LAUTERBACH A

General Commands Reference
Guide T

General Commands Reference Guide T

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
(=T =T o TR0 1T 1P T T

General Commands Reference GUIde Tciicccccciiiimeemesiiiimmsssssiiisssssssirsssssssssiesnnssssssesasnnses

AN

L 1= (o 15
LI Lo (=T 85357 (=T o 16
TargetSystem TRACES32 PowerView instances 16
TargetSystem.NewlInstance Start new TRACE32 PowerView instance 17
TargetSystem.state Show overview of multicore system 21
L7251 26
TASK OS Awareness for TRACE32 26
Overview TASK 26
TASK.ACCESS Control memory access 31
TASK.ATTACH Attach to a running process 31
TASK.Break Stop the execution of a single task or thread 31
TASK.CACHEFLUSH Reread task list 32
TASK.CONFIG Configure OS Awareness 32
TASK.COPYDOWN Copy file from host into target 33
TASK.COPYUP Copy file from target into host 34
TASK.Create Create task 35
TASK.Create. MACHINE Define a manual machine 35
TASK.Create. RUNNABLE Define an AUTOSAR runnable 36
TASK.Create.SPACE Define a manual MMU space 37
TASK.Create.task Define a manual task 39
TASK.CreateExtralD Create a virtual task 40
TASK.CreatelD Create virtual task 40
TASK.DELete Delete file from target 40
TASK.DeletelD Delete virtual task 41
TASK.DETACH Detach from task 41
TASK.Go Start the execution of a single task or thread 41
TASK.INSTALL Deprecated 42
TASK.KILL Endtask 42
TASK.List Information about tasks 43
TASK.List. MACHINES List machines 43
TASK.List. RUNNABLES List AUTOSAR runnables 44
©1989-2024 Lauterbach General Commands Reference Guide T 2

TASK.List. SPACES List MMU spaces 44
TASK.List.tasks List all running tasks 45
TASK.List. TREE Display tasks in a tree structure 46
TASK.ListID List virtual tasks 47
TASK.NAME Translation of task magic number to task name 48
TASK.NAME.DELete Delete a task name table entry 48
TASK.NAME.RESet Reset task name table 48
TASK.NAME.Set Set a task name table entry 49
TASK.NAME.view Show task name translation table 49
TASK.ORTI AUTOSAR/OSEK support 50
TASK.ORTI.CPU Set OSEK SMP CPU number 50
TASK.ORTl.load Configure OS Awareness for OSEK/ORTI 50
TASK.ORTI.NOSTACK Exclude an ORTI task from stack evaluation 51
TASK.ORTI.SPLITSTACK Split stack analysis of idle ORTI task to cores 52
TASK.RELOAD Reread task list 53
TASK.RESet Reset OS Awareness 53
TASK.RUN Load task 54
TASK .select Display context of specified task 55
TASK.SETDIR Set the awareness directory 56
TASK.STacK Stack usage coverage 57
TASK.STacK.ADD Add stack space coverage 57
TASK.STacK.DIRection Define stack growth direction 59
TASK.STacK.Init Initialize unused stack space 59
TASK.STacK.PATtern Define stack check pattern 60
TASK.STacK.PATternGAP Define check pattern gap 61
TASK.STacK.ReMove Remove stack space coverage 61
TASK.STacK.RESet Reset stack coverage 62
TASK.STacK.view Open stack space coverage 63
805 = 65
TCB Trace control block 65
TCB.AlIBranches Broadcast all branches 66
TCB.CPU Broadcast information for specified CPU only 66
TCB.CycleAccurate Cycle accurate tracing 67
TCB.DataTrace Broadcast specified address and data information 68
TCB.EX Broadcast exception level information 69
TCB.FCR Broadcast function call-return information 69
TCB.IM Broadcast instruction cache miss information 69
TCB.InstructionCompletionSizeBits Specify size of completion message 70
TCB.KE Broadcast kernel mode information 70
TCB.LSM Broadcast load store data cache information 71
TCB.OFF Switch TCB off 71
TCB.ON Switch TCB on 71
TCB.PCTrace Broadcast program counter trace 72
©1989-2024 Lauterbach General Commands Reference Guide T 3

TCB.PortMode Specify trace clock ratio 73
TCB.PortWidth Specify trace port width 73
TCB.Register Display TCB control register 74
TCB.RESet Reset TCB setup to default 75
TCB.SourceSizeBits Specify number of bit for core information in trace 75
TCB.SRC Control selective trace 75
TCB.STALL Stall CPU for complete trace 76
TCB.state Display TCB setup 76
TCB.SV Broadcast supervisor mode information 77
TCB.SyncPeriod Specify TCB sync period 77
TCB.TC Broadcast information for specified HW thread 78
TCB.ThreadSizeBits Specify number of bit for thread information in trace 78
TCB.Type Specify TCB type 79
TCB.UM Broadcast user mode information 79
TCB.Version Specify trace cell version 80
=11 81
TERM Terminal emulation 81
Overview TERM 81
Interface Routines 81
Interface Routines (EPROM Simulator) 82
Interface Routines (Single Character Modes) 83
Interface Routines (Buffered Modes) 83
Interface Routines (Serial Line Debugger) 83
Interface Routines (Special Hardware, JTAG) 83
Functions 84
Fast Data Write 84
Interface Routines 84
TERM.CLEAR Clear terminal window 85
TERM.CLOSE Close files 85
TERM.CMDLINE Specify a command line 85
TERM.GATE Terminal with virtual hosting 86
TERM.HARDCOPY Print terminal window contents 86
TERM.HEAPINFO Define memory heap parameters 87
TERM.LocalEcho Enables/disables local echo for new terminal windows 87
TERM.METHOD Select terminal protocol 88
TERM.METHOD2 Select additional terminal protocol 91
TERM.Mode Define terminal type 93
TERM.Out Send data to virtual terminal 94
TERM.OutBREAK Send serial break 94
TERM.PIPE Connect terminal to named pipe 95
TERM.PipeREAD Connect terminal input to named pipe 95
TERM.PipeWRITE Connect terminal output to named pipe 95
TERM.PULSE Enable pulse generator for transfers 96
©1989-2024 Lauterbach General Commands Reference Guide T 4

TERM.READ Get terminal input from file 97
TERM.RESet Reset terminal parameters 97
TERM.SCROLL Enable automatic scrolling for terminal window 97
TERM.SIZE Define size of terminal window 98
TERM.STDIN Get terminal input from file 98
TERM.TCP Route terminal input/output to TCP port 99
TERM.TELNET Open TELNET terminal window 99
TERM.TRIGGER Trigger on string in terminal window 100
TERM.view Terminal display 102
TERM.WRITE Write terminal output to file 103
82 L 104
TPIU Trace Port Interface Unit (TPIU) 104
Overview TPIU 104
TPIU.CLEAR Re-write the TPIU registers 105
TPIU.IGNOREZEROS Workaround for a special chip 105
TPIU.NOFLUSH Workaround for a chip bug affecting TPIU flush 105
TPIU.PortClock Inform debugger about HSSTP trace frequency 106
TPIU.PortMode Select the operation mode of the TPIU 107
TPIU.PortSize Select interface type and port size of the TPIU 109
TPIU.RefClock Set up reference clock for HSSTP 110
TPIU.Register Display TPIU registers 111
TPIU.RESet Reset TPIU settings 111
TPIU.state Display TPIU configuration window 112
TPIU.SWVPrescaler Set up SWV prescaler 112
TPIU.SWVZEROS Workaround for a chip bug 113
TPIU.SyncPeriod Set period of sync packet injection 114
TPU e e s re s e rr s s n e e s s e e reassanerEeessmEeEEessameeEesssaEeEEessssmerEesssssmereesssseeseessssneeeeseas 115
TPU.BASE Base address 115
TPU.Break Break TPU 115
TPU.Dump Memory display 115
TPU.Go Start TPU 115
TPU.List View microcode 115
TPU.ListEntry Table display 115
TPU.Register.ALL Register operation mode 115
TPU.Register NEWSTEP New debugging mode 116
TPU.Register.Set Register modification 116
TPU.Register.view Register display 116
TPU.RESet Disable TPU debugger 116
TPU.SCAN Scannig TPU 116
TPU.SELect Select TPU for debugging 116
TPU.Step Single step TPU 116
TPU.view View TPU channels 116
©1989-2024 Lauterbach General Commands Reference Guide T | 5

Trace Trace configuration and display 117
Overview Trace 118
About the Command Placeholder <trace> 119
What to know about the TRACES32 default settings for Trace. METHOD 119
Types of Replacements for <trace> 121
Replacing <trace> with a Trace Method - Examples 121
Replacing <trace> with a Trace Evaluation - Example 122
Replacing <trace> with RTS for Real-time Profiling - Example 123
Replacing <trace> with Trace Source and Trace Method - Examples 124
How to access the trace sources in TRACE32 126
List of <trace> Command Groups consisting of <trace_source><trace_method> 127
Related Trace Command Groups 130
<trace>.ACCESS Define access path to program code for trace decoding 131
<trace>.Arm Arm the trace 134
<trace>.AutoArm Arm automatically 135
<trace>.AutoFocus Calibrate AUTOFOCUS preprocessor 135
Preprocessor with AUTOFOCUS Technology 138
<trace>.Autolnit Automatic initialization 140
<trace>.AutoStart Automatic start 140
<trace>.BookMark Set a bookmark in trace listing 140
<trace>.BookMarkToggle Toggles a single trace bookmark 143
<trace>.Chart Display trace contents graphically 144
Parameters 144
Options 145
Drag and Drop 148
<trace>.Chart.Address Time between program events as a chart 153
<trace>.Chart.AddressGROUP Address group time chart 155
<trace>.Chart.ChildTREE Display callee context of a function as chart 156
<trace>.Chart.DatasYmbol Analyze pointer contents graphically 157
<trace>.Chart.DistriB Distribution display graphically 159
<trace>.Chart.Func Function activity chart 161
<trace>.Chart. GROUP Group activity chart 162
<trace>.Chart.INTERRUPT Display interrupt chart 163
<trace>.Chart.INTERRUPTTREE Display interrupt nesting 164
<trace>.Chart.Line Graphical HLL lines analysis 165
<trace>.Chart. MODULE Code execution brocken down by module as chart 166
<trace>.Chart.Nesting Show function nesting at cursor position 167
<trace>.Chart.PAddress Which instructions accessed data address 168
<trace>.Chart. PROGRAM Code execution broken down by program 169
<trace>.Chart.PsYmbol Shows which functions accessed data address 170
<trace>.Chart. RUNNABLE Runnable activity chart 172
<trace>.Chart.sYmbol Symbol analysis 173
©1989-2024 Lauterbach General Commands Reference Guide T | 6

<trace>.Chart. TASK Task activity chart 176
<trace>.Chart. TASKFunc Task related function run-time analysis (legacy) 177
<trace>.Chart. TASKINFO Context ID special messages 177
<trace>.Chart. TASKINTR Display ISR2 time chart (ORTI) 178
<trace>.Chart. TASKKernel Task run-time chart with kernel markers (flat) 179
<trace>.Chart. TASKORINTERRUPT Task and interrupt activity chart 180
<trace>.Chart. TASKORINTRState Task and ISR2 state analysis 181
<trace>.Chart. TASKSRV Service routine run-time analysis 182
<trace>.Chart. TASKState Task state analysis 183
<trace>.Chart. TASKVSINTERRUPT Time chart of interrupted tasks 185
<trace>.Chart. TASKVSINTR Time chart of task-related interrupts 186
<trace>.Chart. TREE Display function chart as tree view 187
<trace>.Chart.Var Variable chart 188
<trace>.Chart.VarState Variable activity chart 189
<trace>.CLOCK Clock to calculate time out of cycle count information 191
<trace>.ComPare Compare trace contents 192
<trace>.ComPareCODE Compare trace with memory 194
<trace>.CustomTrace Custom trace 195
<trace>.CustomTrace.<label>.COMMAND Send command to specific DLL 195
<trace>.CustomTrace.<label>.ListString Display ASCII strings 195
<trace>.CustomTrace.<label>.UNLOAD Unload a single DLL 196
<trace>.CustomTracelLoad Load a DLL for trace analysis/Unload all DLLs 196
<trace>.DISable Disable the trace 197
<trace>.DisConfig Trace disassembler configuration 198
<trace>.DisConfig.CYcle Trace disassemble setting 198
<trace>.DisConfig.FlowMode Enable FlowTrace analysis 200
<trace>.DisConfig.RESet Reset trace disassemble setting 200
<trace>.DRAW Plot trace data against time 201
Keywords for <format> 201
Keywords for <width> 202
General Options 202
Draw Options 203
<trace>.DRAW.channel Plot no-data values against time 204
<trace>.DRAW.Data Plot data values against time 206
<trace>.DRAW.Var Plot variable values against time 210
<trace>.EXPORT Export trace data for processing in other applications 212
<trace>.EXPORT.ARTI Export trace data as ARTI for CP 213
<trace>.EXPORT.ARTIAP Export trace data as ARTI for AP 214
<trace>.EXPORT.Ascii Export trace data as ASCIl 215
<trace>.EXPORT.Bin Export trace data as binary file 216
<trace>.EXPORT.BRANCHFLOW Export branch events from trace data 218
<trace>.EXPORT.CSVFunc Export the function nesting to a CSV file 219
<trace>.EXPORT.cycles Export trace data 220
©1989-2024 Lauterbach General Commands Reference Guide T | 7

<trace>.EXPORT.Func Export function nesting 223
<trace>.EXPORT.MDF Export trace data as MDF 224
<trace>.EXPORT.MTV Export in MCDS Trace Viewer format 225
<trace>.EXPORT.TASK Export task switches 226
<trace>.EXPORT.TASKEVENTS Export task eventto CSV =~ 227
<trace>.EXPORT.TracePort Export trace packets as recorded at trace port 228
<trace>.EXPORT.VCD Export trace data in VCD format 230
<trace>.EXPORT.VERILOG Export trace data in VERILOG format 231
<trace>.EXPORT.VHDL Export trace data in VHDL format 232
<trace>.ExtractCODE Extract code from trace 232
<trace>.FILE Load a file into the file trace buffer 233
<trace>.Find Find specified entry in trace 235
<trace>.FindAll Find all specified entries in trace 237
<trace>.FindChange Search for changes in trace flow 238
<trace>.FindProgram Advanced trace search 239
<trace>.FindReProgram Activate advanced existing trace search program 240
<trace>.FindViewProgram State of advanced trace search programming 240
<trace>.FLOWPROCESS Process flowtrace 241
<trace>.FLOWSTART Restart flowtrace processing 241
<trace>.Get Display input level 242
<trace>.GOTO Move cursor to specified trace record 244
<trace>.Init Initialize trace 246
<trace>.JOINFILE Concatenate several trace recordings 246
<trace>.List List trace contents 248
<trace>.ListNesting Analyze function nesting 263
<trace>.ListVar List variable recorded to trace 266
<trace>.LOAD Load trace file for offline processing 270
<trace>.MERGEFILE Combine two trace files into one 272
Trace.METHOD Select trace method 273
<trace>.Mode Set the trace operation mode 276
<trace>.OFF Switch off 278
<trace>.PipeWRITE Connect to a named pipe to stream trace data 278
<trace>.PlatformCLOCK Set clock for platform traces 278
<trace>.PortFilter Specify utilization of trace memory 279
<trace>.PortSize Set external port size 280
<trace>.PortType Specify trace interface 280
<trace>.PROfile Rolling live plots of trace data 282
<trace>.PROfile.channel Display profile of signal probe channels 282
<trace>.PROfile.CTU Display complex trigger unit counter profile 282
<trace>.PROfileChart Profile charts 283
Options 286
<trace>.PROfileChart.Address Address profile chart 289
<trace>.PROfileChart.AddressGROUP Address group time chart 290
©1989-2024 Lauterbach General Commands Reference Guide T | 8

<trace>.PROfileChart.AddressRate
<trace>.PROfileChart. COUNTER
<trace>.PROfileChart.DatasYmbol
<trace>.PROfileChart.DIStance
<trace>.PROfileChart.DistriB
<trace>.PROfileChart. DURation
<trace>.PROfileChart. GROUP
<trace>.PROfileChart.INTERRUPT
<trace>.PROfileChart.Line
<trace>.PROfileChart. MODULE
<trace>.PROfileChart.PAddress
<trace>.PROfileChart. PROGRAM
<trace>.PROfileChart.PsYmbol
<trace>.PROfileChart.Rate
<trace>.PROfileChart. RUNNABLE
<trace>.PROfileChart.sYmbol
<trace>.PROfileChart. TASK
<trace>.PROfileChart. TASKINFO
<trace>.PROfileChart. TASKINTR
<trace>.PROfileChart. TASKKernel
<trace>.PROfileChart. TASKORINTERRUPT
<trace>.PROfileChart. TASKSRV
<trace>.PROfileChart. TASKVSINTERRUPT
<trace>.PROfileChart. TASKVSINTR
<trace>.PROfileChart.Var
<trace>.PROfileSTATistic

Options
<trace>.PROfileSTATistic.Address
<trace>.PROfileSTATistic.AddressGROUP
<trace>.PROfileSTATistic. COUNTER
<trace>.PROfileSTATistic.DatasYmbol
<trace>.PROfileSTATistic.DistriB
<trace>.PROfileSTATistic. GROUP
<trace>.PROfileSTATistic.INTERRUPT
<trace>.PROfileSTATistic.Line
<trace>.PROfileSTATistic. MODULE
<trace>.PROfileSTATistic.PAddress
<trace>.PROfileSTATistic. PROGRAM
<trace>.PROfileSTATistic.PsYmbol
<trace>.PROfileSTATistic. RUNNABLE
<trace>.PROfileSTATistic.sYmbol
<trace>.PROfileSTATistic. TASK
<trace>.PROfileSTATistic. TASKINFO

Address rate profile chart

Display a profile chart

Analyze pointer contents graphically
Time interval for a single event
Distribution display in time slices

Time between two events

Group profile chart

Display interrupt profile chart

HLL-line profile chart

Module profile chart

Which instructions accessed data address
Program profile chart

Which functions accessed data address
Event frequency

Runnable profile chart

Dynamic program behavior graphically (flat)
Dynamic task behavior graphically (flat)
Context ID special messages

ISR2 profile chart (ORTI)

Task profile chart with kernel markers
Task and interrupt profile chart

Profile chart of OS service routines
Interrupted tasks

Profile chart for task-related interrupts
Variable profile chart

Statistical analysis in a table versus time

Statistical analysis for addresses
Stat. for address groups

Statistical analysis for counter
Statistic analysis for pointer content
Distribution statistical analysis
Statistical analysis for groups
Statistical analysis for interrupts
Statistical analysis for HLL lines
Statistical analysis for modules
Which instr. accessed data address
Statistical analysis for programs
Which functions accessed data address
Statistical analysis for runnables
Statistical analysis for symbols
Statistical analysis for tasks
Context ID special messages

292
293
295
296
297
298
301
302
303
304
305
306
307
309
311
312
313
314
315
316
317
318
319
320
321
322
322
325
325
326
326
327
328
329
330
331
332
332
333
333
334
335
335

©1989-2024 Lauterbach

General Commands Reference Guide T

<trace>.PROfileSTATistic. TASKINTR
<trace>.PROfileSTATistic. TASKKernel
<trace>.PROfileSTATistic. TASKORINTERRUPT
<trace>.PROfileSTATistic. TASKSRV
<trace>.PROfileSTATistic. TASKVSINTERRUPT

<trace>.PROTOcol
<trace>.PROTOcol.Chart
<trace>.PROTOcol.Draw
<trace>.PROTOcol.EXPORT
<trace>.PROTOcol.Find
<trace>.PROTOcol.list

<trace>.PROTOcol.PROfileChart
<trace>.PROTOcol.PROfileSTATistic

<trace>.PROTOcol.STATistic
Protocol specific Options

Options for ASYNC

Options for CAN

Options for 12C

Options for 125

Options for JTAG

Options for USB
<trace>.REF
<trace>.RESet
<trace>.SAVE

Parameters

Options
<trace>.SelfArm
<trace>.ShowFocus
<trace>.ShowFocusClockEye
<trace>.ShowFocusEye
<trace>.SIZE
<trace>.SnapShot
<trace>.SPY
<trace>.state
<trace>.STATistic

Parameters

List items
Format

Options

<trace>.STATistic.Address

Statistical analysis for ISR2 (ORTI)

Stat. analysis with kernel markers
Interrupts and tasks

Analysis of OS service routines
Interrupted tasks

Protocol analysis

Graphic display for user-defined protocol
Graphic display for user-defined protocol
Export trace buffer for user-defined protocol
Find in trace buffer for user-defined protocol
Display trace buffer for user-defined protocol
Profile chart for user-defined protocol

Profile chart for user-defined protocol
Display statistics for user-defined protocol

Set reference point for time measurement
Reset command
Save trace for postprocessing in TRACE32

Automatic restart of trace recording

Display data eye for AUTOFOCUS preprocessor
Display clock eye

Display data eye

Define buffer size

Restart trace capturing once

Adaptive stream and analysis

Display trace configuration window

Statistic analysis

Time between up to 8 program events

<trace>.STATistic.AddressDIStance
<trace>.STATistic.AddressDURation
<trace>.STATistic.AddressGROUP

Time interval for single program event
Time between two program events
Address group run-time analysis

336
337
337
338
338
339
339
341
342
343
344
347
348
350
351
351
352
354
354
355
356
357
357
358
358
359
362
365
368
370
373
373
374
376
378
379
379
381
382
387
388
389
391

©1989-2024 Lauterbach

General Commands Reference Guide T

10

<trace>.STATistic.ChildTREE
<trace>.STATistic. COLOR
<trace>.STATistic.CYcle
<trace>.STATistic.DatasYmbol
<trace>.STATistic.DIStance
<trace>.STATistic.DistriB
<trace>.STATistic.DURation
<trace>.STATistic.FIRST
<trace>.STATistic.Func
<trace>.STATistic.FuncDURation
<trace>.STATistic.FuncDURationInternal
<trace>.STATistic. GROUP
<trace>.STATistic.Ignore
<trace>.STATistic.INTERRUPT
<trace>.STATistic.InterruptlsFunction
<trace>.STATistic.InterruptisKernel
<trace>.STATistic.InterruptisKernelFunction
<trace>.STATistic.InterruptlsTaskswitch
<trace>.STATistic.INTERRUPTTREE
<trace>.STATistic.LAST
<trace>.STATistic.Line
<trace>.STATistic.LINKage
<trace>.STATistic.Measure
<trace>.STATistic. MODULE
<trace>.STATistic.PAddress
<trace>.STATistic.ParentTREE
<trace>.STATistic. PROCESS
<trace>.STATistic. PROGRAM
<trace>.STATistic.PsYmbol
<trace>.STATistic. RUNNABLE
<trace>.STATistic. RUNNABLEDURation
<trace>.STATistic.Sort
<trace>.STATistic.sYmbol
<trace>.STATistic. TASK
<trace>.STATistic. TASKFunc
<trace>.STATistic. TASKINFO
<trace>.STATistic. TASKINTR
<trace>.STATistic. TASKKernel
<trace>.STATistic. TASKLOCK
<trace>.STATistic. TASKORINTERRUPT
<trace>.STATistic. TASKORINTRState
<trace>.STATistic. TASKSRV
<trace>.STATistic. TASKState

Show callee context of a function

Assign colors to function for colored graphics
Analyze cycle types

Analyze pointer contents numerically
Time interval for a single event
Distribution analysis

Time between two events

Start point for statistic analysis

Nesting function runtime analysis

Statistic analysis of single function
Statistic analysis of single func.

Group run-time analysis

Ignore false records in statistic

Interrupt statistic

Statistics interrupt processing

Statistics interrupt processing

Statistics interrupt processing

Statistics interrupt processing

Display interrupt nesting

End point for statistic analysis

High-level source code line analysis

Per caller statistic of function

Analyze the performance of a single signal
Code execution broken down by module
Which instructions accessed data address
Show the call context of a function
Re-process statistics

Code execution broken down by program
Shows which functions accessed data address
Runnable runtime analysis

Runnable duration analysis

Specify sorting criteria for statistic commands
Flat run-time analysis

Task activity statistic

Task related function run-time analysis
Context ID special messages

ISR2 statistic (ORTI)

Task analysis with kernel markers (flat)
Analyze lock accesses from tasks
Statistic of interrupts and tasks

Task and ISR2 statistic analysis

Analysis of time in OS service routines
Performance analysis

393
394
395
398
400
401
402
404
406
422
423
424
426
427
428
430
430
430
431
433
435
436
438
440
441
442
444
445
446
448
449
450
458
461
464
464
465
466
469
470
471
472
474

©1989-2024 Lauterbach

General Commands Reference Guide T

I 11

<trace>.STATistic. TASKStateDURation Task state runtime analysis 478
<trace>.STATistic. TASKTREE Tree display of task specific functions 479
<trace>.STATistic. TASKVSINTERRUPT Statistic of interrupts, task-related 480
<trace>.STATistic. TASKVSINTR ISR2 statistic (ORTI), task related 481
<trace>.STATistic. TREE Tree display of nesting function run-time analysis 482
<trace>.STATistic.Use Use records 483
<trace>.STATistic.Var Statistic of variable accesses 484
<trace>.STREAMCompression Select compression mode for streaming 485
<trace>.STREAMFILE Specify temporary streaming file path 486
<trace>.STREAMFileLimit Set size limit for streaming file 487
<trace>.STREAMLOAD Load streaming file from disk 488
<trace>.STREAMSAVE Save streaming file to disk 490
<trace>.TCount Set trigger counter 490
<trace>.TDelay Trigger delay 491
<trace>.TERMination Use trace line termination of preprocessor 493
<trace>.TestFocus Test trace port recording 494
<trace>.TestFocusClockEye Scan clock eye 496
<trace>.TestFocusEye Check signal integrity 497
<trace>.TestUtilization Tests trace port utilization 497
<trace>.THreshold Optimize threshold for trace lines 498
<trace>.Timing Waveform of trace buffer 499
<trace>.TMode Select trigger mode 501
<trace>.TraceCONNECT Select on-chip peripheral sink 501
<trace>.TRACK Set tracking record 502
<trace>.TRIGGER Trigger the trace 502
<trace>.TSELect Select trigger source 503
<trace>.View Display single record 504
<trace>.ZERO Align timestamps of trace and timing analyzers 505
I 7Y 051 =1 20 = 506
TRACEPORT Configure trace hardware 506
TRACEPORT.EndsKiP Define number of bytes skipped at the end of frame 507
TRACEPORT.LaneCount Select port size of the trace port 508
TRACEPORT.LanePolarity Set polarity for each lane of the trace port 508
TRACEPORT.LaneSpeed Inform debugger about trace port rate 509
TRACEPORT.MsgBItEndian Change bit-order within each byte 510

TRACEPORT.MsgBYteEndian
TRACEPORT.MsgLONngEnNdian
TRACEPORT.MsgWOrdEndian
TRACEPORT.OSCFrequency
TRACEPORT.PinReMap
TRACEPORT.RefCLocK
TRACEPORT.RESet
TRACEPORT.StartsKiP

Change byte-order within each word 511

Change dword-order within each qword 511

Change word-order within each dword 512

Set OSC clock frequency 512

Adapt the lane order of the trace port 513

Set up reference clock for trace port 514

Reset trace port configuration 514

Define number of bytes skipped at the start of frame 515

©1989-2024 Lauterbach General Commands Reference Guide T | 12

TRACEPORT .state Display trace port configuration window 516
I3 7 YAV = o o 517
TRANSIation Debugger address translation 517
Overview TRANSIation 517
TRANSIation.AutoEnable Auto-enable debugger MMU translation 520
TRANSIation.AutoSCAN Autoscan feature for debugger MMU 520
TRANSIation.CacheFlush Flush TRACES32 address translation cache 521
TRANSIation.CLEANUP Clean up MMU table 521
TRANSIation. COMMON Common address ranges for kernel and tasks 522
TRANSIation.COMMON.ADD Add another common address range 524
TRANSIation. COMMON.CLEAR Clear all common logical address ranges 524
TRANSIation.Create Create translation 525
TRANSIation.CreatelD Add entry to MMU space ID table 526
TRANSIation.CreateTab Create multiple translations 526
TRANSIation.Delete Delete translation 527
TRANSIation.DeletelD Remove entry from MMU space ID table 527
TRANSIation.List List MMU translation table 528
TRANSIation.ListID List MMU space ID table 529
TRANSIation.NoProtect Unprotect memory 529
TRANSIation.OFF Deactivate debugger address translation 530
TRANSIation.ON Activate debugger address translation 530
TRANSIation.PAGER Allow paged breakpoints for Linux 531
TRANSIation.Protect Protect memory 532
TRANSIation.Protect. ADD Add range to protected memory ranges 532
TRANSIation.Protect.OFF Switch protection of target memory off 533
TRANSIation.Protect.ON Protect entire target memory 534
TRANSIation.RESet Reset MMU configuration 535
TRANSIation.SCANall Scan MMU tables 535
TRANSIation.ScanlD Scan MMU address space tables from kernel 536
TRANSIation.SHADOW Enable shadow access to target memory 536
TRANSIation.state Overview of translation settings 537
TRANSIation.TableWalk Automatic MMU page table walk 538
TRANSIation.TIbAutoScan Allow automatic TLB scans during table walk 539
TRANSIation. TRANSparent Transparent banking area 541
0 I = 11 542
TrBus Trigger bus 542
Overview TrBus 542
Trigger Bus on the PowerTrace 544
Interaction Between Independent PODBUS Devices 545
TrBus.Arm Arm the trigger bus 547
TrBus.Connect Configure TRIGGER as input or output 548
TrBus.Mode Define polarity/edge for the trigger signal 548
TrBus.OFF Switch trigger bus off 548
©1989-2024 Lauterbach General Commands Reference Guide T | 13

TrBus.Out Define source for the external trigger pulse 549
TrBus.RESet Reset setting for trigger bus 549
TrBus.Set Define the target for the incoming trigger 550
TrBus.state Display settings for the trigger bus 550
TrBus.Trigger Stimulate a trigger on the trigger bus 550
IO 2 ' 551
TrOnchip Onchip triggers 551
TrOnchip.RESet Reset settings to defaults 551
TrOnchip.state Display onchip trigger window 551
5 2O 10 553
TrPOD Trigger probe 553
TrPOD.Clock Defines data mask 553
TrPOD.ClockPOL Defines data polarity 553
TrPOD.Data Defines data mask 554
TrPOD.DataPOL Defines data polarity 554
TrPOD.Mode Defines data polarity 555
TrPOD.OFF Switch off 556
TrPOD.ON Switchon 556
TrPOD.RESet Reset command 556
TrPOD.state State display 557
TrPOD.Time Defines the time for the pulse width trigger 557
©1989-2024 Lauterbach General Commands Reference Guide T | 14

General Commands Reference Guide T

History

Version 06-Jun-2024

22-May-2024
26-Sep-2023

13-Jul-2023

13-Jul-2023

21-Jun-2023
06-Jan-2023
30-Aug-2022
11-Aug-2022
05-Aug-2022
19-Jul-2022

12-Jul-2022

16-Feb-2022
05-Jan-2022

05-Jan-2022

05-Jan-2022
Sep-2021

Sep-2021

A more detailed description of the <trace>.STATistic. TASKState command.
New commands <trace>.PROfile.channel and <trace>.PROfile.CTU.

Moved the option /ARTIAP from <trace>.FLOWPROCESS to the command
<trace>.STATistic. PROCESS.

New command <trace>.EXPORT.MDF.
New option /TimeZero for the command <trace>.EXPORT.ARTI.

Added the TRIG connector characteristics on PowerDebug X50 in chapter ‘Overview TrBus'.
New method <trace>.METHOD.CIProbe.

Added the TRIG connector characteristics on PowerDebug E40 in chapter ‘Overview TrBus’.
New modes for TERM.Mode command to support UTF-8 encoded characters.

New option /Clear for TRANSIation.SCANall command.

New option /BEAT for <trace>.List command.

New command TRACEPORT.LanePolarity.

New command TASK.RELOAD.

New command <trace>.EXPORT.ARTIAP.

New option /ARTIAP for the commands <trace>.Chart. TASK, <trace>.Chart. TASKState,
<trace>.FLOWPROCESS, <trace>.STATistic.TASK and <trace>.STATistic. TASKState.

New ARTIAP items for <trace>.List.
Description of the command <trace>.STATistic. TASKStateDURation.

Description of the command <trace>.STATistic. RUNNABLEDURation.

©1989-2024 Lauterbach General Commands Reference Guide T | 15

TargetSystem

TargetSystem TRACE32 PowerView instances

Using the command group TargetSystem, you can start new TRACE32 PowerView instances from within a
running instance and keep an overview of these instances.

The instances started with TargetSystem.Newlnstance are automatically connected to the same
PowerDebug hardware module or to the same MCI Server as the instance that initiated the start process. (In
case of the MCI Server, the setting in the config file is: PBI=MCISERVER).

NOTE: The TargetSystem.Newlnstance command is not available for:
. The TRACERS2 Instruction Set Simulator (PBI=SIM in the config file)
. The debuggers connected to the target via the GDI interface (PBI=GDT)
. The debuggers connected to the target via the MCD interface (PBI=MCD)

The TargetSystem.state window provides an overview of the status of the cores assigned to the various
TRACE32 instances. The window also helps you keep an overview of the synchronization mechanism
between the TRACES32 instances, which is set up with the SYnch command group.

In addition, the TargetSystem.state window displays the InterCom names and UDP port numbers used by
the instances for communication with each other via the InterCom system.

See also

B TargetSystem.Newinstance M TargetSystem.state B SYnch B InterCom

©1989-2024 Lauterbach General Commands Reference Guide T | 16

TargetSystem.Newlnstance Start new TRACES32 PowerView instance

[Examples]

Format: TargetSystem.Newlnstance <intercom_name> [/<option>]

<option>: ARCHitecture <arch>
APL.PORT <port_number>
Chiplndex <index> | ChiplndexMin <index_min>
GDB.PORT <port>| GDB.PROTocol [TCP | UDP]
InterCom.Port <port>
LICense.PoolPort [None | Merge | <port>]
ONCE
SCReen.Size [Normal | ICONic | FULL | INVisible]
TIMEOUT [None | Infinite | <time>]
USEmask <value>

<arch>: 8051 | COLDFIRE | ANDES | AP3 | ARC | ARM | ARM64 | ...
<index>: 1. ...254.
<index_min>: 1. ...254.

Allows a TRACES32 PowerView instance to start new TRACE32 PowerView instances (max. 15 new
instances) for debugging AMP systems. In AMP (asynchronous multiprocessing) systems, each TRACE32
PowerView instance is responsible for an SMP subsystem or single core. For more information, see
CORE.ASSIGN.

All instances started with TargetSystem.Newlnstance are automatically connected to the same
PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file) as the
instance that initiated the start process.

The instance that starts another instance clones the current config file (by default config.t32) and extends
the cloned file for the new instance.

NOTE: The TargetSystem.Newlnstance command is not available for:
. The TRACE32 Instruction Set Simulator (PBI=SIM in the config file)
. The debuggers connected to the target via the GDI interface (PBI=GDI)
. The debuggers connected to the target via the MCD interface (PBI=MCD)

©1989-2024 Lauterbach General Commands Reference Guide T | 17

<intercom_name>

Assigns a user-defined InterCom name to the new TRACES32 instance.

ARCHitecture
<arch>

Selects the architecture of the new TRACE32 instance. If the
ARCHitecture option is omitted, then a TRACE32 instance of the same
architecture will be started.

The softkeys below the TRACE32 command line include only
architectures and families that are used for AMP debugging.

APL.PORT
<port_number>

Parameter Type: Decimal value.
Passes a UDP remote APl <port_number> to the new TRACE32
instance.

Chipindex<index>

Sets the value of CORE= in the config file of the new instance.

See also:

. “Section PBI” in TRACE32 Installation Guide, page 42 (installa-
tion.pdf)

. SYStem.USECORE()

ChiplndexMin
<index_min>

Automatically chosen index will not be below the minimum specified with
<index_min>.

GDB.PORT <port>

Enables the GDB server listening at the passed port for the new
TRACE32 instance to start.

GDB.PROTocol

Setups the used IP protocol for the GDB service. Default: TCP.

InterCom.Port
<value>

Specifies the new InterCom port that shall be used for the new instance.
This option presumes that the current instance already have an assigned
InterCom port to avoid later conflicts.

LICense.PoolPort

Manages license pool ports for TargetSystem.NewInstance command
for MCISERVER scenarios.

This option defines how new instance work with pool ports.

The default is Merge when the POOLPORT has been specified in the
current instance otherwise None.

None Does not use the POOLPORT keyword in the
LICENSE section.

Merge Introduces the POOLPORT and create new pools
depending the started architectures.

<port> Configures the POOLPORT to certain value.

ONCE

Avoids starting an instance with the same name multiple times.

©1989-2024 Lauterbach

General Commands Reference Guide T | 18

SCReen.Size

Configures window modes.

Normal The new PowerView instance is started as normal
window.

ICONic The new PowerView instance is minimized.

FULL The new PowerView instance is started in full screen
mode.

INVisible The new PowerView instance is invisible.

TIMEOUT

Used to configure the timeout to wait until the new instance has finished
the initialization phase.

