x00123456, count = 12, left = Ox583C, right = Ox1, fti1eldl = 1, fti1eld? = 2)

4 T

boff B:VarView 9TREE.OPEN ast =n| Wl <
Slast = (p
#word = 0x00123456,

- count = 12,

left = 0x583C,

right = Ox1,

- fieldl =1,

- field2 = 2)

Type

Display of the variable type.

&off B:VarView %OPEN. %Compact ast %Typeon ast EI@
Slast = (p

#word = 0x00123456,

- count = 12,

left = 0x583C,

right = Ox1,

- fieldl =1,

field? = 2

) ast = (
%) word = 0x00123456,

=) left = 0x583C,
st “) right = 0Ox1,
fieldl =1,

d int:3) field2 = 2)

WideString

Each character is a word, e.g. for some DSPs, or unicode.

©1989-2024 Lauterbach General Commands Reference Guide V. | 22

Functions

For a list of all Var.*() functions, see “Var Functions” (general_func.pdf).

Var.AddSticker

Add variable sticker to source listing window

Format:

Var.AddSticker <line> [Y%o<format>] <var>

Adds a variable sticker to the source listing window.

Example:

Var .AddSticker main\10

$Hex mcount

i Bilistauto =R o
M Step | B Over | \AsDiverge « Return|| ¢ Up » Go || NN Break || | Mode |6 - Find:
addr/Tine |source |
691 func_sini); ~
do {
694 it (monHook)
595 monHook () ;
mcount = Ox0B
697 mstaticl = 12;
698 mstaticz = 34;
899 mcount++;
701 inc = (4 * 150000 / period;
702 sign = ((mcount % period) == period/2 3 7 -1 : +1;
703 plotl = plotl + sign * inc;
704 plot2 = 25000 * sign; W
See also

W Var M Var.set

©1989-2024 Lauterbach

General Commands Reference Guide V. | 23

Var.AddWatch Add variable to Var.Watch window

Format: Var.AddWatch [%<format>] [<variable>] ...

The specified variable is added to the top of the Var.Watch window. A new Var.Watch window is opened, if
no such window exists.

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

See also
W Var M Var.set B Var.View M Var.Waich

A ’Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

Var.AddWatchPATtern Add variables to Var.Watch window using wildcards

Format: Var.AddWatchPATtern [%<format>] <symbol_pattern> ...

Adds variables to the Var.Watch window. For details on adding variables to a Var.Watch window, refer to the
Var.AddWatch command.

<symbol_pattern> The wildcards ‘?’ and ‘*’ are supported.

Example:

Var .AddWatchPATtern extend*

See also
W Var M Var.set

©1989-2024 Lauterbach General Commands Reference Guide V. | 24

Var.Assign Assignment to a variable

Format: Var.Assign %<format> <variable>

In contrast to Var.set, there is no output of the result in the message line and AREA window. This way you
can assign values to a variable by a PRACTICE script without displaying something not of interest to be

seen.
<format> For a description of the <format> parameters, click here.

See also

W Var W Var.set

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 25

Var.Break Breakpoint on variable

See also
B Var.Break.Delete B Var.Break.direct B Var.Break.Pass B Var.Break.Set
B Var W Var.set
Var.Break.Delete Delete breakpoint on variable
[Example]
Format: Var.Break.Delete <hll_expression> [I<breaktype>]
<breaktype>: Program | ReadWrite | Read | Write
ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo
WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger
TASK <task_magic> | <task_id> | <task_name>
Removes the breakpoints set to the address range specified by <hll_expression>.
<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
<hll_expression> Allows to specify the HLL expression in the syntax of the programming

language used (C, C++, ...).

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

©1989-2024 Lauterbach General Commands Reference Guide V. | 26

Example:

Var .Break.Delete flags //deletes all breakpoints set to
//the address range of variable
//flags
Var.Break.Delete flags /Write //deletes Write breakpoints set to
//the address range of variable
//flags
See also
B Var.Break B Break.Delete

A ’Release Information’ in’Legacy Release History’
A ’Breakpoint Handling’ in "Training Basic Debugging’
A ’'Breakpoint Handling’ in "Training Basic SMP Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 27

Var.Break.direct Set temporary breakpoint on HLL expression

Format: Var.Break.direct <hll_expression> [[<breaktype>]

<breaktype>: Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

Sets temporary breakpoint on address range of specified <hll_expression>.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
<hll_expression> Allows to specify the HLL expression in the syntax of the programming
language used (C, C++, ...).
<task_magic>, etc. See also “What to know about the Task Parameters” (general_ref_t.pdf).
See also
B Var.Break B Break.direct

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 28

Var.Break.Pass Define pass condition for breakpoint

Format: Var.Break.Pass [<expression>]

When the program execution is stopped by a breakpoint, and the boolean expression is true, the program

execution is automatically restarted. The feature can be cleared by entering the command without
arguments.

Examples:

Var.Break.PASS vfloat<l.57 //automatically restart the program

//execution at a breakpoint hit, if
//the variable vfloat is lower then
//1.57

Var .Break.Set mstaticl /Write //set breakpoint
Go

7 eee

Var .Break.PASS //remove the pass condition

The following commands shows how a condition can be directly assigned to a single breakpoint.

Var .Break.Set mstaticl /Program /VarCONDition (vfloat>1.7)

Go

Var .Break.Delete mstaticl

See also
B Var.Break

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 29

Var.Break.Set

Set breakpoint to HLL expression

[Example]

Format:

<breaktype>:

Var.Break.Set <hll_expression> [/<breaktype>]

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [/AfterStep]

VarCONDition <hll_expression> [[AfterStep]

CMD <command_string>

RESUME

Sets breakpoints to the address range specified by <hll_expression>. Without parameters the command
opens a dialog window for setting breakpoints.

<breaktype>

<hll_expression>

<task_magic>, etc.

For a description of the breakpoint types and breakpoint options, see
Break.Set.

Allows to specify the HLL expression in the syntax of the programming
language used (C, C++, ...).

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

©1989-2024 Lauterbach

General Commands Reference Guide V. | 30

Example:

Var .Break.Set structl

Var.Break.Set structl.x /Write

See also

//set Read/Write breakpoints to the
//structure structl

//set Write Breakpoint to structl
//element x

B Var.Break W Break.Set

A ’Release Information’ in’Legacy Release History’

Var.Call

Call a new procedure

Format: Var.Call [%<format>] [<expression>]

If the expression is a function call, this function is entered and the program counter points to the first
instruction of the function. The values of the CPU registers before the function call can be recalled with the

Frame.SWAP command.

<format> For a description of the <format> parameters, click here.
Examples:
Var.Call func7(1.5,2.5) //sets the PC to the start of 'func7' and

//pushes two floating point arguments

Var.Call (0x100) (1,2,3) //sets the PC to 100 (hex) and pushes 3
//arguments

Var.Call vops+4 //assuming 'vops' 1s a C++ class, it sets
//the PC to the method function for the
//operator+

See also

B Var B Var.set
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide V. | 31

Var.CHAIN Display linked list

Format: Var.CHAIN [%<format>] <first> <next> [<pointer> ...]]

The first expression must be the first element of the list. The second expression specifies the pointer to the
next element in the first element. The other arguments specify pointers to elements of the linked list.

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Example:

Var.CHAIN %0Open ast ast.left vpchar

&% B:Var.CHAIN F0pen ast ast.left vpchar EI@
|D | = x #3Find... Scan: O Full O Partial @ Auto
0= (-
® word = 0x0,
- count = 12346,
Teft = 0x6864,
right = 0x0,
- fieldl = -1,
- field2 = 2),
1=
® word = 0x63D4,
- count = 0,
Teft = 0x6878,
right = 0x6850,
- fieldl = 0,
- field2 = 0), <4 vpchar
22
® word = 0x63DC,
- count = 1,
Teft = 0x688C,
right = 0x6864,
- fieldl = 0,
field2 = 0), v
See also
B Var B Var.set

A ’'Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 32

Var.DelWatch

Delete variable from watch

Format:

Var.DelWatch [<variable>] ...

The specified formula is removed from the current Var.Watch window.