None Immediately returns from the command and does not
wait until the new TRACE32 instance is spawned.

Infinite Waits until the new TRACES32 instance is spawned for
an infinite time or the STOP button is clicked.

<time> Waits a certain time until the new TRACES32 instance

is spawned. Default: 10 seconds.

USEmask <value>

Used to overwrite USE= property of PBI section.

For rare use case the use mask to address POD bus devices can be
modified for the new GUI instance. The use mask can be passed as
string or as value with least significant bit corresponding to first POD bus
device in the chain.

Examples:

/USEMASK 001101; generates USE=001101, first character
corresponds to the first device in the POD bus chain.

/USEMASK 0y001101; generates USE=1011, least
significant bit corresponds to the first device in the POD bus
chain.

/USEMASK 0x0D; generates USE=1011, least significant bit
corresponds to the first device in the POD bus chain.

©1989-2024 Lauterbach

General Commands Reference Guide T | 19

Examples

Example 1: This script shows how to start a second TRACES32 instance named mySecondInstance from
within the current TRACE32 instance.

TargetSystem.NewInstance mySecondInstance /ARCHitecture ARM64
InterCom.execute mySecondInstance PRINT "started by the first instance"

Example 2: Let’'s assume you have started a number of instances and now want to quit a particular
instance. This script shows how to quit a TRACES32 instance named mySecondInstance in a set of
TRACER32 instances.

InterCom.execute mySecondInstance QUIT

See also
B TargetSystem B InterCom.ENable

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 20

TargetSystem.state Show overview of multicore system

[Columns] [Options] [Use Cases]

Format: TargetSystem.state [<column> ...] [/<option> ...]
<column>: DEFault | ALL

TargetSystem | CoreType | CoreState |

Title |

InterComPort | InterComName | INSTance | UseCore
SYnch.All | SYnch.Go | SYnch.Step | SYnch.Break | SYnch.SystemMode
LicensePoolPort

<option>: Global | UseTitle | UseICName

Opens the TargetSystem.state window, providing an overview of the multicore system configuration and
state across multiple TRACE32 instances sharing one PowerDebug hardware module or MCI Server. The
indices on the first and second level are configured using SYStem.CONFIG.CORE <chip> <core>. The
indices on the third level indicate the thread index of the SMP system that can be defined by CORE.ASSIGN
or CORE.NUMber.

A B:TargetSystem CoreState /UseTitle /Global EI-@

. t Syst C Stat
1st level: <chip> e S
=11: EZOO SMP N d
0: C 0|
2nd |eVe|: <core> 3:1:3TIE§E§ ?unsﬁg Ecor‘e inactive) 3rd IeVeI: thread
4: eTPU_E r‘unmng
5: eTPU_C sy down -

The TargetSystem window is not available for front-end debuggers.

To illustrate the TargetSystem.state command, the following use cases are provided:
. Use case 1: Diagnostic tool for the target system structure
. Use case 2: TRACES2 instance selector

. Use case 3: Manage the SYnch settings for all TRACE32 instances

©1989-2024 Lauterbach General Commands Reference Guide T | 21

<columns> - Description of Columns in the TargetSystem.state Window

DEFault

Adds TargetSystem, CoreType and CoreState column. If no column is
passed DEFault is used automatically.

ALL

Displays all available columns in the TargetSystem.state window.

TargetSystem

Adds the TargetSystem column to show a hierarchical view on the
system. If the column is left out, it will be added automatically. The
parameter is used to tell the dialog that the DEFault option is not active
and only the TargetSystem column shall be shown.

CoreType

Adds a column to show the target architecture of a core and core family
name if available.

CoreState

Shows the state of the core. The state can be system down (gray color),
power down (red color), reset (red color), stopped (bold) or running. The
running state can be extended by an attribute that indicates a run mode
e.g. “no core clock”.

Title

Adds a column with the corresponding window title. The title can be set
by the configuration file before start-up or by the TITLE command.

InterComPort

Adds a column with the InterCom UDP port numbers of TRACE32
instances. The InterCom port numbers are used by the InterCom
commands and the SYnch commands.

You can assign a new port number by double-clicking a port number in
the ic port column. For an illustrated example, see InterCom.PORT.

InterComName

Adds a column with the InterCom names of TRACE32 instances. Names
are created with the commands InterCom.NAME or InterCom.ENable.
The names can then be used as arguments in InterCom and SYnch
commands.

You can rename an instance by double-clicking a name in the ic name
column. For an illustrated example, see InterCom.NAME.

INSTance

Adds a column, showing the value of INSTANCE= from the config file.

If INSTANCE= is missing in the config file, then 1 is displayed by default.
That is, in this case the display value is equivalent to the explicit setting
INSTANCE=1 in the config file.

UseCore

Adds a column, showing the value of CORE= from the config file.

If CORE= is missing in the config file, then 1 is displayed by default. That is, in
this case the display value is equivalent to the explicit setting CORE=1 in the
config file.

See also SYStem.USECORE().

©1989-2024 Lauterbach

General Commands Reference Guide T | 22

SYnch.All

Adds the columns SYnch.Go, SYnch.Step, SYnch.Break and
SYnch.SystemMode.

SYnch.Go Adds the column to indicate and edit the SYnch.MasterGo and
SYnch.SlaveGo setting. The header of the column is named SG.
SYnch.Step Adds the column to indicate and edit the SYnch.MasterStep and

SYnch.SlaveStep setting. The header of the column is named SS.

SYnch.Break

Adds the column to indicate and edit the SYnch.MasterBreak and
SYnch.SlaveBreak setting. The header of the column is named SB.

SYnch.System-
Mode

Adds the column to indicate and edit the SYnch.MasterSystemMode and
SYnch.SlaveSystemMode setting. The header of the column is named
SM.

LicensePoolPort

Displays license pool port column in TargetSystem window.

<options> - Options for the TargetSystem.state Window

Global

Don’t highlight specific information for the TRACES32 instance from where
the dialog was opened. The dialog can be moved outside of the main
window and used to act as an independent window to bring a certain
instance to foreground by a double click to of an entry of the
TargetSystem tree column.

UseTitle

Use the TRACE32 window title as name for an SMP Subsystem or Core.
The title can be set by the configuration file before start-up or by the
PRACTICE command TITLE.

UselCName

Use the TRACES32 InterCom name as window title for an SMP subsystem
or core. The InterCom name can be set with the InterCom.NAME
command.

©1989-2024 Lauterbach

General Commands Reference Guide T | 23

Use case 1: Diagnostic tool for the target system structure

The command opens the window showing the overall system. Nodes that belong to this TRACES32 instance

are displayed in bold. A double-click to a thread selects this thread to be active.

TargetSystem.state CoreType /UseTitle

A B:TargetSystem CoreType /UseTitle EI-@

Core Type

PowerPC

PowerPC

PowerPC

eTPU

eTPU

eTPU -

r et System
= 1 e2l]l] SHp
0: Core
1 Core
eTPU_A
eTPU_B
eTPU_C

Use case 2: TRACES32 instance selector

The command opens the window showing the overall system and the state of the particular cores. The
window can be moved outside of the TRACES32 instance where the command was executed. A double-click
at an SMP system node or core will bring the assigned instance to foreground.

TargetSystem.state CoreState /UseTitle /Global

A B:TargetSystem CoreState /UseTitle /Global EI@

arget System Core State |
S 1: -
= EZOO SMP
0 Core stopped
1 Core running {core inactive)
eTPU_A 53 own
eTPU_B
eTPU_C =) W o

©1989-2024 Lauterbach General Commands Reference Guide T | 24

Use case 3: Manage the SYnch settings for all TRACE32 instances

The command opens the window showing the overall system and the SYnch settings.

TargetSystem.state SYnch.All /UseTitle /Global

[#] MasterBreak [¥] slaveBreak
[] masterstep [skavestep
/ [] MasterSystermMode | | [V] SlaveSystemMode

& Bisvnch oo
synch Connect
~) OFF localhost:10000
@ 0N 10004. 10002, 10003.
master slave
[¥] MasterGo [[] slaveGo

A B:TargetSystem.state S¥Ynch.All /UseTj

arget System S5G [S5 80 SM | ” ™~

A single click at an entry in one of the columns will change the setting in the SYnch dialog and set the

connection ports.

default Neither master nor slave option is set.
1st click M master option set.
2nd click S slave option is set.
3rd click MS master and slave option is set.
See also

B TargetSystem

©1989-2024 Lauterbach

General Commands Reference Guide T

25

TASK

TASK OS Awareness for TRACE32
[Task Magic Numbers, IDs, Names] [Machine Magic Numbers, IDs, Names] [Glossary]
See also
B TASK.ACCESS B TASK.ATTACH B TASK.Break B TASK.CACHEFLUSH
B TASK.CONFIG B TASK.COPYDOWN B TASK.COPYUP B TASK.Create
B TASK.CreateExtralD B TASK.CreatelD B TASK.DELete B TASK.DeletelD
B TASK.DETACH B TASK.Go B TASK.INSTALL B TASKKILL
B TASK.List B TASK.ListlD B TASK.NAME B TASK.ORTI
B TASK.RELOAD B TASK.RESet B TASK.RUN B TASK.select
B TASK.SETDIR B TASK.STackK B EXTension 1 TASK.ACCESS()
1 TASK.BACK() 1 TASK.CONFIG() 1 TASK.CONFIGFILE() 1 TASK.COUNT()
1 TASK.FIRST() 1d TASK.FORE() 1 TASK.ID() 1 TASK.MACHINEID()
1 TASK.MAGIC() 1 TASK.MAGICADDRESS() [TASK.MAGICRANGE() 1 TASK.MAGICSIZE()
1 TASK.NAME() 1 TASK.NEXT() 1 TASK.ORTIFILE() 1 TASK.SPACEID()

A 'TASK Functions’ in ’‘General Function Reference’

Overview TASK

This chapter describes the OS Awareness features, generic to all processors and kernels. Kernel specific
features are described in additional manuals, see OS Awareness Manuals.

The OS Awareness may support the following main features:

Display of kernel resources (e.g. tasks, queues, semaphores, messages).
Task stack coverage.

Task related breakpoints.

Task context display.

Operating system’s MMU support.

Dynamic task performance measurement

Task runtime statistics and flowchart display out of the trace buffer. Display of task switches in the
trace listing.

Task state statistics and time chart out of the trace buffer, i.e. show how long each task is in a
certain state (running, ready, etc.).

Task-related function runtime statistics, flowchart display and function nesting display out of the
trace buffer.

Fast access to the features through dedicated menus.

Not all features are implemented for all processors and kernels. Please see the kernel specific manual for a
detailed description of the supported features.

©1989-2024 Lauterbach General Commands Reference Guide T | 26

OS Awareness Configurations

The OS Awareness is configured by the TASK.CONFIG command. The command loads a configuration file
that tells the debugger all kernel-related information. It can be adopted to any (RT)OS kernel. Lauterbach
provides ready-to-start configuration files for a wide range of operating systems. If you want to adapt it to
your own proprietary kernel, ask Lauterbach for assistance.

What to know about the Task Parameters

In TRACES2, operating system tasks (short: tasks) can be identified based on one of these values:

o Task magic number
o Task ID
o Task name

For OS-aware debugging and tracing, these three values are displayed in the TASK.List.tasks window and
can be returned with the functions TASK.MAGIC(), TASK.ID(), and TASK.NAME(). In addition, the three
values can be passed as parameters to task-related TRACE32 commands and options.

NOTE: In case of the TASK.CONFIG command, you will encounter the parameter
<magic_address>.

. <task_magic> and <magic_address> are not the same.

. For information about <magic_address>, see TASK.CONFIG command.

Task Magic Number

The task magic number is an arbitrary hex value, used by TRACE32 to uniquely identify a task of an
operating system. The meaning of the value depends on the OS Awareness; often it refers to the task
control block of the target OS or to the task ID.

<task_magic> Parameter Type: Hex value.
Example: TASK.select O0xEFF7B040

Task ID

This value refers to the numeric task ID as given by the operating system. If the OS does not provide a task
ID, this option may not be available.

<task_id> Parameter Type: Decimal value.
Example: TASK.select 1546.

Task Name

This string refers to the task name as given by the operating system. If the OS does not provide a task name,
this option may not be available.

©1989-2024 Lauterbach General Commands Reference Guide T | 27

If the task runs in a system involving virtualization, then the task name can be preceded with the machine

name.

<task_name>

Parameter Type: String.

Example 1: TASK.select "adbd:1546"
Example 2: TASK.select "FreeRTOS:::SieveDemo"

FreeRTOS is the name of the machine. The three colons : : : serve as the
separator between the machine name and the task name SieveDemo.

What to know about the Machine Parameters

In hypervisor-based environments, TRACES32 identifies machines based on one of these values:

J Machine magic number

. Machine ID

o Machine name

For hypervisor debugging and tracing, these three values are displayed in the TASK.List. MACHINES

window. In addition, the three values can be passed as parameters to machine-related TRACE32

commands and options.

©1989-2024 Lauterbach

General Commands Reference Guide T

28

Machine Magic Number

A machine magic number is an arbitrary hex value, used by TRACES32 to uniquely identify a machine
(host machine or guest machine). The meaning of the value depends on the Hypervisor Awareness;
often it refers to the guest control block of the hypervisor or to the machine ID.

<machine_magic> Parameter Type: Hex value.
Range: machine magic number > 0xFF

Machine magic numbers are displayed, for example, in the magic column
of the TASK.List. MACHINES window as hex values.

Machine ID

A machine ID is a numeric identifier which extends a logical address and intermediate address in TRACE32
or can be used together with the option MACHINE in some TRACES32 commands. The purpose of a
machine ID is to identify guest machines within a system that is using a hypervisor to run multiple virtual
machines.

<machine_id> Parameter Type: Decimal or hex value.
Range: 0x0 <= machine ID < 0x1F

Machine IDs are displayed, for example, in the mid column of the
TASK.List. MACHINES window as decimal values (1., 2., etc.)

In TRACE32, the machine ID clearly specifies which virtual machine (a guest machine or the host machine)
an address belongs to:

. The machine ID 0 (zero) is always associated with the host machine running the hypervisor.

J All the other machine IDs >= 1 are associated with the guest machines.
Format of addresses with machine IDs:

In the TRACES32 address format, the machine ID is always in the leading position, directly after the access
class specifier. The machine ID is followed a triple colon (: : :) to separate the machine ID from the
remaining parts of an address. The format of a TRACES32 address containing a machine ID looks like this:

. Without space ID:

<access_class>:<machine_id>:::<address_offset>

. With space ID:

<access_class>:<machine_id>:::<space_id>: :<address_offset>

Examples:

. Without space ID:
- G:0x1:::0x80000000
- 0x2:::0xA0000000

. With space ID:

©1989-2024 Lauterbach General Commands Reference Guide T | 29

- G:0x3:::0x020A::0x80000000
- G:0x0:::0x0::0x4000C000

- 0x2:::0x170::0x1F000000

Notes:

J Machine IDs can only be used if a TRACES32 Hypervisor Awareness is loaded with the command
EXTension.LOAD.

J Use command SYStem.Option.MACHINESPACES ON to enable machine IDs in TRACE32.

Machine Name

A machine name is a meaningful string that allows users to identify a host or guest machine in a hypervisor-
based environment. The machine name is given by the Hypervisor Awareness. If the Hypervisor Awareness
does not provide a machine name, you can assign a name to a machine by using the NAME option of the
EXTension.LOAD command. Without the NAME option, the base name of the extension definition file will
be used.

In a hypervisor-based environment, the machine name precedes the task name.

<machine_name> Parameter Type: String.

Example: TASK.select "FreeRTOS:::SieveDemo"
FreeRTOS is the name of the machine. The three colons : : : serve as the
separator between the machine name and the task name SieveDemo.

Glossary

For important OS Awareness and Hypervisor Awareness terms, such as task, thread, process, machine,
kernel, MMU space, and virtual machine, refer to the “TRACE32 Concepts” (trace32_concepts.pdf).

©1989-2024 Lauterbach General Commands Reference Guide T | 30

TASK.ACCESS Control memory access

Format: TASK.ACCESS [<class>]

Defines the memory access class used by TASK related windows.

TASK related windows may access the target memory (e.g. when reading task control blocks). If the access
class is set to E:, the debugger uses emulation memory access to read the memory (e.g. emulation
memory, shadow memory or pseudo-dual-port access). If set to C:, the debugger uses CPU access. If the
appropriate access is not possible, the window is temporarily frozen.

TASK.ACCESS without parameter enables the default mode, which uses E:, if the application is running,
and C: if the application is stopped.

Please see refer to your Processor Architecture Manuals for a description of E: and C..

See also
B TASK

TASK.ATTACH Attach to a running process

Format: TASK.ATTACH <id>

Start the execution of a single task or thread.

Only applicable if GDB (Linux) is used as debug agent or for the Native Process Debugger.

See also
B TASK

A 'GDB Front-End TASK Commands’ in ' TRACE32 as GDB Front-End’
A ’Native Process Debugger Specific TASK Commands’ in ‘Native Process Debugger’

TASK.Break Stop the execution of a single task or thread

Format: TASK.Break <id>

Stop the execution of a single task or thread.

©1989-2024 Lauterbach General Commands Reference Guide T | 31

Only applicable if GDB (Linux) is used as debug agent or for the Native Process Debugger.

See also
W TASK

A 'GDB Front-End TASK Commands’ in "'TRACE32 as GDB Front-End’
A ’Native Process Debugger Specific TASK Commands’ in ‘Native Process Debugger’

TASK.CACHEFLUSH Reread task list

Format: TASK.CACHEFLUSH

Usually not needed. Use only if advised to do so.

The debugger reads out the task list of the target at each single step or Go/Break sequence, and stores the
list internally (see TASK.List.tasks). If the task list or task characteristics change while the target is halted, a
manual update of the task list may be necessary. This command forces an immediate re-evaluation of the
task list.

See also
W TASK

TASK.CONFIG Configure OS Awareness

Format: TASK.CONFIG <os_awareness_file> <magic_address> <args> [/<option>]

<option>: ACCESS <class>

Configures the OS Awareness using a given configuration file. Please refer to the OS-specific manual. See
OS Awareness Manuals.

©1989-2024 Lauterbach General Commands Reference Guide T | 32

Arguments:

<0s_awareness._ File name of the configuration file.

file>

<magic_address> Address of the memory location holding the task magic number of the
currently running task. See “What to know about the Task Parameters”,
page 27.

<args> All other arguments are interpreted by the configuration file. Details of

predefined files are described in the kernel-specific part of an OS
Awareness Manual.

Options:
ACCESS Defines the memory access class used by TASK-related windows. See
TASK.ACCESS.
See also
B TASK B EXTension.LOAD m MMU

A ’'Release Information’ in’Legacy Release History’

TASK.COPYDOWN Copy file from host into target

Format: TASK.COPYDOWN <source._file_host> <destination_file_target>

Copies a file from the host into the target. Only supported for Linux and QNX run mode debugging.

See also
B TASK
A 'Commands for Run Mode Debugging’ in 'Run Mode Debugging Manual Linux’

©1989-2024 Lauterbach General Commands Reference Guide T | 33

TASK.COPYUP Copy file from target into host

Format: TASK.COPYUP <source._file_target> <destination_file_host>

Copies a file from the target into the host. Only supported for Linux and QNX run mode debugging.

See also
B TASK
A 'Commands for Run Mode Debugging’ in 'Run Mode Debugging Manual Linux’

©1989-2024 Lauterbach General Commands Reference Guide T | 34

TASK.Create Create task

The TASK.Create command group allows to create new tasks.

See also
W TASK
TASK.Create.MACHINE Define a manual machine
Format: TASK.Create.MACHINE [<mach_magic>] [<id>] [<name>] [<vitb>]
[<trace_id>] [/<option>]
<option>: MMUspaces ON | OFF | EXTension
CORE <core1> [<core2>...]

Defines a persistent machine. Machines are usually created and removed from the machine list by a
Hypervisor Awareness. This commands creates machines that are independent of the Hypervisor
Awareness.

Only available if SYStem.Option.MACHINESPACES is ON.

Parameter: Format Description

<mach_magic> hex Specifies a value that uniquely identifies a machine.

<id> dec Specifies a machine ID as used by fully qualified virtual
addresses.

<name> string Specifies a machine name.

<vttb> hex Specifies the translation table base address of this machine.

<trace_id> hex Specifies a value that identifies a machine in the trace.

All parameters are optional. If omitted (specify ','), the debugger will try to get the value from the Hypervisor
Awareness (if available).

©1989-2024 Lauterbach General Commands Reference Guide T | 35

Option: Description

MMUspaces ON This machine has MMU spaces.
OFF This machine does not have MMU spaces.
EXTension An OS Awareness for this machine (if available)
(default) reports, if this machine has MMU spaces.
CORE Assigns a machine to specific logical cores.
Examples:

;Declare a machine with machine ID 1 and name “guestl”:
TASK.Create.MACHINE , 1. “guestl”

;Set the trace ID of machine with magic “0x1234” to “0x2”:
TASK.Create.MACHINE 0x1234, , , , 0x2

;Machine with ID 2 is bound to logical cores 2 and 3:
TASK.Create.MACHINE , 2. /CORE 2. 3.

See also
B TASK.List MACHINES

TASK.Create.RUNNABLE Define an AUTOSAR runnable

Format: TASK.Create.RUNNABLE [<function>] [<id>] [<name>] [<start>] [<stop>]
[<traceidstart>] [<traceidstop>] [/ <option>]

Defines an AUTOSAR runnable. Usually used in conjuntion with an ORTI awareness (see TASK.ORTI).

©1989-2024 Lauterbach General Commands Reference Guide T | 36

Parameter: Format Description

<function> string Specifies a function symbol that represents this runnable.

<id> dec Specifies a runnable id.

<nhame> string Specifies a runnable name.

<start> address Specifies the start address of the runnable.

<stop> address Specifies the end address of the runnable.

<traceidstart> hex Specifies a value that identifies the start of a runnable in the
trace.

<traceidstop> hex Specifies a value that identifies the end of a runnable in the
trace.

All parameters are optional. If omitted (specify ','), the debugger will try to evaluate the other values by the
given values.

Example:

;Declare a runnable:
TASK.Create.RUNNABLE Rte_Runnable_ComM GetCurrentComMode_Start 3.\
"GetCurrentComMode"

See also
B TASK.List. RUNNABLES B <trace>.Chart. RUNNABLE
B <trace>.EXPORT.ARTI W <trace>.STATistic. RUNNABLE

A ’Overview of TRACE32 Command Structure’ in ’Application Note Profiling on AUTOSAR CP with ARTY’

TASK.Create.SPACE Define a manual MMU space
Format: TASK.Create.SPACE [<space_magic>] [<id>] [<name>] [<ttb>] [/<option>]
<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

Defines a persistent MMU space. MMU Spaces are usually created and removed from the space list by an
OS Awareness. This commands creates spaces that are independent of the OS Awareness.

Only available if SYStem.Option.MMUSPACES is ON.

©1989-2024 Lauterbach General Commands Reference Guide T | 37

Parameter: Format Description

<space_magic> hex Specifies a value that uniquely identifies a space within a
machine.

<id> dec Specifies a space ID as used by fully qualified virtual
addresses.

<name> string Specifies a space name.

<ttb> hex Specifies the translation table base address of this space.

All parameters are optional. If omitted (specify ','), the debugger will try to get the value from the OS
Awareness (if available).
Option: Description

MACHINE Creates the task to be part of the given machine.
(only available if SYStem.Option.MACHINESPACES is ON)

Examples:

;Declare an MMU space with space ID 1 and name "procl":
TASK.Create.SPACE , 1. "procl"

;Set the TTB of the MMU space with magic "0x1234" on machine 1 to
;"0x1000":
TASK.Create.SPACE 0x1234, , , 0x1000 /MACHINE 1.

See also
B TASK.List. SPACES

©1989-2024 Lauterbach General Commands Reference Guide T | 38

TASK.Create.task Define a manual task

Format: TASK.Create.task [<task_magic>] [<id>] [<name>] [<trace_id>] [/<option>]

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
SPACE <space_magic> | <space_id>| <space_name>

Defines a persistent task. Tasks are usually created and removed from the task list by an OS Awareness.
This commands creates tasks that are independent of the OS Awareness.

Parameter: Format Description

<task_magic> hex Specifies a value that uniquely identifies a task within a
machine.

<id> dec Specifies an arbitrary task ID.

<name> string Specifies a task name.

<trace_id> hex Specifies a value that identifies a task in the trace.

All parameters are optional. If omitted (specify ','), the debugger will try to get the value from the OS
Awareness (if available).
Option: Description

MACHINE Creates the task to be part of the given machine.
(only available if SYStem.Option.MACHINESPACES is ON)

SPACE Create the task to be part of the given space.
(only availabe if SYStem.Option.MMUSPACES is ON)

Examples:

;Declare a task with magic "0x200" and name "threadl" as part of MMU
;space "procl":
TASK.Create.task 0x200 , "threadl" /SPACE "procl"

;Set the trace ID of task with magic "0x200" of machine 1 to "0x4":
TASK.Create.task 0x200 , , O0x4 /MACHINE 1.

See also
B TASK.List.tasks

©1989-2024 Lauterbach General Commands Reference Guide T | 39

TASK.CreateExtralD Create a virtual task

Format: TASK.CreateExtralD <fask_name> <task_id> <space_id> <trace_id>

Creates a virtual task ID for trace analysis. Trace analysis will use the given task ID for task identification
rather than the task magic number. Only for some dedicated applications.

See also
B TASK
TASK.CreatelD Create virtual task
Format: TASK.CreatelD <task_name> <task_id> <space_id> <trace_id>

Creates a virtual task name for trace analysis. Trace analysis will use the given task name for task
identification, rather than the task magic. Only for some dedicated applications.

See also
H TASK

TASK.DELete Delete file from target

Format: TASK.DELete <target file>

Deletes a file from the target file system. Only applicable if GDB (Linux) is used as debug agent.

See also
B TASK

©1989-2024 Lauterbach General Commands Reference Guide T | 40

TASK.DeletelD Delete virtual task

Format: TASK.DeletelD <task_id>

Delete a virtual task created with TASK.CreatelD or TASK.CreateExtralD.

See also
B TASK

TASK.DETACH Detach from task

Format: TASK.DETACH <id>

Requests the debug agent to detach from the process <id>.
Only applicable if GDB (Linux) is used as debug agent.
Example:

TASK.DETACH 41.

See also
B TASK
A ’Native Process Debugger Specific TASK Commands’ in ‘Native Process Debugger’

TASK.Go Start the execution of a single task or thread

Format: TASK.Go <id>

Start the execution of a single task or thread.

Only applicable if GDB (Linux) is used as debug agent or for the Native Process Debugger.

See also
B TASK

A 'GDB Front-End TASK Commands’ in ' TRACE32 as GDB Front-End’
A ’Native Process Debugger Specific TASK Commands’ in ‘Native Process Debugger’

©1989-2024 Lauterbach General Commands Reference Guide T | 41

TASK.INSTALL Deprecated

Format: TASK.INSTALL (deprecated)
See also
B TASK
TASK.KILL End task
Format: TASK.KILL <id>

Request the debug agent to end the process <id>.
Only applicable if GDB (Linux) or TRK (Symbian) is used as debug agent.
Example:

TASK.KILL 41.

See also
B TASK

A 'Commands for Run Mode Debugging’ in ’Run Mode Debugging Manual Linux’
A ’Native Process Debugger Specific TASK Commands’ in 'Native Process Debugger’

©1989-2024 Lauterbach General Commands Reference Guide T | 42

TASK.List Information about tasks

The windows of the TASK.List command group provide information about processes, space IDs, MMU
spaces, machines, and tasks known to the debugger in an OS and hypervisor environment. The debugger
needs a so-called “awareness” of the OS or hypervisor to be able to read out these items from the target.

See also
Bl TASK.List. MACHINES Bl TASK.List. RUNNABLES Bl TASK.List. SPACES B TASK List.tasks
B TASK.List. TREE W TASK
TASK.List. MACHINES List machines
Format: TASK.List. MACHINES

Lists information about all machines known to the debugger. Machines refer to virtual machines in a
hypervisor environment. The hypervisor itself is listed as machine with ID 0.

Machines are only available if SYStem.Option.MACHINESPACES is set to ON.
For several purposes, the debugger needs to know which machines are active in the system. The debugger

uses the hypervisor specific awareness to read out all machine characteristics that it needs for its operation.
TASK.List. MACHINES shows the machine characteristics that the debugger uses.

o B:TASK.List MACHINES =n| Wl <
magic name mid access vith extension(s) |
Xen 0. [HD: Xen -
000080007FF51000 |Domd 1. |NUD: 000100007 AEFS000 |DomO
000080007AEDBO00 (Lirux 2. |NUD: 0002000079FB0000 |Lirux
000080007 9F76000 |FreeRTOS 3. |NUD: 000300007 9F4EQDD |FreeRTOS

4 T 3 ‘

A The machine that is currently running on the selected core is marked.

Description of Columns in the TASK.List. MACHINE Window

magic Machine magic number. Unique number for the machine.
Usually the address of the control block structure.
name Name of the object, if available.
mid Machine ID if a hypervisor system is set up.
access Access class that an awareness uses for this machine.
vitb “Virtual translation table base” address of this machine. The VTTB address

points to the MMU table of the guest physical (= intermediate) address to host
physical address translation.

extension(s) Extensions loaded for this machine (EXTension.LOAD).

©1989-2024 Lauterbach General Commands Reference Guide T | 43

See also
B TASK List B TASK List.tasks

A ’Release Information’ in’Legacy Release History’

B TASK.Create. MACHINE

TASK.List. RUNNABLES List AUTOSAR runnables

Format: TASK.List. RUNNABLES

Lists information about AUTOSAR runnables.

Runnables are declared to the debugger by the command TASK.Create.RUNNABLE. The information is
used to create performance calculations shown with Trace.Chart. RUNNABLE and

Trace.STATistic. RUNNABLE. Trace.EXPORT.ARTI also relies on this information to export trace events
based on runnables.

% B:TASK List RUNNABLES = =R
function 1d name start stop =
Rte_RunnabTe_BswM_BswM_MainFunction_Start 1. |[BswM_MainFunction BO0ZBAAA [BOD273B4 |
Rte_Runnable_ComM_ComM_MainFunction_0_Start 2. |ComM_MainFunction_0 B8002BACA |800273D8
Rte_Runnable_ComM_GetCurrentComMode_Start 3. |GetCurrentComMode B8002BAEA |800273FC
Rte_Runnable_ComM_GetInhibitionStatus_Start 4. |GetInhibitionStatus 80028B0A |B0027420
Rte_Runnable_ComM_GetMaxComMode_Start 5. |GetMaxComMode 80028B2A |B0027446
Rte_Runnable_ComM_GetRequestedComMode_Start 6. |GetRequestedComMode B002BB4C |BO027468
Rte_Runnable_ComM_LimitChannelToNoComMode_Start 7. |LimitChannelToNoComMode 80028B6C |8002748C
Rte_Runnable_ComM_LimitECUToNoComMode_Start 8. |LimitECUToNoComMode 80028B8C |B00274B0
Rte_Runnable_ComM_PreventwakelUp_Start 9. |PreventWakelp B0028BAC |B00274D6
Rte_Runnable_ComM_ReadInhibitCounter_Start 10. |ReadInhibitCounter 80028BCE |BO0274FA
Rte_Runnable_ComM_RequestComMode_Start 11. |RequestComMode B002BBFO0 |BOO2751E
Rte_Runnable_ComM_ResetInhibitCounter_Start 12. |ResetInhibitCounter 80028C12 |B0027540
Rte_Runnable_ComM_SetECUGroupClassification_Start 13. |[SetECUGroupClassification |B0028C32 80027566
Rte_Runnable_Dcm_Dom_MainFunction_Start 14. |Dcm_MainFunction 80028C54 (80027588
Rte_Runnable_Dom_GetActiveProtocol_Start 15. |GetActiveProtocol 80028C74 |800275AE
Rte_Runnable_Dcm_GetRequestKind_Start 16. |GetRequestKind B0028C96 |BO0275D0
Rte_Runnable_Dcm_GetSecuritylLevel_Start 17. |GetSecuritylLevel BO02BCEG |BOO275F6 | ¥
1K >
See also
B TASK List B TASK List.tasks

B TASK.Create. RUNNABLE
B <trace>.EXPORT.ARTI

B <trace>.Chart. RUNNABLE
B <trace>.STATistic. RUNNABLE

A ’Overview of TRACE32 Command Structure’ in ’Application Note Profiling on AUTOSAR CP with ARTY’

TASK.List.SPACES List MMU spaces

Format: TASK.List.SPACES

Lists all MMU spaces known to the debugger. MMU spaces usually refer to processes in an OS/RTOS
environment. MMU spaces are only available if SYStem.Option.MMUSPACES is set to ON.

©1989-2024 Lauterbach General Commands Reference Guide T | 44

For several purposes, the debugger needs to know which MMU spaces are active in the system. The
debugger uses the kernel specific awareness to read out all space characteristics that it needs for its
operation. TASK.List.SPACES shows the space characteristics that the debugger uses.

Each kernel specific awareness has a different display command to show the active processes with the
characteristics that are essential to the specific kernel. Please see the appropriate OS Awareness Manual
(rtos_<os>.pdf) for this command.

o B:TASK.List. SPACES =n| Wl <
1d tth machine taszk(s) |
15206. | Ox3B66 61336000 |DomO xT x1:15208 ~
31584. | Ox7BB0 DomO xstartup

0. | Ox0000 7AAADOOOD |Linux swapper/0 kthrea
1. | 0x0001 41FBB000 [Lirux imt
745. | Ox02E9 41FBCO00 [Linux udevd
886. | 0x0376 41960000 |Linux sshd
890. | Ox037A 4192C000 |Linux rpchind
895. | Ox037F 41893000 |Linux rpc. statd -
}

A The MMU space that is currently active on the selected core is marked.

Description of Columns in the TASK.List. SPACES Window:

magic Space magic number. Unique number for the space.
Usually the address of the control block structure.
name Name of the object, if available.
id ID of the object, if available.
machine Machine name or machine ID if a hypervisor system is set up.
ttb TTB address of this space
task(s) Tasks running in this space
See also
B TASK.List B TASK List.tasks B TASK.Create.SPACE
TASK.List.tasks List all running tasks
Format: TASK.List.task

Lists all tasks known to the debugger. Additional information about machines and MMU spaces is only
displayed if SYStem.Option.MMUSPACES and SYStem.Option.MACHINESPACES are set to ON.

For several purposes, the debugger needs to know which tasks are active in the system. The debugger uses
the kernel specific awareness to read out all task characteristics that it needs for its operation.
TASK .List.tasks shows the task characteristics that the debugger uses.

©1989-2024 Lauterbach General Commands Reference Guide T | 45

Each kernel specific awareness has a different display command to show the active tasks with the
characteristics that are essential to the specific kernel. Please see the appropriate OS Awareness Manual
(rtos_<os>.pdf) for this command.

o BrTASK List.tasks =0 E=H =

magic name 1d space machine |traceid [core [sel =top |
FFFFFFC0020C3080 [jbd2 xvda-8 714, 0. | 0x0000 [L1nux AALTOSED -
FFFFFFC00214D200 |ext4-rsv-con | 715. 0. | 0x0000 |Linux F94002E2

FFFFFFCO02B84ACE0
FFFFFFCO02153300
FFFFFFCO02936FC0
FFFFFFCO02204C80
FFFFFFCO02204040
FFFFFFCO0222D2C0

imit 1. 1. | 0x0001 Lirux 00000160 "
udewvd 745. 745. | Ox02E9 |Linux 936C279C
sshd 886, 886. | 0x0376 |Linux 0001ECOO
rpchind 890. 890. | Ox037A [Linux FF5 69465
rpc. statd 895. 895. | Ox037F [Linux FF4ATE4F
=ysTlogd 912, 912, | 0x0330 |[Linux BSEDGE4SE

L N RN NN]

A The task that is currently running on the selected core is marked.

Description of Columns in the TASK List.tasks Window:

magic Task magic number. Unique number for the task.
Usually the address of the control block structure.

hame Name of the object, if available.

id ID of the object, if available.

space Space name or ID if the OS uses MMU spaces.

traceid ID that identifies an object in the trace list.

core Identifies in SMP systems at which core this task runs.

sel Task selected for debugging (only in Run Mode Debugging).

stop Task selected to stop on break (only in Run Mode Debugging).

machine Machine name or machine ID if a hypervisor system is set up.
See also
B TASK List B TASK List MACHINES B TASK List RUNNABLES B TASK List. SPACES
B TASK List TREE B TASK Create.task B CORE List

A ’Overview of TRACE32 Command Structure’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

TASK.List.TREE Display tasks in a tree structure
Format: TASK.List.TREE [/<option>]
<option>: Machine <machine_magic> | <machine_id>| <machine_name>

Displays machines, MMU spaces, and tasks in the form of a tree structure.

©1989-2024 Lauterbach General Commands Reference Guide T | 46

o8 BTASK List. TREE o -E =]

00 (= FreeRTOS
= (kerrel)
xenbusTas

51eveDemo
51eveDemo

A Level 1 of the tree: Machines.
B Level 2: MMU spaces.
C Level 3: Tasks.

D Yellow lines: The machine, the MMU space, and the task that are currently running on the selected core
are marked.

Description of Columns in the TASK.List. TREE Window

magic Magic number. Unique number for each object (machine/MMU space/task).
Usually the address of the control block structure.
nhame Name of the object, if available.
See also
W TASK List W TASK List.tasks

A ’Release Information’ in’Legacy Release History’

TASK.ListID List virtual tasks

Format: TASK.ListID

Opens the TASK.ListID window, displaying virtual tasks created withTASK.CreatelD or
TASK.CreateExtralD.

See also
H TASK

©1989-2024 Lauterbach General Commands Reference Guide T | 47

TASK.NAME Translation of task magic number to task name

Several windows of the OS Awareness show task-related information, e.g. TASK.STacK or
Trace.Chart.TASK. Internally, the OS Awareness always uses the task magic numbers to identify a task.
When displaying the task-related information, the debugger can translate this task magic number into a
more readable task name, using a task name translation table. If the debugger finds an entry with the
appropriate task magic number, it shows the task name instead of the task magic number (or task ID).

The translation table can be populated manually or automatically. If the TASK configuration file supports it,
the debugger automatically populates the table with the current available task magic numbers and their
names. Additionally, or if no configuration file exists, or if the configuration doesn’t support task names, table
entries may be added manually. If a manual entry and an automatic entry have the same task magic
number, the manual entry overwrites the automatic one.

See also
B TASK.NAME.DELete B TASK.NAME.RESet B TASK.NAME.Set B TASK.NAME.view
B TASK
TASK.NAME.DELete Delete a task name table entry
Format: TASK.NAME.DELete <task_magic>

Deletes the entry, specified by <task_magic>, from the task name translation table. If the entry is an
automatic entry, the next usage of task names may add the automatic entry again.

See also
B TASK.NAME B TASK.NAME.view
TASK.NAME.RESet Reset task name table
Format: TASK.NAME.RESet

Erases the whole task name translation table. If the TASK configuration file supports task name evaluation,
the next usage of task names will populate the table again with automatic entries.

See also
W TASK.NAME W TASK.NAME.view

©1989-2024 Lauterbach General Commands Reference Guide T | 48

TASK.NAME.Set Set a task name table entry

Format: TASK.NAME.Set <task_magic> <task_name>

Adds a manual entry to the task name translation table.

<task_magic>, The string specified by <task_name> is assigned to the task specified by
<task_name> <task_magic>. If the table contains already an automatic entry for the
specified task magic number, it will be overwritten by the new entry!

Example:

TASK.NAME.Set 0x58D68 "My Task 1"

See also
B TASK.NAME B TASK.NAME.view
TASK.NAME.view Show task name translation table
Format: TASK.NAME.view

Shows the contents of the task name translation table.
o BiTASK.NAME view =n| Wl <

—
]
o

Sppe |
»

.calculatorZ:Compiler
id.calculator2:ReferenceQueueDd
id.calculator2:FinalizerDaemon
id.calculator2:Finalizerwatchd
id.calculator2:Binder_1
id.calculator2:Binder_2

A Flag “a”: The entry was set automatically by the TASK configuration file.

B Flag “m™ The entry was set manually by the TASK.NAME.Set command.

See also
W TASK.NAME W TASK.NAME.DELete B TASK.NAME.RESet W TASK.NAME.Set

©1989-2024 Lauterbach General Commands Reference Guide T | 49

TASK.ORTI AUTOSAR/OSEK support

See also
B TASK.ORTI.CPU B TASK.ORTl.load B TASK.ORTI.NOSTACK B TASK.ORTI.SPLITSTACK
H TASK

A ’Release Information’ in’Legacy Release History’
A ’'Configuration’ in’OS Awareness Manual OSEK/ORTY’

TASK.ORTI.CPU Set OSEK SMP CPU number

Format: TASK.ORTI.CPU <cpu_id>

If TRACES2 is set up in AMP mode (one PowerView instance for each core), it assigns a CPU ID to each
individual core, starting with zero. An AUTOSAR/OSEK operating system in SMP mode may assign a
different CPU ID to the cores, depending how the OS uses the chip.

This command instructs the debugger to use the given CPU ID when extracting core dependent information
from the ORTI file.

See also
B TASK.ORTI

TASK.ORTl.load Configure OS Awareness for OSEK/ORTI

Format: TASK.ORTl.load <file>

Configures the OS Awareness for AUTOSAR/OSEK operating systems using ORTI. For a detailed
description, please refer to the chapter “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf).

See also
B TASK.ORTI

©1989-2024 Lauterbach General Commands Reference Guide T | 50

TASK.ORTI.NOSTACK Exclude an ORTI task from stack evaluation

Format: TASK.ORTI.NOSTACK <task_name>

When using the OS Awareness for ORTI (see TASK.ORTIl.load), this command excludes a task from all
stack evaluations, e.g. when performing a trace function analysis. Usually used for the idle routine if it isn’t
running as a separate task.

See also
H TASK.ORTI

©1989-2024 Lauterbach General Commands Reference Guide T | 51

TASK.ORTIL.SPLITSTACK

Split stack analysis of idle ORT]I task to cores

Format: TASK.ORTIL.SPLITSTACK <task_name>

Some AUTOSAR/OSEK OSs use the same magic (NO_TASK) for the idle ORTI tasks on all cores.
However, for the function analysis, the idle tasks need to be split to the individual cores because the cores
are executing the idle tasks concurrently.

The command TASK.ORTIL.SPLITSTACK splits the stacks of the idle ORTI tasks to the individual cores.

<task_name>

Example:

TASK.ORTI.SPLITSTACK

idle"

Specify the name of the idle ORTI task.

Output: Function analysis in the <trace>.STATistic. TREE window

= | BiTrace STATistic. TREE = =R
2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart

Before A OVERFLO funcs: 1906. total: 853.330us dintr:

range tree total |

(root) = (root) 797.776US | 4
vs_delayed_idleloop = sys_delayed_idleloop 229.065us
NvM_MainFunction NvM_MainFunction 1.315us
vs_general_idleloop sys_general_idleloop 0.115us
eloop_request_rerun = sys_idleloop_request_rer. | 227.020us
stackProcessStopped NvM_IntegrationCode_is.. 0.100us
BAS_MemStack_Cyclic PRC_CUBAS_MemStack_Cyc.. 0.480us
taskbody_prc_calls # taskbody_pre_calls 226.235us
taskbody_prc_calls taskbody_prc_calls 0.115us
taskbody_prc_calls # taskbody_pre_calls 568.710us

(root) = (root) 43.365us | ¥
LOAD < >

= | BiTrace STATistic. TREE = =R

2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart

After funcs: 32283. total: 27.627ms intr:

ranae tree total |

(root] = (root) 10.603ms | 4
|_wrapper_ret+0x4i) _Os_demux_wrapper_ret+0x46 0.605us
| delayed_idlelooy sys_delayed_idleloop 1.124ms
| general_idlelooy sys_general_idleloop 3.838ms
oop_request_rerur sys_idleloop_request_rerun 739.835us
askbody_prec_calld taskbodv prc calls 1.861ms
(root]] = (root) 15.194ms
| delayed_idlelooy sys_delayed_idleloop 130.070us
| general_idlelooy sys_general_idleloop 267.968us
oop_request_rerur sys_idleloop_request_rerun 53.382us

askbody_prc_cally @ taskbodv_prec_calls 14.482ms C
(root) (root) 1.222ms

LOAD < > |

A Note that there is no stack overflow after executing TASK.ORTI.SPLITSTACK.

B The core numbers, here 0 and 1, are appended to the name of the idle task idle:0 and idle:1

C Core coloring scheme, e.g. green for core 1. See also CORE.SHOWACTIVE.

See also

B TASK.ORTI

©1989-2024 Lauterbach

General Commands Reference Guide T |

52

TASK.RELOAD Reread task list

Format: TASK.RELOAD

This command initiates a reloading of the task list and enables the OS Awareness.

The OS Awareness may be disabled if an access to the current task fails, or if the system state changed, to
prevent the debugger from accessing faulty memory. TASK.RELOAD explicitly re-enables the OS
Awareness and initiates the update of the internal task list.

See also
B TASK

TASK.RESet Reset OS Awareness

Format: TASK.RESet

Resets the OS Awareness.

The configuration is cleared, all additional commands and features are removed.

See also
B TASK

©1989-2024 Lauterbach General Commands Reference Guide T | 53

TASK.RUN Load task

Format: TASK.RUN <process>

Loads <process> and prepares it for debugging.
Only applicable if GDB (Linux) or TRK (Symbian) is used as debug agent.
Example:

TASK.RUN /bin/hello

See also
B TASK

A 'Commands for Run Mode Debugging’ in 'Run Mode Debugging Manual Linux’
A ’Native Process Debugger Specific TASK Commands’ in ‘Native Process Debugger’

©1989-2024 Lauterbach General Commands Reference Guide T | 54

TASK:.select Display context of specified task

Format: TASK.select <task_magic> | <task_id>. | "<task_name>"

Stop mode debugging: In the case of an SMP system the currently selected core is changed to the core
running the specified task. As a result the debugger view is changed to this core and all TRACE32
commands without /CORE <number> option apply to it.

If the specified task is not running, TRACES32 reads the register set of the specified task from the OS data
structures. This is needed to display the context of the specified task in the TRACE32 PowerView GUI.

The TRACER32 state line changes to a reddish look-and-feel (see screenshot below) to indicate that the
context of a not-running task is displayed. TRACE32 display commands such as List.auto, Register.view,
Frame.view or Var.Local apply to this task. Whereas all other commands switch back to the currently
running task before they are executed.

[V TRACE32 Power\View for AR |

File Edit View Var Break Run CPU Misc Trace Pef Cov Cortex-M4/M4F FreeRTOS Window Help

(MR AL rn |2 O B SES @ 2L
i E—— |
=4 Brlist [Foe][-] [wE3a] || o BxTASK Tasklist (=)=][]
(M step |[% over |[LDiverge|[" Return|[¢ up || » Go |[11 Break [¥ mMode &) t.)3 | \%3855(:0 o e ebens prIo ?E;ﬁsng =|
addr /Tine |code Tabel mnemcmc comment 20002460 |IDLE 0. |ready
7% Barriers are normall r not required but do ensur » | 20002810 |StackEater 2. |suspended
within the specified behaviour for the architectur 20002370 |QueueCons 1. |suspended |~
427 __asm volatile("dsb" }; < m .
UT.:20000CCE |F JBFEF4F dsb
428 __asm volatile{ "isb" };
UT:20000CD2 [F3BFEFGF ish & B:Frame o= | 22|
429 1 ————
UT: 20000CD6 [46BD mov ri3,r7 Dow [¥] Args [[iocals [l caller
UT:20000CD8 F8507E04 poe {r7} -000 vPortY‘le'\d()
UTEZDDDD(D(- .I‘:: o ri4 -001|[xQueveGenericReceive(xQueue = Clx200021].
UT:20000CDE (BFO0 nop -002||vQueueConsume (pvParameters = 0x0)
within the s ec1T1ed behc viour for the architectur _% E;:jTg\?kEﬂEError() <
__asm volatile("dsh"); h o
__asm volatile("ish" }; - il
fil a 1 > < 1 3
‘B: :[TASK. select "QueueCons" 18
UT:20000CCE \\rtosdemo_pic_thumb_ii vZm\port\vPortYield+0x6 (task) QueueCons stopped MIX |UP

If the task is running on different virtual machine, TRACE32 reads the context of the VCPU that is
processing the task on this machine.

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

Run mode debugging: Selects the specified task for debugging (e.g. GDB (Linux) or TRK (Symbian)).

TASK.select 41.

See also
H TASK B CORE.select

©1989-2024 Lauterbach General Commands Reference Guide T | 55

A ’Release Information’ in’Legacy Release History’
A 'Commands for Run Mode Debugging’ in ’Run Mode Debugging Manual Linux’

TASK.SETDIR Set the awareness directory

OS awarenesses: Linux only

Format: TASK.SETDIR <path>

The Linux awareness and menu call scripts from the awareness directory. This directory is set per default to
~~/demo/<arch>/kernel/linux/<linux_version>. When loading the awareness outside this directory,
TRACE32 prints a warning. With this command you can change the awareness directory. Scripts will be
called then from the new directory.

See also
W TASK

©1989-2024 Lauterbach General Commands Reference Guide T | 56

TASK.STacK Stack usage coverage

The TASK.STacK command group allows to watch the stack usage in single tasking and multi-tasking
systems. In single tasking systems, or in non supported operating systems, the user has to specify the stack
area manually. The task magic number can be any number to identify a stack area.

In configured RTOS operation, the magic number must be the respective task magic number.

The debugger tries to get the current stack pointer. If the OS Awareness is configured, and the configuration
file supports stack coverage, the current stack pointer is read out of the task control block of the application.
When the application is stopped, the stack pointer is read from register and displayed at the current running
task. Without any RTOS configuration the stack pointer will be displayed at the stack that fits to the pointer
(pointer inside the stack). If no stack fits, or if the running task could not be found, the stack pointer of the
register is displayed in an extra line. (See also TASK.STacK.view)

To evaluate the maximum stack space, the debugger uses a pattern search. Note, that the stack has to be
initialized with a know pattern by the target application. The debugger searches from stack top to stack
bottom for the first byte, that is not equal to the specified pattern. (See also TASK.STacK.PATtern)

For more information on stack coverage in operating systems, refer to the OS Awareness Manuals.

See also
B TASK.STacK.ADD B TASK.STacK.DIRection B TASK.STacK.Init B TASK.STacK.PATtern
B TASK.STacK.PATternGAP B TASK.STacK.ReMove B TASK.STacK.RESet B TASK.STacK.view
W TASK
TASK.STacK.ADD Add stack space coverage
Format: TASK.STacK.ADD [<task_magic> [<stackrange>]] [[<option>]
<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

With the 1st argument: Adds a stack area to the TASK.STacK.view window.

Without the 1st argument: Opens the TASK.STacK.ADD window. Double-click the entry of a stack area
you want to add to the TASK.STacK.view window.

©1989-2024 Lauterbach General Commands Reference Guide T | 57

When no OS Awareness is loaded:

<task_magic>, The task magic number is any number used to identify a stack area. In this
<stackrange> case the stack range must be specified as a second parameter.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

When an OS Awareness is loaded:

<task_magic> The magic number must be the task magic number. See also “What to
know about the Task Parameters” (general_ref_t.pdf).

<stackrange> If the extension definition file supplies automatic stack range detection (only
possible in some OS’s), then the stack range parameter can be omitted.
Otherwise specify the stack area manually. If available, you can omit the
magic and select a task from a task list.

In hypervisor-based environments:

MACHINE Add only stack areas that belong to the selected machine. See also “What
to know about the Machine Parameters” (general_ref_t.pdf).

Examples

Example 1: When no OS Awareness is loaded

TASK.STacK.ADD 2 0x1000--0x1fff

Example 2: When an OS Awareness is loaded

TASK.STacK.ADD 0x101433CO

Example 3: In a hypervisor-based environment

TASK.STack.ADD 0x101433C0O /MACHINE 3

See also
B TASK.STacK B TASK.STacK.view

©1989-2024 Lauterbach General Commands Reference Guide T | 58

TASK.STacK.DIRection Define stack growth direction

Format: TASK.STacK.DIRection [UP | DOWN]

Defines whether the stack grows downwards or upwards.

DOWN The stack starts with the high address and grows to a lower address.
UP The stack starts with the low address and grows to a higher address.
See also
B TASK.STacK B TASK.STacK.view
TASK.STacK.Init Initialize unused stack space
Format: TASK.STacK.Init [<task_magic>]

Overwrites the currently unused stack space with the pattern defined by TASK.STacK.PATtern. The
memory starting from the stack pointer onto the stack boundary address (equaled the low address, if the
stack grows downwards) will be initialized with the pattern.

CAUTION: If the stack is used in an unusual way, e.g. some stack space is used even if the
stack pointer does not point behind the used area, relevant target data may be
overwritten, and your application may crash.

See also
B TASK.STacK B TASK.STacK.view

©1989-2024 Lauterbach General Commands Reference Guide T | 59

TASK.STacK.PATtern Define stack check pattern

Format: TASK.STacK.PATtern [[%<format>] <pattern>] [/<option>]

<option>: TASK <task_magic> | <task_id> | <task_name>

Defines stack pattern for stack coverage calculation.

<pattern> Stack coverage calculation is done by comparing the stack data with
defined pattern. The pattern must be the value, which represents unused
stack space. This will only work, if the stack space is initialized with this
value. Use TASK.STacK.Init to re-initialize currently unused stack space
with the pattern.

<pattern> can also be a string enclosed in quotes.

<format> Use a <format> to define formats other than bytes e.g. %Long.
TASK Sets the stack pattern only for the given task.

See also

B TASK.STacK B TASK.STacK.view

©1989-2024 Lauterbach General Commands Reference Guide T | 60

TASK.STacK.PATternGAP Define check pattern gap

Format: TASK.STacK.PATternGAP [<value>]

If the stack check pattern defined with TASK.STacK.PATtern is not contiguous, this command defines the
gap between two consecutive patterns.

<value> Number of bytes between two consecutive stack check patterns.

Exampile: If the stack is pre-filled with a 4-byte pattern Oxdeadbeef on each 64byte boundary, specify:

TASK.STacK.PATtern %$Long OxDEADBEEF
TASK.STacK.PATternGAP 0x40-4

See also
B TASK.STacK B TASK.STacK.view
TASK.STacK.ReMove Remove stack space coverage
Format: TASK.STacK.ReMove [<task_magic>] [/<option>]
<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

With the 1st argument: Removes a stack area from the TASK.STacK.view window.

Without the 1st argument: Opens the TASK.STacK ReMove window. Double-click the entry of a stack
area you want to remove from the TASK.STacK.view window.

<task_magic> Specify the task magic number of the task whose stack area you want to
remove.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

MACHINE Removes only stack areas that belong to the selected machine.
See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

©1989-2024 Lauterbach General Commands Reference Guide T | 61

Example:

TASK.STacK.ReMove 0x10147420

See also
B TASK.STacK B TASK.STacK.view
TASK.STacK.RESet Reset stack coverage
Format: TASK.STacK.RESet [<task_magic>]

Resets the stack coverage system and all manually defined stack areas.
Resets the defined pattern to zero.

See also
B TASK.STacK B TASK.STacK.view

©1989-2024 Lauterbach General Commands Reference Guide T | 62

TASK.STacK.view Open stack space coverage
Format: TASK.STacK.view [<task_magic> [<stackrange>]] [[<option>]
<option>: HumanReadable
MACHINE <machine_magic> | <machine_id>| <machine_name>

Opens a window with stack space coverage.

oa B:: TASK.STacK

=X

name | Tow high

% lowest spare max [0 10 20

Timer Thread [0002160C O0021ADE
thread 0|00021ADC 00021EDE
thread 1|00021EDC 000222DB
thread 2 |000222DC 00022EDB
thread 3 |000226DC 00022ADB
thread 4|00022ADC 00022EDE
thread 5|00022EDC 000232DB

<

p

00021474 10% [00021A78 0000038C 9%
00021EE88 8% |00021E8C 000003BO 7%
000222A4 5% |00022240 00000364 15%
00022670 10% |00022674 00000338 10%
00022438 8% |00022A3C 000003BO 7%
O0022EBC 7% |00022E30 000003B4 7%
00023260 10% |00023270 00000334 10%

~

<task_magic>

<stackrange>

HumanReadable

MACHINE

In single-tasking systems, or in non-supported multitasking systems, you
have to specify the first stack manually. Use any task magic number as an
ID, and specify the stack range to cover.

If the RTOS configuration file supports detection of the stack range, you can
use the magic of a specific task and omit the stack range. The range will be
automatically calculated from the information of the operating system. In the
case of a fully supported operating system, you can start the window without
any parameter. The debugger then automatically adds all current active
tasks with its stacks to the window.

Shows the size of the stack and the spare stack memory in human readable
form (byte, kilobytes, megabytes).

Shows only the stacks of the selected machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

Description of Columns in the TASK.STacK.view Window

Column Description

name Name or ID for the stack space. In configured RTOS environment it
specifies the name or ID of the task.

low and high The lowest and highest address of the stack range.

sp (gray) Gray: The stack pointer, calculated from a task control block (if available).

©1989-2024 Lauterbach

General Commands Reference Guide T | 63

Column Description
sp (black) Black: The current value of the stack pointer register when the application
is halted. In non-configured systems, the black value is displayed at the
stack, where the current sp fits inside the stack borders. In configured
RTOS systems the sp is shown at the current running task. If no according
stack could be found, sp appears in an extra line at the end.
sp (red) Red: Either if the current sp does not fit into the stack range of the current
task, or if the sp fits into a stack range that is not the current task.
% Percentage of the currently used stack space.
lowest The lowest used stack address. If using the flag system, it shows the
address, at which the first write flag in the stack area appears. If using
pattern check, it shows the first address, at which the date is not equal to
the pattern.
spare Amount of bytes not used in the stack area.
max The maximum stack space used in percent (calculated from 'lowest'). The
following bar shows this percentage graphically.
See also
B TASK.STacK B TASK.STackK.ADD B TASK.STacK.DIRection B TASK.STacK.Init
B TASK.STacK.PATtern B TASK.STacK.PATternGAP B TASK.STacK.ReMove B TASK.STacK.RESet
©1989-2024 Lauterbach General Commands Reference Guide T | 64

TCB

TCB Trace control block

The TCB (Trace Control Block) is the HW control interface to the MIPS hardware trace block. For details
please refer to the MIPS Trace specifications.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the TCB.state window:

% —
TCE configuration DataTrace
) OFF [Cycletcourate OFF v
& 0N [&lBranches Cpu
{ | CJ5TALL AL b
T |
Porthods ALL v
142 v CpulpMode
Uszertdode
KemelMode
SWMode
Exphode

In the following, TCB specific controlling and associated commands are described.

See also

B TCB.AlBranches TCB.CPU

B TCB.CycleAccurate TCB.DataTrace

B TCB.EX TCB.FCR

H TCB.IM TCB.InstructionCompletionSizeBits
B TCB.KE TCB.LSM

B TCB.OFF TCB.ON

TCB.PortMode
TCB.Register

B TCB.PCTrace
B TCB.PortWidth

B TCB.RESet TCB.SourceSizeBits
B TCB.SRC TCB.STALL

B TCB.state TCB.SV

B TCB.SyncPeriod TCB.TC

B TCB.ThreadSizeBits TCB.Type

H TCB.UM TCB.Version

©1989-2024 Lauterbach General Commands Reference Guide T | 65

TCB.AlIBranches Broadcast all branches

Format: TCB.AlIBranches [ON | OFF]
OFF The TCB broadcasts only the address information when the processor
(default) branches to a location that cannot be directly inferred from the source
code.

ON The TCB broadcasts the address information for all branches or jumps.

See also

H TCB B TCB.state

TCB.CPU Broadcast information for specified CPU only

Format: TCB.CPU ALL | <cpu_x>
<Cpu_x>: CPUO | CPU1

The TCB broadcasts only information for the specified CPU.

ALL The TCB broadcasts information for executed instructions of all active
(default) CPU's.
<cpu_x> The TCB broadcasts only information for executed instructions of
<cpu_x>.
See also
H TCB B TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 66

TCB.CycleAccurate Cycle accurate tracing

Format: TCB.CycleAccurate [ON | OFF]

Cycle accurate tracing can be used to observe the exact number of cycles that a particular code sequence
takes to execute. If cycle accurate tracing is used, trace information is generated for each clock cycle. In this
case the <core_clock> can be used to calculate the timestamps for the trace information.

ON The TCB broadcasts the information which instructions were executed,
but additionally stall information. No timestamps are generated by
TRACES32.
OFF The TCB broadcasts only the information which instructions were
(default) executed. Timestamps are generated by TRACE32.
Example:

TCB.CycleAccurate ON

Trace.CLOCK 500.MHz ; specify the <core_clock> as
; base for the trace timestamps

Trace.List ; display the trace information

See also
H TCB B TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 67

TCB.DataTrace

Broadcast specified address and data information

Format:

<def>:

TCB.DataTrace <def>

ON | OFF |

Address | ReadAddress | WriteAddress |
Data | ReadData | WriteData |

Read | Write

The TCB broadcasts only specified address and data information.

ON The TCB broadcasts all address and data information.
OFF (default) The TCB broadcasts no address and data but only PC information.
Address The TCB broadcasts all address information.
ReadAddress The TCB broadcasts only address information in case of a read.
WriteAddress The TCB broadcasts only address information in case of a write.
Data The TCB broadcasts all data information.
ReadData The TCB broadcasts only data information in case of a read.
WriteData The TCB broadcasts only data information in case of a write.
Read The TCB broadcasts address and data information in case of a read.
Write The TCB broadcasts address and data information in case of a write.
See also
H TCB B TCB.state

©1989-2024 Lauterbach

General Commands Reference Guide T

68

TCB.EX Broadcast exception level information

Format: TCB.EX [ON | OFF]

If enabled the TCB broadcasts information for instructions executed on exception level.

ON The TCB broadcast information for executed instructions in exception

(default) operating mode.

OFF The TCB does not broadcast information for executed instructions in
exception operating mode.

See also
H TCB M TCB.state
TCB.FCR Broadcast function call-return information
Format: TCB.FCR [ON | OFF]

Enables broadcasting of function call-return information. This information is not treated within TRACE32
PowerView but has to be taken into account for trace decoding especially in case of a belated trace analysis.

See also
H TCB M TCB.state
TCB.IM Broadcast instruction cache miss information
Format: TCB.IM [ON | OFF]

Enables broadcasting of instruction cache miss information. This information is not treated within TRACES32
PowerView but has to be taken into account for trace decoding especially in case of a belated trace analysis.

See also
W TCB M TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 69

TCB.InstructionCompletionSizeBits Specify size of completion message

Format: TCB.InstructionCompletionSizeBits <number>

This command is only required if a TRACES32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

This command allows to specify how many bits are used in the trace stream dot instruction completion

message.
See also
H TCB M TCB.state
TCB.KE Broadcast kernel mode information
Format: TCB.KE [ON | OFF]

If enabled the TCB broadcasts information for instructions executed in kernel mode.

OFF The TCB does not broadcast information for executed instructions in
kernel operating mode.

ON The TCB broadcast information for executed instructions in kernel
(default) operating mode.

See also

H TCB M TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 70

TCB.LSM

Broadcast load store data cache information

Format: TCB.LSM [ON | OFF]

Enables broadcasting of load store data cache miss information. This information is not treated within

TRACE32 PowerView but has to be taken into account for trace decoding especially in case of a belated

trace analysis.

See also
H TCB H TCB.state
TCB.OFF Switch TCB off
Format: TCB.OFF
Disables TCB functionality.
See also
H TCB M TCB.state
TCB.ON Switch TCB on
Format: TCB.ON

Enables TCB functionality.

See also

H TCB B TCB.state

©1989-2024 Lauterbach

General Commands Reference Guide T

71

TCB.PCTrace Broadcast program counter trace

Format: TCB.PCTrace [ON | OFF]

If enabled, the TCB broadcasts program counter trace information.

OFF The TCB does not broadcast program counter trace information.
ON (default) The TCB broadcast program counter trace information.

See also

H TCB B TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 72

TCB.PortMode Specify trace clock ratio

Format: TCB.PortMode <trace_clock>/<cpu_clock>

<trace_clock> 81141121 11111/211/411/611/8
I<cpu_clock>:

Specifies the ratio between trace- and CPU clock in case of off-chip trace.

Example:

TCB.PortMode 1/2 ; <trace_clock> is one half of <core_clock>.

See also
W TCB M TCB.state

TCB.PortWidth Specify trace port width

Format: TCB.PortWidth <width>

<width>: 418116164

Specify the trace port width in number of bits. This value is determined automatically by selecting trace
method or reading trace configuration register from target. Therefore this command should only be used for
diagnosis purpose or if necessary belated trace analysis.

See also
W TCB M TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 73

TCB.Register Display TCB control register

Format: TCB.Register [<file>] [/<option>]
<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>
Deport
Default: OFF.
[TCECONTROLA 02D1E011 WModes PC and Toad/store address and data
A0 32 SyPo128 TB na I0 no
b no E ena 5 ena k ena U ena
ASID i} G global TFCR off TLSH off TIM off
o]
ITCECONTROLE noooo4oz2 WE Yeﬁo THSrcWidth Obit REC TCBCONMFIG WR na
gl no RM no TR no EF no
™ trace to TLSIF off CR 1:2 Cal no
TwWsrcval 01 Ch ho OfC off-chip EM no
ITCECONTROLC 00200000 Mode pc and 1d adr
CPUvalid no CPUTd 01 TCwalid no TChum 0 TChits 3
MTtraceType fine-grained MTtraceTC ves
[TCECOMFIG 010DE431 CF1 no TRIC 8 57 16k CRMax 7 CRMin 4
FY 16 PiN 0 onT yes OFT ves
<option> For a description of the options, see PER.view.
Deport Updates the control registers while the program is running (only possible
if SYStem.MemAccess Enable is selected).

Example:
TCB.Register permipstcb.per ; display the TCB control registers
; use the format description in
; permipstcb.per
TCB.Register, /SpotLight ; display the TCB control registers
; mark changes on the registers
See also
H TCB B TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 74

TCB.RESet Reset TCB setup to default

Format: TCB.RESet

Resets the TCB settings to default.

See also
H TCB H TCB.state
TCB.SourceSizeBits Specify number of bit for core information in trace
Format: TCB.SourceSizeBits <number>

This command is only required if a TRACE32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

This command allows to specify how many bits are used in the trace stream to identify the source core.

See also
H TCB M TCB.state
TCB.SRC Control selective trace
Format: TCB.SRC[<n>] ON | OFF

Controls if the TCB broadcasts information for the specified SRC.

See also
H TCB M TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 75

TCB.STALL

Stall CPU for complete trace

Format:

TCB.STALL [ON | OFF]

If enabled, TCB broadcasts slow but complete trace information.

OFF The TCB broadcasts trace information in real-time with the risk of broken
trace flow.

ON The TCB stall CPU if necessary and broadcast always complete
(default) information.

See also

H TCB B TCB.state

TCB.state Display TCB setup

Format: TCB.state

Displays the TCB configuration window.

i ISEE
TCE configuration DataTrace
O OFF [Cycletcourate OFF w
& 0N [&lBranches Cpu
[JsTaLL AL b
T
Porthods ALL v
142 CpulpMode
Uszertdode
KemelMode
SWMode
Exphode

A For descriptions of the commands in the TCB.state window, please refer to the TCB.* commands
in this chapter. Example: For information about ON, see TCB.ON.

See also

H TCB H TCB.AlIBranches
H TCB.CPU B TCB.CycleAccurate
B TCB.DataTrace B TCB.EX

B TCB.FCR H TCB.IM

B TCB.InstructionCompletionSizeBits B TCB.KE

B TCB.LSM B TCB.OFF

H TCB.ON B TCB.PCTrace

©1989-2024 Lauterbach

General Commands Reference Guide T |

76

H TCB.PortMode H TCB.PortWidth

B TCB.Register B TCB.RESet

B TCB.SourceSizeBits B TCB.SRC

B TCB.STALL B TCB.SV

B TCB.SyncPeriod W TCB.TC

B TCB.ThreadSizeBits B TCB.Type

H TCB.UM W TCB.Version

TCB.SV Broadcast supervisor mode information
Format: TCB.SV [ON | OFF]

If enabled the TCB broadcasts information for instructions executed in supervisor mode.

ON The TCB broadcast information for executed instructions in supervisor
(default) operating mode.
OFF The TCB does not broadcast information for executed instructions in

supervisor operating mode.

See also
H TCB B TCB.state
TCB.SyncPeriod Specify TCB sync period
Format: TCB.SyncPeriod <period>
<period>: 011121314151617

Specify the period in cycles the TCB broadcasts a synchronization message.

<period> The TCB sync period in 2 A (<period> + 5) cycles.
See also
H TCB B TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 77

TCB.TC Broadcast information for specified HW thread

Format: TCB.TC ALL | <tc_x>

<tc_x>: TCOITC1ITC2|TC3|TC4|TC5|1TC6I|TC7|TC8

The TCB broadcasts only information for the specified HW thread.

ALL The TCB broadcasts information for executed instructions of all active
(default) TCs.
<tc_x> The TCB broadcasts only information for executed instructions of <tc_x>.
See also
H TCB B TCB.state
TCB.ThreadSizeBits Specify number of bit for thread information in trace
Format: TCB.ThreadSizeBits <number>

This command is only required if a TRACE32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

This command allows to specify how many bits are used in the trace stream to identify the source thread
context.

See also
W TCB M TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 78

TCB.Type Specify TCB type

Format: TCB.Type | <tcb_type>

<tcb_type>: PD | PD74K | IFLOW | FALCON | ZEPHYR

This command is only required if a TRACES32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

PD MIPS standard program and data trace control block.
PD74K Specific MIPS74K program data trace control block.
IFLOW MIPS standard instruction flow trace control block.
FALCON Lantiq specific instruction flow trace control block.
ZEPHYR Broadcom specific program and data trace control block.

See also

H TCB B TCB.state

TCB.UM Broadcast user mode information

Format: TCB.UM [ON | OFF]

If enabled the TCB broadcasts information for instructions executed in user mode.

ON The TCB broadcast information for executed instructions in user

(default) operating mode.

OFF The TCB does not broadcast information for executed instructions in user
operating mode.

See also
H TCB B TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 79

TCB.Version Specify trace cell version

Format: TCB.Version <number>

This command is only required if a TRACES2 Instruction Set Simulator is used for a belated trace analysis.
This command allows to specify manually the version number of the TCB trace cell. The version number
must fit to the TCB the trace data have been recorded with. It could be found in the header of the TCB
window if TRACES32 is connected to the referring target.

See also
W TCB B TCB.state

©1989-2024 Lauterbach General Commands Reference Guide T | 80

TERM

TERM Terminal emulation
See also
B TERM.CLEAR W TERM.CLOSE H TERM.CMDLINE W TERM.GATE
H TERM.HARDCOPY B TERM.HEAPINFO H TERM.LocalEcho B TERM.METHOD
B TERM.METHOD2 H TERM.Mode H TERM.Out H TERM.OutBREAK
B TERM.PIPE B TERM.PipeREAD B TERM.PipeWRITE B TERM.PULSE
B TERM.READ B TERM.RESet B TERM.SCROLL W TERM.SIZE
H TERM.STDIN B TERM.TCP H TERM.TELNET H TERM.TRIGGER
B TERM.view B TERM.WRITE 1 TERM.LINE() 1 TERM.NEWHANDLE()
0 TERM.READBUSY() 0 TERM.RETURNCODE() 0 TERM.TRIGGERED()

A 'TERM Functions (Terminal Window)' in ‘General Function Reference’
A ’'Release Information’ in’Legacy Release History’

Overview TERM

Multitasking operating systems or monitor programs running on the target system often need a terminal
interface for operation. This interface can be implemented either using peripherals (e.g. serial port) or as a
memory based interface. The memory based interface can work in several operation modes. It can
communicate either on character basis or with blocks of up to 255 bytes length. The memory access can
either be made while the target is running (when the system supports such run-time memory accesses) or
only when the target is stopped.

When the EPROM simulator (ESI) is used, the ESI can be used as communication port as well. Some
processor architectures also provide a special communication interface which is accessible through the
BDM/JTAG port (DCC modes).

The standard terminal window provides only the basic functions Backspace, Return and LineFeed. A
VT100 emulation mode is also available. A character can only be entered when the cursor is positioned in an
active window. The terminal window may also be used for “virtual hosting”. This allows to access some basic
operation system functions and the file system of the host from the target program. This functionality is only
available in the TERM.GATE command.

Interface Routines

In this section:

. EPROM Simulator

. Single Character Modes
. Buffered Modes

. Serial Line Debugger

J Special Hardware, JTAG

©1989-2024 Lauterbach General Commands Reference Guide T | 81

Interface Routines (EPROM Simulator)

This is an example in C to access the terminal window. The address of the ports depends on the width and

location of the EPROMSs. The example assumes 8-bit wide EPROMs. For 16-bit EPROMSs the addresses

must be doubled and the types changed from char to short.

extern volatile unsigned char input_port at 0x1000;
extern volatile unsigned char status_port at 0x1400;
extern volatile unsigned char output_port[256] at 0x1800;

void char_out(c)
unsigned char c;
{
unsigned char dummy;
if (¢ ==)
return;

while (status_porté&2);
dummy = outport_port[c]

}

int char_in() ;

{
unsigned char c;
while (! (status_porté&l));
c = input_port;
A e ==)
break _emulation() ;
return c;
}

/*

/*
/*

/*
/*
/*

refuse to send 0 (break) character */

wait until port is free */
send character */

wait until character is ready */

read character */
manual break executed ? */

©1989-2024 Lauterbach

General Commands Reference Guide T

82

Interface Routines (Single Character Modes)

This interface occupies two memory cells in which characters can be transferred. A zero means that no
character is available and the interface is ready. When the target is not able to provide a dual-ported memory
access it is possible to stop the target after it has placed a character in the communication area and the
terminal command will restart the target automatically after it has processed the character.

This is an example in C to access the terminal window. By changing the char_in and char_out routines
within the library, all more complex functions like printf() or scanf() are redirected to the terminal window.