See also

W Var

M Var.set

A ’'Release Information’ in’Legacy Release History’

Var.DRAW Graphical variable display
Format: Var.DRAW [%<format>] <hll_expression> [<scale> [<offset>]] [[<option>]
<option>: <draw_option> | Element <number>| XY | YX | Alternate <number>
<draw_ Vector | Points | Steps | Impulses | LOG
option>:

Displays the contents of an array or a structure element graphically. The Data.DRAW command can be
used to display memory contents graphically.

<draw_options>

<format>

<hll_expression>

<offset>

<scale>

Vector: Connects the dots for the data values by vectors (default).
Points: Displays each data value as a dot.

Steps: Connects the dots for the data values by steps.

Impulses: Draws each data value as a single pulse.

LOG: Displays the data values in a logarithmic format.

Using the <format> parameters, you can modify the display in various ways.
For a description of the format parameters, see “Display Formats”, page
12.

Allows to specify the HLL expression in the syntax of the programming
language used (C, C++, ...).

Offset of y-axis (floating point). Default: 0.0 See example.

Units per pixel of y-axis (floating point).

E.g. a signal has a max. height of 50 units shall be visualized window that
has a height of 400 pixels: 50 units divided by 400 pixels = 0.125

By default the scale factor is set so that the window displays the complete
possible value range for the selected variable. See example.

©1989-2024 Lauterbach

General Commands Reference Guide V. | 33

Alternate <number>

Element <number>

XY

YX

Example for arrays:

Var .DRAW cstrl

Var .DRAW sinewave

Split the array in <number> graphs.

<number>=2

first graph display even elements
second graph displays odd element.

<number>=3

first graph displays element O, n, 2n, ...
second graph displays 1, n+1, 2n+1, ...
third graph display 2, n+2, 2n+2, ... See example.

Specify the structure component to be displayed graphically. See example.

Allows to display two arrays graphically.
The contents of the first array is used as x-axis.
The contents for the second array is used as y-axis. See example.

Allows to display two arrays graphically.
The contents of the first array is used as y-axis.
The contents for the second array is used as x-axis. See example.

2| B:Var.DRAW cstrl

[A Goto... || FiFind... || 4»In |[p4out|[MMFull|[% 1n || X out| ZF Full

o

5. 10.
| |

2| B:Var.DRAW sinewave

[R Goto... || #iFind... |[4 | p4out]MFull] £ |[X out) F Full

o

250.
|

500.

4 (m|r «

©1989-2024 Lauterbach

General Commands Reference Guide V

34

Example for two interdependent arrays:

Var .DRAW flags[0..16]

Var .DRAW flags[0..16]

cstrl[0..16]

cstrl[0..16]

/XY

/YX

&f} Br:VarView %Fixed flags[0..16]

[E=NHoh/)

tlags[0..16] = (50, 60, 70, &0,
4

90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210)

¥

ﬁj B::Var.View Fixed cstrl[0.16]

(o8 el

®cstril0..16]=(5, 6, 7, & 9, 10, 5, &5, 5, 5, 5, 15, 16, 1r, 18, 19, 20) -
4 F
] B::Var.DRAW flags[0..16] cstr1[0..16] /XY = | = |[=54] | A B:Var.DRAW flags[0.16] cstrl[0.16] /¥X o3-S
13 Goto... [#3Find..[®][& |[® Al p4 |07 $)| X [F il | R o Fimmd.) e m] ¢][+ wllon] v m$n X[Fa
5 50. 100. 150. 200. 250. 300. 5 5. 10. 15. 20. 25. 30.
| |
30. [|é| 250. | |é|
25. 4 - 200. 3 -
20. 1
150. 7
15. 71
100. |
10. 7
50.1
5. |E
.......... 0. . = 0. .
Jemir «) Jemr <[»

©1989-2024 Lauterbach

General Commands Reference Guide V

35

Example for array split:

Var .DRAW flags[0..16]

/Alternate 3.

&f} Br:VarView %Fixed flags[0..16]

[E=N Hoh/

® tlags[0..16] = (10, 110, 210, 20, 120, 220, 30, 130, 230, 40, 140, 240, 50, 150, 250, 60, 160) B
4

F

A B:Var.DRAW flags[0.16] /Alternate 3.

[A Goto... || #iFind..

o
|

[410 |[p40ut][nFull] # 10 || X out| T Full]

<

200. ——/_—__/_———/_———/_——

Example for structure element:

off B::VarView %0pen %Fixed stral EI@
= stral = (o
(word = 0x00000000,fcount = 5{ left = 0x00000000, right = 0x00000000, fieldl = 0, field2 = 0),
({word = 0x00000000,fcount = 9] left = 0x00000000, right = 0x00000000, fieldl = 0, field? = 0),
(word = 0x00000000,fcount = 17) left = 0x00000000, right = 0xQ000000Q0, fieldl = 0, field2 = 0),
(word = 0x00000000,fcount = 23] left = 0x00000000, right = 0x00000000, fieldl = 0, field2 = 0),
({word = 0x00000000,fcount = 16] Tleft = 0x00000000, right = 0x00000000, fieldl = 0, field? = 0),
(word = 0x00000000,fcount = 14) left = 0x00000000, right = 0xQ000000Q0, fieldl = 0, field2 = 0),
(word = 0x00000000,fcount = 8] left = 0x00000000, right = 0x00000000, fieldl = 0, field2 = 0),
({word = 0x00000000,fcount = 14 Teft = 0x00000000, right = 0x00000000, fieldl = 0, field? = 0),
(word = 0x00000000,fcount = 12 left = 0x00000000, right = 0xQ000000Q0, fieldl = 0, field2 = 0),
(word = 0x00000000,fcount = 7] left = 0x00000000, right = 0x00000000, fieldl = 0, field2 = 0)) -
4 3
A B:Var.DRAW stral /Element 2. EI@

[A Goto... || #iFind..

o

[410 |[p40ut][nFull][#1n |[X out|[T Full]

5.

Var .DRAW stral /Element 2.

©1989-2024 Lauterbach

General Commands Reference Guide V

36

Example for <scale> and <offset>:

A B:Var.DRAW sinewave EI@ A B:Var.DRAW sinewavel 0.005 -1.0 I EI@
(R Goto...)[F3Find... [4»1n][»40ut)[MMFul][£ In][X 0x)[F Full (R Goto...|[#3Find... [4 1n] [»40ut)[MMFul][£ In][X 0x)[F Full
— 0.a]
% o <scale>=0.005 . =
i 0.2
A B:Var.DRAW sinewavel 0.01 I EI@ o.0f
(R Goto... || #3Find... || 4»In |[p40ut[MMFul][10][X 0u][F Full =02 :
= S| |[s] | softset> = 1.0
0.5} - <scale>=0.01 < 0.8
0.0 B U U S -1.0 S
4 |0 r 4 b T ml r 4 3
See also
W Var B Var.PROfile B Var.set B <trace>.DRAW
B Data.DRAW B Data. DRAWFFT B Data.DRAWXY B Data.IMAGE
A ’Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

Var.DRAWXY Graphical variable display
Format: Var.DRAWXY [%<format>] <hll_expression> <hll_expression> [[<option>]
<option>: <draw_option> | Element <number> | YX | Alternate <number>
<draw_ Vector | Points | Steps | Impulses | LOG
option>:

Displays the contents of two arrays graphically in one single window. The elements of the first array
correspond to the X-axis and the elements of the second array to the Y-axis. Please refer to the Var.DRAW
command for a description of the parameters and options.

Example:
Var .DRAWXY arrayl array?2

See also
W Var M Var.set

©1989-2024 Lauterbach General Commands Reference Guide V. | 37

Var.DUMP Memory dump

Format: Var.DUMP [%<format>] [[&]<variable>] ... [[<option>]

<format>: NoHex | NoAscii
Byte | Word | Long | Quad | TByte | HByte
BE | LE
PC8

<option>: Orient
NoOrient
COLumns [<columns>)
Mark <break>

Flag <flag>
Track
CACHE
<flag>: Read | Write | NoRead | NoWrite
<break>: Program | HIl | Spot | Read | Write | Alpha | Beta | Charly

The first expression defines the address of the dump. All following expressions are treated as pointers and
marked in the dump.

<format> For a description of the <format> parameters, see “Display Formats”,
page 12.
<option> For a description of the options, see Data.dump.
See also
W Var B Varset B SETUPDUMP

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 38

Var.Eval Evaluate high-level expression

Format: Var.Eval [%<format>] <hll_expression>

Evaluates a high-level language expression. The result can be returned with the EVAL() functions.

<format> Use the <format> parameters to export the variables in the desired format.
For a description of the <format> parameters, click here.

See also
W Var W Var.set W Eval
Var.EXPORT Export variables in CSV format to file
Format: Var.EXPORT <file> [%<format>] [<variable>] ... [[Append]

Exports variables in CSV format (Comma-Separated Values) for import to other applications. Existing file
contents are overwritten if the file already exists.

<file> If path and file name are substituted for a comma, the default file name
t32.1lst is used. The file is exported to the current working directory (see
PWD command and “Path Prefixes”).

<format> Use the <format> parameters to export the variables in the desired format.
For a description of the <format> parameters, click here.

©1989-2024 Lauterbach General Commands Reference Guide V. | 39

Example:

;Export as CSV and include variable type, location, and index.
;The variables to be exported are 'flags' and 'ast'.
Var .EXPORT ~~~\export.csv %Type %Location %Index flags ast

;Optional step: display the file
TYPE ~~~\export.csv

NOTE: If a text line created by this command exceeds a few thousand characters, it is
clipped. To handle long lines, consider using the format specifier %Multiline.

See also
W Var M Var.set B VarWRITE B PRinTer.EXPORT

©1989-2024 Lauterbach General Commands Reference Guide V. | 40

Var.FixedCHAIN Display linked list

Format: Var.FixedCHAIN [%<format>] <first> <next> [<pointer> ...]]

The first expression must be the first element of the list. The second expression specifies the pointer to the
next element in the first element. The other arguments specify pointers to elements of the linked list. The

format parameters can modify the display in various ways. Format parameters are described at the
beginning of this chapter.

Example:

Var.FixedCHAIN %$Location $Multiline ast ast.left vpchar

See also
W Var M Var.set

A ’Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

Var.FixedTABIle Display table

Format: Var.FixedTABle [%<format>] <array> {<index>} {<pointer>}

Displays the first expression as an array. The command is intended for arrays of structures or arrays of
pointers to structures. The extra arguments are displayed as pointers or indexes to that array.

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Example 1:

Var.FixedTABle OsIsrCfg

&% B::Var FixedTABle OslsrCfg = =[]
0 (=] [Z] [#Fnd... | | [Ecompress

(0x400051D8, OSTRUSTEDISR2 . 194, 5, —
(0x400051DC, OSTRUSTEDISR2 , 195, 5), =
(0x400051E0, OSTRUSTEDISR2 . 196, 3),
(0x400055AC, OSTRUSTEDISR2 . 3, 5), E
(0x40005560, OSISRL . 2, 10),
(0x40003988, OSSYSINTERRUPT . 279, 1),

J 4 1 [3

©1989-2024 Lauterbach General Commands Reference Guide V. | 41

Example 2: The following command sequence allows you to save the variable content to a *.csv file.

PRinTer .FILE OsIsrCfg.csv CSV ; specify file name and select CSV
; as output format

WinPrint.Var.FixedTABle OsIsrCfg ; WinPrint. redirects the command
; output to specified file

Example 3:
Var.FixedTABle flags i k vpchar ; 1 and k are array indices
; vpchar is a pointer to the array
&% B:Var.FixedTABle flags i k vpchar EI@
0 (=] (=] [l compress
index |
0| 1, S
1| 1,
2| 1, i
3| o,
4| 1,
5| 1,
6| 0,
7| 1,
8| 1,
9| 0, +k =
10| 1,
1| o,
12| 0, +— vpchar
13| 1,
14| 1,
15| 0,
16| 0,
17| 1,
18| o, -
J(I3
See also
W Var B Var.set

A ’Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 42

Var.Go Real-time emulation

See also
B Var.Go.Back B Var.Go.Change B Var.Go.direct B Var.Go.Till
W Var W Var.set

A ’Release Information’ in’Legacy Release History’

Var.Go.Back Re-run program backwards until variable access (CTS)
[Example]
Format: Var.Go.Back <expression> [/<breaktype>]
<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [[AfterStep]

CMD <command_string>

RESUME

Re-runs the recorded program flow backwards until the specified variable is accessed.

©1989-2024 Lauterbach General Commands Reference Guide V. | 43

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

Example:

CTS.GOTO -1209874.

Var.Go.Back flags /Write //run program backwards until a write access
//to the variable flags happens

See also
W Var.Go W Var.Go.direct

A ’Release Information’ in’Legacy Release History’

Var.Go.Change Real-time emulation till expression changes

Format: Var.Go.Change <expression>

The emulation is started and after each emulation stop the given expression is evaluated. If the expression
has not changed, the emulation is started again.

Example:

Var.Break.Set flags /Write
Var.Go.Change flags // starts the emulation and restarts,
// if the array flags has not changed

See also
B Var.Go B Var.Go.direct

]

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 44

Var.Go.direct

Real-time emulation with breakpoint

Format:

<breaktype>:

Var.Go.direct <expression> [/<breaktype>]

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

Sets breakpoints to the given variable or structure element and starts the emulation. The breakpoints are

removed after the emulation has stopped again.

<breaktype>

<task_magic>, etc.

For a description of the breakpoint types and breakpoint options, see

Break.Set.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

©1989-2024 Lauterbach

General Commands Reference Guide V

45

Examples:

Var.Go.direct flags // run till any element of 'flags' is
// accessed

Var.Go.direct vfloat /Write // run till a write to 'vfloat' occurs
See also
W Var.Go B Var.Go.Back B Var.Go.Change B Var.Go.Til
Var.Go.Till Real-time emulation till expression true
Format: Var.Go.Till <expression>

The emulation is started and after each emulation stop the given boolean expression is evaluated. If the
expression is false, the emulation is started again.

Example:
Var.Break.Set vfloat /Write //starts the emulation and restarts, if
Var.Go.Till vfloat<=1.57 // the value
//of vfloat is larger than 1.57
See also
W Var.Go B Var.Go.direct

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 46

Var.IF PRACTICE conditional branching

Format: Var.IF <hll_condition>

Executes the next command or command block only if the specified <hll_condition> is true. The Var.IF
command is the counterpart to the PRACTICE IF instruction and can also be combined with the ELSE

command.
<hll_condition> Allows to specify the condition in the syntax of the programming
language used (C, C++, ...).
Example:

Var.IF stra2[l][0].pastruct5[0]==25

(
PRINT "Initialization of stra2[l1l][0].pastruct5[0] failed."

)

See also
W Var M Var.set

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 47

Var.INFO View information about HLL variable or HLL expression

Format: Var.INFO <variable> | <expression>

Displays all information available for a symbol or the type of an HLL expression. The physical layout of HLL
variables is displayed too.

Example:

;display information about the HLL expression func7
Var .INFO func?

;display information about the structure ast
Var.INFO ast

% B:VarINFO func7 =n| Wl <
% Symbols || ##oump || Eust |[O view |[$§ mmu |
function

armleharmyfuncy

R:000013C8--00001453 global static

function info
= . push: [] use: [RO,R1,RZ,R3,R1Z]

epilog: R:00001428
exit: R:0000142C

module info
anguage: ELF-C
cer: Norcroft ARM C wsn 4.90 (ARM Ltd 5DT2.50) [Build number 80]
arm. c

tvpe
(doubTe () function (doubTe)

(double) floating-point (0x40 bits,ieee-double-toggle) % BuVarINFO ast EI@
[2 Symbols || #ipump |[SjLst |[O, view |[$§mmu |
el variabTe

“harmleyelobalhast

D:0000583C--0000584F global static

tyvpe
(=triypel) typedef (struct structl)

(=truct structl) struct {Ox14 bytes,
[0x0] unsigned char * word,
[0x4] int count,
[0x8] struct structl * left,
[0x0C] struct structl * right,
[0x10.0x0] int fieldl:0x2,
[0x10.0x2] unsigned int f1eldz:0x3)

(int) signed integer (0x20 bits)

[ot =tructl) pointer (struct structl, O0x20 bits)
gned char *) pointer (unsigned char, 0x20 bits)
gned int) unsigned integer (0x20 bits)

(unzigned char) unsigned integer (0x8 bits)

See also
W Var M Var.set B sYmbol.INFO

A ’'Release Information’ in’Legacy Release History’
A 'The Symbol Database’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 48

Var.Local Local variables

Format: Var.Local [Y%<format> ...]