NOTE: Some emulation heads have special dual-port access modes, that require special
cycles to be executed (e.g. IDLE mode on H8 probes).

extern volatile char input_port,
output_port

void char_out (c)

char c;

{
while (output_port != 0) ; /* wait until port is free */
output_port = c; /* send character */

}
int char_in() ;

{

char c;

while (input_port ==) ¢ /* walt until character is ready */
c = input_port; /* read character */

input_port = 0; /* clear input port */

return c;

Interface Routines (Buffered Modes)

An example for using the buffered mode can be found in ~~/demo/etc/terminal/t32term/t32term_memory.c.
This example contains also examples for using the virtual hosting feature of the TERM.GATE command.

Interface Routines (Serial Line Debugger)

The serial line can be used as usual. Only the data values 0 have a special meaning. Receiving such a value
means an emulation break. Sending such a value is not allowed for the user program.

Interface Routines (Special Hardware, JTAG)

Check the target appendix for your processor for details and availability.

©1989-2024 Lauterbach General Commands Reference Guide T | 83

Functions

Refer to “TERM Functions (Terminal Window)” in General Function Reference, page 363
(general_func.pdf).

Fast Data Write

The fast data write system allows to transfer data from the target to a file on the host. The data transfer rate
can be up to 250 KBytes/s. The max. reaction time is 50 ps when the transfer is not interruptible or 150 ps
when the transfer is interruptible. Data can be transferred either 8, 16 or 32 bit wide. The principle is similar
to the terminal emulation. The interface occupies two memory cells, one byte to control the transfer and a
second byte or word to hold the data. A zero in the control cell means that the debugger is ready to accept
data. Writing a '01' by the CPU causes the data to be transferred to the host. Writing '02' saves the current
data buffer to the host. The time required by this disk save dependents on the host and communication
speed. The data buffer is saved automatically after the buffer is full. The value '03' can be used as a NOP
command to wait for the start of the transfer. Writing 'ff' terminates the data transfer. The Fast Data Write
system has been replaced by the FDX system.

Interface Routines

This is an example in C to access the fast data transfer.

extern volatile char control_port;
extern volatile short data_port;

void word_out ()

short c;

{
while (control_port != 0) ; /* wait until port is free */
data_port = c ; /* place 16 bit in buffer */
control_port = 1; /* send data to buffer/host */

3

int begin_transfer(c) ;
short c;
{
while (control_port != 0) ; /* wait until transfer is ready */

}

int end_transfer(c);

short c;

{
while (control_port != 0) ; /* wait until port is free */
control_port = O0xff; /* stop transfer program */

©1989-2024 Lauterbach General Commands Reference Guide T | 84

TERM.CLEAR Clear terminal window

Format: TERM.CLEAR [<channel>]
TERM.CLEAR [<address>] (deprecated)

<channel>: #<number>

Clears the terminal window and places the cursor to the home position.

See also
B TERM B TERM.view
TERM.CLOSE Close files
Format: TERM.CLOSE [<channel>]
TERM.CLOSE [<address>] (deprecated)
<channel>; #<number>

Closes the output file created with TERM.WRITE.

See also
H TERM B TERM.view
TERM.CMDLINE Specify a command line
Format: TERM.CMDLINE <cmdline>

The command can specify a command line for the SYS_GET_CMDLINE (0x15) system call if ARM
compatible semihosting is used.

See also
N TERM B TERM.view

©1989-2024 Lauterbach General Commands Reference Guide T | 85

TERM.GATE Terminal with virtual hosting

Format: TERM.GATE [<channel>]
TERM.GATE [<addresses>] (deprecated)

<channel>: #<number>

<addresses>: [<address_out>] [<address_in>]

TERM.GATE allows to an application program running on a target processor to communicate with the host
computer of the debugger. This way the application can use the I/O facilities of the host computer like
keyboard input, screen output, and file I/O. This is especially useful if the target platform does not provide
these /0O facilities or in order to output additional debug information in printf() style. The implementation on
target and settings in TRACES32 vary between targets, this is also not available for all platforms. Typically, you
need a third party library like newlib on your target (which is usually part of the compiler toolchain) and
correct TERM.METHOD settings in debugger. For more details, please refer to your Processor
Architecture Manual.

See also
B TERM W TERM.view

A ’Release Information’ in’Legacy Release History’

TERM.HARDCOPY Print terminal window contents
Format: TERM.HARDCOPY [<channel>]
<channel>: #<number>

Opens the Print dialog of the operating system. From the Print dialog, you can select a printer to make a
hardcopy of the terminal window contents or print the terminal window contents to file.

See also
N TERM B TERM.view

©1989-2024 Lauterbach General Commands Reference Guide T | 86

TERM.HEAPINFO Define memory heap parameters

Format: TERM.HEAPINFO [<heap_base>] [<heap_limit>] [<stack_base>]
[<stack_limit>]

Defines the memory heap and stack locations returned by the ARM compatible semihosting calls. Only
relevant when ARM compatible semihosting is used.

Please note that the heap grows toward higher memory addresses (heap_base < heap_limit) and the stack
grows towards lower memory addresses (stack_base > stack_limit). <heap_base> = 0 advises the
application to locate the heap at the top of the memory region.

See also
B TERM B TERM.view
TERM.LocalEcho Enables/disables local echo for new terminal windows
Format: TERM.LocalEcho [<channel>] [ON | OFF]
<channel>: #<number>

Defines, if terminal windows, which are opened after the TERM.LocalEcho command with the TERM.view

or TERM.GATE command, will have a local echo or not.
Terminal windows with enabled local echo also show the transmitted characters in addition to the received

characters.

See also
H TERM B TERM.view

©1989-2024 Lauterbach General Commands Reference Guide T | 87

TERM.METHOD

Select terminal protocol

[Examples]

Format:

<channel>:

<method>:

<input>:
<output>:

<name>:

<bits>:

TERM.METHOD [<channel>] <method>
TERM.Protocol (deprecated)

#<number>

SingleE [<output>] [<input>] [/<option>]

BufferE [<output>] [<input>] [/[<option>]

SingleC <pc> [<output>] [<input>] [/<option>]

BufferC <pc> [<output>] [<input>] [/<option>]

SingleS [<output>] [<input>] [/<option>]

BufferS [<output>] [<input>] [/[<option>]

COM [<name>] [<baudrate>] [<bits>] [<parity>] [<stopbits>] [<handshake>] /
[RTSDISabled | DTRDISabled]

TCP <host> [<port>]

PIPE

DCC [/<option>]
DCC3 [/<option>]
DCCA4A [/<option>]
DCC4B [/<option>]

SIM

CCio

BRK1_14 [<address>] [/<option>]
ARMSWI [<address>] [/<option>]
RISCVSWI [/<option>]

CHORUS

ESI
SERIAL

<address>

Windows:

COM1ICOM2]| ... | COM9

alternatively (if COMXx fails) and for ports >9:
\W\COM1 | W\COM2 | ... [W\COM10 | W\COM11 | ...

Linux: path to device, e.g.
/dev/ttySO0 | /dev/ttyS1 | /dev/ttyUSBO | ...

5161718

©1989-2024 Lauterbach

General Commands Reference Guide T |

88

<parity>:

<stopbits>:

<handshake>:

NONE | EVEN | ODD | MARK | SPACE

1STOP | 2STOP

NONE | RTSCTS | DTRDSR | XONXOFF

Defines how data is exchanged between the target application and the debugger. On some targets
additional processor specific modes may be available.

Only available for Xtensa

NOTE: This command does not change the settings of already opened terminal windows.
Therefore, if you want to change parameters of an existing one, close it and reopen
it again.

<methods> Description

SingleE Single characters using real time access (e.g. Dualport)

BufferE Buffered transfer using real time access

SingleS Single characters using regular access at spot points.

BufferS Buffered transfer using regular access at spot points.

BRK1_14 This is a CPU specific option for XTENSA. For more information, see

“CPU specific TERM.METHOD Command” in XTENSA Debugger, page
64 (debugger_xtensa.pdf).

SingleC Single characters, accessed when CPU is stopped.
The additional parameter the PC location of the breakpoint that stops the
CPU for communication.

BufferC Buffered transfer, accessed when CPU is stopped.

ESI Use the ESI for communication. This protocol can also be used when a
BDM/JTAG debugger is used together with an ESI (EPROM simulator).

SERIAL Use the serial (or ethernet) interface of the debug monitor to exchange
data.

DCC Use the DCC port of the JTAG interface (only on some architectures)

DCC3 Same as DCC, but transfer up to 3 characters at once.

DCC4A Same as DCC, but transfer up to 4 ascii characters at once.

DCC4B Same as DCC, but transfer always 4 characters at once.

ARMSWI ARM compatible SWI bases semihosting via SWI breakpoint.

RISCVSWI RISC-V compatible semihosting via semihosting trap instruction sequence

(slli, ebreak, srai).

©1989-2024 Lauterbach

General Commands Reference Guide T | 89

<methods> Description

S Terminal via simulator API.

COM Serial interface of the host.

TCP Routes terminal input/output to TCP port. See example below.

Parameters Description

<output> Addresses of the output (target->debugger) and input (debugger->target)

<input> buffers for memory based terminals.

<host> Host name or IP address of TCP terminal (TELNET)

<port> TCP terminal port number (default: 23)

RTSDISabled If RTS is not used for handshaking (<handshake>!=RTSCTS), by default
RTS is permanently enabled. Use this option to permanently disable RTS.

DTRDISabled If DTR is not used for handshaking (<handshake>!=DTRDSR), by default
DTR is permanently enabled. Use this option to permanently disable DTR.

Examples:

TERM.METHOD BufferE Var.ADDRESS ("messagebufferout") \
Var .ADDRESS ("messagebufferin")

TERM.METHOD #1 BufferE Var.ADDRESS ("messagebufferout") \
Var .ADDRESS ("messagebufferin")

; Route terminal input/output from /dev/ttyUSBO on LAB-PC with baudrate
; 115200 to TCP port 8765

SRemoteMachine> socat TCP-LISTEN:8765, fork, reuseaddr FILE:/dev/ttyUSBO\
, 0115200, raw, echo=0

TERM.METHOD TCP LAB-PC 8765.

TERM

See also

B TERM

B TERM.view

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T | 90

TERM.METHOD2 Select additional terminal protocol
[Examples]
Format: TERM.METHODZ2 [<channel>] <method>
<channel>: #<number>
<method>:
ITM <itm ch>

Defines an additional method for the target to send data to the terminal.

<method> Description

OFF Default setting. No additional method is configured.

IT™ Use data written to an ITM stimuli channel by the target. An ITM is present
on many Arm Cortex-M chips. This requires that the ITM trace is captured
via the CAnalyzer in STREAM or PIPE mode.

Please refer to the demo PRACTICE script and application found at
~~/demo/arm/hardware/kinetis/kinetis_k/k60/itm_term_printf/.

Parameters Description

<itm ch> ITM channel where terminal data is written to by the application. On most

Cortex-M systems, channel 0 captures the data written to address
0xE0000000, channel 1 captures the data written to address 0xE0000004,
and so on.

©1989-2024 Lauterbach

General Commands Reference Guide T | 91

Example: This example assumes that an external trace (either via SWV or parallel trace) is already set

up.
; Set up a primary method for the terminal. This example can be used
; even if DCC is not available.
TERM.RESet #2
TERM.METHOD #2 DCC
TERM.Mode #2 STRING
TERM.SIZE #2 80. 25. 200.
; Set up the ITM method and show the terminal window.
TERM.METHOD2 #2 ITM O.
TERM.view #2
; Set up and arm the trace. Due to a limitation of the Cortex-M
; infrastructure, the target must be running to generate proper
; synchronization packets on the trace port.
CAnalyzer .Mode PIPE ; STREAM would also work
CAnalyzer .AutoArm ON
Go.direct
; Write some text to the stimulus channel. This is only for
; demonstration purposes and should normally be done by the target
; application.
Data.Set E:0xE0000E0O0 %LE %Long OxXFFFFFFFF ; Enable stimuli channels
Data.Set E:0xE0000000 %LE %Long 0x6C6C6548 ; "Hell"
Data.Set E:0xE0000000 %LE %Long 0x57202C6F ; "o, W"
Data.Set E:0xE0000000 %LE %Long 0x646C726F ; "orld"
Data.Set E:0xE0000000 %LE %Word 0x2121 g TQQ0
Data.Set E:0xE0000000 %LE %Byte 0x0A ;o "\n"
See also
B TERM W TERM.view

©1989-2024 Lauterbach

General Commands Reference Guide T

92

TERM.Mode

Define terminal type

Format:

<channel>:

<mode>:

<option>:

TERM.Mode [<channel>] [<mode>]

#<number>

ASCII | UTF8 | STRING | STRING-UTF8 | RAW | HEX | VT100 | VT-UTF8

CORE <corenumber>

Defines the terminal type used for new terminal windows.

ASCII

Terminal behaves like a typewriter.
CR and LF are evaluated.

UTF8

Support UTF-8 encoded characters.
Terminal behaves like a typewriter.
CR and LF are evaluated.

STRING

Terminal interprets data as single line strings.
Needed for some Printf libraries.
CRis ignored. LF is evaluated.

STRING-UTF8

Support UTF-8 encoded characters.
Terminal interprets data as single line strings.
Needed for some Printf libraries.

CR is ignored. LF is evaluated.

RAW

Terminal shows the incoming data like an HEX/ASCII dump.
E.g. Spaces, Tabs, CRs, LFs are displayed as special characters only.
CR is ignored. LF is evaluated.

HEX

Terminal shows the incoming bytes as HEX values.
CR and LF are ignored.

VT100

Terminal interprets the VT100 protocol.
Color Codes are evaluated e.g. Linux bash like console.
CR and LF are evaluated.

VT-UTF8

Support UTF-8 encoded characters.

Terminal interprets the VT100 protocol.

Color Codes are evaluated e.g. Linux bash like console.
CR and LF are evaluated.

See also

B TERM

B TERM.view

©1989-2024 Lauterbach

General Commands Reference Guide T |

93

A ’Release Information’ in’Legacy Release History’

TERM.Out Send data to virtual terminal

Format: TERM.Out [<channel>] <string> ...
TERM.Out [<address_in>] <string> ... (deprecated)

<channel>: #<number>

Sends characters to a terminal. Can be used to control the terminal through a PRACTICE script (*.cmm) or
to input non-printable characters from the command line.

Example:

;configure u-boot through serial terminal

TERM.METHOD #1 COM COM1 115200. 8 NONE 1STOP NONE

TERM.view #1

TERM.Out #1 10. ;send a single line feed

TERM.Out #1 "setenv bootcmd bootm 0xfe000000 0xfe800000 O0xffe00000" 10.
TERM.Out #1 "setenv bootargs root=/dev/ram console=ttyS0,115200" 10.
TERM.Out #1 "saveenv" 10.

See also
B TERM B TERM.view
TERM.OutBREAK Send serial break
Format: TERM.OutBREAK [<channel>]
<channel>: #<number>

Sends serial break to terminal.

See also
B TERM W TERM.view

©1989-2024 Lauterbach General Commands Reference Guide T | 94

TERM.PIPE Connect terminal to named pipe

Format: TERM.PIPE [<channel>] <pipename>
TERM.PIPE [<address_out>] [<address_in>] <pipename> (deprecated)

<channel>: #<number>

Connects the terminal to a bidirectional named pipe.

See also
B TERM B TERM.view
TERM.PipeREAD Connect terminal input to named pipe
Format: TERM.PipeREAD [<channel>] <file>
TERM.PipeREAD [<address_in>] <file> (deprecated)
<channel>: #<number>

Connects the terminal to a pipe which sends data to the host.

See also
B TERM B TERM.view
TERM.PipeWRITE Connect terminal output to named pipe
Format: TERM.PipeWRITE [<channel>] <file>
TERM.PipeWRITE [<output>] <file> (deprecated)
<channel>: #<number>

Connects the terminal to a pipe which receives data from the host.

See also
H TERM B TERM.view

©1989-2024 Lauterbach General Commands Reference Guide T | 95

TERM.PULSE Enable pulse generator for transfers

Format: TERM.PULSE [<channel>] [ON | OFF]

<channel>: #<number>

Issues a pulse on the PODBUS trigger after each transfer. This pulse may be used to trigger an interrupt on
the target system to trigger interrupt based communication.

See also
H TERM B TERM.view

©1989-2024 Lauterbach General Commands Reference Guide T | 96

TERM.READ

Get terminal input from file

Format:

<channel>:

TERM.READ [<channel>] <file>
TERM.READ [<address_in>] <file> (deprecated)

#<number>

The contents of the file are send to the terminal, defined by the optional address. The terminal must already
exist to use this command. The TERM.CLOSE command closes the input file after or during transfer.

Example:

TERM.READ #1 key_input.in

See also
B TERM W TERM.view
TERM.RESet Reset terminal parameters
Format: TERM.RESet [<channel>]
<channel>: #<number>

Closes the 1/O redirection files and set all parameters to default values.

See also
B TERM B TERM.view
TERM.SCROLL Enable automatic scrolling for terminal window
Format: TERM.SCROLL [<channel>] [ON | OFF]
<channel>: #<number>
Default: OFF.

©1989-2024 Lauterbach

General Commands Reference Guide T | 97

Enables or disables automatic scrolling. With automatic scrolling enabled the visible window will follow the
terminal cursor.

To enable the display of the scroll bar within the TERM.view window, it is necessary to configure
TERM.SIZE accordingly.

See also
H TERM B TERM.view
TERM.SIZE Define size of terminal window
Format: TERM.SIZE [<channel>] [<columns>] [<lines>] [<backlog_size>)
<channel>: #<number>

Defines the size of the virtual terminal in lines and columns.

<backlog_size> This value defines the lines of the backlog buffer.
The backlog is updated whenever a line scrolls out of the “real” part of the
TERM.view window.

See also
B TERM W TERM.view

A ’Release Information’ in’Legacy Release History’

TERM.STDIN Get terminal input from file
Format: TERM.STDIN [<channel>] <file>
<channel>: #<number>

The contents of the file are send to the terminal, defined by the optional address. The terminal must already
exist to use this command. The TERM.CLOSE command closes the input file after or during transfer. An
EOF is returned, for some semihosting interfaces, when the file is transferred.

See also
N TERM B TERM.view

©1989-2024 Lauterbach General Commands Reference Guide T | 98

TERM.TCP

Route terminal input/output to TCP port

Format:

<channel>:

TERM.TCP [<channel>] <port>

#<number>

Routes terminal input/output to TCP port.

See also
H TERM B TERM.view
TERM.TELNET Open TELNET terminal window
Format: TERM.TELNET [<channel>]
<channel>; #<number>

Opens the terminal emulation window for TELNET.

Example:

TERM.METHOD TCP 10.2.23.140

TERM.MODE VT100

TERM. TELNET

See also

;using default port 23

B TERM

A ’'Release Information’ in’Legacy Release History’

W TERM.view

©1989-2024 Lauterbach

General Commands Reference Guide T | 99

TERM.TRIGGER Trigger on string in terminal window

[Example]
Format: TERM.TRIGGER [<channel>] <message_string>
TERM.TRIGGER [<address_out>] <string> (deprecated)
<channel>: #<number>
Sets a trigger for the occurrence of a specific string in the terminal window. The function
TERM.TRIGGERED() returns if the trigger has occurred or not.
<channel> Handle to refer to a terminal. A new handle can be created with
TERM.METHOD.
<address_out> Only required for memory-based data exchange (SingleE, BufferE,
SingleS, BufferS).
<message_string> Case sensitive.
The message string or substring you want the TERM.TRIGGER() function
to find in the TERM.view or TERM.GATE window.

Example: A typical use case might be to automatize the boot process. The following script stops the boot
process after the string “Hit any key to stop autoboot” appears in the terminal window.

Example term

U-Boot
CPU:
Board:
Boot:
DRAM:
MMC :
In:
Out:
Err:

inal output:

<year>.<month>
example CPU
example Board
SD-Card

2 GiB

SDHC: O

serial

serial

serial

Normal Boot

Hit any

key to stop autoboot: 3

©1989-2024 Lauterbach General Commands Reference Guide T | 100

Script that waits for the message "Hit any key" and boots the target:

;create terminal configuration and assign it to the handle #1
TERM.METHOD #1 COM COM3 115200. 8 NONE 1STOP NONE

;create the terminal and open the TERM.view window
TERM.view #1

; STATE.RUN() -> STOPPED
Break

; wait for trigger with timeout, press ENTER
TERM.TRIGGER #1 "Hit any key"
; start CPU
Go
SCREEN.WAIT TERM.TRIGGERED(#1) 10.s
IF !TIMEOUT ()
(
TERM.OUT #1 0xA
WAIT 0.1s
TERM.OUT #1 "setenv bootargs"
)
ELSE
(

; error handler

See also
N TERM H TERM.view 1 TERM.TRIGGERED() ad TIMEOUT()

©1989-2024 Lauterbach General Commands Reference Guide T | 101

TERM.view Terminal display

Format: TERM.view [<channel>]
TERM.view [<address_out>] [<address._in>] (deprecated)

<channel>: #<number>

Opens the terminal emulation window. The protocol of the terminal is defined through TERM.METHOD. For
protocols based on memory based data exchange (SingleE, BufferE, SingleS, BufferS), the
communication buffer addresses can either be specified with TERM.METHOD or directly with TERM.view.

Example:

; see terminal source code in

; ~~/demo/etc/terminal/t32term/t32term_memory.c
TERM.METHOD #1 BufferE E:0x00000100 E:0x00000200
TERM.MODE #1 VT100

TERM.view #1

; Hint: the pre-commands WinExt and WinResist create a window that is
; (a) “external” to the TRACE32 PowerView main window and that is

; (b) “resistant” to the WinCLEAR command.

WinExt.WinResist.TERM.view #1

See also

N TERM B TERM.CLEAR B TERM.CLOSE B TERM.CMDLINE
B TERM.GATE B TERM.HARDCOPY B TERM.HEAPINFO Bl TERM.LocalEcho
B TERM.METHOD B TERM.METHOD2 B TERM.Mode H TERM.Out

B TERM.OutBREAK H TERM.PIPE B TERM.PipeREAD B TERM.PipeWRITE
B TERM.PULSE B TERM.READ B TERM.RESet B TERM.SCROLL
W TERM.SIZE B TERM.STDIN B TERM.TCP B TERM.TELNET
B TERM.TRIGGER B TERM.WRITE 1 TERM.LINE()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 102

TERM.WRITE Write terminal output to file

Format: TERM.WRITE [<channel>] <file>
TERM.WRITE [<address_out>] <file> (deprecated)

<channel>: #<number>

The output sent from the target to the terminal emulation window is written to the specified file. The terminal
emulation window must be opened before using this command. The TERM.CLOSE command closes the
output file after or during transfer.

Example:
TERM.WRITE #1 term_out.lst
See also

B TERM B TERM.view
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 103

TPIU

TPIU Trace Port Interface Unit (TPIU)
See also
B TPIU.CLEAR B TPIU.IGNOREZEROS B TPIU.NOFLUSH B TPIU.PortClock
B TPIU.PortMode B TPIU.PortSize B TPIU.RefClock B TPIU.Register
B TPIU.RESet B TPIU.state B TPIU.SWVPrescaler B TPIU.SWVZEROS

B TPIU.SyncPeriod

A 'TPIU Functions’ in ‘General Function Reference’

Overview TPIU

The TPIU command group enables you to configure and control the Trace Port Interface Unit (TPIU) of an
ARM processor system or a non-ARM processor system using the ARM CoreSight trace. The TPIU is a
trace sink which sends the trace data off-chip for capturing by a trace tool.

The TPIU typically outputs trace data via a parallel trace interface consisting of up to 32 trace data signals, a
trace clock and optionally a trace control signal (indicating idle).

Some chip designs use these signals internally as an input to a High Speed Serial Trace Port (HSSTP)

which converts the parallel data into a serial Xilinx-Aurora-based protocol for sending the serial bit stream

off-chip on differential lanes.

A variant of the TPIU is the Serial Wire Output (SWO) which outputs trace data of the Serial Wire Viewer
(SWV) via a single signal line. This output has a much lower bandwidth, is typically used for system trace,

and is typically found on Cortex-M based designs. This variant does normally not use a dedicated trace

connector. Instead it re-uses the TDO pin of a debug connector.

For TPIU setup, use the TRACE32 command line, a PRACTICE script (*.cmm), or the TPIU.state window.

& Bu:TPIU.state
tpiu PortSize
OFF 8 i
ON PortMode
Bypass ~
commands SW\Prescaler
RESet 1
@ CLEAR
#® Register
&Trace
i List

SyncPeriod

[]

state
Type:
Name:
Source:
Destination:

(o] 2)

CORESIGHT

FUMMEL1
Analyzer

©1989-2024 Lauterbach

General Commands Reference Guide T

104

TPIU.CLEAR Re-write the TPIU registers

Format: TPIU.CLEAR

Re-writes the TPIU registers on the target with the settings displayed on the TPIU.state window.

See also
H TPIU W TPIU.state

TPIU.IGNOREZEROS Workaround for a special chip

Format: TPIU.IGNOREZEROS [ON | OFF]

See also
H TPIU B TPIU.state

TPIU.NOFLUSH Workaround for a chip bug affecting TPIU flush

Format: TPIU.NOFLUSH [ON | OFF]

Default: OFF.

Activates a workaround for a chip bug which caused serious issues when the trace tool caused a TPIU flush
at the end of the trace recording.

See also
H TPIU B TPIU.state

©1989-2024 Lauterbach General Commands Reference Guide T | 105

TPIU.PortClock Inform debugger about HSSTP trace frequency

Format: TPIU.PortClock <frequency>
ETM.PortClock <baud_rate> (deprecated)
ITM.PortClock <frequency> (deprecated)

Default: 1500Mbps

Informs the debugger about the HSSTP trace frequency to improve the accuracy of the timestamp
calculation.

Example:

TPIU.PortClock 3125Mbps

TPIU.PortClock 3125M ; M is the short form of Mbps
See also
H TPIU M TPIU.state

©1989-2024 Lauterbach General Commands Reference Guide T | 106

TPIU.PortMode Select the operation mode of the TPIU

Format: TPIU.PortMode <mode>
ITM.PortMode <option> (deprecated)

<mode>: Bypass | Wrapped | Continuous | NRZ

Selects the operation mode of the TPIU.

Modes for Parallel Trace and HSSTP

The TPIU can optionally output a trace control signal (TRACECTL) which indicates idle cycles of the
trace port not worth to record. The TPIU formatter can be used to add the idle information to the
trace packets. The formatter needs to be used in case of multiple trace sources to add the ID of the
trace source.

Bypass TRACECTL pin is available, formatter is not used.
Wrapped TRACECTL pin is available, formatter is used.
Continuous TRACECTL pin is not available, formatter is used.

Modes for Serial Wire Output

TRACE32 supports the UART/NRZ (NRZ = Non-Return-to-Zero) coding of the Serial Wire Output
but not yet the Manchester coding. The bitrate of this asynchronous interface is derived by dividing
the CPU frequency.

NRZ NRZ coding at CPU clock divided by <divisor> set up by:
TPIU.SWVPrescaler <divisor> (default: 1)

NRZ/2 (deprecated) NRZ coding at half of the CPU clock speed.
See example below.

NRZ/3 (deprecated) NRZ coding at a third of the CPU clock speed.
See example below.

NRZ/4 (deprecated) NRZ coding at a quarter of the CPU clock speed.
See example below.

Example:

; (deprecated)
TPIU.PortMode NRZ/4

;please use these two commands instead of NRZ/<divisor>
TPIU.PortMode NRZ
TPIU.SWVPrescaler 4.

©1989-2024 Lauterbach General Commands Reference Guide T | 107

See also
H TPIU M TPIU.state

©1989-2024 Lauterbach General Commands Reference Guide T | 108

TPIU.PoriSize Select interface type and port size of the TPIU

Format: TPIU.PortSize <size>

<size>: 1121314151617181911011211611812012413218A112A | 16A |
16E | 1Lane | 2Lane | 3Lane | 4Lane | 5Lane | 6Lane | SWV

Specifies the interface type and port size of the TPIU.

Size in case of Parallel Trace:

1,2,3,4,5,6,7,8,9,10,12, | Number of trace data signals. TRACE32 supports the listed sizes. A
16, 18, 20, 24, 32 TPIU can support all sizes from 1 to 32 or only a few out of 1 to 32.

8A, 12A, 16A, 16E Variants of “8”, “12”, “16” in case of SoC from Texas Instruments.

The selected size is the same, but additionally the Debug Resource

Manager (DRM) gets configured which maps trace signals to output

pins:

. 8A: TRACEDATA[0:7] -> EMU[4:11]

. 12A: TRACEDATA[0:11] -> EMU[4:15]

. 16A: TRACEDATA[0:15] -> EMU[4:19]

. 16E: TRACEDATA[O:1] -> EMUJ[0:1], TRACEDATA[2:15] ->
EMU[4:17]

Size in case of HSSTP:

1Lane, 2Lane, 3Lane, Number of used differential lanes.
4Lane, 5Lane, 6Lane

Size in case of Serial Wire Viewer (SWV) / Serial Wire Output (SWO):

sSwv Selects SWV/SWO which uses only one signal.
See also
H TPIU W TPIU.state W <trace>.PortSize

©1989-2024 Lauterbach General Commands Reference Guide T | 109

TPIU.RefClock Set up reference clock for HSSTP

Format: TPIU.RefClock [/<option>]

<option>: OFF | OSC |1/111/211/2011/25 | 1/30 | 1/40 | 1/50

Defines the reference clock frequency the serial preprocessor outputs to the target. Defaults depending on
architecture:

J PowerPC: bit clock frequency
J TriCore and RH850: 100MHz
J ARM: bit clock frequency

OFF TRACE32 does not send any reference clock to the target.

0OSsC An asynchronous oscillator will be enabled. Its frequency is architecture
dependent.

1/<x> A synchronous clock source will be enabled. lts dividers generate a

reference clock as a fraction of the bit clock (lane speed), e.g. 100MHz at
5Gbps with divider 1/50. Once a divider is selected, the reference clock will
automatically change with the lane speed.

See also
H TPIU W TPIU.state

©1989-2024 Lauterbach General Commands Reference Guide T | 110

TPIU.Register Display TPIU registers

Format: TPIU.Register [/<option>]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

Opens the TPIU.Register window, displaying the TPIU registers and the registers of other trace related

modules.
<option> For a description of the options, see PER.view.
See also
B TPIU B TPIU.state
TPIU.RESet Reset TPIU settings
Format: TPIU.RESet

Resets the settings in the TPIU.state window to their default values and re-configures the TPIU registers on
the target.

See also
H TPIU M TPIU.state

©1989-2024 Lauterbach General Commands Reference Guide T | 111

TPIU.state Display TPIU configuration window

Format: TPIU.state
Displays the TPIU.state configuration window.
& Bu:TPIU state EI@
tpiu PortSize SyncPeriod state
OFF 8 ~ Type: CORESIGHT
ON PortMode Name:
Bypass ~ Source: FUMMELL
commands SW\Prescaler Destination: Analyzer
RESet 1
@ CLEAR
#® Register
&Trace
i List

A For descriptions of the commands in the TPIU.state window, please refer to the TPIU.* commands in
this chapter. Example: For information about the SyncPeriod box, see TPIU.SyncPeriod.

Exceptions:
J The setting TPIU.ON and TPIU.OFF is read-only. The setting depends on the selected trace
mode (Analyzer, Onchip, ...).

. The Trace button opens the main trace control window (Trace.state)
. The List button the main trace list window (Trace.List).
See also
m TPIU B TPIU.CLEAR B TPIU.IGNOREZEROS W TPIU.NOFLUSH
B TPIU.PortClock B TPIU.PortMode B TPIU.PortSize B TPIU.RefClock
B TPIU.Register B TPIU.RESet B TPIU.SWVPrescaler W TPIU.SWVZEROS

B TPIU.SyncPeriod

TPIU.SWVPrescaler Set up SWV prescaler
Format: TPIU.SWVPrescaler <divisor>
Default: 1.

In case of TPIU.PortMode NRZ, the bitrate of the Serial Wire Viewer / Serial Wire Output is derived by
dividing the CPU frequency. The command TPIU.SWVPrescaler sets up the divisor, which can range
from Ox1 to 0x1000 (1. to 4096.).

©1989-2024 Lauterbach General Commands Reference Guide T | 112

Examples:

TPIU.PortMode NRZ
TPIU.SWVPrescaler 7. ; NRZ coding at a 7th of the CPU clock

TPIU.PortMode NRZ

TPIU.SWVPrescaler 10. ; NRZ coding at a 10th of the CPU clock
See also
W TPIU M TPIU.state
TPIU.SWVZEROS Workaround for a chip bug
Format: TPIU.SWVZEROS [ON | OFF]
Default: OFF.

Activates a workaround for a chip bug affecting SWV/SWO data of a certain device.

See also
H TPIU W TPIU.state

©1989-2024 Lauterbach General Commands Reference Guide T | 113

TPIU.SyncPeriod Set period of sync packet injection

Format: TPIU.SyncPeriod [<packets>]

Sets the number of regular TPIU packets which will be output to the trace stream between two
synchronization packets.

What are synchronization packets? Synchronization packets are periodic starting points in the trace
stream, which allow the recorded flow trace data to be decoded. The result can then be visualized in the
<trace>.* windows of TRACE32, e.g. the Trace.List or the Trace.PROfileChart.sYmbol window. A
visualization of the flow trace data is usually not possible without synchronization packets in the trace
stream.

<packets> If omitted, then the default number of regular packets between
synchronization packets is chosen by the debugger or the chip.

In this example, the number of regular packets is 1024.

'RP ... RP, SP,RP ... RP, SP ,RP ... RP, SP RP ...
1024 1024 1024

RP = regular packet
SP = synchronization packet

See also
H TPIU B TPIU.state

©1989-2024 Lauterbach General Commands Reference Guide T | 114

TPU

TPU.BASE Base address

See command TPU.BASE in 'TPU Debugger' (tpu.pdf, page 5).

TPU.Break Break TPU

See command TPU.Break in 'TPU Debugger' (tpu.pdf, page 11).

TPU.Dump Memory display

See command TPU.Dump in 'TPU Debugger' (tpu.pdf, page 9).

TPU.Go Start TPU

See command TPU.Go in 'TPU Debugger' (tpu.pdf, page 12).

TPU.List View microcode

See command TPU.List in TPU Debugger' (tpu.pdf, page 11).

TPU.ListEntry Table display

See command TPU.ListEntry in TPU Debugger' (tpu.pdf, page 10).

TPU.Register.ALL Register operation mode

See command TPU.Register.ALL in 'TPU Debugger' (tpu.pdf, page 6).

©1989-2024 Lauterbach General Commands Reference Guide T | 115

TPU.Register.NEWSTEP New debugging mode

See command TPU.Register.NEWSTEP in 'TPU Debugger' (tpu.pdf, page 7).

TPU.Register.Set Register modification

See command TPU.Register.Set in TPU Debugger' (tpu.pdf, page 9).

TPU.Register.view Register display

See command TPU.Register.view in 'TPU Debugger' (tpu.pdf, page 8).

TPU.RESet Disable TPU debugger

See command TPU.RESet in 'TPU Debugger' (tpu.pdf, page 13).

TPU.SCAN Scannig TPU

See command TPU.SCAN in 'TPU Debugger' (tpu.pdf, page 5).

TPU.SELect Select TPU for debugging

See command TPU.SELect in 'TPU Debugger' (tpu.pdf, page 12).

TPU.Step Single step TPU

See command TPU.Step in TPU Debugger' (tpu.pdf, page 13).

TPU.view View TPU channels

See command TPU.view in 'TPU Debugger' (tpu.pdf, page 6).

©1989-2024 Lauterbach General Commands Reference Guide T | 116

Trace

Trace Trace configuration and display
Format: Trace | <trace>
<trace>: <trace_method> | <trace_source><trace_method>
Trace For information, see section Overview Trace in this command group
description.
<trace> For information, see subsection About the Command Placeholder

<trace> in this command group description

<trace_method>

Examples in this command group description.

For information, see subsection Replacing <trace> with a Trace Method -

_method>

<trace_source><trace

Trace Method - Examples in this command group description.

For information, see subsection Replacing <trace> with Trace Source and

NOTE:

There is NO period between <trace_source><trace_method>.

This syntax convention is reserved for:

Processing trace data from only one particular trace source, e.g. ITM.

Processing trace data from more than one trace source, e.g. ITM and
HTM.
Processing trace data from very special trace sources.

See also

B <trace>.CustomTrace
B <trace>.PipeWRITE
B Analyzer.TOut

B Integrator. TSYNC

B <trace>.CustomTraceLoad M <trace>.ListVar B <trace>.MERGEFILE
B <trace>.SPY B <trace>.TRIGGER B <trace>.TSELect
B Analyzer.TraceCLOCK B Integrator.CSELect B Integrator.TPreDelay

B Probe.TDelay

A ’Trace Functions’ in 'General Function Reference’

©1989-2024 Lauterbach

General Commands Reference Guide T |

117

Overview Trace

The command Trace is a general command for trace configuration and trace display. It is available for all kind
of trace methods provided by TRACE32. The currently used trace method is displayed under METHOD in
the Trace.state window.

&3’&ﬂhceﬂme [::]I!II[::]

METHOD
® Onchip Analyzer | CAnzhyzer | HAnahger | Integrator Probe Probe QLA
OART OLOGGER Osvooker O FDX (O NONE

For descriptions of the trace methods, see Trace.METHOD.

In this section:
o About the Command Placeholder <trace>

. What to know about the TRACE32 default settings for Trace. METHOD

. Types of Replacements for <trace>

. Replacing <trace> with a Trace Method - Examples

. Replacing <trace> with a Trace Evaluation - Example

J Replacing <trace> with RTS for Real-time Profiling - Example

o Replacing <trace> with Trace Source and Trace Method - Examples

. How to access the trace sources in TRACE32

J List of <trace> Command Groups consisting of <trace_source><trace_method>
J Related Trace Command Groups

©1989-2024 Lauterbach General Commands Reference Guide T | 118

About the Command Placeholder <trace>

In the TRACE32 manuals, <trace> is used as a placeholder for all types of trace commands. As the name
placeholderimplies, it cannot be used directly in the TRACE32 command line. As soon as you type
<trace>.List at the command line, you receive the error message “unknown command”. Consequently, you
need to replace <trace> with the correct trace command before the command line accepts your input.

What to know about the TRACE32 default settings for Trace. METHOD

The easiest way to replace <trace> with a correct command is to type Trace at the command line. The
meaning of Trace, e.g. in Trace.List, is then controlled by a sequence of TRACE32 default settings.

1. The TRACE32 hardware module connected to your target board determines the trace method.
And this trace method will be used for recording the trace data. In the header of the Trace.state
window, you can view the selected trace method.

TRACES32 determines the default trace method as follows:

If the hardware module connected to your target board is a PowerTrace, then the Analyzer
trace method becomes the default setting for the 1st TRACE32 PowerView GUI. For the other
GUIs of an AMP configuration, the default setting is Trace.METHOD NONE.

If a hardware module other than a PowerTrace is connected to your target board, TRACE32
adjusts the trace method accordingly. For the other GUIs of an AMP configuration, the default
setting is Trace.METHOD NONE.

If the chip has an onchip trace sink, then the Onchip trace method becomes the default
setting for the 1st TRACES32 PowerView GUI.

However, if the onchip trace recording is not yet operational, then the trace method is set to
NONE. For the other GUIs of an AMP configuration, the default setting is Trace.METHOD
NONE.

If the chip does not have an onchip trace sink, then the ART trace method becomes the
default setting.

If TRACER32 runs in software-only mode as an instruction set simulator, then it is again the
Analyzer trace method that becomes the default setting.

2. The Analyzer trace method is designed to look for a specific trace source that generates the
program flow trace on the chip. For ARM chips, this trace source is called Embedded Trace
Macrocell (ETM). For other chips, the trace source can be NEXUS or a proprietary trace block.

3. All Trace commands refer to the selected trace method.

In the following first figure, the arrows illustrate the default settings used by the 1st TRACE32 PowerView

GUL

The second figure shows the effects of the default setting Trace.METHOD NONE on all other TRACE32
PowerView GUIs of an AMP configuration.

©1989-2024 Lauterbach General Commands Reference Guide T | 119

1st TRACE32 PowerView GUI:

Chip
PowerTrace hardware module
I : IT™ HTM
& B::Trace.state EI@ ‘ :
METHOD : ETM* (...)
Onchip | ® Anatyzer | Conahezer) Hansheer () Integrator Probe Probe QLA
OART OLoGGEROMoorer OFDX O NONE

*ETM, ITM, and HTM
are the names of
<trace_sources>on a
chip.

F' Trace.List

[rekd |[state |[Lst | [LstNesting| [Timing |[View | [STATstic | [packiestansic

All other TRACE32 PowerView GUIs: How does a TRACE32 PowerView GUI indicate that the
Trace.METHOD is set to NONE?

& == =]
METHOD
onchip O Analyzer) Chnaheer () Hanahyzer () Tnteqgrator Probe Probe QLA
OarT OLOGGER Osvoorer O FDX @NONEm

ime Register FPU MMX MMU TRAI‘GatL! CACHE other pravious

system ready MIX up

A In the Trace.state window, NONE is selected as trace method.

B All other GUI controls in the Trace.state window are temporarily hidden. Their underlying Trace.*
commands cannot be successfully executed at the TRACE32 command line either. The only
command exceptions are Trace.METHOD and Trace.state.

C The state line displays a white X against a red background.

©1989-2024 Lauterbach General Commands Reference Guide T | 120

Types of Replacements for <trace>

You can rely on the trace method that TRACE32 selects by default, but you can also select a trace method
other than the default. As soon as you have selected the trace method you want in the Trace.state window,
you can replace the placeholder <trace> with:

. Trace as explained in the previous section (Click here)

J The name of the trace method you have selected in the Trace.state window (Click here)

J Trace evaluation commands (Click here)

. RTS, the command for real-time profiling (Click here)

J Names of trace sources immediately followed by the name of the trace methods (Click here)

Replacing <trace> with a Trace Method - Examples

You can replace <trace> with the name of the selected trace method. The trace method commands are
displayed in the Trace.state window:

. Onchip, Analyzer, CAnalyzer, , Integrator, Probe, IProbe, LA, ART, LOGGER, SNOOPer, FDX,
& B:Trace.state EI@

METHOD
@Onchip Analyzer (_) CAnalyzer Hénahyzer Integrator Probe Probe QLA
OART OLOGGER Osvooker O FDX (O NONE

Example 1 for the trace method SNOOPer:

Trace.state ;select the trace method SNOOPer for recording
Trace.METHOD SNOOPer ;trace data.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the trace data recorded with SNOOPer
;as a trace listing.
SNOOPer .List ;this is the equivalent and explicit command.

Example 2 for the trace method LOGGER:

Trace.state ;select the trace method LOGGER for recording
Trace.METHOD LOGGER ;trace data.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the trace data recorded with LOGGER
;as a trace listing.
LOGGER.List ;this is the equivalent and explicit command.

©1989-2024 Lauterbach General Commands Reference Guide T | 121

Replacing <trace> with a Trace Evaluation - Example

For trace evaluations, you can replace <trace> with a trace evaluation command; the name of the trace
method is omitted.

The trace evaluation commands are accessible via the TRACES32 softkey bar:

. COVerage, ISTATistic, MIPS, CTS, ETA, BMC

RTS

Example:
Trace.state ;select the trace method Analyzer for recording
Trace.METHOD Analyzer ;trace data.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

COVerage.List ;<trace> is just replaced with the trace
;evaluation command, since the trace method
;Analyzer is defined above anyway.

©1989-2024 Lauterbach General Commands Reference Guide T | 122

Replacing <trace> with RTS for Real-time Profiling - Example

For real-time profiling, you can replace the placeholder <trace> with RTS.

The RTS command is accessible via the TRACE32 softkey bar:
|
B::
emulate trigzer [davicas I [trace] I Data] [Var] [List]
|

lB::
|

[Trace | [coverage | |ISTATISHC) | o ——— RT5 |
Example:

Trace.state ;select the trace method Analyzer for

Trace.METHOD Analyzer ;recording trace data.

;<configuration>

RTS.state

RTS.ON

;<configuration>

Go ;processes the trace data being recorded from
;the target while the target is running.

ISTATistic.ListModule ; ISTATistic windows display real-time
;trace data as long as RTS is switched ON
; (RTS.ON)

©1989-2024 Lauterbach General Commands Reference Guide T | 123

Replacing <trace> with Trace Source and Trace Method - Examples

As stated in the blue Format table, the placeholder <trace> can be replaced with trace commands consisting
of <trace_source> and <trace_method>.

Rule Example
<trace_source> + <trace_method> HTM + Analyzer
l | | |
<trace> HTMAnalyzer

These <trace> command groups are accessible via the TRACE32 softkey bar and include for example:
o CoreSightTrace, ETMTrace, ETMAnalyzer, STMAnalyzer, CoreSightCAnalyzer, ...

. For an overview, see List of <trace> Command Groups consisting of
<trace_source><trace_method>.

Using these <trace>command groups, you can display trace data recorded from one or more trace sources.

Example for displaying trace data from one trace source: This script assumes that the CoreSight
components of the chip output their trace data to the same trace sink.

Trace.state ;select the trace method Analyzer for recording
Trace.METHOD Analyzer ;trace data.

;<configuration>

ETM.ON ;switch on the trace source from which you want
;<configuration> ;to record trace data, here the ETM.

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the ETM trace data recorded with the
;trace method Analyzer as a trace listing.
Analyzer.List ;this is the equivalent and explicit command.

©1989-2024 Lauterbach General Commands Reference Guide T | 124

Example for displaying trace data from two trace sources: This script assumes that the CoreSight
components of the chip output their trace data to the same trace sink.

Trace.state ;select the trace method Analyzer for recording
Trace.METHOD Analyzer ;trace data.

;<configuration>

ETM.ON ;switch the 1lst trace source ETM on.
;<configuration>

HTM . ON ;switch the 2nd trace source HTM on.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the ETM trace data.
HTMTrace.List ;display the HTM trace data.

©1989-2024 Lauterbach General Commands Reference Guide T | 125

How to access the trace sources in TRACE32

As you have seen in the previous sections, the Trace.state window is the starting point for configuring a

trace recording and recording the trace data: It provides an overview of the trace methods [A], and it
dynamically adjusts to the trace method you have selected [B].

In addition, the Trace.state window displays buttons for each trace source found on the chip [C]. Clicking a
button lets you access a <trace_source>.state window, where you can configure the selected trace source

directly in TRACES32.

Example: TRACES32 has found has three trace sources on a QorlQ chip, including a NEXUS trace source
[C]. Click the NEXUS button to open the NEXUS.state window [D]. You can now configure the NEXUS trace

source.
& B:Tracestate Al ===
METHOD —_—
@ Analyzer Cinzhezr) Onchip) ART () LOGGER () SNOOPer () FDX OLA
I Integrator Probe IProbe

state used E ACCESS TDely
©) DISable [auto ~||| o
@ OFF 0. 0% -
© Am SIZE CLOCK
() trigger 402653184,
) break

SPY Mode Mode ¥ advanced

@ Fifo BusTrace
commands (©) stack) ClockTrace E
) Leash @ FlowTrace .
e & B:NEXUS state | =n| Wl <
PIPE Prestare nexus PortSize cores |pDR|[0CeaN
E List RTS SLAVE P57
Pt @ 0ON PortMode selection SUppression option
[T AutoInit m BTM [C]spenDQM [ClroTD
[seffarm [T TimeStamps |- serdescfg ClwTm [spenwTM [CIpTMARK
SerDesCFG [CIogm [C]spenpTM STALL
RESet REFCLK oTM [C1SpenDTM OFF
[#Trce || [DEFaut ~| [oFF ~|| | CspenoTm
1 List FRATE PTCM Supp THReshoki
CleL_HTM

=4 List DQM | [€, Find DQM |

©1989-2024 Lauterbach

General Commands Reference Guide T

126

List of <trace> Command Groups consisting of <trace_source><trace_method>

Trace methods can be combined with a trace source are:

Trace: method-independent analysis

Analyzer: analyze information recorded by TRACES32 PowerTrace

CAnalyzer: analyze information recorded by Compact Analyzer (e.g. CombiProbe, pTrace

(MicroTrace))

HAnalyzer: analyze information recorded by the Host Analyzer

Onchip / Onchip2: analyze information recorded in target onchip memory / second onchip

memory

LA: analyze information recorded from binary source

Not all trace sources can be combined with these trace methods.The table below shows all supported
combinations.

<trace_source>

Supported <trace_source><trace_method>
commands

AET
Advanced Triggering Trace
(C5000, C6000, C7000)

AETAnalyzer

CoreSight CoreSightTrace
CoreSightAnalyzer
CoreSightCAnalyzer
CoreSightHAnalyzer
CoreSightOnchip
CoreSightOnchip2
CoreSightLA

CMN CMNTrace

Coherent Mesh Network trace CMNAnalyzer

(Arm/Cortex) CMNCAnalyzer
CMNHAnNalyzer
CMNOnchip
CMNONnchip2
CMNLA

DDR DDRTrace

NEXUS DDR controller debug trace DDRAnalyzer

(PowerPC QorlQ) DDROnNchip

See “QorlQ Debugger and NEXUS DDRLA

Trace” (debugger_ppcqoriq.pdf)

DQM DQMTrace

NEXUS Data Acquisition trace messages | DQMAnalyzer

(PowerPC QorlQ) DQMOnchip

See “QorlQ Debugger and NEXUS DQMLA

Trace” (debugger_ppcqoriqg.pdf)

©1989-2024 Lauterbach

General Commands Reference Guide T

127

DTM DTMAnalyzer

Data Trace Module DTMCAnalyzer

(Arm/Cortex, ARC) DTMHAnNalyzer
DTMLA
DTMOnchip
DTMTrace

ELA ELATrace

Embedded Logic Analyzer ELAAnalyzer

(Arm/Cortex) ELACAnalyzer
ELAHAnalyzer
ELAOnchip
ELAOnchip2
ELALA

ETM ETMTrace

Embedded Trace Macrocell ETMAnalyzer

(Arm/Cortex) ETMCAnNalyzer
ETMHAnNalyzer
ETMOnchip
ETMLA

ETMD ETMDTrace

ETM Data Stream ETMDAnNalyzer

(Arm/Cortex) ETMDCAnalyzer
ETMDHAnalyzer
ETMDOnchip
ETMDLA

ETMX ETMXTrace

(Arm/Cortex) ETMXAnalyzer
ETMXCAnalyzer
ETMXHAnalyzer
ETMXOnchip
ETMXLA

Funnel FunnelAnalyzer

(Arm/Cortex) FunnelOnchip

HTM HTMTrace

CoreSight HTM (AHB Trace Macrocell) HTMAnalyzer
HTMCAnalyzer
HTMHAnalyzer
HTMOnchip
HTMLA

ITH ITHTrace

Intel Trace Hub

IT™M ITMTrace

(Arm/Cortex) ITMAnalyzer
ITMCAnalyzer
ITMHAnNalyzer
ITMOnchip
ITMLA

©1989-2024 Lauterbach

General Commands Reference Guide T

128

System Trace

MCDSBase MCDSBaseAnalyzer

Non-optimized MCDS trace MCDSBaseCAnalyzer

(TriCore) MCDSBaseOnchip
MCDSBaseLA

MCDSDCA MCDSDCAAnalyzer

MCDS trace processing with data cycle MCDSDCACAnalyzer

assignment MCDSDCAOnNchip

(TriCore) MCDSDCALA

MCDSDDTU MCDSDDTUAnalyzer

MCDS trace processing with DDTU MCDSDDTUCAnNalyzer

reordering MCDSDDTUOnNchip

(TriCore) MCDSDDTULA

NPKReorder NPKReorderTrace

Northpeak Reorder NPKReorderAnalyzer

(Intel x86) NPKReorderCAnalyzer
NPKReorderHAnalayzer
NPKReorderLA

OCeaN OCeaNTrace

On Chip Network debug trace OCeaNAnalyzer

(PowerPC QorlQ) OCeaNOnchip

See “QorlQ Debugger and NEXUS OCeaNLA

Trace” (debugger_ppcqoriq.pdf)

RTP RTPAnalyzer

RAM Trace Port

(Arm/Cortex)

See “RAM Trace Port” (trace_rtp.pdf)

SFT SFTTrace

Software Trace SFTAnalyzer

(RH850) SFTOnchip

STM/ STM2 STMTrace / STM2Trace

STMAnNalyzer / STM2Analyzer
STMCAnalyzer / STM2CAnalyzer
STMHAnNalyzer

STMOnchip / STM20Onchip
STMOnchip2 / STM20nchip2
STMLA / STM2LA

TSI/ TSI2
(CEVA-X)

TSITrace / TSI2Trace
TSlAnalyzer / TSI2Analyzer
TSICAnalyzer / TSI2CAnalyzer
TSIHAnalyzer / TSI2HAnalyzer
TSIOnchip / TSI20nchip
TSILA / TSI2LA

©1989-2024 Lauterbach

General Commands Reference Guide T

129

UltraSOC

UltraSOCTrace
UltraSOCHAnNalayzer

UltraSOCLA
XGate XGateOnchip
(MCS12)
XTI XTICAnalyzer

Related Trace Command Groups

CMITrace

CPTracerTrace

OCPTrace

PMITrace

PrintfTrace
SLTrace
StatColTrace

SystemTrace

Clock management instrumentation trace by Texas Instruments on
OMAP4.

Analyzes and displays CPT trace data.

OpenCoreProtocol WatchPoint trace by Texas Instruments on OMAP4
and OMAPS.

Power management instrumentation trace by Texas Instruments on
OMAP4.

Displays and analyzes software messages.
Allows to trace and analyze SYStem.LOG events.
Statistics collector trace by Texas Instruments on OMAP4 and OMAPS5.

Displays and analyzes trace information generated by various trace
sources.

©1989-2024 Lauterbach

General Commands Reference Guide T | 130

<trace>.ACCESS Define access path to program code for trace decoding

Format: <trace>.ACCESS <path>
COVerage.ACCESS [auto | VM | DualPort] (deprecated)

<path>: auto | AutoVM | CPU | DualPort | VM | OVS | DENIED

The core trace generation logic on the processor/chip generates trace packets to indicate the instruction
execution sequence (program flow). TRACE32 merges the following sources of information in order to
provide an intuitive display of the instruction execution sequence (flow trace).

J The trace packets recorded.
J The program code from the target memory (usually read via the JTAG interface).

J The symbol and debug information already loaded to TRACE32.

©1989-2024 Lauterbach General Commands Reference Guide T | 131

Recorded trace Program code from
packets target memory
Uploaded from Read via
the source of JTAG
trace information interface

File Edit Var Bresk Run CPU Miscl| Trace Perf Cov MPC5XXX Window Help

R VY A S T

Bx:Trace List

v@a\%ﬁﬂllﬁﬂamimlagﬂﬂ@

(& setup... | b Goto... || #3Find... | ~dchart || Elprofile LM]FS][vMore || -2

record

leycle |data [ti.back

-00000019

subfic

r9,

0x40002828

run |address
cmpwi 0x0 T
bne F 102828 (-
F:40002828 ptrace \\diabc\Global_f_mul+0x13C 0.620us

r3,r3,r5

ril,r7,ré
r4,rll,0x9

0x40002858

: oatNormalize
F:40002858 ptrace iabc\Global\sfpFloatNormalize 0. 860us

r8,rl2,0x8

cntlzw rl2,r5
{ subi

ril,r8,0x7F

0.980us
Symbol and debug
information loaded

Psetup... || 11 Goto... || F1Find...

e L e e) A'L.&;] - to TRACE32

nexus

TCODE=04
TCODE=04
TCODE=03
TCODE=03
TCODE=03
TCODE=03
TCODE=03
TCODE=03
TCODE=03

SRC=0 PT-IEBM
SRC=0 PT-IBM
SRC=0 PT-DBM
SRC=0 PT-DBM
SRC=0 PT-DBM
SRC=0 PT-DBM
SRC=0 PT-DBM
SRC=0 PT-DBM
SRC=0 PT-DEM

2| Trace packets generated by core trace logic

MAP=0 ICNT=0005 U-ADDR=00001ECC
MAP=0 ICNT=0004 U-ADDR=00001EFC
ICNT=000D
ICNT=000C
ICNT=0002
ICNT=0007
ICNT=0002
ICNT=0004
ICNT=0006

TCODE=00 SRC=0 DSM STATUS=0080
TCODE=21 SRC=0 PT-PTCM EVCODE=0000 CDF=0001 ICNT=0003 HIST=00000001

¥ g

emulate trigger][devices |[trace][Dam [wvar J[wust [PERF][svstem |[step J[Go [Break][symbol |[other][previous |
||| sF:4n002854 W\diabc\GlobalsfpFloatNormalize-+0x0C stopped LI HL P

©1989-2024 Lauterbach

General Commands Reference Guide T

| 132

Troubleshooting

1. Trace information should be analyzed while the program execution is running and the
debugger has no run-time access to the target memory to read the program code.

NOACCESS in a trace display window indicates that the debugger can not read the target memory.

Ll s A i il Bl
& setup... || M Goto... || #Find... || Adchart || EProfile || BMPS || $More || Xless |

5 run |address cycle |data symbol ti.back i

o4 [m »

7
J«‘ m 3

You can overcome this problem by loading the program code to the TRACE32 virtual memory.

; load the program code additional to the TRACE32 virtual memory
; whenever you load it to the target memory
Data.LOAD.E1f diabc.x /PlusVM

2. Reading the target via JTAG is very slow therefore all trace display and analysis windows
are slow.

You can overcome this problem by loading the program code to the TRACES32 virtual memory and by
specifying Trace.ACCESS AutoVM.

; load the program code additional to the TRACE32 virtual memory
; whenever you load it to the target memory
Data.LOAD.E1f diabc.x /PlusVM

; advise TRACE32 to read the target code from the virtual memory

; 1f no code is loaded to the virtual memory for a program address
; TRACE32 will read the code by using the best practice procedure
Trace.ACCESS AutoVM

3. Trace information should be inspected, but there is no program code available.

You can overcome this problem by specifying Trace.ACCESS Denied to advise TRACES32 not to
merge program code information. The Trace.List window will list the available program addresses
and mark all cycles as unknown.

£ BTrace List EI@
(& setup... || 13 Goto... || FiFind... || fchart || EProfile | EIMIPS || #$ More || Xless
record run |address cycle |data symbol ti.back i
00000182 F:40001288 unknown vdiabchdiabcmai nr0x22C 0.620us .
+00000183 F:40001288 unknown “Mdiabchdiabcmain+0x22C 1.000us |z
+00000184 F:40001288 unknown “Mdiabchdiabcmain+0x22C 0. 360us
+00000185 F:40001288 unknown “Mdiabchdiabcmain+0x22C 0.500us 7
+00000186 F:40001288 unknown “Mdiabchdiabcmain+0x22C 1.360us =
+00000187 F:40001288 unknown “Mdiabchdiabcmain+0x22C 0.480us
+00000188 F:40001288 unknown “Mdiabchdiabcmain+0x22C 0.380us
+00000189 F:40001288 unknown “Mdiabchdiabcmain+0x22C 1.980us
+00000190 F:40001288 unknown “Wdiabchdiabcimain+0x22C 1.100us
+00000191 |BRK 1.600us -
4 ¥

©1989-2024 Lauterbach General Commands Reference Guide T | 133

Recommended access paths:

auto TRACERS2 uses its own best practice procedure to read the program code.
(Note: For the ARM architecture this mode is usually not using the
DualPort access.)

AutoVM If the program code for a program address is available via the TRACE32
virtual memory it is read from there. Otherwise the best practice procedure
is used.

VM The program code is always read from the TRACES32 virtual memory.

Denied No program code information is read.

Rarely used access paths:

ovs Code overlays are handled by the best practice procedure. If the best
practice procedure does not deliver correct results, you can advise
TRACE32 to read the program code by using the overlay table.

CPU Advise TRACE32 to read the code via the CPU/core.
DualPort Advise TRACE32 to read the code via the run-time access to the target
memory.
<trace>.Arm Arm the trace
Format: <trace>.Arm

The trace memory and if available the trigger unit are prepared for recording and triggering. It is not possible
to read the trace contents while the trace is in Arm state.

For most trace methods it is possible to AutoArm (<trace>.AutoArm) the trace. That means:
. Recording and triggering are prepared whenever the program execution is started.

J Recording and triggering are stopped whenever the program execution is stopped.
This is the default setting.

It is also possible to manually switch off the trace (<trace>.OFF) to read the trace contents and arm it again

afterwards.

See also

B <trace>.AutoArm B <trace>.AutoStart B <trace>.Init B |Probe.state
Bl RunTime B RunTime.state

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 134

<trace>.AutoArm Arm automatically

Format: <trace>.AutoArm [ON | OFF]

Default: <trace>.AutoArm ON.
. Recording and if available triggering is prepared whenever the program execution is started.

. Recording and if available triggering is stopped whenever the program execution is stopped.

See also

B <trace>.Arm B |Probe.state B RunTime B RunTime.state
1 SNOOPer.STATE()

<trace>.AutoFocus Calibrate AUTOFOCUS preprocessor
Format: <trace>.AutoFocus [<address_range>] [/<option>]
<option>: Accumulate
KEEP
ALTERNATE
NoTHreshold

The command Trace.AutoFocus configures an AutoFocus preprocessor for an error-free sampling on a
high-speed trace port.

For preprocessors without AUTOFOCUS technology, but adjustable reference voltage, this command wiill
modify the reference voltage (see Trace.THreshold) and try to find a value were the trace capture is free of
errors. This might take anywhere from a few up to 30 s.

If available the test pattern generator of the trace port is used to generate the trace data for the auto-
configuration. Otherwise a test program is loaded and started by TRACE32.

If a test program is used, TRACE32 attempts to load the test program to the memory addressed by the PC
or the stack pointer. It is also possible to define an <address_range> for the test program.

Trace.AutoFocus ; start the auto-configuration
Trace.AutoFocus 0x24000000++0xfff ; start auto-configuration, load
; the test program to address
; 0x24000000

If TRACES2 is unable to load the test program the following error message is displayed:
“Don‘t know where to execute the test code”.

©1989-2024 Lauterbach General Commands Reference Guide T | 135

By default the original RAM contents is restored after the auto-configuration and the trace contents is
deleted.

Accumulate If the application program varies the CPU clock frequency, this affects
also the trace port and the auto-configuration. In such a case it is
recommended to overlay the auto-configurations for all relevant CPU
clock frequencies by using the option /Accumulate.

KEEP When the auto-configuration is completed, the test pattern generator/test
program is started once again to test the correctness of the trace
recording. After this test the trace is cleared and an eventually loaded
test program is removed from the target RAM.

With the option /KEEP the test trace is not cleared and can be viewed
with the Trace.List command. If a test program was loaded by TRACE32
it also remains in the target RAM.

ALTERNATE If the trace port provides a test pattern generator, it is always used for the
auto-configuration. The option /ALTERNATE forces TRACE32 to use its
own test program.

This is recommended e.qg. if a CoreSight test pattern generator is not
stimulating the TRACECLT signal.

NoTHreshold Do not calibrate the Trace.THreshold reference voltage.

The option /Accumulate allows to overlay several auto-configurations. It is recommended to proceed as

follows:
1. Execute the command Trace.AutoFocus at the highest CPU clock frequency.
2. Reduce the CPU clock frequency and execute the command Trace.AutoFocus /Accumulate.

If a preprocessor with AUTOFOCUS technology is used, the clock and data delays are adjusted,
while the termination voltage, the clock reference voltage and the data reference voltage remain

unchanged.
3. Repeat step 2 for all relevant frequencies.
Trace.AutoFocus ; Execute the command for the
; highest CPU clock
Trace.AutoFocus /Accumulate ; Re-execute the command for the
; next lower CPU clock
Trace.AutoFocus /Accumulate ; Re-execute the command for the

; lowest relevant CPU clock

©1989-2024 Lauterbach General Commands Reference Guide T | 136

A failure in the Trace.AutoFocus command results in a stop of a PRACTICE script. The following
workaround can be used to avoid this behavior:

; go to the label error_autofocus: if an error occurred in the script
ON ERROR GOTO error_autofocus

Trace.AutoFocus

; go to the label end: if an error occurred in the script

ON ERROR GOTO end

end:

ENDDO

error_autofocus:

PRINT %ERROR "Trace.AutoFocus failed. Script is aborted"

ENDDO

NOTE: The NEXUS AutoFocus adapter does not support this feature.

©1989-2024 Lauterbach General Commands Reference Guide T | 137

Preprocessor with AUTOFOCUS Technology

The Trace.AutoFocus command causes the preprocessor with AUTOFOCUS technology to configure
itself. The auto-configuration searches for the best set of reference voltages and assures optimal
sampling of the information broadcast by the trace port. The higher the trace port data rate, the more
effort is put in the hardware configuration. For trace port data rates higher 200 Mbit/s the command may
need up to 7 s for completion.

In contrast to Trace.TestFocus, the command Trace.AutoFocus does both the hardware configuration as
well as a trace port test.

For preprocessors with AUTOFOCUS technology the hardware auto-configuration includes:

. Automatic setup of proper termination voltage to assure signal integrity.

J Automatic setup of clock reference voltage resulting in a stable clock with 50/50 duty cycle.

. Automatic setup of data reference voltage resulting in broad data eyes.

. Automatic setup of clock and data delays resulting in optimal sampling for each data channel.

The complete auto-configuration executes the following steps:

1. If available the trace port’s test pattern generator is started. Otherwise a test program (maximum
size 4 kB) is loaded by TRACE32 to the target RAM and started.

2. A hardware auto-configuration as described above is executed. When the optimal hardware
configuration is found the test pattern generator/test program is stopped and the trace data is
discarded. After executing the hardware auto-configuration the data eyes and optimal sampling
points are known to the TRACE32 software and can be viewed by the user with the
Trace.ShowFocus command.

3. The test pattern generator/test program is started once again and the program and data flow is
recorded to the trace buffer to allow TRACES2 to verify the correctness of the trace recording.

If the self calibration was successful, the following message is displayed in the message line
(f=<trace_port_frequency>):

Enalgzer data capture o.k. (f=156.8HHz)
ermilate | trigger | devices | trace | Drata | War
| 5R:00000000

NOTE: The trace port frequency does not necessarily equal the CPU clock

frequency. E. g. for the ARM-ETM:

. An ETMv1 or ETMv2 operating at HalfRate results in an ETM clock fre-
quency that is half the CPU clock frequency

. An ETMv3 operating with PortMode 1/2 results in an ETM frequency that
is a quarter of the CPU clock frequency.

The result of the Trace.AutoFocus command can be displayed with the Trace.ShowFocus command. If
the user wants to verify that the current hardware configuration is complying with the current requirements
(e.g. after a frequency change) without wanting to change this configuration, the Trace.TestFocus
command can be used.

©1989-2024 Lauterbach General Commands Reference Guide T | 138

If the auto-configuration fails and you need technical support, please use the AutoFocus Diagnosis menu
to prepare all relevant information for the support person.

Help_

? Contents
E Index
33 Find...

B Tree

@ PowerView User's Guide

pf_r'] Processor Architecture Manual
im| Debugger User Guide
| Analyzer User's Guide

PowerProbe User's Guide

Stirnuli Generator User's Guide
aﬁaining Manuals L4
#3 Demo Scripts...

Welcome to TRACE32

& Setup PDF Viewer...

Lauterbach Homepage
Support 3 /5 System Information...

/A About TRACE32 £2 Update TRACE32...

/& Technical Support Contacts
B4 Contact Lauterbach

Program maintenance license into cable...

i AutoFocus Diagn

See also

1 AUTOFOCUS.FREQUENCY() 1 AUTOFOCUS.OK()
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 139

<trace>.Autolnit Automatic initialization

Format: <trace>.Autolnit [ON | OFF]

The <trace>.Init command will be executed automatically, when the user program is started (or stepped
through). This causes that

. Trace memory contents is erased and previous records are no longer visible.
. The trigger unit is set to its initial state.
J All used counters are initialized and all used flags are set to OFF.

In combination with the command <trace>.SelfArm the trace is able to generate continuous recording and
display like a trace snapshot.

See also

B <trace>.Init B |Probe.state B RunTime B RunTime.state
1 SNOOPer.STATE()

A ’'Release Information’ in’Legacy Release History’

<trace>.AutoStart Automatic start

Format: <trace>.AutoStart [ON | OFF]

The <trace>.AutoStart command will execute the <trace>.Init automatically, when a specified break event
is encountered and a user program is re-started with the command Go or Step.

See also

B <trace>.Arm

<trace>.BookMark Set a bookmark in trace listing

Format: <trace>.BookMark <string> [<time> | <value>] [[FILE]

Sets a trace bookmark in the trace listing. A small yellow rectangle next to the record number indicates a
trace bookmark.

©1989-2024 Lauterbach General Commands Reference Guide T | 140

The BookMark.List window provides an overview of all trace bookmarks. Clicking a yellow trace bookmark
takes you to the location of that trace bookmark. Additionally, you can use the Goto button in a <trace>.List
window to jump to a bookmarked trace record.

M B:BookMarkList =n| Wl <
(3% Dekete Al 52 store..) (52 Load... | [f Ceste.. |
| |bookmark |addr/record symbol/time |source Tine |remark |
i R:0000225C [s1eve’\8 C:hT32%demoarm'compi lerarmyarm |686. [This 15 a remark.
§'Loop™ R:000022AC |sieve’19 C:4T32 demo'arm' compileriarmarm [697. |Green = address bookmark
"BM1™ -194. 35.904s Analyzer Yellow = trace bookmark
A‘r | i b
Trace.List /Track I} Trace Goto EI@
E [GOt0... | e e > Record / Time / Bookmark
prd Se——1
r = r3,tl3x12CYC1e data symbol BM1 -
—0195| l b R:00002294 fetch CADDOOO4 ‘Marmle\armisi
bt 0x22AC - :
[000032 Teteh EToIIo0I Nharmieiarme [Previous | [Fist | [Trigger | [Zero |
anzahl++;
] [add ri,r1,#0xl [next | [et][Ref][Track |
—00019%1 R:000022B0 fetch EAFFFFED \harmle\arm\si
1
<string> User-defined bookmark name. An auto-incremented bookmark name can
be generated via the TRACE32 command line if a comma is entered
instead of a user-defined name.
<time> Creates a trace bookmark at a timestamp that is based on zero time. See
example 2 below.
<value> Creates a trace bookmark at the specified record number, e.g. -120000.
Example 1:

;create a trace bookmark named
n BM2 n

Trace.BookMark

Trace.List DEFault
BookMark.List

n BM2 n
-120000.

/Track

for the trace record

;1list the trace contents
;display all bookmarks in a list

-120000.

©1989-2024 Lauterbach

General Commands Reference Guide T |

141

Example 2 shows how to create a bookmark 0.300ms after the zero-time reference point. The optional

steps are included in this example to let you view on screen what happens behind the scenes.

;optional step: In the trace listing, the TIme.ZERO column is displayed

;as the first column, followed by the DEFault columns
Trace.List TIme.ZERO DEFault /Track

;optional step: go to the first trace record, i.e. the record with the

; lowest record number
Trace.GOTO Trace.FIRST ()

;set the zero-time reference point to the first trace record
ZERO.offset Trace.RECORD.TIME (Trace.FIRST())

Trace.BookMark "BM3" 0.300ms ;create a bookmark 0.300ms after the

;zero-time reference point

Trace.GOTO "BM3" ;optional step: got to the new bookmark
BookMark.List ;optional step: display all bookmarks
See also
B <trace>.List B <trace>.BookMarkToggle B <trace>.GOTO B BookMark
B BookMark.Create B BookMark.EditRemark B BookMark.List B |Probe.state
B RunTime B RunTime.state

A 'BookMark’ in ‘General Commands Reference Guide B’

©1989-2024 Lauterbach General Commands Reference Guide T

142

<trace>.BookMarkToggle Toggles a single trace bookmark

Format: <trace>.BookMarkToggle <string> [<time> | <value>] [/FILE]

Switches a single trace bookmark on or off. TRACE32 executes the same command when you right-click in
a <trace>.List window, and then choose Toggle Bookmark. The resulting bookmark names are auto-
incremented 1, 2, 3, etc. User-defined bookmark names can be created via the command line.

A small yellow rectangle next to the record number indicates a trace bookmark.

£ BTrace List TIme.Zero DEFault /Track EI@
e | Goto...|[#3Find... [Achart |[BlProfile || BMIPS |[% More |[X Less
recordjti.zero run |address cycle |data symbol t1.back |
mow r4,#0x1 -
-000097 1.089s R:00002244 fetch E1l YWharmleharmhsievet+0x1lC 0.100us =
mov ri4,r2 3
-000096 1.089s R:00002244 fetch E1l YWharmleharmhsievet+0x1C 0.100us -
mowv ril4,r2
-0000395 1.089s R:00002248 fetch EO Yharmleharmhsievet+t0x20 0.100us it
add r2,r2,r4
(o000l [osoe - R:00002248 Tetch E0s2200¢ Larmlciarn e . |
a r2,r2,r4 Trace
-000093 1.089s R:0000224C fetch 5 Yharmleharmhs
-000092 1.089s R:0000224C fetch Yharmleharmhs B Set Ref
Tdr r0,0x22C4 B P
-000091 1.089s D:000022C4 rd-Tong OD00GEA4 “armle'arm'
Tdr ro,0x22C4 ¢ o : I ¥ Toggle Bookmark } Trace bookmark for
| TR ' record -94.
&, View
& List
<string> User-defined bookmark name. An auto-incremented bookmark name can

be generated via the command line if a comma is entered instead of a
user-defined name.

<time> Creates a trace bookmark at a timestamp that is based on zero time.
<value> Creates a trace bookmark at the specified record number, e.g. -120000.
Example:

Trace.List TIme.Zero DEFault /Track ;list the trace contents

;let's toggle two trace bookmarks with user-defined names
Trace.BookMarkToggle "TStart" -Trace.Records() ;bookmark at first record

Trace.BookMarkToggle "TEnd" -1. ;bookmark at last record
BookMark.List ;display all bookmarks in a list

See also

B <trace>.BookMark B BookMark B BookMark.List B BookMark.Toggle

A 'BookMark’ in ‘General Commands Reference Guide B’

©1989-2024 Lauterbach General Commands Reference Guide T | 143

<trace>.Chart

Display trace contents graphically

[Parameters] [Options] [Examples]

The <trace>.Chart command group allows to display the analyzed trace information graphically. Examples

are:
J Function run-time (Trace.Chart.Func)
. Time chart (Trace.Chart.sYmbol)

J Task run-time (Trace.Chart.TASK)

J Variable contents (Trace.Chart.VarState)

Parameters

This section describes the optional <trace_area> parameters of the <trace>.Chart command group.