Display of all local variables of a function. When using Pascal, the local variables of the superior functions
are displayed too. The format parameters can modify the display in various ways. Format parameters are
described at the beginning of this chapter.

&4 Bi:Var.Local %6Multiline %5Recursive Hlype EI@
: ~

sr int) 1 =2
int) vl =
- int) v2 = 2

er int) v3 =

The variables can be modified by clicking with the mouse.

See also
W Var M Var.Ref B Var.set M VarView

A ’'Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 49

Var.LOG Log variables
[Examples]
Format: Var.LOG [%<format>] {<variable>} {/<option>}
<option>: ONBREAK
ONSPOT
ONTIME <time>
TImestamp
Changes

AREA <name>

By default the specified variables are logged to the TRACE32 message AREA whenever the program
execution is stopped. If a syntactical error is made, just a warning is received. This allows the definition of a
log showing local variables not valid in the current program context.

<format> Use the <format> parameters to format the variables as required. For a
description of the <format> parameters, click here.

<options>

ONBREAK Updates log each time the program execution is stopped. This is the
default.

Changes A log is only made when the variables have changed their value.

AREA <name>

Selects a different AREA for the logging.

ONSPOT Update the log whenever a breakpoint specified with the Action Spot is hit
and each time the program execution is stopped.

ONTIME Updates the log in a fixed time interval. This option requires run-time
memory access to the variables.

Tlmestamp Adds timestamps (absolute and relative) to the log. Mainly used together

with ONTIME option.

©1989-2024 Lauterbach

General Commands Reference Guide V. | 50

Example 1: Var.LOG without a variable definition ends the logging.

Var.LOG flags 1 k ; 1 and k are local variables
; 1f they are not valid in the
; current context, a warning is
; given by TRACE32 PowerView

AREA.view ; open TRACE32 message AREA window
8 o ; perform your test
Var .LOG ; switch off the logging
£ | BrAREAview =0 E=H =
lags = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | i=2 k:?4-E|
lags = (0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,00 |i=?|k=7?
lags = (0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,00 |i=?|k=7?
lags = (0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,00 |i=?|k=7?
lags = (1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) | i=0]|k=3
lags = (1, 1,1, 0,1,1,0,1,1,0,1,0,0,1,1,0,0,1,0) | i=18]| k=154 ~
4 1 F

A If a variable is not valid in the current context, a ? is displayed.

Example 2: Log variables to file. Remember that inline comments for Var.* commands must start with / /.

AREA.Create my_log ; create my_ log area

AREA.view my_log ; display my log area

AREA.OPEN my_log loglist.lst ; save all entries to area in file
Var.LOG flags ast k /AREA my_log // enable variable log

AREA.CLOSE my_ log ; stop saving the entries to area

; in file
Var .LOG // end variable logging

TYPE loglist.lst ; display contents of file

©1989-2024 Lauterbach General Commands Reference Guide V. | 51

Example 3: Log variables every second.

; create area named my_log
AREA.Create my_log

; display area named my_log
AREA.view my_log

log variables every second via the run-time memory access

log them with relative and absolute timestamp

; log only changes

Var.LOG %E flags ast /AREA my_log /ONTIME 1.0s /TImestamp /Changes

’

’

Go
Break

; end variable logging
Var .LOG

See also
W Var M Var.set

A ’Release Information’ in’Legacy Release History’

Var.NEW Creates a TRACE32-internal variable

Format: Var.NEW [<type>] <name> (deprecated)
Use Var.NEWLOCAL or Var.NEWGLOBAL instead.

See also

W Var B Var.set

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 52

Var.NEWGLOBAL Creates a global TRACE32-internal variable

Format: Var.NEWGLOBAL [<var_type>] \<variable_name>

<var_type>: int | char | long | short

Creates a TRACE32-internal variable of the specified variable type and registers the variable on the global
PRACTICE stack frame.

Global TRACE32-internal variables are visible everywhere. They are not erased when the declaring file or
block ends. TRACE32-internal variables can be used to write complex PRACTICE programs which deal with
expressions of the target high level language (HLL).

<var_type> The following commands provide an overview of the supported variable

types:

. The sYmbol.List.BUILTIN command lists the supported built-in
variable types.

. The sYmbol.List.Type command lists variable types available after
a target program has been loaded.

<variable_name> The TRACES32-internal variables must begin with a '\' character, as opposed
to global PRACTICE macros (variables), which begin with a 's' and are
created with GLOBAL.

Example: A character array is created on the global PRACTICE stack frame. The array member [5] is
initialized, and its value is printed to the TRACE32 message line using the Var.STRing() function. For more
examples, refer to Var.NEWLOCAL.

PMACRO.list ;View the PRACTICE stack

;Create a TRACE32-internal variable: the character array \myStr
Var .NEWGLOBAL char[10][128] \myStr

Var.set \myStr[5]="hello" //Initialize array member [5]
PRINT Var.STRing (\myStr[5]) ;Show value in message line
Remember that inline comments for Var.* commands must start with / /. PRINT is a command, whereas

Var.STRing() is not a command, but a function(). Therefore, the above inline comment may start with a
semicolon ;.

See also
B VarNEWLOCAL W Var B Var.set

A ’In This Document’ in 'General Function Reference’
A 'PRACTICE Script Structure’ in 'PRACTICE Script Language User’s Guide’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 53

Var.NEWLOCAL

Creates a local TRACE32-internal variable

[Examples]

Format:

<var_type>:

Var.NEWLOCAL [<var_type>] \<variable_name>

int | char | long | short | ...

Creates a TRACE32-internal variable of the specified variable type and registers the variable on the local

PRACTICE stack frame.

Local TRACE32-internal variables exist inside the declaring block and are erased when the block ends.
They are visible inside their blocks, sub-blocks (e.g. IF..., RePeaT..., WHILE..., etc.), subroutines
(GOSUB...RETURN), and sub-scripts (DO...ENDDO).

TRACES2 internal variables can be used to write complex PRACTICE programs which deal with
expressions of the target high level language (HLL).

<var_type>

The following commands provide an overview of the supported variable

types:

] The sYmbol.List.BUILTIN command lists the supported built-in

variable types.

. The sYmbol.List.Type command lists variable types available after
a target program has been loaded.

<variable_name>

The debugger-internal HLL variables must begin with a '\' character, as
opposed to local PRACTICE macros (variables), which begin with a 's' and
are created with LOCAL.

©1989-2024 Lauterbach

General Commands Reference Guide V. | 54

Example 1:

This script shows how to create, initialize, and view the local TRACE32-internal variables. In addition,
the example shows how to print their return values to the TRACE32 message line using the Var.*()

functions (See “Functions”).

By double-clicking a local TRACES32-internal variable in the Var.View window, you can change its

parameter on the fly. Simply type the desired parameter in the TRACE32 command line.

PMACRO.list ;View the PRACTICE stack

;Create some TRACE32-internal variables: integer \vall, float \val2,

;character array \myStr on the local PRACTICE stack frame
Var .NEWLOCAL int \vall

Var .NEWLOCAL float \val2

Var .NEWLOCAL char([10][128] \myStr

;Open the Var.View window to display these TRACE32-internal variables

Var.View %all \vall \val2 \myStr

;Initialize the TRACE32-internal variables
Var.set \vall=0x42

Var.set \val2=197.25

Var.set \myStr[5]="Hello world!"

;Print the TRACE32-internal variables to the message bar

PRINT $%$Hex "Ox" Var.VALUE (\vall) ;integer

PRINT Var.FVALUE (\val2) ;float

PRINT Var.STRing (\myStr[5]) ;string
Example 2:

and

The HLL array flags is manipulated based on the HLL array vdiarray. Remember that inline

comments for Var.* commands must start with //.

Var .NEWLOCAL int \i1 //Create a TRACE32-internal variable: integer \i

Var.set \i=0 //Initialize the TRACE32-internal variable

;Open a window to watch the HLL arrays flags, ast, and vdiarray
;as well as the TRACE32-internal variable \i
Var.Watch %$SpotLight flags ast vdiarray \i

;Manipulate the HLL array flags based on the HLL array vdiarray
Var .WHILE \i<sizeof (vdiarray)
Var.set flags[\i++]=3

Var.IF \i=sizeof (vdiarray)
PRINT "end of loop reached"

©1989-2024 Lauterbach General Commands Reference Guide V

55

Example 3:

This script focusses on TRACE32-internal array variables.