<record_range>

Defines which part of the trace buffer is displayed.
See example.

<record> Defines which trace record is centered on the x-axis when the window is
opened. Records at the beginning or end of the x-axis are not centered.
See example.

<time> Defines which timestamp is centered on the x-axis when the window is

opened. Timestamps at the beginning or end of the x-axis are not
centered.

NOTE: Only zero-time timestamps can be used as <time> parameters.
You can display the zero-time timestamps in a Trace window by adding
the TimeZero option to Trace.Chart.* or by adding the Time.Zero column

to Trace.List.

See examples.

<time_range>

Defines which timestamp is displayed on left of the x-axis when the
window is opened.

NOTE: Only zero-time timestamps can be used as <time_range>
parameters.

You can display the zero-time timestamps in a Trace window by adding
the TimeZero option to Trace.Chart.* or by adding the TIme.Zero column
to Trace.List.

See example.

©1989-2024 Lauterbach

General Commands Reference Guide T | 144

<timescale>

The <timescale> parameter defines the display scaling as time per

character.

It is useful for printing operations and allows to print out any timing chart in a

fixed scale on multiple pages.

. See example.

o For the units of measurement, see “Parameter Types” in Power-
View User’s Guide, page 41 (ide_user.pdf).

Rule of thumb: The smaller the <timescale> value, the higher the resolution

and the wider the chart in the data area of a <trace>.Chart.* window.

<trace_bookmark>

Defines which bookmark position is centered on the x-axis when the
window is opened. Bookmark positions at the beginning or end of the x-
axis are not centered.

NOTE: You can only use the names of trace bookmarks, which are
created with the <trace>.BookMark command.

See example.

Options

This section describes the options of the <trace>.Chart command group. Not all options are supported by

all <trace>.Chart commands.

Track

The cursor in the <trace>.Chart window follows the cursor movement in
other trace windows. Default is a time tracking. If no time information is
available tracking to record number is performed.

The zoom factor of the <trace>.Chart window is retained, even if the
trace content changes.

ZoomTrack

Same as option Track. If the tracking in performed with another
<trace>.Chart window the same zoom factor is used.

Sort [<sort_visible>]
[<sort_core>]

Specify sorting criterion for analyzed items. For almost all commands the
analyzed items are displayed in the order they are recorded by default.

[<sort>]
Details on the sorting criterion can be found at the description of the
command Trace.STATistic.Sort.

INCremental Intermediate results are displayed while TRACE32 PowerView is
processing the trace analysis (default).

FULL TRACE32 PowerView displays the result when the processing is done.

©1989-2024 Lauterbach

General Commands Reference Guide T | 145

FILE

Use the trace contents loaded with the command <trace>.FILE.

TASK <task_magic>,

Operating system task in OS-aware debugging and tracing.

etc.
See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Trace information is analyzed independently for each task. The time chart
displays these individual results.

MergeTASK Trace information is analyzed independently for each task. The time chart

summarizes these results to a single result.

Option for SMP multicore tracing

CORE <n> Time chart is only displayed for the specified core.

SplitCORE Trace information is analyzed independently for each core. The time
chart displays these individual results.

MergeCORE Trace information is analyzed independently for each core. The time
chart summarizes these results to a single result.

JoinCORE Core information is ignored for the time chart.

RecScale Display trace in fixed record raster. This is the default.

TimeScale Display trace as true time display, time relative to the trigger point
(respectively the last record in the trace).

TimeZero Display trace as true time display, time relative to zero point. For more
information about the zero point refer to ZERO.

TimeREF Display trace as true time display, time relative to the reference point. For
more information about the reference point refer to <trace>.REF.

FlowTrace Trace works as a program flow Trace. This option is usually not required.

BusTrace Trace works as a bus trace. This option is usually not required.

©1989-2024 Lauterbach

General Commands Reference Guide T | 146

INLINE Treat inline functions as separate functions (default).
NoINLINE Discard inline function from the results.

LABEL Include all symbols in the results.

NoLABEL Only include functions in the results.

Filter <item> Filter the described item.

Option for ARTIAP trace decoding

ARTIAP Option for AUTOSAR Real-Time Interface on Adaptive Platform trace
decoding. Decode MIPI STP (System Trace Protocol) format trace which
is defined in ARTI Trace Driver on AUTOSAR Adaptive Platform.

©1989-2024 Lauterbach General Commands Reference Guide T | 147

Drag and Drop

A Trace.Chart window may contain a Drag & Drop area which is marked by a straight line.

__POL k¥
_restgpr_14_14¥
_restgpr_15_14¥

¥y B:Trace.Chart.sYmbol EI@
[WSetup...]@iGroups... || =8 config...][1Y Goto... || #iFind... [4»In |[p4out]MMFul]
-4,365230000s -4.365225
agdress M | I i
unc4 0k [| -~
Drag & Drop Fs‘iegeo j j ' o
area sing - -
(other) ¥ ’
_restgpr_25_14¥) ")
_restgpr_26_1Hx _ | | _
_restgpr_27_1 iy n |

|« 59

Items of interest can be dragged to the appropriate position in the Drag & Drop area with the left mouse

button.

The sort order of all items outside of the Drag & Drop area remains unchanged.

¥y B:Trace.Chart.sYmbol

=N Hoh/

[WSetup...]@iGroups... || =8 config...][1Y Goto... || #iFind... [4»In |[p4out]MMFull]

addressy|

Funcd0qy [l]

siniy

sieve

(other) ¥
_restgpr_25_14¥ 11
_restgpr_26_1H¥ 11

_restgpr_27_14¥ o E

Items can be removed from the Drag & Drop area by dropping them to the item description area.

#u] B:Trace.Chart.sYmbol

=N Eoh/

[WSetup...]@iGroups... || =8 Config...][13 Goto... || #iFind... [4»1n |[p4out]MMFull]

addressy|

Item descriRtion area

_restgpr_25_1
_restgpr_26_1
_restgpr_27_14¥
_restgpr_14_14

©1989-2024 Lauterbach

General Commands Reference Guide T

148

Example for <trace_bookmark>

[Parameter Descr.]

Trace.BookMark "begin" 10.005s
Trace.BookMark "end" 10.010s

Trace.Chart.sYmbol "begin" /Track /TimeZERO

Trace.GOTO "begin" ;highlight the bookmark in the chart

BookMark.List ;optional: ;display all bookmarks in a list
e B:Trace.Chart.sYmbol | "begin” || 5500.ns /Track /TimeZero EI@ M E:BookMark.List EI@
T [1if Goups.. || = Config... | Goto...][Goto... || #3Find... | «O» In |[+0e0ut|[E2 Full (3% Dekete Al (B2 Store...|[52 Load... [IF Qeste...|
A -} 10.004000000s 10.005000000s 10.0060000 bookmark addr/record symbol/time |
s | | | i "begin’} 10. 00500000 -
Cotherygs — | S . "end” 10.01500000 ~
funczbgy ¢ 1 Y j] I r
marnge | W . .1i.lLH.L=..J.::#L...H..=”'"
func2egy) w0 TR | -
d_from_thumbgsl | [0 O . AN o])10)R]
4 (0 4 I 2

A To display the zero-time timestamps on the x-axis, the TimeZero option is used.

Example for <record>

[Parameter Descr.]

;print distribution of data values written to flags[3], with the record
;-1950. centered on the x-axis of the window
Trace.Chart.DistriB -1950. Data.L /Filter Address Var.RANGE (flags[3]) \

/RecScale

¥ B:Trace.Chart.DistriB I -1950. I Data.L /Filter Address Var.RANGE(flags[3]) /RecScale =n| Wl <

[& setup... | ii Goups... || 22 Gonfig... || Goto...][Goto peteaz ... |[40 In |[»0e Out|[&3 Full
2050 -2025% -2000 -1975 -1950 -1925% -1900 -1875%
class i) 1 1 1 1 1 1 1
d. =010 N
d.d=0x0g -
J(il » 4 3

A To display the record numbers on the x-axis, the RecScale option is used.

NOTE: The backslash \ can be used as a line continuation character in PRACTICE
script files (*.cmm). No white space permitted after the backslash.

©1989-2024 Lauterbach General Commands Reference Guide T | 149

Example for <record_range>
[Parameter Descr.]

;print distribution of data values written to flags[3] for the

;record range (-2000.)--(-1000.)

Trace.Chart.DistriB (-2000.)--(-1000.) Data.L /Filter Address \

Var .RANGE (flags[3]) /RecScale
¥ B:Trace.Chart.DistriB I (-2000.)--(-1000.) I Data.L /Filter Address Var.RANGE(flags[3]) /RecScale | = || & |25
[& seup... || 1 Gougs.. | =& G J|(% GOL0...) (2 GOL0...)[FAFind...][40 In | 0+ 0ut)[EE Full

C_Iassol—IZDDD —Il?SD —1I500 —ZI.IZSD —Z:.DDD

Cotherowe — —

d.l=Odimmm . S— . mm
d-1=0x0<J._.............'

4 (0 4 3
A To display the record numbers on the x-axis, the RecScale option is used.
Examples for <time>
[Parameter Descr.]
Example 1:
;open the chart window with the zero-time timestamp 10.009s and set the
(optional)

;<timescale> resolution to 10us
Trace.Chart . TREE 10.009s 10us /Track /TimeZero

Trace.GOTO 10.009s ;highlight the timestamp in the chart

(=[O el

ET B'.'.Trace.Chart.TREEI 10.0095' 10us /Track /TimeZero
[& setup... || §if Goups.. || &8 Gonfig... | Goto...|[A Goto... || #3Find... |[{0 In | »0e 0ut] [© Full
10.010s 10.011s

10.009s

10.007s 10.008s

A To display the zero-time timestamps on the x-axis, the TimeZero option is used.

General Commands Reference Guide T | 150

©1989-2024 Lauterbach

Example 2: This PRACTICE script shows how to open the Trace.Chart.sYmbol window with a <time>
parameter that is located 50 microseconds after the 4th occurrence of the HLL symbol sieve.

;find the first occurrence of the HLL symbol 'sieve'
Trace.Find , sYmbol sieve

RePeaT 3. ;find the next three occurrences of 'sieve'
Trace.Find

IF FOUND () ==TRUE () ;1f the 4th occurrences of 'sieve' has been found

(
;get the timestamp of the 4th occurrence and add an offset of 50.us

&time=TRACK.TIME () +50.us

;open the chart window with the calculated timestamp and set the
;<timescale> resolution to 9.5us
Trace.Chart.sYmbol &time 9.5us /Address encode]| |subst]||sieve \

/Track /TimeZero

Trace.GOTO &time ;highlight the timestamp in the chart

¥ B:Trace.Chart.sYmbol I 451019459995 I 9.5us /Address encode|[subst||sieve /Track /TimeZero =n| Wl <

[& sep... || it Gougs.. [58 Qg || (¥ GOto...)[(2 Goto...)[FAFind... [40 In) 0¢0ut)[EE Full
4.508s 4.508s 4.510s 4.511s 4.512s 4.

address i¥
(other) ¥
encodey
substh
sievell

A Location of the calculated timestamp

Example for <time_range>

[Parameter Descr.]

Trace.Chart.sYmbol (10.005s)--(10.010s) 10.us /Track /TimeZero
¥ B:Trace.Chart.sYmbol I (10.0055)--(10.0105) I 10.us /Track /TimeZero =n| Wl <
[Bsetup... it omne || 22 Gonfig.. | A Goto...| [Goto... || #3Find... |[40 In |[»00ut| [&3 Full
10.005s 10.006s 10.007s 10.008s 10.009s 10.010s
address T 1 1 1 1 1 |
(other) & ~
encode i
subst s mm i | | m
main [y o

©1989-2024 Lauterbach General Commands Reference Guide T | 151

Examples for <timescale>

[Parameter Descr.]
Example 1: Using WinPrint, you can print the window content without actually opening the window.

PRinTer.select WIN ;select the printer to which you want to print

;print distribution of data values written to flags[3] for the
;record range (-2000.)--(-1000.), use resolution 10.us per pixel
WinPrint.Trace.Chart.DistriB (-2000.)--(-1000.) 10.us Data.L /Filter
Address Var.RANGE (flags[3])

Example 2: Using the WinPOS command, you can assign a name to a window. Then you open the window
and print it with WinPRT <name>. This example illustrates three different <timescale> resolutions.

;the following resolutions are used:
; [A] 5.us per pixel, [B] 1l.us per pixel, [C] 0.5us per pixel

PRinTer.select WIN ;select the printer to which you want to print

WinPOS , , , , , , WO
Trace.Chart.DistriB (-2000.)--(-1000.) 5.us Data.L /Filter Address \
Var .RANGE (flags[31])

WinPOS , , , , , , Wl
Trace.Chart.DistriB (-2000.)--(-1000.) 1.us Data.L /Filter Address \
Var .RANGE (flags[31])

WinPOS , , , , , , W2
Trace.Chart.DistriB (-2000.)--(-1000.) O0.5us Data.L /Filter Address \
Var .RANGE (flags[31])

WinPRT WO ;print the window named WO

¥ B:Trace.Chart.DistriB (-2000.)--(-1000.) | 5.us | Data.L /Filter Address Var.RANGE(flags3]) | = || =& |[x=34]

[Zsetup... || 1if Gous... || =8 Gonfig... |(R Goto... | A Goto...|[#3Find... |[<0 In |[+04 0ut|[E3 Full
0.000us 500.000us 1.000ms 1.500ms 2.000ms
classqy| | | | | | |

(otht?j}

d. T=0x0 <m0
d. T=0x1GH B B 0| L
4 (o4 1 [3

¥ B:Trace.Chart.DistriB (-2000.)--(-1000.) | L.us | Data.L /Filter Address Var.RANGE(flags3]) | = || =& |[x=3a]

[B setup... || 1if Gous... || =8 Config... | Goto... | A Goto...|[#3Find... |[0 In |[+04 0ut|[€3 Full

-200.000us -100.000us 0.000us 100.000us 200.000us 300.
classhy 1 1 1 I I T
Cotheryw| "
4 (o4 2

¥ BuTrace Chart.DistriB (-2000)--(-1000.) | 0.5us | Data.L /Filter Address Var.RANGE(flags3]) | = | = |[=54]

[Zsetup... || 1if Gous... || =8 Gonfig... |(R Goto... | (A Goto...|[#3Find... |[0 In |[+04 0ut|[£ Full

-200.000us -150.000us -100.000us -50.000us 0.000us
class | 1 1 1 1 1 |
Cotheryay —— —— — —
d.1=0x00/mm— I N EE—
d.1=0x1f =~~~ .- @ 0 0 .. 2000 - X 7
4 (ko4 2

©1989-2024 Lauterbach General Commands Reference Guide T | 152

See also

<trace>.Chart.Address
<trace>.Chart.ChildTREE
<trace>.Chart.DistriB

<trace>.Chart. GROUP
<trace>.Chart.INTERRUPTTREE
<trace>.Chart. MODULE
<trace>.Chart.PAddress
<trace>.Chart.PsYmbol
<trace>.Chart.sYmbol
<trace>.Chart. TASKFunc
<trace>.Chart. TASKINTR
<trace>.Chart. TASKORINTERRUPT
<trace>.Chart. TASKSRV
<trace>.Chart. TASKVSINTERRUPT
<trace>.Chart. TREE
<trace>.Chart.VarState
<trace>.PROfileSTATistic
IProbe.state

RunTime.state

A ’Release Information’ in’Legacy Release History’

<trace>.Chart.Address

<trace>.Chart.AddressGROUP
<trace>.Chart.DatasYmbol
<trace>.Chart.Func
<trace>.Chart.INTERRUPT
<trace>.Chart.Line
<trace>.Chart.Nesting
<trace>.Chart. PROGRAM
<trace>.Chart. RUNNABLE
<trace>.Chart. TASK
<trace>.Chart. TASKINFO
<trace>.Chart. TASKKernel
<trace>.Chart. TASKORINTRState
<trace>.Chart. TASKState
<trace>.Chart. TASKVSINTR
<trace>.Chart.Var
<trace>.PROfileChart
<trace>.STATistic

RunTime

Time between program events as a chart

<option>: FILE

Format: <trace>.Chart.Address <address1> [<address2> ...] [[<option>]

FlowTrace | BusTrace

TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Address <address | range>

Displays the time interval between up to 8 program events as a chart. The <trace>.Chart.Address
command is the counterpart of the <trace>.STATistic.Address command.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

Example:

Trace.Chart.Address sieve func2

©1989-2024 Lauterbach General Commands Reference Guide T | 153

¥4 BiTrace.Chart. Address sieve func2

2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full

-12.000ms
address [1 1 1 1 1 1

-10.000ms -8.000ms -6 .000ms -4.000ms -2.000ms 0.0q

H O H H H H H H H H H H H H H OH O H H Ho

See also

B <trace>.Chart

©1989-2024 Lauterbach General Commands Reference Guide T

154

<trace>.Chart.AddressGROUP Address group time chart

Format: <trace>.Chart.AddressGROUP [<list_item> ...] [[<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
Track | ZomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Address <item> | <range>
INCremental | FULL
Sort <item>

The time for accessed address groups is displayed as time chart (flat statistic). The results include groups
for both program and data addresses.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
) BuTrace.Chart. AddressGroup EI@
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full

403.200ms -403.000ms -402.800ms -402.600ms -402.400ms -402.200ms -402.000ms -401.300ms -401.600ms

address ¥
th EI": th - - " - - o . o - 3 1 3
"DATAL™ | W5 e) i) I o | [T TR .) .l [.
“DATAZ" QR g rm . LLLLIVCLT] i 1111 WA (N I I THm, VRS (1 R
€0 > € >
Example:

GROUP.Create "DATAl" 0x6800--0x68FF /RED

GROUP.Create "DATA2" 0x6700--0x67FF /GREEN

Trace.Chart .AddressGROUP

See also
B <trace>.Chart W <trace>.Chart. GROUP

©1989-2024 Lauterbach General Commands Reference Guide T | 155

<trace>.Chart.ChildTREE Display callee context of a function as chart

Format:

<option>:

<trace>.Chart.CTREE <address> [[<option>]

FILE

FlowTrace | BusTrace

TASK

Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

The call tree of the selected function is displayed graphically as a chart with the time spent in different
functions. The <trace>.Chart.ChildTREE command is the counterpart of the

<trace>.STATistic.ChildTREE command.

<option>

Example:

Refer to <trace>.Chart for a description of the <trace>.Chart options.

Trace.Chart.ChildTREE main

=% B:Trace.Chart.ChildTREE main

(o8)

2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
.200ms -354.000ms -353.800ms -353.600ms -353.400ms -353.200ms -353.000ms

=Imain

raqgg<¢,

= func2
L— funcl
func2a
funczb
func2c
funcad
init_Tinked_list
func4
func3

func_sin 4 —)

<m » < >

n-
E
.

= |
N

See also

B <trace>.Chart

B CTS.Chart.ChildTREE

©1989-2024 Lauterbach

General Commands Reference Guide T | 156

<trace>.Chart.DatasYmbol

Analyze pointer contents graphically

Format: <trace>.Chart.DatasYmbol [<frace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTrack | MergeTASK
LABEL | NoLABEL | INLINE | NoINLINE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

The command Trace.Chart.DatasYmbol analyzes the contents of a pointer graphically.

" BuTrace.Chart.Datas¥mbol EI@
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
.500us -84.000us -83.500us -83.000us -82.500us -82.000us -81.500us
address {J L o .
Gthendll =~ - . O W W - W .y
r M
_adddt3 | Z S R R T [A O R I
Floor gy | . S mE . == mm S
asti/mm - mm mm C
pLinkedListBuf k| HE . o | | . .
__divsi3Ey . - - - .
| _aeabi_dadd_from_thumb gy) - o o
vunion i . o | L |
Monitor_Handlerds| = = o v
€0 > € >
<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

Examples:

; analyze the contents of the pointer vpchar graphically
Trace.Chart.DatasYmbol /Filter Address vpchar

©1989-2024 Lauterbach General Commands Reference Guide T

157

A more effective usage of the trace memory is possible, if only write accesses to the pointer are recorded to
the trace.

set a filter to record only write cycles to the pointer vpchar to the

; trace
Var .Break.Set vpchar /Write /TraceEnable

; analyze the contents of the pointer
Trace.Chart.DatasYmbol

; analyze the contents of the pointer, sort the result by symbol names
Trace.Chart.DatasYmbol /Sort sYmbol

See also
B <trace>.Chart

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 158

<trace>.Chart.DistriB Distribution display graphically

Format:

<trace_area>:

<option>:

<trace>.Chart.DistriB [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Address <address | range>

The distribution of any trace data is displayed if <item> is specified. Without argument the distribution of the
addresses is displayed symbolically.

<trace_area>

For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
¥l BurTrace. Chart.DistriB Data /Filter Address Var.RANGE(AVG_QADC) =] -E]]
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | (3 Goto... | #3Find... | «In |»0«Out | ¥ Full
-800.000ms -600.000ms -400.000ms -200.000ms 0.
class Ky | | | L
(other) i

data=0x16BEH W
data=0x16974 W

data=0x1699 kM
data=0x169ARH

-
data=0x1698 Ky HE
data=0x1696 <y |

If no selective tracing is done, use the option /Filter to filter out the <item> of interest.

7

Display distribution of data value for flags[3]

Trace.Chart.DistriB Data.L /Filter Address Var.RANGE (flags[31])

’

Display the distribution of data value written for flags[3] for the

; record range (-2000.)--(-1000.)
Trace.Chart.DistriB (-2000.)--(-1000.) Data.L /Filter Address \

Var .RANGE (flags[3])

©1989-2024 Lauterbach

General Commands Reference Guide T | 159

See also

B <trace>.Chart

©1989-2024 Lauterbach General Commands Reference Guide T | 160

<trace>.Chart.Func Function activity chart

Format: <trace>.Chart.Func [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK
INTRROOT | INTRTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

The time spent in different functions is displayed graphically. The measurement is the same as for the
command <trace>.STATistic.Func.

=% BuTrace.Chart.Func EI@
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full

3.000ms -12.500ms -12.000ms -11.500ms -11.000ms -10.500ms
Fangeur | 1 1
FuncZcq|m —]]
Croot) o ——r— — e e
Funcadgg & 0| || L L TR e e L e
init_linked_listgsl mm| | || | | | || om0 | |0 om0) [mm]l]
funcage W (W N W (e B e
i L= 17T | | I | (1N I AT (NI R T
| |
1 1

£l

funcsiy 1
funceiy 1
func?il
funcaiy .|
funcaiyl 0 . . |
funcapgy @ o oW om0 oo o o e
funciogyy = 0 0= = = I
funcagy 0 LB b o o e e e]
funcl3gy L (O % | | P Y A A | 1 PO N A A |1 S B v

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

See also
B <trace>.Chart B CTS.Chart.Func

©1989-2024 Lauterbach General Commands Reference Guide T | 161

<trace>.Chart.GROUP

Group activity chart

Format:

<trace_area>:

<option>:

<trace>.Chart.GROUP [<trace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Address <address | range>

Displays a GROUP time chart (flat statistic). The results only include groups within the program range.
Groups for data addresses are not included.

| B:Trace. Chart.GROUP ==
|WSetup... |[i Groups... || a8 Config...|[I} Goto... || F3Find... || Ak In || &) Out|||0|FuII|
s -2.274200000s -2.27410)
address iy |
(other) iy 1n1i ~ EImnm

111 b
"IPEG" | [- .
"INPUT"[W -

4 (L 4

<trace_area>

<option>

Example:

GROUP.Create
GROUP.Create
Go

Break

"INPUT"

"JPEG"

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

\jguant2 \jguantl \jidctred \jdinput /AQUA

\Jjdapimin \jdcolor \jddctmgr \jdcoefct /NAVY

Trace.Chart .GROUP

See also

B <trace>.Chart
B <trace>.Chart

B <trace>.Chart.AddressGROUP
B GROUPCreate

©1989-2024 Lauterbach

General Commands Reference Guide T | 162

A ’'Release Information’ in’Legacy Release History’

<trace>.Chart.INTERRUPT Display interrupt chart
Format: <trace>.Chart.INTERRUPT [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |

<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Sort <item>

The time spent in different interrupts is displayed graphically.

<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
See also
B <trace>.Chart B CTS.Chart.INTERRUPT

©1989-2024 Lauterbach General Commands Reference Guide T | 163

<trace>.Chart.INTERRUPTTREE Display interrupt nesting

Format: <trace>.Chart.INTERRUPTTREE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Sort <item>

Displays the interrupt nesting as time chart.

<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
See also
B <trace>.Chart B CTS.Chart.INTERRUPTTREE

©1989-2024 Lauterbach General Commands Reference Guide T | 164

<trace>.Chart.Line Graphical HLL lines analysis

Format: <trace>.Chart.Line [<frace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

The time spent in different HLL lines is analyzed graphically.

<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
) BuTrace.Chart.Line EI@
& ... | ii Gous... | 5 Qorfip.. || Goto... | Goto...|| #3Find... || O» In || +0¢ Out || EX Full
300ms -10.250ms -10.200ms -10.150ms -10.100ms -10.050ms
address iy 1 1 1 . I
other) 4 MEmEIIIEEEIEEIEEEEEEEEEEEE § ® = ®§ ®§ 2 =1 ®m ~
. \srchsieve.ch212--212 G I . [VIS N B | [I B I B B | o . .
b srohsieve. o 210--2115 H e 1Ini I I IR O R I I
. \srchsieve.ch213--2135 R I
. \srchsieve. ch\715--715§f |
. \srchsieve.ch214--2165] | -
. \srchsieve.ch\217--2208] | -
. \srchsieve. c221--221 4 |
. \srchsieve.c\222--223 4 LI
h.\srchsieve.ch\222--223(4 | || | . . e T T P X O | N 4
<m > < >

See also

B <trace>.Chart

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 165

<trace>.Chart. MODULE

Code execution brocken down by module as chart

Format:

<trace_area>:

<option>:

<trace>.Chart.MODULE [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> | <time_range>

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Address <address | range>

Displays the code execution brocken down by symbol module as chart. The list of loaded modules can be
displayed with sYmbol.List.Module.

<trace_area>

<option>

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

e Bi:Trace.Chart. MODULE

(o8)

2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
1.008000000s
address iy

-1.007000000s -1.006000000s -1.00500
1 1 1 1 I

headie)
mems et 4§ .
imit/maingy 0
setupHy
printk i
printk_safely
vsprintfiy
copy_templateqy

EEEIENNNER e N

sched_clocki| = = = 1

semaphoreiy|
memchr 4y

<m » < >

Ll

. W w0 B ImERE e
e e]

L I S A B o O A B A e R R R REEE R RN R

- .. uEmmEmnmm v

See also

B <trace>.Chart

©1989-2024 Lauterbach

General Commands Reference Guide T | 166

<trace>.Chart.Nesting Show function nesting at cursor position

Format: <trace>.Chart.Nesting [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK
IncludeINTR | INTRROOT
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

Shows the function call stack as a time chart.

<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
See also
B <trace>.Chart B CTS.Chart.Nesting

©1989-2024 Lauterbach General Commands Reference Guide T

167

<trace>.Chart.PAddress Which instructions accessed data address

Format: <trace>.Chart.PAddress /Filter Address [<frace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

The command provides a graphical chart of the instructions that accessed data addresses. You can select a
specific address using the /Filter option.

<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
Example:

Trace.Chart.PAddress /Filter Address mstaticl

e B:Trace.Chart.PAddress /Filter Address mstaticl EI@

2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
992.000ms -991.000ms -990. 000ms -989. 000ms -988. 000ms -987.000ms

addressfy| | | | | | | |
(other) k¥

mair+0x2AM |
func2+0x2CHH| | |
func2+0x320 | |

|

1

.

.

RN

func2a+0x8 iy s
func2b+0x8 I O D O T O I IO O N A T O I

1011

func2c+0x84 W N
1.

func2d+0x8G:/m W N BN BN BN N BN
mair+Ox25EM | | 1 1 L L
<l > < >

See also

B <trace>.Chart

©1989-2024 Lauterbach General Commands Reference Guide T | 168

<trace>.Chart. PROGRAM Code execution broken down by program

Format:

<trace_area>:

<option>:

<trace>.Chart.PROGRAM [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Address <address | range>

Displays the code execution brocken down by loaded object files (programs) as chart. The loaded programs
can be displayed with the command sYmbol.Browse *.

<trace_area>

<option>

See also

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

B <trace>.Chart

©1989-2024 Lauterbach

General Commands Reference Guide T | 169

<trace>.Chart.PsYmbol

Shows which functions accessed data address

Format:

<trace_area>:

<option>:

<trace>.Chart.PsYmbol [<trace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Address <address | range>

The command provides a graphical chart of the functions that accessed the data addresses. You can select
a specific address using the /Filter option.

©1989-2024 Lauterbach

General Commands Reference Guide T

170

Examples:

; display a chart of all functions that accessed the variable mstaticl
Trace.Chart.PsYmbol /Filter sYmbol mstaticl

display a chart of all functions that performed a write access to the

; variable mstaticl
Trace.Chart.PsYmbol /Filter sYmbol mstaticl CYcle Write

I

e B:Trace.Chart.Ps¥Ymbol /Filter Address mstaticl EI@
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
992.000ms -991.000ms -990. 000ms -989. 000ms -988. 000ms -987.000ms
address 4 ! ! ! ! I I I
Cother) T o .
maingy 11 b oo
func2i@l |11 T
func2a@ | 1 1 01 0
func2bil 1L Lol
func2ciy) . B B B B B N I |
<m > < >
e Bi:Trace.Chart.Ps¥mbaol /Filter Address mstatic1 CYcle Write EI@

2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-768.000ms -767.000ms -766.000ms -765.000ms -764.000ms -763.000ms -762.000ms -761.0

address | | | | ! !
Gotherd W
matnfl Lo e e oo e e e [T I O IO |
< m » < >
See also
B <trace>.Chart
General Commands Reference Guide T | 171

©1989-2024 Lauterbach

<trace>.Chart. RUNNABLE Runnable activity chart

Format: <trace>.Chart.RUNNABLE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task>
CORE <item> | SplitCORE | MergeCORE
INTRROOT | INTRTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

The time spent in different AUTOSAR Runnables is displayed graphically. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please
refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

See also
W <trace>.Chart B CTS.Chart. RUNNABLE B TASK.Create. RUNNABLE B TASK List RUNNABLES

A ’Runnable Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 172

<trace>.Chart.sYmbol Symbol analysis

[Examples]

Format:

<trace_area>:

<option>:

<trace>.Chart.sYmbol [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
LABEL | NoLABEL

INLINE | NoINLINE

Track

RecScale | TimeScale | TimeZero | TimeREF
Address <function1>ll<function2> ...
Address <function1>--<function2>

Filter Address <function1>ll<function2> ...
Filter Address <function1>--<function2>

The distribution of program execution time at different symbols is displayed as a time chart. This can be used
to get a quick overview about the functions sampled in the trace buffer.

<trace_area>

<option>

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

©1989-2024 Lauterbach

' BuTrace.Chart.s¥mbaol EI@
(& setup... || fitGroups.. |[38 Config...|| A Goto... | 3 Goto... || FiFind... || O In |[»0«Out [Ful|
0000s -4, 886760000s -4, 886750000s -4, 886740000s
addressy| | | | |
Cotheryl — .
maindy -l % &
func2ip| ~HE 1 BN .
funclyl == & HSESE- & .
func2awy . <SS
funczbly . S
func2eiy) = R N
4 [l r o4 L
General Commands Reference Guide T | 173

Example:

Go
Break
Trace.STATistic.Sort sYmbol

; draw time chart for specified functions,
; functions to (other)

Trace.Chart.sYmbol /Address func2||funcl0| |sfpDoubleNormalize

; sort the result alphabetically

assign time for all other

i BuTrace.Chart.sYmbol /Address func2|[funcl0||sfpDoubleNormalize

4 [m]r 4

[E=5EeR 5
Setup... || 17f Groups... || 28 Config... Goto... Goto... || F3Find... || OrIn || 04 Out || EH Full
& i n 0 o
-4.792000000s -4.791800000s -4.791600000s
address ¥
(owgher%"- I] 1]]] E—] 1] —)] -
unc?2 4y
sfpDoubleNormalizeis| W o i B B |
Funcl0kH)

I -
3

; draw time chart for specified functions
; for all other functions to (other)
Trace.Chart.sYmbol /Address func2--funclO

The GROUP command provides more features to structure your time chart.

(address range), assign time

©1989-2024 Lauterbach

General Commands Reference Guide T | 174

filter specified functions out of the address stream
; and draw time chart for filtered trace information
Trace.Chart.sYmbol /Filter Address main| |func2||£funclO| |func26

I

init
main main main
func2 func2
func10 func10
. func26
Recording (filtered functions are displayed in black)
(other)
main main main
func2
func10
func26
Analysis result
¥y B:Trace.Chart.sYmbol /Filter Address main||[func2|[funcl0||func2s o ==
(& setup... || jifGroups... [38 Config...][A Goto... | 3 Goto... |[#4Find... |[@ 1n |[d«out)[@ Full|
L — — e L . T
(other) oIl — f ' ' =
_ -
| | .| .| . | .
LI L] i] o] B | L 1
.. @ e - :

See also
B <trace>.Chart W <trace>.STATistic.sYmbol B CTS.Chart.sYmbol

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 175

<trace>.Chart.TASK Task activity chart
Format: <trace>.Chart.TASK [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |

<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
CORE <number> | SplitCORE | MergeCORE | JoinCORE
INCremental | FULL
Filter <item>
Sort <item>
ARTIAP

Displays the time spent in different tasks. This feature is only available if TRACE32 has been set for OS-
aware debugging.

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

e B:Trace.Chart. TASK EI@

J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | (3 Goto... | #3Find... | «In |»0«Out | & Full
1.500s -1.000s -500.000ms 0.
rangeiy g
NO_TASK 4| I I D) . | . .]
Task24¥||] | .]
Task64y|| . .)) l.
Task34¥||))
Task4d | . | | | . .
Task5 4y . .) l. .))) | | .])) |
Taskl iy |)) .|

See also

B <trace>.Chart B CTS.Chart. TASK

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 176

<trace>.Chart. TASKFunc Task related function run-time analysis (legacy)

Format:

<option>:

<trace>.Chart.TASKFunc [<record_range>] [<scale>] [I<option>] (legacy)

FILE

FlowTrace | BusTrace

Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF

CORE <number> | SplitCORE | MergeCORE | JoinCORE
INCremental | FULL

Filter <item>

Sort <item>

For details, refer to <trace>.Chart.Func.

See also

B <trace>.Chart

<trace>.Chart.TASKINFO Context ID special messages

Format:

<trace_area>:

<option>:

<trace>.Chart.TASKINFO [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

Track | ZoomTrack

CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Displays a time chart of special messages written to the Context ID register for ETM trace. The range of
special values has to be reserved with the ETM.ReserveContextID command. These special values are
then not interpreted for task switch or memory space switch detection.

©1989-2024 Lauterbach

General Commands Reference Guide T | 177

This can be used for cores without data trace to pass data by the target application to the trace tool by writing
to the ContextID register.

See also

B <trace>.Chart

B CTS.Chart. TASKINFO

<trace>.Chart.TASKINTR Display ISR2 time chart (ORTI)

Format:

<trace_area>:

<option>:

<trace>.Chart.TASKINTR [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

Track | ZoomTrack

CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Displays an ORTI based ISR2 time chart. This feature can only be used if the ISR2 can be traced based on
the information provided by the ORTI file. Please refer to “OS Awareness Manual OSEK/ORTI”
(rtos_orti.pdf) for more information.

e B:Trace.Chart. TASKINTR

(o8)

range

B senp... || 38 @nfig... | Goto...| #3Find... |l Chart || 0 In || v0« Out | &3 Ful
440000005 -1.043000000s -1.042000000s -1.041000000s

Cunknown)

(unknown)
CounterIsr_Corel
ignallsr_OsCore_Corel
(unknown)
CounterIsr_Core2

ignallsr_OsCore_Core2

CounterIsr_CoreQ:08| 1 |
INVALTD_TSR : O 5| ne

INVALID_ TSR : L 5| —

INVALID_ TSR : 2 & —

<trace_area>

<option>

See also

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

B <trace>.Chart

B CTS.Chart. TASKINTR

©1989-2024 Lauterbach

General Commands Reference Guide T | 178

A ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
A ’Trace Features’ in’OS Awareness Manual OSEK/ORTY’

<trace>.Chart.TASKKernel Task run-time chart with kernel markers (flat)

Format:

<trace_area>:

<option>:

<trace>.Chart.TASKKernel [<irace_area>] [I<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Time chart for results of Trace.STATistic. TASKKernel. This feature is only available if TRACE32 has been
set for OS-aware debugging.

<trace_area>

<option>

See also

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

B <trace>.Chart

B CTS.Chart. TASKKernel

©1989-2024 Lauterbach

General Commands Reference Guide T | 179

<trace>.Chart. TASKORINTERRUPT

Task and interrupt activity chart

Format:

<trace_area>:

<option>:

<trace>.Chart. TASKORINTERRUPT [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Displays the time spent in different tasks and interrupts as time chart. This feature is only available if
TRACE32 has been set for OS-aware debugging.

<trace_area>

<option>

See also

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

B <trace>.Chart

B CTS.Chart. TASKORINTERRUPT

©1989-2024 Lauterbach

General Commands Reference Guide T

180

<trace>.Chart. TASKORINTRState

Task and ISR2 state analysis

Format:

<trace_area>:

<option>:

<trace>.Chart. TASKORINTRState [<irace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Displays a graphical chart of task and ORTI-based ISR2 states. Before using this function the interrupt and
task state transitions must be sampled by the trace. This feature is highly dependent on the used RTOS
kernel, and needs the TASK to be configured. Please see kernel specific “OS Awareness Manuals”
manuals for more information.

Refer for more information to <trace>.Chart. TASKState.

e BiTrace.Chart. TASKORINTRState

& senp... || 38 anfig... || 1 Goto...

[E=N =R
$#3Find... | o Chart ||« In || v0¢ Out || © Ful

000ms -826.000ms -824.000ms -822.000ms -820.000ms -818.000ms -816.000ms
I I I I I I |

range [y
Cunknown) §

CounterIsr_Core0 iy
INVALID_TASKH

Default_Init_Taskf

UserTask_lms_CoreQj

UserTask_20ms_Core0H

UserTask_100ms_Core0H

OsHighPrioEthTaskH

Default_Appl_Init_Taski
Default_BSW_Async_Taski

1t_RTE_Mode_switch_Taskp

Default_Appl_Taski

OsLowPrioMemTaski

Default_Background_Task <j-._-__—l_-_l__l

<m » < >

See also

B <trace>.Chart

A ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach

General Commands Reference Guide T | 181

<trace>.Chart. TASKSRV Service routine run-time analysis

Format:

<trace_area>:

<option>:

<trace>.Chart.TASKSRYV [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

The time spent in OS service routines and different tasks is displayed. Service routines that are used by
multiple tasks are displayed for each task. This feature is only available if an OSEK/ORTI system is used and
if the OS Awareness is configured with the TASK.ORTI command. Please refer to “OS Awareness Manual
OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area>

<option>

See also

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

B <trace>.Chart

©1989-2024 Lauterbach

General Commands Reference Guide T | 182

<trace>.Chart.TASKState Task state analysis

Format:

<trace_area>:

<option>:

<trace>.Chart.TASKState [<trace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

ARTIAP

The time different task spent in specific states is displayed. Before using this function the task state
transitions must be sampled by the trace. This feature is highly dependent on the used RTOS kernel, and
needs the TASK to be configured. Please see kernel specific “OS Awareness Manuals” manuals for more

information.

<trace_area>

<option>

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

©1989-2024 Lauterbach

General Commands Reference Guide T | 183

Pl BiiTrace. Chart. TASKState /Split CORE = E ==

B senp... || 38 @nfig... | Goto...| #3Find... |l Chart || 0 In || v0« Out | &3 Ful
1.160ms -31.140ms -31.120ms -31.100ms -31.080ms -31.060ms -31.040ms -31.020ms -31.000ms
1 1 1 1 1 1 1 1 |

range i}
Cunknown)_g_
fault_Background_Task
Default_Init_Task
efault_BSW_Async_Task
OsHighPrioEthTask
OsLowPrioMemTask
efault_Appl_Init_Task
Default_Appl_Task

| RTE_Mode_switch_Task
UserTask_100ms_Corel
UserTask_1ms_Core0
UserTask_20ms_Cored
INVALID_TASK
(unknown)
fault_Init_Task_Corel
UserTask_1ms_Corel
UserTask_20ms_Corel
UserTask_100ms_Corel
Default_Task_Corel
IdleTask_0sCore_Corel
(unknown)
fault_Init_Task_Core2
UserTask_1ms_Core2
UserTask_20ms_Core2
UserTask_100ms_Core2
Default_Task_Core2
IdleTask_0sCore_Core2
(unknown)
fault_Init_Task_Core3
UserTask_1ms_Core3
UserTask_20ms_Core3
UserTask_100ms_Core3
Default_Task_Core3
IdleTask_0OsCore_Core3
(unknown)
fault_Init_Task_Cored
UserTask_1ms_Cored
UserTask_20ms_Cored
UserTask_100ms_Cored
Default_Task_Cored4
IdleTask_0sCore_Cored
(unknown)
fault_Init_Task_Cores
UserTask_1ms_Core5
UserTask_20ms_Cores
Default_Task_Core5
UserTask_100ms_Cores
IdleTask_0OsCore_Cores

<iii] > < >
Graphics
running solid black bar -
ready medium blue bar —
waiting two thin red lines —
suspended thin grey line
activated green or red line -
undefined/unknown no line

See also

B <trace>.Chart
A ’'Task Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach General Commands Reference Guide T | 184

<trace>.Chart. TASKVSINTERRUPT Time chart of interrupted tasks

Format: <trace>.Chart. TASKVSINTERRUPT [<trace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area>:

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

<option>:

Shows a graphical representation of tasks that were interrupted by interrupt service routines. This feature is
only available if TRACES32 has been set for OS-aware debugging.

%% B:TMCanalyzer.Chart. TASKVSINTERRUPT =N E=R
2 Setup... || fifGroups... | 28 Config... | A Goto... | (3 Goto... | F3Find... | «OrIn |»0«Out| EF Full
-2.036050000s -2.036000000s
rangedy 1 |
(none) - - - - - - - -
iTIM4ISR e _ _
05_CPU_PendSvHandler bl - -
05_CPU_PendSvHandler |- |)) I
(none) - I : : :
05_CPU_PendSvHandler |- - - - - - |) .
(none) - - - - - - = I
05_CPU_PendSvHandler e)) N . i |
(none) < - - —
05_CPU_SysTickHandler e)))
iTIM4ISR e _— _ _
0S_CPU_SysTickHandler e)))
05_CPU_SysTickHandler e ——
11 £ > £
<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
See also
B <trace>.Chart B CTS.Chart. TASKVSINTERRUPT
©1989-2024 Lauterbach General Commands Reference Guide T | 185

<trace>.Chart. TASKVSINTR Time chart of task-related interrupts

Format:

<trace_area>:

<option>:

<trace>.Chart.TASKVSINTR [<trace_area>] [/<options> ...]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Displays a time-chart for task-related interrupt service routines. This feature can only be used if ISR2 can be
traced based on the information provided by the ORTI file. Please refer to “OS Awareness Manual
OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area>

<option>

See also

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

B <trace>.Chart

B CTS.Chart. TASKVSINTR

©1989-2024 Lauterbach

General Commands Reference Guide T | 186

<trace>.Chart.TREE Display function chart as tree view

Format: <trace>.Chart.TREE [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
TASK <task>

Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>

Sort <item>
Address <address | range>

The result of this command shows a graphical chart tree of the function nesting.
=% BuTrace.Chart. TREE EI@
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
Oms -674.000ms -673.000ms -672.000ms -671.000ms -670.000ms -669.000ms -668.000ms
range iy
CIGR N s s e e e e e e e e T e T e e e e e e e e ~
[— sieve BES W R I (e Al (RN 1| (e B i LIS A ey i R i TR LA |8
— test_cond_instr S IR A A LI I mim. LiseE 11 Bk LR I Ui |l as 1N RE . rR R LI |
= funcz ERE BRI e (A BN 1 BE | 1 B nARE | LN e uoLRI R | LN nLR(HE | | i |18
— funcl EE BRI R LR | NN - LRI LB R Il AR LA A LN 1 LI B LI [L |8
— funcza EEEE I e LA (1 B LRI LR L Il P LR |- LI [W YURLR T LI [N B [|8
— funczb EEEE N e LI LN - LA LR N | LN 1| S 1 LRIIR |- L AHR! LN (8 [|8
— func2c BT B L1 |1 BB L1 1| BE L ¥ 11l BB . m o LN N L[N | B - .|
— funcad PE [1A R A PRV . Ll 11| B LE 18] Lyl .. LA 10 - LB - - LH | F| LE (4] . LA
— init_Tinked_list & | L (A I ... L [} A LN . L 1N - L 1| L (| L | B .. L L
funca @ LRI IR . LI I — NNl ... el ... LI | LIN] A — nut... LIS - LIS
— funcs W LIH] 1 11| 11| B (1N [— L1H] L1 nat. .. 1N L.
— funcs EH] 11 1 . LI I bMN.- - 11| B LI [HR - LI - Het. .. LN 18
— funce B LI I e | B HiE L L1E| - iR Het. .. [18
— func7 B iR ... Wim. ... | | A L. .. Uil (] LB SN Wigt.. .. 1.
— func8 w0 LI | [L LIl L I T L RN LI L o L
= funcs o w LN O e .. nelo. | R PR Lo | P el Ll e 1
— funca @l L. L1 I L1 [L 11 PR | P LE1 Ll Lo L
— funclo LR L I] L P .o L . L o L}
— funcil L R | I | I | I | I P L | I A L) I | I I+
«m > < >
<trace_area> For parameter descriptions and examples, see Parameters.
<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
See also

B <trace>.Chart B CTS.Chart. TREE

©1989-2024 Lauterbach

General Commands Reference Guide T | 187

<trace>.Chart.Var

Variable chart

Format:

<option>:

<trace>.Chart.Var [<trace_area>] [/<option>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK

CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL

Filter <item>

Sort <item>

Address <address | range>

The command provides a graphical chart of variable accesses.

<trace_area>

<option>

Example:

’

Trace.Chart.Var /Filter sYmbol

’

See also

Display a graphical chart of
Trace.Chart.Var /Filter sYmbol

For parameter descriptions and examples, see Parameters.

Refer to <trace>.Chart for a description of the <trace>.Chart options.

Display a graphical chart of all variable accesses:
mstaticl /Filter CYcle Write

write accesses to the mstaticl variable
mstaticl /Filter CYcle Write

B <trace>.Chart

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T |

188

<trace>.Chart.VarState Variable activity chart

Format:

<trace_area>:

<option>:

<trace>.Chart.VarState [<frace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

Track | ZoomTrack

CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF

FILL | FillFirst

DECODE <value> ...

INCremental | FULL

Filter <item>

Sort <item>

Displays the contents of variables over the time. Each variable access must be sampled with one single
CPU cycle. If an address is not a variable it is displayed in form of a single marker. This can be used to track
program execution addresses.

<trace_area>

For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

FILL Repeat the value instead of displaying the value only directly after the
transition.

FillFirst Repeat the value without any space instead of displaying the value only

directly after the transition.

DECODE <value>

Define a decoding for enumeration variables.

©1989-2024 Lauterbach

General Commands Reference Guide T | 189

Example: use the /Filter option to filter out the variables

Go
Break

Trace.Chart.VarState /Filter Address sYmbol.SECRANGE (.bss)

" BuTrace.Chart.VarState /Filter Address s¥mbol SECRANGE(.bss) /FILL

(o8)

strall8]. le
stral[8].wordfRy
stral[7].leftRy
stral[7].rightj
stral[6].righthy

stral[7]. countRy
stral[8].rightj
stral[8].fieldl/field2[y

B senp.. || 58 anfig... || (L Goto...| #3Find...

-2.944758340s

| Chart
-2.944758320s

-2.944758300s

i3 i3 i3 i3 i3 i3 i3 i3 i3 i3 i3 i3 =0 4

stral[7].wordRH[o=

See also

B <trace>.Chart

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T |

190

<trace>.CLOCK Clock to calculate time out of cycle count information

Format: <trace>.CLOCK
<trace>.CLOCK <frequency>
<trace>.CLOCK <frequency0O> <frequency1> ... (SMP tracing only)

Set clock frequency for processor generated timestamps. If called without parameter, time measurements
using processor generated timestamps are disabled.

Some trace protocols can generate cycle count information. TRACES32 can calculate time information out of
the cycle count information if the appropriate clock frequency is specified with the Trace.CLOCK command.

For most trace protocols cycle count indicates the number of core clock cycles. That's why <frequency> has
to be the core clock frequency. Please be aware the specifying the core clock frequency only makes sense if
the frequency was constant while recording.

Example for the ARM-ETM:

ETM.TImeMode CycleAccurate

Trace.CLOCK 800.MHz

If the cores of an SMP run at different speeds, the frequency can be specified per core.
ETM.TImeMode CycleAccurate

Trace.CLOCK 800.MHz 600.MHz 1.GHz

See also
B ETM.CycleAccurate B RunTime B RunTime.state

©1989-2024 Lauterbach General Commands Reference Guide T | 191

<trace>.ComPare Compare trace contents

[Examples]
Format: <trace>.ComPare [<record_range>] [<record_number>] [{<items>}]
[{/<options>}]
<options>: Tolerance <count>
FILE
Back

Compares the trace contents. If the command <trace>.ComPare is used without arguments the previous
compare is repeated.

<item> Only the given <item> ... are compared.

<record_range>, If <record_range> and <record_number> are not used, a comparison of

<record_number> the complete trace is performed.

FILE Compare the trace contents with the loaded file. See also Trace.FILE.

Back Compare backwards.

Tolerance <count> When external asynchronous data are traced, a jitter in the signal will result
in different sampling data. In this case the precision of the compare function
may be controlled by the option Tolerance.

The compare function will set the pointers for the tracking option. All analyzer windows, which are in track
mode, will follow these pointers.

For valid channel names refer to the Processor Architecture Manuals.
sample clock | |=|=|=|=|=|=|=|=|~l=I=I=|=|=|=|~|-|- -~ |-|-

Signal —l |—|—|
Reference __________1__________J | r————

No difference Difference found

Examples:

; compare the current trace contents from record (500.--1000.) with the
; current trace contents starting at record number 5000. with regards to
; the address

Trace.ComPare (500.--1000.) 5000. Address

©1989-2024 Lauterbach General Commands Reference Guide T | 192

; load saved trace contents
Trace.FILE old_trace

; compare the current trace contents from record (500.--1000.) with the
; loaded trace contents starting at record number 300. with regards to
; the data on byte 0

Trace.ComPare (500.--1000.) 300. Data.BO /FILE

; load saved trace contents
Trace.FILE old_trace

; compare the complete current trace contents with the complete
; loaded trace contents with regards to the data on byte 0
Trace.ComPare Data.B0 /FILE

; Repeat the previous compare
Trace.ComPare

; load saved trace contents
Trace.FILE old_trace

; compare the complete current trace contents with the complete

; loaded trace contents with regards to the data and address
Trace.ComPare Data Address /FILE

; compare against file TEST1 on line RXD

Port.FILE TEST1 ; load reference file
Port.ComPare RXD /Tolerance 3. /FILE ; compare line RXD
IF FOUND () ; print result if difference
PRINT "Difference found" ; will be found
Port.ComPare ; search for next difference
See also
B |Probe.state B RunTime H RunTime.state

©1989-2024 Lauterbach General Commands Reference Guide T | 193

<trace>.ComPareCODE

Compare trace with memory

Format:

<option>

<trace>.ComPareCODE [<access class>] [/<option>]

FILE
FlowTrace | BusTrace

Compares the trace with the memory contents. This command can e.g. be used to check if the loaded trace
matches the loaded binary in the TRACES32 Instruction Set Simulator.

©1989-2024 Lauterbach

General Commands Reference Guide T

194

<trace>.CustomTrace Custom trace

PRACTICE script examples of custom trace demos can be found in the following *_demo.cmm files:

. ~~/demo/customtrace/pipe_dll/dll_stp_demo.cmm
. ~~/demo/customtrace/pipe_dll/dll_csstm_demo.cmm
. ~~/demo/customtrace/pipe_dll/dll_itm_demo.cmm

For details about these files, refer to the readme.txt in the demo folder.

See also

B <trace>.CustomTrace.<label>.COMMAND B <trace>.CustomTrace.<label>.ListString
B <trace>.CustomTrace.<label>.UNLOAD B <trace>.CustomTraceLoad

M Trace

A ’Software Trace with the ITM’ in ’CombiProbe for Cortex-M User’s Guide’
A ’Software Trace with the ITM’ in "MicroTrace for Cortex-M User’s Guide’

<trace>.CustomTrace.<label>.COMMAND Send command to specific DLL

Format: <trace>.CustomTrace.<label>.COMMAND <command_line_args>
<trace>.PipePROTO.COMMAND [<cmd_line_args>] (deprecated)

Sends a command to a specific DLL that has been assigned a user-defined <label>.

See also

B <trace>.CustomTrace

<trace>.CustomTrace.<label>.ListString Display ASCII strings

Format: <trace>.CustomTrace.<label>.ListString

Displays ASCII strings logged by the DLL.

See also

B <trace>.CustomTrace

©1989-2024 Lauterbach General Commands Reference Guide T | 195

<trace>.CustomTrace.<label>.UNLOAD Unload a single DLL

Format: <trace>.CustomTrace.</abel>.UNLOAD

Unloads a single DLL identified by </abel>.

See also

B <trace>.CustomTrace

<trace>.CustomTracelLoad Load a DLL for trace analysis/Unload all DLLs

Format 1: <trace>.CustomTracelLoad "<name>" <file>
<trace>.PipePROTO.load <dll_name> [<cmd_line_args>] (deprecated)

Format 2: <trace>.CustomTraceLoad ""
<trace>.PipePROTO (deprecated)

Format 1: TRACE32 supports a mechanism for passing trace data to a shared library or DLL allowing for
custom trace handling. This command loads the shared object.

Format 2: When executed with an empty string, the command unloads all DLLs.

NOTE: Use the command <trace>.CustomTrace.<label>.UNLOAD to unload a single
DLL.

<name> A user-defined name for the DLL or shared object. TRACE32 supports
up to 8 loaded shared objects at any one time. The <name> is used to
differentiate them.

<file> A shared library or DLL which is appropriate for your host Operating

System. This DLL will receive trace data from TRACE32 and perform
custom analysis on it.

See also

B <trace>.CustomTrace M Trace

©1989-2024 Lauterbach General Commands Reference Guide T | 196

<trace>.DISable Disable the trace

Format: <trace>.DISable

Disables the trace.

See also
B [Probe.state B RunTime B RunTime.state

©1989-2024 Lauterbach General Commands Reference Guide T | 197

<trace>.DisConfig Trace disassembler configuration

For background information and examples about how to use the <trace>.DisConfig command group, see:
J “Powerlintegrator Trace DisConfig Application Note” (powerintegrator_app_dc.pdf)

J www.lauterbach.com/publications/advanced_debug_with_powerintegrator.pdf

See also

B |Probe.state B <trace>.DisConfig.CYcle
B <trace>.DisConfig.FlowMode B <trace>.DisConfig.RESet
B Integrator.DisConfig.LOAD

A ’'General Function’ in ’Powerlntegrator Trace DisConfig Application Note’

<trace>.DisConfig.CYcle Trace disassemble setting
Format: <trace>.DisConfig.CYcle "<name> [, <ext>]" <cycle>
<cycle>: Read <definition>

Write <definition>

Fetch <definition>

FLOW <déefinition>

Fetch1 <definition>
ReadOrFetch <definition>
ReadSpecial <definition>
WriteSpecial <definition>
MERGE ["<name>" <offset>...]

<definition>; TransientStrobe [<time>] [<channels>]

Strobe[2I3] [[<channel> [Low | High | Falling | Rising]]

Strobe[2|3]Sample [Last | Next | AT number] [<channel>[Low | High |
Falling | Rising]]

Address[2]Sample [Last | Next | AT number] [<channel> [Low | High |
Falling | Rising]]

Address|[2] [<channels>

Address[2]SHift <value>

AddressBase <address>

©1989-2024 Lauterbach General Commands Reference Guide T | 198

http://www.lauterbach.com/publications/advanced_debug_with_powerintegrator.pdf

Data[2]Sample [Last | Next | AT nhumber] [<channel> [Low | High | Falling |
Rising]]

Data[2] [<channels>]

Data[2]SHift <value>

DataUnknown

DataWidthUnknown

SpacelD | SpacelDSample

Word | Group | Integrator.<x> | eXt.<x>

The command <trace>.DisConfig.CYcle informs the trace software where to find program-fetch, data-read
and data-write cycles in a not qualified trace recording which was taken by the PowerProbe or

Powerlntegrator. With this information a standard bus trace listing can be generated.

<nhame>, <ext>

<cycle>

<definition>

See also

“name” is displayed in the cycle-type row of the Trace.List window. Its length is
limited to 7. The "ext” is not displayed but used to differ between cycle types.
Example: “rd_byte,0” --> rd_byte.

This way it is possible to define different cycle types (rd_byte,0; rd_byte,1 ...)
which are displayed in the same way (rd_byte)

Is used by the trace disassembler

. Read: data read cycle

Write: data write cycle

Fetch: program fetch cycle

Fetch1: first program fetch code of an instruction

ReadOrFetch: data-read or program-fetch cycle. The disassembler will do
the final decision out of the program flow knowledge

J ReadSpecial: special read cycle (e.g. dma)

J WriteSpecial: special write cycle (e.g. dma)

J MERGE: merge the data of multiple cycles

Defines where to find a <cycle> in the trace, where to find the appropriate
address and data, and how to display them.

B <trace>.DisConfig

©1989-2024 Lauterbach

General Commands Reference Guide T | 199

<trace>.DisConfig.FlowMode Enable FlowTrace analysis

Format: <trace>.DisConfig.FlowMode [ETMB | ETMK | OFF]

Enables the analysis of certain FlowTrace protocols like ARM-ETM.

OFF FlowTrace analysis disabled

ETMB ARM-ETM FlowTrace analysis enabled, Mictor probe AB in use.

ETMK ARM-ETM FlowTrace analysis enabled, Mictor probe JK in use.
See also

B <trace>.DisConfig

<trace>.DisConfig.RESet Reset trace disassemble setting

Format: <trace>.DisConfig.RESet

Resets the trace disassemble setting.

See also

B <trace>.DisConfig

©1989-2024 Lauterbach General Commands Reference Guide T | 200

<trace>.DRAW

Plot trace data against time

The <trace>.DRAW command group can be used to plot the values of recorded trace data against time. An
introduction to the usage of the Trace.DRAW commands is provided in “Application Note for
Trace.DRAW” (app_trace_draw.pdf).

Keywords for <format>

Decimal Display the data as decimal number.

DecimalU Display the data as unsigned decimal number.

Hex Display the data as hexadecimal number.

HexS Display the data as signed hexadecimal number.

OCTal Display the data as octal number.

Float The following floating-point formats are available:
leee | leeeQuad | leeeRev | leeeS | leeeHalf | ArmHalf
leeeXt80 | leeeXt96 | leeeXt96G
leeeDbl | leeeDbIS | leeeDbIT |
MFFP | Pdp11 | Pdp11Dbl | RTOSUH | RTOSUHD |
Dsp16 | Dsp16C | Dsp16Fix | Dsp32Fix |
M56 | M560 | M561 | LACCUM |
Fract8 | Fract16 | Fract24 | Fract32 | Fract48 | Fract64 | Fract40G |
Fract72G
UFract8 | UFract16 | UFract24 | UFract32 | UFract48 | UFract64 |
MICRO | MICRO64 | MILLI | MILLI64 | NANO64 | PICO64

Byte, Word, ... See “Keywords for <width>", page 202.

©1989-2024 Lauterbach

General Commands Reference Guide T | 201

Keywords for <width>

Byte
Word
TByte
Long
PByte
HByte
SByte

Quad

General Options

8-bit

16-bit

24-bit (tribyte)
32-bit (long word)
40-bit (pentabyte)
48-bit (hexabyte)
56-bit (septuabyte)

64-bit (quad word)

FILE

BusTrace

RecScale

TimeScale

TimeZero

TimeREF

FIRST <address>

Track

Visualize the trace contents loaded with the command <trace>.FILE.

This option is usually not required. It switches off the FlowTrace decoder. In
the bus trace mode, all valid bus cycles are sampled.

The resolution on the x-axis is based on trace record numbers. This is the
default if timestamps are not available.

The resolution on the x-axis is based on timestamps.

Display the trace as a real-time display, time relative to the zero point.
For more information about the zero point refer to ZERO.

Display the trace as a real-time display, time relative to the reference
point. For more information about the reference point refer to
<trace>.REF.

Define which address contains the first part of the data value if the data
value cannot be sampled within one bus cycle (e.g. a 16 bit data value on a
8 bit data bus).

The cursor in the <trace>.DRAW window follows the cursor movement in
other trace windows. Default is a time tracking. If no time information is
available tracking to record number is performed. The zoom factor of the
<trace>.DRAW window is retained, even if the trace content changes.

©1989-2024 Lauterbach

General Commands Reference Guide T | 202

ZoomTrack

Filter <filter_items>

Same as option Track. If the tracking in performed with another
<trace>.DRAW window the same zoom factor is used.

Filter the described item.

Draw Options

Points Display each data value as a dot.

Vector Connect the dots for the data values by vectors.

MarkedVector Same as Vector, with every trace record holding a data value marked with
a vertical line.

Steps Connect the dots for the data values by steps.

Impulses Draw each data value as a single pulse.

MinMax Display minimum and maximum values.

LOG Display the data values in a logarithmic format.

Color Remove the color legend when multiple addresses are displayed in the
<trace>.DRAW window.

See also

B <trace>.DRAW.channel
B <trace>.DRAW.Var

B Data.DRAW

H Data.DRAWXY

B [Probe.state

B <trace>.DRAW.Data

B CAnalyzer.<specific_cmds>
B Data.DRAWFFT

W Data.IMAGE

B Var.DRAW

A ’Introduction’ in’Application Note for Trace.DRAW’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T |

203

<trace>.DRAW.channel

Plot no-data values against time

Format:

<format>:

<width>:

<items>:

<options>:

<draw_
options>:

<filter_items>:

<trace>.DRAW.channel [<start> | <range>] [Yo<format>] [<items ...>]

[/<options>]

<trace>.Chart.Draw (deprecated)

Decimal. [<width>]

DecimalU. [<width>]

Hex. [<width>]

HexS. [<width>]

OCTal. [<width>]

Float. [leee | leeeDbl | leeeeXt | leeeMFFP | ...]

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

ENERGY.Abs | POWER ...

<draw_options> | FILE | BusTrace | RecScale | TimeScale | TimeZero |
TimeREF | FIRST <address> | Filter <filter_items> | Track | ZoomTrack

Points | Vector | MarkedVector | Steps | Impulses | MinMax | LOG | Color

<range> | <address> | <bitmask>

Plot specified <item> against time. This command is mainly used to plot no-data items. Please refer
<trace>.DRAW.Data for a description of the different parameters and options.

<start>

<range>
<format>

<option>

Start point of the plot which could be a trace bookmark, a trace record
number or a time.

Trace record range or time range displayed in the plot.

Refer to “Keywords for <format>”, page 201.

Refer to “General Options”, page 202 for a description of the general
options.

Refer to “Draw Options”, page 203 for a description of t<draw_
options>.

©1989-2024 Lauterbach

General Commands Reference Guide T |

204

The example below shows a temperature measurement recorded by a logic analyzer. The
Trace.DRAW.channel command is used to show the temperature profile.

2 B:Trace Timing Word. TEMPERATURE Node.OTGBO_0 Node.OTGBO_1 Node.OTGB0_2 Node.OTGB0 3... [= || & |[=3]

[& s, [=4 teme... |2 Goto...|| F1Find...) [0 In)0 0u)[ER Full[© off || ® Arm | Init [& Snapshot
-5.870s -5.865s -5.860s
line | | | |
w. TEMPERATURE Wy TO7Dr Jo0vD6 | [[orbs [oro=z _ _ T [Tor-cE »
1 nOTGBO_ O T [e 0
0 L e P A e e E
1 n. OTGBO_2 K| —1 L
1 n.OTGEO_3 k¥ e W e =
1 n. OTGBO_4 Ky S e O —
0 n. OTGBO_5 K|
0 n. OTGBO_B KM
1 n. OTGBO_7 ¥
0 n.OTGBO_8& N
< [m v < ¢
45 B:Trace.DRAW.channel Word. Temperature /Track EI@

[& s, | Goto...|[#3Find...][l Chart || 0 In | [+0¢ 0ut|[E3 Full[S 1n][S out)[E] Full

000s -7.000s
w. TEMPERATURE

-6.000s

-5.000

s -4.000s

-3.000s -2.000s]
1 1

4 |0 4

ox8004

I

03000l

k700 - T

y o4 [m »

1

See also

B <trace>.DRAW

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T

205

<trace>.DRAW.Data Plot data values against time

Format:

<format>:

<width>:

<option>:

<draw_
option>:

<trace>.DRAW.Data [<start> | <range>] [<hscale>] <vscale> <v_offset>
{[%<format>] <data_address> | <data_range>} [[<options>]

Decimal. [<width>]

DecimalU. [<width>]

Hex. [<width>]

HexS. [<width>]

OCTal. [<width>]

Float. [leee | leeeDbl | leeeeXt | leeeMFFP | ...]

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<draw_options> | FILE | BusTrace | RecScale | TimeScale | TimeZero |
TimeREF | FIRST <address> | Filter <filter_items> | Track | ZoomTrack

Points | Vector | MarkedVector | Steps | Impulses | MinMax | LOG | Color

Plots one or more data values. An introduction to the usage of the Trace.DRAW.Data command is provided
in “Application Note for Trace.DRAW” (app_trace_draw.pdf).

<start>

<range>
<hscale>

<vscale>

<v_offset>
<format>

<data_address>

Start point of the plot which could be a trace bookmark, a trace record
number or a time.

Trace record range or time range displayed in the plot.
time scale of the x-axis e.g. 100.us
Units per pixel of y-axis (floating point).

E.g. a signal has a max. height of 50 units shall be visualized window that
has a height of 400 pixels: 50 units divided by 400 pixels = 0.125

By default the scale factor is set so that the window displays the complete
possible value range for the selected variable.

Offset of y-axis (floating point). Default: 0.0.
Refer to “Keywords for <format>”, page 201.

The content at the specified data address(es) is displayed graphically.
The access width (Byte, Word, ...) has to be specified within the format.

©1989-2024 Lauterbach

General Commands Reference Guide T | 206

<data_range> If no access width is specified, the access width is determined by the size
of the <data_range>.

<option> Refer to “General Options”, page 202 for a description general options.
Refer to “Draw Options”, page 203 for a description of <draw_
options>.

©1989-2024 Lauterbach General Commands Reference Guide T | 207

Examples:

; display 8-bit value at address 0x67CO0
; restrict the display to the time range 60.ms--100.ms

; the option /TimeZero is used to display the trace as true time display

; relative to zero
Trace.DRAW.Data 60.ms--100.ms

%$Decimal .Byte 0x67C0 /TimeZero

45 B::Trace.DRAW.Data 60.ms--100.ms %Decimal.Byte 0x67C0 /TimeZero

(o8)

Z2 snp... | Goto...| #4Find... | fy Chart || v In | »0¢0ut | @ Full| S 1n || © out|| [Ful
70.000ms 75.000ms

0.000ms 65 .000ms 80.000ms 85.000ms 90.000ms

95.

000ms 100.0

1 1 1 1 1 1 1
1to.4 - - - . T

1e0.4 - - - - L
50.
0.

-50.

-100.

<m » <

; Display 8-bit unsigned value at address 0x67C0 starting at its first

; occurrence in the trace.
; scale factor 1.9 and vertical offset 0x0

; find address 0x67C0 in the trace.
Trace.Find Address 0x67CO0
; FOUND ()
; the trace record number containing the found item
IF FOUND ()

Trace.Draw.Data TRACK.RECORD()

Use horizontal time scale 100.us,

returns TRUE if the address is found. TRACK.RECORD ()

vertical

returns

100.us 1.9 0.0 %DecimalU.Byte 0x67CO0

dp B::Trace.Draw.Data TRACK.RECORD() 100.us 1.9 0.0 %:Decimall.Byte (x67C0

(o8)

& .. | Goto...| #4Find... || A Chart || 0 In »Odout | E Ful| S In
400.000ms -390.000ms -380.000ms

o out|| [&] Full

-370.000ms -360.000ms -350.000ms

-340.000ms

300.

2E0.] e e

200.

150. . - 1L | 0BT 1|] - 10 [I - e |

100.
50.

0. |
<m » <

; Plot graph for the specified record range.
Trace.DRAW.Data (-04254171.)--(-04246616.)

$Hex.Word 0x67C0O0 /Track

©1989-2024 Lauterbach

General Commands Reference Guide T |

208

§1 BxiTrace FindAll, Address 67CD Ccle Write

s 'UN |address cycle

[-04254171 D:000067C0 wr-Tong

—— D:000067C0 wr-Tlong
-04253709 D:000067C0 wr-long
-04253693 D:000067C0 wr-long
-04253677 D:000067C0 wr-long
-04253661 D:000067C0 wr-long
04253645 D:000067C0 wr-Tlong
-04247094 D:000067C0 wr-long
-04246940 D:000067C0 wr-long

"""" D:000067C0 wr-Tlong
-04246616 D:000067C0 wr-long

e D:000067C0 wr-Tlong
-04246584 D:000067C0 wr-Tlong
-04246568 D:000067C0 wr-Tlong

data symbo |

00000000 sievesieve\mstaticl
0000000C \'sieve\sieve\mstaticl
0000000C Y\sieve'sieve'mstaticl
6DDDLCTE “\sieve'sieve'mstaticl
4997554A \\sieve\sieve\mstaticl
932EAABE ‘\\sieve'sieve'mstaticl
4AA31C30 \‘\sieve\sieve\mstaticl
00000000 ‘\sieve'sieve'mstaticl
0000000C “\sieve'sieve'mstaticl
0000000C “\sieve'sieve'mstaticl
BBBO3BA7 ‘\\sieve'sieve'mstaticl
2980A9DD ‘\sieve'sieve'mstaticl
530153AE ‘\sieve'sieve'mstaticl
35023614 ‘\sieve'sieve'mstaticl

| B::Trace.DRAW.Dat || (-04254171

(04246616.) | 6Hex. Word 0x67C0 /Track

(o8)

Z2 snp... | Y Goto...|| #4Find... |y Chart || O In | »0¢ 0ot || B8 Full| S 1n || S out|| [Ful
-270.500ms -270.400ms -270.300ms -270.200ms -270.100ms
1 1 1 1 1 |
0x8000 =
W
0x4000 2
0. . . . v
€0 > € >
See also

B <trace>.DRAW

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T

209

<trace>.DRAW.Var

Plot variable values against time

Format 1:

Format 2:

<format>:

<option>:

<draw_
option>:

<trace>.DRAW.Var %[<format>] {<var>} [/<options>]

<trace>.DRAW.Var [<start> | <range>] [<hscale>] <vscale> <v_offset>

[Y%o<format>] {<var>} [[<options>]

DEFault | STandDard | Decimal | Hex

<draw_options> | FILE | BusTrace | RecScale | TimeScale | TimeZero |
TimeREF | FIRST <address> | Filter <filter_items> | Track | ZoomTrack

Points | Vector | MarkedVector | Steps | Impulses | MinMax | LOG

Plots the value changes of one or more variables against time, based on the recorded trace information. An
introduction to the usage of the Trace.DRAW.Var command is provided in “Application Note for
Trace.DRAW” (app_trace_draw.pdf).

<start>

<range>
<hscale>

<vscale>

<v_offset>
<format>

<data_address>

Start point of the plot which could be a trace bookmark, a trace record
number or a time.

Trace record range or time range displayed in the plot.
time scale of the x-axis e.g. 100.us

Units per pixel of y-axis (floating point).

E.g. a signal has a max. height of 50 units shall be visualized window that

has a height of 400 pixels: 50 units divided by 400 pixels = 0.125

By default the scale factor is set so that the window displays the complete
possible value range for the selected variable.

Offset of y-axis (floating point). Default: 0.0.
Refer to “Keywords for <format>”, page 201.

The content at the specified data address(es) is displayed graphically.

The access width (Byte, Word, ...) has to be specified within the format.

©1989-2024 Lauterbach

General Commands Reference Guide T |

210

<data_range> If no access width is specified, the access width is determined by the size
of the <data_range>.

<option> Refer to “General Options”, page 202 for a description general options.
Refer to “Draw Options”, page 203 for a description of <draw_
options>.
Examples:

; plot value of a single variable
Trace.DRAW.Var %$DEFault mstaticl

; plot values of two variables
; colors are assigned by TRACE32
Trace.DRAW.Var %DEFault mstaticl mstatic2

; plot values of three variables

; colors are assigned by TRACE32

; <display_option> Steps

Trace.DRAW.Var %$DEFault mstaticl fstatic fstatic2 /Steps

; plot values of variable vchar for specified <record_range>
Trace.DRAW.Var (-30000.)--(-29000.) %DEFault wvchar

See also
B <trace>.DRAW

A ’Release Information’ in’Legacy Release History’
A ‘Filter and Trigger - Single-Core and AMP’ in "Training AURIX Tracing’

©1989-2024 Lauterbach General Commands Reference Guide T | 211

<trace>.EXPORT Export trace data for processing in other applications

Using the <trace>.EXPORT command group, you can export trace data for processing in other applications.
Various export file formats are available, including ASCI|, binary, PGT, VERILOG, etc.