;Create a TRACE32-internal variable: a character array
Var .NEWLOCAL char[6][20] \string array

;O0pen a window to watch \string_array
Var.Watch %$SpotLight \string_array

;Initialize the character array

Var.set \string array[0]="flashtestO0" //is shown in message line
Var.ASSIGN \string_arrayl[2]="element2" //is NOT shown in message line
PRINT Var.STRing (\string_array[0]) //show value in message line
Var.IF \string_array[2][0]!='\0"

PRINT Var.STRing (\string_ array[2])

See also
B VarNEWGLOBAL W Var W Var.set

A ’Release Information’ in’Legacy Release History’

Var.OBJECT Pretty printing for C++ objects

Format: Var.OBJECT [%<format>] [<variable>] ...

The command Var.OBJECT can be used together with the sYmbol.AddInfo command or with simulator
based target calls for pretty printing of C++ objects.

Example:

; define the vector type information
; TABLE type
base: _M_impl._M_ start

7

; size = _M impl. M finish - _M_impl._M_ start
sYmbol .AddInfo.Type std::vector<? TABLE \
"(#0) ._ M _dimpl. M finish-(#0)._ M impl. M start" "(#o). M impl. M start"

Var .OBJECT %String %$Type VvStr

The screen shots below show the standard display with the Var.View command and the pretty printing with
Var.OBJECT.

©1989-2024 Lauterbach General Commands Reference Guide V. | 56

&of BuVar.View %Type %open.2 vStr EIIEI
2 wstr = (
= std::_Vector_base<char®, std::allocator<char®*> >::_M_impl = (
_M_start = 0x20002868,
_M_finish = 0x200028A0,
_M_end_of_storage = 0x200028A8))
&4 B::Var, OBJECT %STRING vStr = =R
[o | = = | #Fnd.. | [scan: OFul Ovpartial @ Auto
0 0x08003104 — "string0", ~
1 0x0800310C — "stringl",
2 0x08003114 — "string2",
3 0x0800311c — "string3",
4 0x08003124 — "string4d",
5 0x0800312Cc — "string5",
6 0x08003134 — "stringb",
7 0x0800313Cc —» "string’",
8 0x08003144 — "string8",
9 0x0800314Cc — "string9",
10 0x08003154 — "stringl0",
11 0x08003160 — "stringll",
12 0x0800316C — "stringl2",
13 0x08003178 — "stringl3",
v
£ >

An example for displaying STL container running on the TRACES32 Instruction Set Simulator for Arm can be
found under ~~/demo/etc/stl

CD.DO ~~/demo/etc/stl/demo_stl_arm.cmm

See also

B Var

B Var.set

©1989-2024 Lauterbach

General Commands Reference Guide V

57

Var.PATtern Display variables allowing wildcards for symbol name and type

Format: Var.PATern [%<format>] [<symbol_pattern>] [<type_pattern>]

Display variables allowing the wildcard ? and * in the variable name and the variable type.

Examples:
Var .PATtern target* struct ; Display all variables whose name
; begins with "target" and which
; are of the type struct
Var .PATtern jpeg* ; Display all variables whose name
; begins with "jpeg"
Var.PATtern %$Type * struct struct? ; Display all variables which
; are of the type struct struct?
&4 Bi:Var.PATtern %Type * struct struct? E@
W= @Eﬂme: struct str
(static struct struct2) strZ = ((unsigned char *) word = 0x0, (int) count = O, (uns d char [10]) name = (0, 0, 0, O, 0, 0, 0, 0, 0, 0))
static struct st t6) stré = ((int) x = 0, (struct struct?) vstruct? = ((unsigned <) word = 0x0, (int) count = 0), (int) y = 0)
d ™ ;
See also
W Var M Var.set

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 58

Var.PRINT Display variables

Format: Var.PRINT [%CONTinue] {[%<format>] [<variable>|<data>]}

The specified formula is interpreted and the according values are displayed in the message line or the
current output AREA window. The command is an HLL version of the PRINT command.

CONTinue Adds the string to the current output line in the selected AREA window or
message line without inserting a newline character.

<format> Use the <format> parameters to print the variables in the desired format. For
a description of the <format> parameters, click here.

Example:

Var .PRINT cstrl
Var.PRINT cstrl " " mstaticl
Var .PRINT cstrl ", " mstaticl

Var .PRINT "cstrl=" cstrl ", mstaticl=" mstaticl

= Jpaanen ===

(67, 111, 110, 115, 116, 97, 110, 116, 32, 83, 116, 114, 105, 110, 103, 49, 0)

(67, 111, 110, 115, 116, 97, 110, 116, 32, 83, 116, 114, 105, 110, 103, 49, 0) 1517034948

(67, 111, 110, 115, 116, 97, 110, 116, 32, 83, 116, 114, 105, 110, 103, 49, 0), 1517034948

cstri=(67, 111, 110, 115, 116, 97, 110, 116, 32, 83, 116, 114, 105, 110, 103, 49, 0), mstaticl=1517034948 %
L I 3

See also

W Var B Varset B VarWRITE 1 VarADDRESS()
[Var.END() 1 Var.RANGE() 1 Var.SIZEOF() 1 Var.STRing()

1 Var.TYPEOF() 3 Var.VALUE()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 59

Var.PROfile

Graphical display of variable

Format:

<refresh_
rate>:

Var.PROfile [%<format>] <variable> [<variable>] [<variable>] [<refresh_rate>]

0.111.0110.0

The value of the specified variable(s) is displayed graphically. The display requires run-time memory
access if the variable value should be displayed while the program execution is running.

<format>

<refresh_rate>

Example 1:

Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

The refresh rate is measured in seconds.
If no value is specified, then the display is updated and shifted every 100
ms.

Var .PROfile %E mstaticl

il B::Var.PROfile %E mstatic o[-
I @mit || OHold || 41 |[p4out] £ | X oul §Auto|
Jawr -4.5s -4.0s T -a.a= -3.0s -2.55 -2.0s 3.
e PP O O P W SO PP [=~
2000000000, .
1000000000,
0.
-1000000000. /,—|—L
-2000000000. o
] i »
Button Description
Init Restart display
Hold Stop update/re-start update
AutoZoom Best vertical scaling
©1989-2024 Lauterbach General Commands Reference Guide V. | 60

Example 2: Up to three variables can be displayed. The following color assignment is used: first variable
value red, second variable value green, third variable value blue.

Var.PROfile %E mstaticl fstatic fstatic2

lluul B::Var.PROfile %E mstaticl fstatic fstatic2 = =]
[©mit || OHold | 4»In [p40ut| %1 | X out F Autol
-3.0s -2.5s -2.0s -1.5s -1.0s -0.5s 0.0
value | | | | | | | 1
2000000000.
0.
-2000000000. | ~=— LI = A |~ 444 L .
4 LA
See also
W Var B Var.DRAW B Var.set B Data.PROfile

A ’'Release Information’ in’Legacy Release History’

Var.Ref Referenced variables

Format: Var.Ref [%<format>] [[Track]

Display of variables, similar to command Var.Watch. The variables referenced by the current source line are
automatically added to the window.

Track The window follows other windows. Otherwise the display is related to the
next executed HLL line.

<format> For a description of the <format> parameters, click here.
See also
W Var B Var.Local B Var.set B Var.View

A ’'Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 61

Var.set

Modify variable

Format:

Var.set [{%<format>}] <expression>

It is possible to start this command by double-clicking with the mouse to the variable in the List Source
window (List) or in a variable display window. Variable assignments done with the Var.set command result
in a message in the TRACE32 message AREA. The command Var.Assign can be used for variable
assignments without messaging to the TRACE32 message AREA.

<format>

Example 1:

Var.

Var.

Var.

Var.

Var.

set

set

set

set

set

For a description of the <format> parameters, click here.

\modl \venumvar=enumé

charptr[4]="x"

//assignment of value 'enum4' to the
//variable 'venumvar' in module 'modl’

//Content of the 5th element of array
//'charptr' is set value 'x'.

//complex C expression

xptr->next=(SYM_symbol*) sptr->prev->next [index]

1++

func7(1.5,2.5)

Example 2: Modification of arrays

Var.set flags[3..7]=12

Var.set flags([3..71=(1,2,3,4,5)

//simple C expression

//execute a function in the target

//interrupts are accepted while the
//function is executed

//set flags[3..7] to 12

//set flags[3..7] to specified
//values

//PRACTICE script for array comparison

Var.IF flags[3..71==(1,2,3,4,5)

ELSE

PRINT "Array elements already initialized"

Var.set flags([3..7]=(1,2,3,4,5)

ENDDO

©1989-2024 Lauterbach

General Commands Reference Guide V|

62

Example 3: Modifications of structures

Var.set ast=(0x100,6,0x12345,0x234,3,6)

&f| Br:VarView ast EI@
Hast = (-

word = 0x0,

count = 0,

#= Teft = 0x0,

®right = 0x0,

- fieldl = 0,

- field2 = 0)

&f| Br:VarView ast

(=== el
East = -

word = 0x0100,

- count = 6,

® left = 0x00012345,
®right = 0x0234,

- fieldl = 3,

- field2 = &)

Example 4: Assigning the result of TRACE32 functions to variables requires a special syntax.

// Assign result of TRACE32 function FILE.EXIST(<file>)to variable k

Var.set k=\FILE_EXIST("t32.men")

// multiply variable k with the result of the TRACE32 function

// Register (<name>)

Var.set i=k*\Register (R10)

// assign the result of the TRACE32 function Data.Byte(<hex_ address>)

// the variable flags[3]

Var.set flags[3]=\Data_Byte(0x40004000)

and assign the result to variable i

// The following syntax is required if an Access Class is required
// here the Access Class NoCache

Var.set flags[3]=\Data_Byte((NC:0x40004000))

Example 5: If no assignment is made, the variable value will be displayed in the message line.

Var.set % i

Var.set $%$String structl

//displays value of variable 'i' in
//decimal, hex and ASCII

//displays structure

'structl'.

//displays character array included
//in the structure as strings

to

See also

W Var M Var.AddSticker B Var.AddWatch B Var. AddWatchPATtern
B Var.Assign B Var.Break B Var.Call B Var.CHAIN

B Var.DelWatch B Var.DRAW B Var.DRAWXY M Var.DUMP

W Var.Eval B Var.EXPORT B Var.FixedCHAIN M Var.FixedTABle

B Var.Go W VarlF B VarINFO M Var.Local

W VarLOG M VarNEW B VarNEWGLOBAL B Var.NEWLOCAL

©1989-2024 Lauterbach

General Commands Reference Guide V

63

W Var.OBJECT
B Var.Ref

B VarTYPE

W VarWRITE
1 Var.END()

1 Var.RANGE()
1 Var.VALUE()

A ’Release Information’ in’Legacy Release History’
A ’Testing of Functions’ in "Training Source Level Debugging’

B Var.PATtern
B Var.Step
M Var.View

0 VarADDRESS()

1 Var.EXIST()
1 Var.SIZEOF()

B Var.PRINT
B Var.TABle
M Var.Watch
1 Var.BITPOS()
1 Var.FVALUE()
1 Var.STRing()

W Var.PROfile
B Var.TREE

B VarWHILE

1 Var.BITSIZE()
3 Var.ISBIT()

1 Var.TYPEOF()

©1989-2024 Lauterbach

General Commands Reference Guide V

64

Var.Step Step

See also
B Var.Step.BackChange B Var.Step.BackTill B Var.Step.Change B Var.Step.Till
W Var W Var.set B Step.single
Var.Step.BackChange Step back till expression changes
Format: Var.Step.BackChange [<expression>]

Steps back till the expression changes. The command will stop also if the expression cannot be evaluated.

Example:
Var.Step.BackChange k // steps till variable k changes
Var.Step.BackChange ptr->x // steps till the contents of the
// structure pointed to by 'ptr'
// changes
Var.Step.BackChange flags // steps till one element of the array
// 'flags' changes
See also
B Var.Step

A ’'Release Information’ in’Legacy Release History’

Var.Step.BackTill Step back till expression true

Format: Var.Step.BackTill [<expression>]

Steps back till the boolean expression becomes true (i.e. not zero). The command will stop also, if the
expression cannot be evaluated.

Var.Step.BackTill i>0x10 //steps till variable 'i' is larger than 10
See also

B Var.Step

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 65

Var.Step.Change Step till expression changes

Format: Var.Step.Change [<expression>]

Steps till the expression changes. The command will stop also if the expression cannot be evaluated.

Examples:
Var.Step.Change k // steps till variable k changes
Var.Step.Change ptr->x // steps till the contents of the structure
// pointed to by 'ptr' changes
Var.Step.Change flags // steps till one element of the array
// 'flags' changes
See also
W Var.Step

A ’'Release Information’ in’Legacy Release History’

Var.Step.Till Step till expression true

Format: Var.Step.Till [<expression>]

Steps till the boolean expression becomes true (i.e. not zero). The command will stop also if the expression
cannot be evaluated.

Example:

Var.Step.Till i>0x10 //steps till variable 'i' is larger than 10

See also
B Var.Step

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 66

Var.TABle Display table

Format: Var.TABle [%<format>] [<variable> [<pointer> ...]]

Displays the first expression as an array. The extra arguments are displayed as pointers or indexes to that

array.
<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.
Examples:

Var.TABle %Location flags i1 k vpchar
Var.TABle vpchar[0..100] //'"artificial' array build on
// a pointer

Displays the first expression as an array.

& B:Var.TABle flags i k vpchar EI@
| 0 | = ¥ #3Find... [compress
0f-1, 41 ~
1.1,
20-1,
3|-0,
41-1, +4 vpchar
5.1,
6«0,
7.1,
8.1,
9(-1, +k
10)- 1, v
See also
W Var W Var.set

A ’Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 67

Var.TREE Display variables in the form of a tree structure

Format: Var.TREE [%<format>]

Displays the HLL variables in the form of a tree structure. The tree structure is broken down by program and

module.
<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.
Example:

Var.TREE %Type %Location %Index

% B:Var. TREE %Type %Location Sndex EI@

0 arm p!
= (static int) [D:0x559C] mstaticl = 460

ic int) [D:0x55A0] mstaticz = 0

ic int) [D:0x563C] fstatic = 505

ic int) [D:0x5640] fstatic2 = 1011

ic int) [D:0x5644] statl =1

c int) [D:0x5648] statz =1 R R
ic unsigned char [4]) [D:0x564C] x1 = ([0] = 97, [1] = 98, [2] = 99, [3] = 0)

T Global
4 I I” I 2

| % Type | %Location | %Index

See also
W Var M Var.set

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 68

Var.TYPE Display variable types

Format: Var.TYPE [%<format>] [<expression>] ...
<format>: all
DEFault

Type [.on | .OFF]

Open [.on|.OFF | .2 |.31.4]
Location [.on | .OFF]

Hldden [.on | .OFF]

Recursive [.on | .OFF [.2 |.3 | .4]

The specified formula is interpreted and the types of the according values are displayed. By the options of
this command the way of display may be modified in wide range.

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

See also
W Var B Var.set

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 69

Var.View Display variables

Format: Var.View [Y%<format>] [<variable>] ...

The specified formula is interpreted and the according values are displayed. If a syntactical error is made,
just a warning will be received. That’s why the definition of a window showing local variables is allowed,
without the program counter being valid to the according procedure.

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

. Display variables:
6f Bi:VarView %:Decimal.on %Hex.OFF flags flags[i] i =n| Wl < }
=flags - (0, 0, 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,0, 0,0, 0,
flags[i]l = ? il

1 =7
2 - L

A Static variable.

B 7 indicates that the local variable is not valid in the current program context.

. Interpret and display memory content in HLL format:

:Var.View %SPaces %Type %0pen *((struct structl®) 0:x1000) =<
c struct structl) *((struct structl®) 0x1000) = (
nsigned char *) word = 0x992AC451,

count = 1275064469,

ct structl #) Teft = Ox4BFFF131,

ct str 1 #) right = Ox4BFFF19D,

&l

=1,
=1) —
. Modify a variable value or structure element:
&of BuVarView %0pen.on %Type.on vdblarray EI@
= (static char [5][6]) wdblarray = (L

@ (0x0, 0x0, Ox0. 0x0, OxO, 0x0),

® (0x0, 0x0, D¢ ¥, Ox0, O0x0),

@ (Ox0, [E, _}, 0x0, 0x0), 2
.

BE::v %t vdblarray[2][1] = Ox1 @

vdblarray[2][1] = Ox0
[[ok1 |[formats |[<ww= |

C Double-click the value you want to modify.

D Double-clicking inserts the current value into the TRACE32 command line. Simply enter a
new value, e.g. 0x1

©1989-2024 Lauterbach General Commands Reference Guide V. | 70

NOTE: A variable value is displayed in red color, then the assigned value is not within
the defined range of the variable type.
The typical reason in C programs is that an enumeration variable has a value
that does not correspond to one of the defined enumerators.

See also
W Var M Var.AddWatch B Var.Local B Var.Ref
B Var.set M Var.Watch B Frame.view

A ’'Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide V. | 71

Var.Watch Open Var.Watch window

Format: Var.Watch [Y%<format>] [<variable>] ...

Opens a Var.Watch window, displaying the specified variables. Further variables can be added on the fly to
the window by using the window buttons or the Var.AddWatch command.

[]
ﬁﬂ Bu:Var.Watch flags flags[i] i EI@
: ral

- (&)

|
+#flags = (0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0, -
flags[i] = 7
1=7 I E

‘ i '

B Browse symbols

A Recall already used variables

C Var.AddWatch, Var.View, Var.DelWatch D Double-click to modify or use Var.set

E 7 indicates that the variable is not valid in the current program context.

Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

<format>
Example 1: If the command Var.Watch is used with format parameters only, these format parameters are
applied to all variables added to the window.

Var .Watch %$Decimal %Hex

mstaticl is displayed in decimal

Var .AddWatch mstaticl g
and hex format

’

Example 2: If the command Var.Watch is used with variable names and format parameters, the format
parameters apply only to the specified variables. Variables added to the window are formatted in the default

way.
Var.Watch %$Index flags %$Hex mstaticl $%$Hex.OFF %SpotLight ast

mstaticl is displayed in the

Var .AddWatch mstatic2 5
default format

7

©1989-2024 Lauterbach General Commands Reference Guide V. | 72

Example 3: The Var.Watch window can also evaluate HLL expressions.

Var .Watch mstaticl ast.count enumvar mstaticl+ast.count/enumvar

See also
W Var M Var. AddWatch B Var.set B Var.View

A ’Release Information’ in’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

Var.WHILE PRACTICE loop construction

Format: Var.WHILE <hll_condition>

Repeats the next command or command block while <hll_condition> is true. Var.WHILE is the counterpart
to the PRACTICE WHILE instruction.

<hll_condition> Allows to specify the condition in the syntax of the programming language
used (C, C++, ...).

Example:

Var .WHILE ast.count<1238
(

Var.set ast.count++

See also
W Var M Var.set B WHILE

]

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideV. | 73

Var.WRITE Write variables to file

Format: Var.WRITE #<file_number> [%CONTinue] [Y%o<format>] [<variable>] ...

Writes the values of the specified variables to file. The command is an HLL version of the WRITE command.

CONTinue Adds the string to the current output line in the selected file without
inserting a newline character.

<format> Using the <format> parameters, you can modify the output in various ways.
For a description of the <format> parameters, click here.

Example:

;create and open a file for writing
OPEN #1 ~~~\test.txt /Create

;write the variable name 'ast' to the file
WRITE #1 "ast: "

;continue with the values of 'ast' in the same line
Var .WRITE #1 %CONTinue $%Recursive.on ast

;write the array name and a selected index 'vdiarray[2]' to the file
WRITE #1 "vdiarray[2]: "

;continue with the value of the array index 2 in the same line
Var .WRITE #1 %CONTinue vdiarray[2]

;close the file for writing
CLOSE #1

;open the file for editing in TRACE32
EDIT ~~~\test.txt

B:EDIT ~~~\test.bet o -E =]
[B setup... || T save | save as.. || BF quit [#3Find... |[<2)[0x][1]

fJast: (word = Ox0 — NULL, count = 12346, left = Ox583C — (word = Ox0, count = 12346, Teft = Ox583C, right = 0x0, T .

2 |vdiarray[2]: 99
3

4 M 3

See also
W Var B Var.EXPORT B VarPRINT M Var.set
B CLOSE W OPEN

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 74

VCO

VCO Clock generator

Simulator only

See also

B VCO.BusFrequency B VCO.Down B VCO.Frequency B VCO.Rate

B VCO.RESet B VCO.state B VCO.TimeBaseFrequency M VCO.Up
VCO.BusFrequency Control bus clock

Simulator only

Format: VCO.BusFrequency <frequency>

Sets the bus clock frequency.

See also
H VCO B VCO.state

VCO.Down Frequency down

Simulator only

Format: VCO.Down [<frequency>]

<frequency>: 50000. ...

Step down with the VCO frequency.

VCO . Down ; frequency down 50 kHz
See also
H VCO B VCO.Frequency B VCO:.state B VCO.Up

©1989-2024 Lauterbach General Commands Reference GuideV. | 75

VCO.Frequency Control VCO clock

Simulator only

Format: VCO.Frequency <frequency>

<frequency>: 1000Hz ... 2GHz

In the TRACE32 Instruction Set Simulator, the value sets the number of cycles (instruction fetch and
load/store) after which the simulation time is increased by one second.

<frequency> All frequency definitions may be done in Hz, kHz, MHz or GHz.
VCO.Frequency 20MHz ; set VCO clock to 20 MHz
VCO.Frequency 10.5MHz ; set VCO clock to 10.5 MHz
VCO.Frequency 1800KHz ; set VCO clock to 1.8 MHz

See also

H VCO B VCO.Down B VCO:.state B VCO.Up

Q VCO()

VCO.Rate VCO rate

Simulator only

Format: VCO.Rate <rate>

Defines the rate between VCO clock and internal CPU clock.

See also

H VCO B VCO.state

©1989-2024 Lauterbach General Commands Reference GuideV. | 76

VCO.RESet VCO reset
Simulator only
Format: VCO.RESet
The VCO is initialized to the default frequency.
See also
H VCO B VCO:.state
VCO.state State display
Simulator only
Format: VCO.state
Displays the state of the VCO.
& B:VCO.state EI@
Core Frequency —
10.0MHz Lave)
Bus Frequency [Down |
10.0MHz —
See also
H VCO B VCO.BusFrequency B VCO.Down B VCO.Frequency
B VCO.Rate B VCO.RESet B VCO.TimeBaseFrequency M VCO.Up
a veo()
VCO.TimeBaseFrequency Set the time base clock
Simulator only
Format: VCO.TimeBaseFrequency <frequency>
<frequency>: 1000Hz ... 2GHz
Sets the time base clock.
See also
H VCO B VCO:.state
©1989-2024 Lauterbach General Commands Reference Guide V. | 77

VCO.Up Frequency up

Simulator only

Format: VCO.Up [<frequency>]

<frequency>: 1000Hz ... 2GHz

Step up with VCO clock.
Example:

VCO.Up ; frequency up by 50 kHz

VCO.Up 1MHz ; frequency up by 1 MHz

See also
B VCO B VCO.Down B VCO.Frequency B VCO.state

©1989-2024 Lauterbach General Commands Reference GuideV | 78

VCU

VCU VCU registers (Vector Computational Unit)

Ceva-X only

VCU commands refer to the Vector Computational Unit which is an optional unit available only to the new
Ceva-XC devices. In addition these commands must be made available by specifying the actual number of
implemented VCUs (see SYStem.VCU.INSTances).

See also
B VCU.Init B VCU.RESet B VCU.Set B VCU.view
VCU.Init Initialize VCU registers
Ceva-X only
Format: VCU.Init

Sets the VCU registers to their default values.

See also
B VCU B VCU.view
VCU.RESet Reset VCU registers
Ceva-X only
Format: VCU.RESet [/VCU<instance>]

Default: VCUO

Resets all registers of the selected instance to zero.

See also
H VCU W VCU.view

©1989-2024 Lauterbach General Commands Reference Guide V. | 79

VCU.Set Set VCU register

Ceva-X only

Format: VCU.Set <register> <value> [/<option>] [[NCU<instance>]

Default: VCUO

Modifies the selected <register> of the according VCU instance. MLD registers become available if
SYStem.VCU.MLD is ON.

See also
m VCU W VCU.view
VCU.view Display VCU registers
Ceva-X only
Format: VCU.view [/<option>] [[VCU<instance>]

Default: VCUO

Control panel to display and modify VCU registers of the corresponding VCU instance. MLD registers
become available if SYStem.VCU.MLD is ON.

See also
H VCU MW VCU.Init B VCU.RESet B VCU.Set

©1989-2024 Lauterbach General Commands Reference Guide V. | 80

VE

VE Virtual execution mode

VE is the virtual execution mode of TRACES32. The virtual execution mode can be used to run and debug a
target application even if no target memory is available. This can be useful to run initialization code for the
target.

After turning on the VE, all program code will be simulated by the debugger’s instruction set simulator. The
simulator will cause instruction fetches/loads and stores according the program. The target of the
fetch/load/store depends on the TRACE32 virtual memory (VM:). If an address is fetched/loaded/stored
which has been set using Data.LOAD or Data.Set, the simulator will access simulator memory. All other
addresses will be forwarded to the processor.

See also
W VE.OFF H VE.ON

A ’Release Information’ in’Legacy Release History’

VE.OFF Turn off virtual execution mode

Format: VE.OFF
VM.OFF (deprecated)

Turns off the virtual execution mode.

See also
H VE

VE.ON Turn on virtual execution mode

Format: VE.ON
VM.ON (deprecated)

Turns on the virtual execution mode.

See also
H VE

©1989-2024 Lauterbach General Commands Reference Guide V. | 81

VPU

VPU Vector Processing Unit (VPU)

Not all core architectures supported

The VPU command group is used to display and modify the VPU (Vector Processing Unit) registers. These
commands do not support all core architectures.

See also
W VPU.Init B VPU.Set B VPU.view a VPU()

A 'VPU Functions’ in ‘General Function Reference’

VPU.Init Initialize VPU registers

Not all core architectures supported

Format: VPU.Init [/<option>]
VPU.RESet (deprecated)

Resets all Vector Processing Unit (VPU) registers.

<option> For a description of the options, see Register.view.
See also
m VPU W VPU.view

©1989-2024 Lauterbach General Commands Reference Guide V. | 82

VPU.Set

Modify VPU registers

Not all core architectures supported

Format:

<register>:
(PowerPC
74xx/86xx
only)

<register>:
(APEX only)

<register>:
(TPC only)

VPU.Set <register> <value> [[<option>]

VRO..VR31
VRSAVE
VSCR

Vo0...v7
VCO0...VC3
VCSO0...VCS7
ovv

VPEO_VO0...VPEO_V44
VPE1_VO0...VPE1_V44

VPE63_V0...VPE63_V44

VPEO_VPO...VPEO_VP15
VPE1_VPO...VPE1_VP15

VPE63_VPO...VPE63 VP15

<register>:

Sets the value of the specified Vector Processing Unit register.

To modify the ALTIVEC vector registers VR0-VR31, split the value in four 32-

(PowerPC 74xx/86xx bit values. If less than four values are given, the values will be aligned to LSB

only)

<register>:
(TPC only)

<option>:

and undeclared values will be set to zero.

The register name describes the Vector Processing Element number and
the register class and number.

The first part of the register name specifies the Vector Processing Element
(VPE) number. The second part specifies the register class, Vector (V) or
Vector Predicate (VP), and the respective register number.

For a description of the options, see Register.view.

©1989-2024 Lauterbach

General Commands Reference Guide V. | 83

Example: Brief example for PowerPC

VPU.Set VR2 0x11111111 0x22222222 0x33333333 0x44444444
VPU.Set VRSAVE 0x0000003F
VPU.Set VSCR 0x00010000

PRINT VPU (VR2.W3)
PRINT VPUCR (VRSAVE)

See also
H VPU B VPU.view

VPU.view Display ALTIVEC register window

Not all core architectures supported

Format: VPU.view [/<option>]

Opens a window displaying the register contents of the Vector Processing Unit.

1 BxVPUview [E=%|EoR =3
VEZ5 00000000 00000000 00000000 00000000 ~
0Qooo000 00000000 Q0000000 00000000
0Qooo000 00000000 Q0000000 00000000
0Qooo000 00000000 Q0000000 00000000
0Qooo0o000 00000000 00000000 00000000
111113131 22222222 33333333 44444444
00000000 00000000 00000000 00000000

4 [m

3F VSCR 00010000
<option> For a description of the options, see Register.view.
See also
m VPU B VPU.Init B VPU.Set

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide V. | 84

	General Commands Reference Guide V
	History
	Var
	Var HLL variables and expressions
	Overview Var
	Symbol Prefix and Postfix
	Symbol Paths
	Search Paths
	Mangled Names and C++ Classes
	Function Return Values
	Special Expressions
	Calling Functions
	Display Formats
	Functions

	Var.AddSticker Add variable sticker to source listing window
	Var.AddWatch Add variable to Var.Watch window
	Var.AddWatchPATtern Add variables to Var.Watch window using wildcards
	Var.Assign Assignment to a variable
	Var.Break Breakpoint on variable
	Var.Break.Delete Delete breakpoint on variable
	Var.Break.direct Set temporary breakpoint on HLL expression
	Var.Break.Pass Define pass condition for breakpoint
	Var.Break.Set Set breakpoint to HLL expression
	Var.Call Call a new procedure
	Var.CHAIN Display linked list
	Var.DelWatch Delete variable from watch
	Var.DRAW Graphical variable display
	Var.DRAWXY Graphical variable display
	Var.DUMP Memory dump
	Var.Eval Evaluate high-level expression
	Var.EXPORT Export variables in CSV format to file
	Var.FixedCHAIN Display linked list
	Var.FixedTABle Display table
	Var.Go Real-time emulation
	Var.Go.Back Re-run program backwards until variable access (CTS)
	Var.Go.Change Real-time emulation till expression changes
	Var.Go.direct Real-time emulation with breakpoint
	Var.Go.Till Real-time emulation till expression true
	Var.IF PRACTICE conditional branching
	Var.INFO View information about HLL variable or HLL expression
	Var.Local Local variables
	Var.LOG Log variables
	Var.NEW Creates a TRACE32-internal variable
	Var.NEWGLOBAL Creates a global TRACE32-internal variable
	Var.NEWLOCAL Creates a local TRACE32-internal variable
	Var.OBJECT Pretty printing for C++ objects
	Var.PATtern Display variables allowing wildcards for symbol name and type
	Var.PRINT Display variables
	Var.PROfile Graphical display of variable
	Var.Ref Referenced variables
	Var.set Modify variable
	Var.Step Step
	Var.Step.BackChange Step back till expression changes
	Var.Step.BackTill Step back till expression true
	Var.Step.Change Step till expression changes
	Var.Step.Till Step till expression true
	Var.TABle Display table
	Var.TREE Display variables in the form of a tree structure
	Var.TYPE Display variable types
	Var.View Display variables
	Var.Watch Open Var.Watch window
	Var.WHILE PRACTICE loop construction
	Var.WRITE Write variables to file

	VCO
	VCO Clock generator
	VCO.BusFrequency Control bus clock
	VCO.Down Frequency down
	VCO.Frequency Control VCO clock
	VCO.Rate VCO rate
	VCO.RESet VCO reset
	VCO.state State display
	VCO.TimeBaseFrequency Set the time base clock
	VCO.Up Frequency up

	VCU
	VCU VCU registers (Vector Computational Unit)
	VCU.Init Initialize VCU registers
	VCU.RESet Reset VCU registers
	VCU.Set Set VCU register
	VCU.view Display VCU registers

	VE
	VE Virtual execution mode
	VE.OFF Turn off virtual execution mode
	VE.ON Turn on virtual execution mode

	VPU
	VPU Vector Processing Unit (VPU)
	VPU.Init Initialize VPU registers
	VPU.Set Modify VPU registers
	VPU.view Display ALTIVEC register window