NOTE: The various export formats are primarily designed for import into other
applications.
Trace data exported with the <trace>.EXPORT.* commands can only be
imported back into TRACES32 if you inform the debugger about all the trace-
relevant circumstances.

We recommend the following approach if you want to view and analyze
recorded trace data in a subsequent TRACES32 session:

1. Save the trace data to file using <trace>.SAVE.

2. To load this file back into TRACE32, use <trace>.LOAD.

See also

B <trace>.SAVE

B <trace>.EXPORT.ARTIAP

B <trace>.EXPORT.Bin

B <trace>.EXPORT.CSVFunc
B <trace>.EXPORT.Func

B <trace>.EXPORT.MTV
]

|

|

]

A

<trace>.EXPORT.ARTI
<trace>.EXPORT.Ascii
<trace>.EXPORT.BRANCHFLOW
<trace>.EXPORT.cycles
<trace>.EXPORT.MDF
<trace>.EXPORT.TASK
<trace>.EXPORT.TracePort
<trace>.EXPORT.VERILOG
LA.IMPORT

RunTime.state

<trace>.EXPORT.TASKEVENTS
<trace>.EXPORT.VCD
<trace>.EXPORT.VHDL
RunTime

‘Release Information’ in ’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 212

<trace>.EXPORT.ARTI

Export trace data as ARTI for CP

Format:

<option>:

<trace>.EXPORT.ARTI <file> [<trace_area>] [/<options>]

TRaceRecord
CORE
ENHanced

Exports the trace contents to an ARTI file for AUTOSAR Classic Platform. White spaces are used as

delimiters.

<file> The default extension of the file name is *.csv

TRaceRecord ARTI data are exported with trace record numbers.

CORE Only the trace information of the specified core is exported.

ENHanced For enhanced ARTI format.

TimeZero Exports the timestamp relative to ZERO (TRACE32 has Global zero point
time.zero, B::ZERO). Without this option, the exported timestamp starts
with zero at the first event.

See also

B <trace>.EXPORT

B <trace>.EXPORT.cycles B TASK.Create. RUNNABLE B TASK.Listt RUNNABLES

A ’Export’ in’Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach

General Commands Reference Guide T

213

<trace>.EXPORT.ARTIAP Export trace data as ARTI for AP

[build 141966 - DVD 02/2022]

Format: <trace>.EXPORT.ARTIAP <file> [<trace_area>] [/<options>]
<option>: TRaceRecord
CORE

Exports the trace contents for AUTOSAR Adaptive Platform. White spaces are used as delimiters.

<trace> Currently only support for SystemTrace.

<file> The default extension of the file name is *.csv

TRaceRecord ARTI data are exported with trace record numbers.

CORE Only the trace information of the specified core is exported.
See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 214

<trace>.EXPORT.Ascii Export trace data as ASCII

Format: <trace>.EXPORT.Ascii <file> [<record_range>] [<items> ...] [/<options>]
<option>: FILE | BusTrace

FILTER

ShowRecord

Append

Exports the trace contents to an ASCII file. White spaces are used as delimiters.

<file> The default extension of the file name is *.ad.

FILE Exports the trace contents loaded with the command <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

FILTER Exports only records matching the filter. For an example, see below.

ShowRecord Includes the trace record numbers in the export file.

Append Appends trace contents at the end of the file.

<option> For a description of the other <options>, see <trace>.EXPORT.flow.
Example:

Trace.EXPORT.Ascii ~~\myfile.ad (-120000.)--(-1.) /ShowRecord \

/FILTER ADDRESS Var .RANGE (sieve)

The backslash \ is used as a line continuation character. No white space permitted after the backslash.

See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 215

<trace>.EXPORT.Bin Export trace data as binary file

Format: <trace>.EXPORT.Bin <file> [<record_range>] [<items> ...] [/<options>]

<option>: FILE | BusTrace | NoDummy | NoHeader | NoTimeStamps | NoFetch

Exports the trace contents to a file in binary format. This command is used to export logic analyzer
(PowerProbe, Integrator, IProbe) recordings. The data is stored in little endian format.

The file starts with a text header describing item names and byte size of each item. Each record begins with
an 8-byte timestamp (1 ns per tick), followed by the selected items in the order as given in the command.
Each item has a minimum width of 1 byte (max. 8 byte). The following options are available:

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

NoHeader The resulting file does not contain a header.

NoTimeStamps The records do not contain the 8 byte timestamp.

NoFetch Exclude control cycles from export.

Example: This script export data from a parallel port recorded with the IProbe.

;define the data word of the port, connected to signals ip.00...ip.07
NAME.WORD w.PARPORT ip.00 ip.01 ip.02 ip.03 ip.04 ip.05 ip.06 ip.07

;export analyzer data
IProbe.EXPORT.Bin pardat.ad W.PARPORT /NoHeader

;show resulting file: one record has 9 byte (w.PARPORT has 1 bytes)
DUMP pardat.ad /WIDTH 9

©1989-2024 Lauterbach General Commands Reference Guide T | 216

1] B:DUMP pardat.ad /WIDTH9 =n| Wl <
| 0. of 54. (=] (=] [FFnd...] |

8D 5 3
00000020J|2? C2 06 AD 03 00 00 (f |03

Ty o

A Timestamp B Data of W.PARPORT

See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 217

<trace>.EXPORT.BRANCHFLOW Export branch events from trace data

Format: <trace>.EXPORT.BRANCHFLOW <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | TRaceRecord | NOINNER | NOSYMBOL | CALLer

Exports the branch events from the trace data.

FILE Exports the trace contents loaded with <trace>.FILE.
BusTrace The trace works as a bus trace. This option is usually not required.
TRaceRecord Branch events are exported with trace record numbers.
NOINNER Only branch events that jump to the current symbol are exported. The
internal branch is not exported.

NOSYMBOL Branch events are exported with addresses instead of symbols.
CALLer Branch events are exported with caller events.

See also

B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 218

<trace>.EXPORT.CSVFunc Export the function nesting to a CSV file

Format: <trace>.EXPORT.CSVFunc <file> [<trace_area>]
<trace_area>: <string>

<range>

<value>

<time_range>

Exports the function nesting of the recorded trace data to a CSV file for processing by an external tool.

<file> The default extension of the file name is *.csv.

Example:

;export the entire function nesting
Analyzer .EXPORT.CSVFunc ~~\csvfunc_all.csv

EDIT ~~\csvfunc_all.csv

% Bu:EDIT ~-~\csvfunc_all.csv EI@
’;@Save | & save As.. || P save+Close || EF Quit+Close |

Function Nesting trace file
time(ns); func/task name; event

+12300; osSetEvent; exit

+12600; osGetResource; Tentry

+17100; task: basicTaskFirst (4); switch

+20300; osSaveDisablelevel; fentry

+23800; osSaveDisablelevel; exit

+32500; osGetResource; exit

+32700; osActivateTask; fentry -

4 [}

See also
B <trace>.EXPORT B <trace>.EXPORT.cycles
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 219

<trace>.EXPORT.cycles Export trace data

Format: <trace>.EXPORT.cycles <file> [<record_range>] [[<options>]

<option>: FILE | BusTrace | ZIP | NoDummy
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)

Exports the trace contents for postprocessing by an external analysis tool.

The trace contents can only be exported when the trace is in OFF or break state. Please refer to the
Trace.state command for more information.

The default export format is binary. A description of the binary format is given at the end of this command

description.
<file> The default extension of the file name is *.ad.
FILE Exports the trace contents loaded with <trace>.FILE.
BusTrace The trace works as a bus trace. This option is usually not required.
ZIP File is compressed with the gzip archive format.
NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

In the case of an SMP system, the following options are provided:

MergeCORE The trace information for all cores is exported.

(default)

SplitCORE Same as MergeCORE.

JoinCORE Same as MergeCORE.

CORE <number> Only the trace information for the specified core is exported.

©1989-2024 Lauterbach General Commands Reference Guide T | 220

Binary File Format Header and Data Structure

When an exported file contains a file header (not the case e.g. for /ByteStream, /CoreByteStream, ...) it
has the following format:

Byte Nr.
0..31
32

33

34

35

36

37

38

39

40
41..43
44..47

48..51
52..55
56..63

Byte Nr.
0..3

Meaning

Export file header string (“trace32 analyzer export data“ Ox1a 0x00)
Reserved (set to zero for IMPORT)
CPU code

Timestamp available flag

Prestore mode flag

Trigger unit available flag

Port analyzer available/mode flag
Analyzer type

Reserved

Length of one record in bytes (0x20)
Reserved

Number of records in file (if record number can exceed 32 bits, e.g.
Trace.Mode.STREAM, calculate number of records based on file size)

Record number of last recorded record
Reference record number

Reserved

Meaning

Cycle information flags:
Bit 0: data cycle

Bit 1: program cycle
Bit 6: write cycle

Bit 8:

Power Architecture MPC5XXX: read/write cycle of peripheral NEXUS bus master

Bit 21: FLOW ERROR
Bit 25: FIFO OVERFLOW
Bit 31: OWNERSHIP Cycle

©1989-2024 Lauterbach

General Commands Reference Guide T

221

Byte Nr.

4
5
6
7
8..15
16..23
24..31
See also

Meaning

Data byte enable mask
Bit 0: Byte 0 valid
Bit 1: Byte 1 valid

CPU specific information

SH2A I-bus marker (bit meaning is device specific):
Bit 0: iadma bus

Bit 1: idma bus

Bit 2: icpu1 bus

Bit 3: icpu2 bus

ARM Bustrace:

Bit 0: EXEC signal (relevant only when SYStem.Option.EXEC is set to ON)
ARM Flowtrace (ETM/PTM):

Bit 1: Thumb Mode

Bit 2: ARM Mode

Bit 3: AArch64 Mode

Bit 5: not executed

Bit 6: executed

Reserved

Core number (on SMP targets)
Address (64 bits)

Data (64 bits)

Timestamp (time relative to ZERO in ns)

B <trace>.EXPORT

B <trace>.EXPORT.ARTIAP
B <trace>.EXPORT.Bin

B <trace>.EXPORT.CSVFunc
B <trace>.EXPORT.MDF

B <trace>.EXPORT.TASK

B <trace>.EXPORT.TracePort
B <trace>.EXPORT.VERILOG
A

<trace>.EXPORT.ARTI
<trace>.EXPORT.Ascii
<trace>.EXPORT.BRANCHFLOW
<trace>.EXPORT.Func
<trace>.EXPORT.MTV
<trace>.EXPORT.TASKEVENTS
<trace>.EXPORT.VCD
<trace>.EXPORT.VHDL

'Release Information’ in ’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T

222

<trace>.EXPORT.Func Export function nesting

Format: <trace>.EXPORT.Func <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | ZIP

Exports the function nesting from the trace contents to a binary file.

Exported function nestings contain the function entries and exits as well as task switches with task entries
and exits. Function nestings are displayed in the <trace>.ListNesting window.

<file> The default extension of the file name is *.ad.
FILE Exports the trace contents loaded with <trace>.FILE.
BusTrace The trace works as a bus trace. This option is usually not required.
ZIP File is compressed with the gzip archive format.
Example:
Analyzer .EXPORT.Func ~~~\trace.ad (-131072.)--(-100000.)
See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 223

<trace>.EXPORT.MDF Export trace data as MDF

Format: <trace>.EXPORT.MDF <file> [<trace_area>] [/<options>]
<option>: STanDard

ENHanced

ZIP

Exports the trace contents to an MDF file as specified by the “ASAM Run-Time Interface Base Standard”
(ASAM ARTI BS).

<file> The default extension of the file name is *.mf4
STanDard Default.
Uses the standard task state machine, as specified in the ASAM
standard.
ENHanced Uses the enhanced task state machine, as specified in the ASAM
standard.
ZIP File is compressed with the gzip archive format.
See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

A ’Export’ in’Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach General Commands Reference Guide T | 224

<trace>.EXPORT.MTV Export in MCDS Trace Viewer format

TriCore, GTM, C166

Format: <trace>.EXPORT.MTV <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | NoDummy

Exports a trace recording in the MCDS Trace Viewer format.

<file> The default extension of the file name is *.mcds.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 225

<trace>.EXPORT.TASK Export task switches

Format: <trace>.EXPORT.TASK <file> [<record_range>] [[<options>]

<option>: FILE | BusTrace | ZIP

Exports task switching information from the trace contents to a binary file.

<file> The default extension of the file name is *.ad.
FILE Exports the trace contents loaded with <trace>.FILE.
BusTrace The trace works as a bus trace. This option is usually not required.
ZIP File is compressed with the gzip archive format.
See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 226

<trace>.EXPORT.TASKEVENTS

Export task event to CSV

Format:

<option>:

<trace>.EXPORT.TASKEVENTS <file> [<record_range>] [[<options>]

TRaceRecord | NOSTATEDATA | NOSTATEFLOW
CORE <number>

Generates a CSV file that contains task event (state) information and time information.

<file> The default extension of the file name is *.csv.

TRaceRecord Trace information is exported with trace record numbers.
NOSTATEDATA Data trace based Task event (state) information is not exported.
NOSTATEFLOW Flow trace based Task event (state) information is not exported.
CORE <number> Only the trace information of the specified core is exported.

B:TYPE out.csv
1. of 697.

Task events trace file
time(ns); task name; event

0; extendedTaskSecond; switch

30100; extendedTaskSecond; stop
30100; extendedTaskSecond; terminate
41400; NO_TASK; switch

71500; extendedTaskFirst; switch
76500; extendedTaskFirst; start
116500; extendedTaskFirst; preempt
116500; basicTaskFirst; switch
210600; basicTaskSecond; switch
215600; basicTaskSecond; start
216900; basicTaskSecond; stop
216900; basicTaskSecond; terminate
226100; NO_TASK; switch

254400; NO_TASK; preempt

254400; basicTaskFirst; switch
307800; basicTaskFirst; preempt
307800; extendedTaskFirst; resume -

For details refer to “Trace Export for Third-Party Timing Tools” (app_timing_tools.pdf).

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace task states and runnables on all cores with minimum overhead. See

~~/demo/env/vector/rte_profiling.

See also

B <trace>.EXPORT B <trace>.EXPORT.cycles

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T |

227

<trace>.EXPORT.TracePort Export trace packets as recorded at trace port

Format:

<option>:

<trace>.EXPORT.TracePort <file> [<record_range>] [[<options>]

FILE

ByteStream | CoreByteStream | TimedByteStream | TPStream | Timed-
CoreByteStream | NibbleStream

Exports the recorded trace data in a low-level binary format. Available options depend on the used
processor architecture and trace port.

<file> The default extension of the file name is *.bin.

ByteStream Exports the byte stream broadcast by the ETM (same as TP column if
command Trace.List TP DEFault is used).

CoreByteStream Similar to the option ByteStream, but strips away synchronisation

patterns (continuous mode) and trace source identifiers (e.g. in case of
multicore systems). The exported data is that shown in the TPC column
in the command Trace.List TPC DEFault.

By default, the data corresponding to the currently active core is exported
(selected by the CORE command), but this can be overridden by the
ICORE <number> option.

TimedByteStream

Exports the byte stream broadcast by the ETM together with the
Time.Zero timestamp information.
For a description of the file format, see below.

TPStream

Power Architecture only. Exports NEXUS packets received through
Aurora interface.

TimedCoreByteS-
tream

Exports the unwrapped byte stream broadcast by the ETM together with
the Time.Zero timestamp information. This format also supports multiple
cores in SMP configuration.

NibbleStream

Exports just pure STP data, excluding non-STP headers (STP = System
Trace Protocol).

©1989-2024 Lauterbach

General Commands Reference Guide T | 228

File Format produced by the option TimedByteStream

The TimedByteStream format consists of two-byte records; possible formats are:

OyOxxxxxxx <tracedata_byte>

- xxxxxxx: Time relative to previous records (in nanoseconds).
Oy 10XXXXXX OYXXXXXXXX

- xxxxxx: Time relative to previous record (bits 7 to 12).

- xxxxxxxx: Upper bits (bits 13 to 20).

0y11000xxX OyXXXXXXXX

- xxx: Selects which part of the absolute time is transferred.

- xxxxxxxx: Byte of absolute timestamp.

0y11001000 OyxxXXXXXXX

- xxxxxxxx: Selects to which core the following data belongs (only in CoreByteStream with

SMP).

See also

B <trace>.EXPORT B <trace>.EXPORT.cycles

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T

229

<trace>.EXPORT.VCD Export trace data in VCD format

Format: <trace>.EXPORT.VCD <file> [<record_range>] [<items> ...] [/<option>]

<option>: FILE | NoDummy | BusTrace

Exports the trace contents collected by the TRACES32 logic analyzers PowerProbe and PowerIntegrator to a
file in VCD format.

<file> The default extension of the file name is *.ved.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 230

<trace>.EXPORT.VERILOG Export trace data in VERILOG format

Format: <trace>.EXPORT.VERILOG <file> [<record_range>] [<items> ...] [[<option>]

<option>: FILE | NoDummy | BusTrace

Exports the trace contents collected by the TRACES32 logic analyzers PowerProbe and PowerIntegrator to a
file in VERILOG format.

<file> The default extension of the file name is *.v.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

See also
B <trace>.EXPORT B <trace>.EXPORT.cycles

©1989-2024 Lauterbach General Commands Reference Guide T | 231

<trace>.EXPORT.VHDL Export trace data in VHDL format

Format: <trace>.EXPORT.VHDL <file> [<record_range>] [<items> ...] [[<option>]

<option>: FILE | NoDummy | BusTrace

Exports the trace contents collected by the TRACES32 logic analyzers PowerProbe and PowerIntegrator to a
file in VHDL format.

<file> The default extension of the file name is *.vhd.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

See also
B <trace>.EXPORT B <trace>.EXPORT.cycles
<trace>.ExtractCODE Extract code from trace
Format: <trace>.ExtractCODE [<access class>] [/<option>]
<option>] FILE
BusTrace | FlowTrace

Extracts code from trace and writes it to the memory.

©1989-2024 Lauterbach General Commands Reference Guide T | 232

<trace>.FILE Load a file into the file trace buffer

Format: <trace>.FILE <file> [/Config]

Loads trace data from a file into a dedicated file trace buffer on the host. Typically this feature is used to
analyze data in a simulator or to compare different recordings.

<file> The default extension of the file name is *.ad.

Config Restore analyzer and NAME settings contained in <file>. Only applicable
for Trace.METHOD Probe and Trace.METHOD Integrator.

Example: To use the file trace buffer as source for trace-related commands, the commands need to be
invoked with the additional parameter /FILE

Trace.FILE myfile.ad
Trace.List /FILE

=% B::Trace.List /FILE

W Setup...|| ¥ Gota... || F#4Find... & More | X Less
record run address cycle |data synbol ti.back

687 i ~

688 if flags[i 1)

1dr r@,8x1BCC v
AnRaA3 D:8BAA1ECC rd-long BABBG7VC ““thumblevarmysieve+@x5@ 8.200us .
1515157515 Vg T:88881BA8B fetch Dagn swthumblesarnssieve +8x2C B.180us
ldrb ri, [r@,r2]

ArRRA1 D:8888677C rd-hyte A1 swthumblesGlobalsflags 8.200us ~

A Windows working on trace contents loaded with the Trace.FILE command are marked with a red label
FILE in the bottom-left corner:

Trace-related commands without the parameter /FILE keep operating on the trace data stored in the
“normal” trace buffer which is filled when recording data using the analyzer hardware (e.g. PowerTrace,
PowerProbe, Powerlntegrator).

©1989-2024 Lauterbach General Commands Reference Guide T | 233

Using the file trace buffer and the “normal” trace buffer concurrently allows to compare trace data stored in a
file from a previous recording with recently recorded data as shown in the following example:

Trace.FILE test4 ; load trace contents from test4d.ad

Trace.List /FILE ; display loaded trace contents

Trace.Chart.sYmbol /FILE ; works on loaded trace data

; compare the recently recorded trace with the trace contents loaded
; from testd4d.ad regarding to the addresses
Trace.ComPare , Address /FILE

NOTE: In addition to Trace.FILE there is a command Trace.LOAD for loading trace
data from a file into the “normal” trace buffer. Therefore data loaded with
Trace.LOAD is treated as if it was recently recorded by the analyzer hardware.
As a consequence all standard trace commands automatically work on the
loaded via Trace.LOAD (without specifying additional parameters).

See also

B <trace>.LOAD B |Probe.state B RunTime B RunTime.state
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 234

<trace>.Find

Find specified entry in trace

[Examples]

Format:

<item>:
(mostly with
specified
value)

<item>:
(special
events)

<option>:

<trace>.Find [<record_number> | <record_range>] [<item> ...] [[<options>]

Address <address> | <address_range>
Address.MATCH <address> | <address_range>
FAddress <address> | <address_range>
Data <value> | <value_range>

Data !<value> | !<value_range>

Data <value>ll<value>ll...

Data <value_range>ll<value_range>ll...
CYcle <cycle_type>

Var

GROUP <group_name>

Tlme.Back <time_range>

Tlme.Zero <time_range>
Tilme.AddressBack <time_range>
Tlme.AddressFore <time_range>

EXCEPTION | INTERRUPT | TRAP
FIFOFULL | FLOWERROR | TRACEENABLE
CORE | IGNORE | Var

OR

Il (Address item only)

AT <offset> (bus trace only)
CHANGE <item>

Back

FILE

NoFind

ALL

FlowTrace | BusTrace
TASK <task>

Searches for matching items in the given range of trace records. The default search range is the complete
trace. When the command is invoked without parameters, the previous search is repeated.

If the search finds a matching trace record, the PRACTICE function FOUND() will return TRUE(). If a
matching trace record was found, TRACK.RECORD() returns the record number of the matching record.

Details about the <trace>.Find command as well as examples can be found in “Application Note for
Trace.Find” (app_trace_find.pdf).

©1989-2024 Lauterbach

General Commands Reference Guide T | 235

ALL Searches for all occurrences and displays the result in the message line.

B::
}'Found in (-2000.)--(-1.) 57. times

The number of occurrences can be returned with the function

FOUND.COUNT\().
Back Search backwards.
FILE Takes trace memory contents loaded by Trace.FILE.
NoFind Set up search, but don’t search. Search can be done at a later point by

using the <trace>.Find command without parameters.

FlowTrace The trace works as a program flow trace. This option is usually not
required.
BusTrace The trace works as a bus trace. This option is usually not required.
TASK <task> Filters search results for selected task.
See also

<trace>.FindAll B <trace>.FindChange W <trace>.FindProgram B |Probe.state
RunTime B RunTime.state 1 FOUND() (1 FOUND.COUNT()

|

|

A 'The Trace Find Dialog’ in ’Application Note for Trace.Find’

A ’Introduction’ in’Application Note for Complex Trigger Language’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 236

<trace>.FindAll Find all specified entries in trace

Format: <trace>.FindAll [<record_number> | <record_range>] <items> ... [[<options>]

<option>: Back
FILE
FlowTrace | BusTrace
List
Track
TASK <task>

Searches for and displays all entries matching the item specification. Without range, the complete trace
memory is searched for matching entries. Details about the <trace>.FindAll command can be found in
“Application Note for Trace.Find” (app_trace_find.pdf).

Back The option Back reverses the direction of the search command.

BusTrace The trace works as a bus trace. This option is usually not required.

FILE Takes trace memory contents loaded by Trace.FILE.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

List Change the default display of the result.

TASK <task> Filters search results for selected task.

Track The cursor in the <trace>.FindAll window follows the cursor movement in

other trace windows.

Example:

Trace.FindAll , sYmbol sieve /List TIme.Zero DEFault

See also
B <trace>.Find B <trace>.FindChange B |Probe.state B RunTime
B RunTime.state ad FOUND() 1 FOUND.COUNTY()

A ’Introduction’ in’Application Note for Complex Trigger Language’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 237

<trace>.FindChange

Search for changes in trace flow

Format:

<items>:

<option>:

<trace>.FindChange [<record_number> | <record_range>] [{<items>]}

[/<options>]

OR
<channels>
AT <offset>

Back

FILE

FlowTrace | BusTrace
NoFind

ALL

Searches for entries in the given range where the specified items have new values. Without range the entry

is searched within the complete trace memory. Without items the command searches for changes in
program flow. This is useful to search for the end of a complex program loop, or in general to search for

“something happens” in a traced program flow.

Back

FILE

FlowTrace

BusTrace

ALL

NoFind

See also

Reverses the direction of the search command.

Takes trace memory contents loaded by Trace.FILE.

The trace works as a program flow trace. This option is usually not

required.

The trace works as a bus trace. This option is usually not required.

Searches for all occurrences and displays the result in the message line.

B::
}'Found in (-2000.)--(-1.) 57. times

The number of occurrences can be returned with the function
FOUND.COUNT().

Set up search, but don’t search. Search can be done at a later point by

using the <trace>.FindChange command without parameters.

B <trace>.Find
B RunTime.state

B <trace>.FindAll B [Probe.state B RunTime

©1989-2024 Lauterbach

General Commands Reference Guide T

238

<trace>.FindProgram Advanced trace search

Format: <trace>.FindProgram [<file>]

Opens the <trace>.FindProgram editor window, where you can create an advanced trace search program
using the Complex Trigger Language (CTL). The editor provides syntax highlighting, configurable auto-
indentation and an online syntax check. The input is guided by softkeys.

Example: find all read accesses to the variable mstatic1l in the trace within the function func2c

|! [B::Trace.FindProgram] @

| B setup... &2 save | ©FSave As.. | B Quit || #3Find... |||/ 97 i compile| #3Fnd | £ = FindAl }jfdiaf'ftga‘l

L "~
I AI 2 |IF var.Read(mstatic2)&&WVar.Program(func2c) i i @ é
3 FOUND E .

status Read Write ReadWrite | Program | PogramPass | ProgramFaill other pravious

Buttons common to all TRACE32 editors:
A For button descriptions, see EDIT file.
Buttons specific to this editor:

B Compile performs a syntax check and, if an error is found, displays an error message.
If the file is error free, then the advanced trace search is programmed.

C Executes Trace.Find command.
D Opens a Trace.FindAll window with all occurence in the trace.
E Opens the Trace.FindViewProgram window showing the programming resources.

F Commands for advanced trace search programming.

See also

W <trace>.Find B <trace>.FindReProgram B <trace>.FindViewProgram

A ’Introduction’ in ’Application Note for Complex Trigger Language’

©1989-2024 Lauterbach General Commands Reference Guide T | 239

<trace>.FindReProgram Activate advanced existing trace search program

Format: <trace>.FindReProgram [<file>]

Activates an existing advanced trace search program file.

See also

B <trace>.FindProgram

A ’Introduction’ in’Application Note for Complex Trigger Language’

<trace>.FindViewProgram State of advanced trace search programming

Format: <trace>.FindViewProgram

Opens a windows that shows the state of the advanced trace search programming.

j-j B::Trace.FindViewProgram EI@
address type resource |
T:000005F8--000006A7 [Program 1 funcic A
D:000067C0--000067C3 |[Read o mstaticl
IF (Read(0)&EProgram(l)) W
See also

W <trace>.FindProgram

A ’Introduction’ in’Application Note for Complex Trigger Language’

©1989-2024 Lauterbach General Commands Reference Guide T | 240

<trace>.FLOWPROCESS Process flowtrace

Format: <trace>.FLOWPROCESS [<address>]

Processes all trace data in the analyzer and calculates the instruction flow for all of it. This is in contrast to
<trace>.FLOWSTART which discards the processing results and thus indirectly causes a reprocessing of
the limited set of trace data required to draw the currently open windows (reprocessing on demand).

The command is used mostly for diagnostic purposes.

<trace>.FLOWSTART Restart flowtrace processing

Format: <trace>.FLOWSTART [<address>]

Discards all results from previous decoding of instruction flow. This indirectly causes a reprocessing of the
limited set of trace data required to draw the currently open windows (reprocessing on demand). Effectively
the decoding of flow information is done again “from the start”.

The command is typically used when the memory contents at the time of decoding was wrong and the
decoding is therefore incorrect (contains flow errors). The command is executed after providing a correct
memory image (e.g. by activating chip selects) to re-initialize the flow processing.

The optional address parameter can be used to indicate the address of the first instruction executed by the
processor. In this way the debugger can correctly decode code sequences even before the first sync
message appears in the trace stream.

See also
1 FOUND()

©1989-2024 Lauterbach General Commands Reference Guide T | 241

<trace>.Get Display input level

Format: <trace>.Get [Y%o<format>] [<item> ...]
<items>: Y% <format>
DEFault | ALL | CPU | LINE | PORTS
Run

CYcle | Data[.<subitem> | BDATA | List[.<subitem>]
Address | BAddress | FAddress

| sYmbol | sYmbolN | PAddress | PsYmbol | Var
Time[.<subitem>]

FUNC | FUNCR | FUNCVar | IGNORE

LeVel | MARK[.<marker> | FLAG[.<flag_index>]
Trigger | Trigger.A | Trigger.B

SPARE

<special_lines>

<format>: Ascii | BINary | Decimal | Hex | Signed | Unsigned
HighLow | Timing
TimeAuto | TimeFixed
LEN <size>

<option>: FILE
Track
FlowTrace | BusTrace
Mark <item>

Displays the current state of all input lines. The format of the channel definition is similar to the <trace>.View
command. This command can be executed, while the port analyzer is running.

For valid channel names refer to the Processor Architecture Manuals.

Examples:

; Display the state of all port lines in hex and HIGH/LOW format.
Port.Get

©1989-2024 Lauterbach General Commands Reference Guide T | 242

Q4 B:Port Get =R =R
record p.0 p.1 p.2 p.3 p.4 p.5 p.8 p.10 p.11 p.12 p.13 p.14 p.15 p.16 .
direct LOW LOW LOW LOW LOW LOW LOW i LOW LOW

LOW LOW LOW LOW

p.17 p p. 20 p.2 p p.24 p.2 p.2 p.3 2 p.33 p.34 p.35 p.36
LOW LOW LOW LOW [LOW LOW LOW LOW

p.37 p ? p.43 p.44 p. 7 p.48 p.51 p.53 p.54 p.55

LOW LOW LOW LOW LOW J LOW LOW

p.57 63 7 p.68 p.71 p 3 p.74 p.75

LOW [LOW [

p. 77 p. 88 90 p.91 3 9 95

LOW LOW

p.100 p.101 p.102 p.103 p.104 p.105 p.106 p.107 p.108 p.1

L
2 p.113

Low Tow Low

W
p.114 p.115 p.116 p.117 p.118 p.119 p.120 p.12]1 p.122 p.123 p.124 p.125 p.126 p.127 p.timerD

I
LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW

LOW [LOwW LOW LOwW
p.timerl p.timer2 p.timer3 p.timerd4 p.timer5 p.timer6 p.timer? p.136 p.137 p.138 p.139 p.140 p.141

LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW

HIGH HIGH LOW

p.142 p.143 p.144 p.145 p.146 p.147 p.148 p.149 p.150 p.151 p.152 p.153 p.154 p.155 p.156 p.157

LOW HIGH HIGH HIGH LOW LOW HIGH HIGH HIGH

HIGH LOW LOW HIGH HIGH

LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW A

; Display the state of port lines P2 in binary format, lines P3.0, P3.1
; and P3.2 in timing waveform, port lines P5 in decimal format, port
; lines P4 in hex format and port PX in ASCII format.Port.Get

Port.Get p.2 p.30 p.31 p.32 %Decimal p.5 %Hex p.4 %Ascii p.x

; Display the state of all port lines in timing waveform.

Port.Get ALL

See also

B |Probe.state

©1989-2024 Lauterbach

General Commands Reference Guide T |

243

<trace>.GOTO Move cursor to specified trace record

[Examples]

Format: <trace>.GOTO "<bookmark>" | <record_number> | <time> [[<options>]

FILE
FlowTrace | BusTrace | CORE <number>

<option>:

Goes to the specified trace record in a Trace.* window by moving the cursor to that trace record.
Alternatively, click the Goto button in a Trace.* window, and enter a record number, a time index, or the
name of a trace bookmark.

1 Trace Goto EI@ 1 Trace Goto 1 Trace Goto
Record / Time / Bookmark Record / Time / Bookmark Record / Time / Bookmark
"BM1" - -12000. -5.000ms
| Previous | | First | | Trigger | | Zero | Previous First Previous First
[mNext][tast][Ref | [Track | Next Last Next Last
Cancel

A To go to a trace <bookmark>, enclose the bookmark name in quotation marks.

B To go to a trace <record_number>, append a period (.). Mind the + or - sign of the record number.

C To go to a <time>, prepend a plus or minus sign and append the unit of measurement. To view the
<time>, include the TIme.ZERO column in the Trace.List command, as shown in the example

below.
BusTrace The trace works as a bus trace. This option is usually not required.
FILE Takes trace memory contents loaded by Trace.FILE.
FlowTrace The trace works as a program flow trace. This option is usually not
required.
CORE The goto operation takes the specified core number into account. Only
available for SMP multicore tracing.

Description of Buttons in the Trace Goto Dialog

Previous / Next

Go to the previous / next user-defined trace bookmark.
Trace bookmarks are created with Trace.BookMark.

First / Last Go to the first / last trace record.
Trigger Go to the trigger record.
Ref Go to the reference point, which has been set with the Trace.REF

command.
You can also set the reference point by right-clicking in a Trace.* window
and pointing to Set Ref in the Trace popup menu.

©1989-2024 Lauterbach

General Commands Reference Guide T | 244

Zero Go to the zero reference point, which has been set with the ZERO.offset
command.
You can also set the zero reference point by right-clicking in a Trace.*
window and pointing to Set Zero in the Trace popup menu.
Track Go to the last tracked record.
Examples

The Trace.List window is always opened with the Track option. Thanks to the Track option, the subsequent
Trace.GOTO command scrolls to the desired trace record in the Trace.List window.

Example 1: Go to a <record_number>.

;open the Trace.List window

Trace.List /Track

;go to this <record number> in the Trace.List window

Trace.GOTO

-12000.

Example 2: Go to a trace <bookmark>.

;Create a trace bookmark named 'BM1' for record -14000.

Trace.BookMark

"BM1" -14000.

;open the Trace.List window

Trace.List /Track

;go to this <bookmark> in the Trace.List window

Trace.GOTO

n BMl "

Example 3: Go to a <time> index.

’

Trace.List

<first_column> <other_ columns>
TIme.ZERO DEFault /Track

;go to this <time> in the Trace.List window
Trace.GOTO -5.000ms

See also

B <trace>.BookMark

B <trace>.TRACK

B |Probe.state

B RunTime.state

1 Analyzer.RECORD.DATA()
1 Analyzer.RECORDS()

B <trace>.REF

B BookMark

B RunTime

1 Analyzer.RECORD.ADDRESS()
(1 Analyzer.RECORD.OFFSET()
1 Analyzer.REF()

©1989-2024 Lauterbach

General Commands Reference Guide T |

245

<trace>.Init Initialize trace

Format: <trace>.Init

The contents of the trace memory/streaming file is erased. All user setups, like the trace mode or trace
memory size, remain unchanged.

If the chip includes an onchip trigger unit, counters and trigger levels are cleared. The detailed behavior
strongly depends on the onchip trigger unit.

The trace is in OFF state, after a Trace.lInit was executed.

See also

B <trace>.Arm B <trace>.Autolnit B |Probe.state Bl RunTime
B RunTime.state

A ’'Release Information’ in’Legacy Release History’

<trace>.JOINFILE Concatenate several trace recordings
Format: <trace>.JOINFILE <file> [<records>] [/<option>]
<records>: <string> | <range> | <value> | <time_range>
<option>: ZIP | NoCompress | Compress | QuickCompress | TIMEGAP

Concatenates several trace recordings to increase the volume of trace information to be analyzed.

©1989-2024 Lauterbach General Commands Reference Guide T | 246

The reference point is automatically set to the start of the last added trace recording.

£ BrTrace.List /FILE o = =
[B snp... | Goto...|[#1Find... || M chart |[& More |[X Less
record |run |address cycle |data symbol t1.back
H131040 M:B00405E4 Tetch 24040001 N htaskc\taskc\ TuncE+0x158 0.100us
1265 vbfield.o = 1;
addiu r4,r0,#0x1

P4 | s

Sw r4,0x3694(r1)

H+131042 D:80083694 wr-Tlong O01FFFFF “\taskc'cc25687b\vbfield 0.100us
H131043 M:B00406B8 Tetch 3C01E008 “\taskc\taskc\funcs+0x22C 0.100us
1275 vbfield.f = -1;

Tui rl,#0x3008 5

H+131044 _ M:800406BC tch BC243B98 “\M\taskc\taskc\func8+0x230 0.100us
w r4,0x3B98(r1)

H131045 D:80083E98 rd-long 80018001 “\taskc'cc25687b\vbfield+0x4 0.100us =
FILE 1 +

Time gaps between the trace recording result in a large TIme.Back time (see screenshot above). The option
TIMEGAP <time> allows a seamless concatenation with regards to the timestamp.

Trace.SAVE my_ joinfile.ad

Trace.FILE my_ joinfile.ad

Trace.JOINFILE my_ joinfile /TIMEGAP 0.lus

Trace.JOINFILE my_joinfile /TIMEGAP 0.lus

Trace.Chart.sYmbol /FILE

Trace.FILE

; use

Trace.JOINFILE my_joinfile (4665.)--(5168.)

; use bookmarks to specify record range
Trace.JOINFILE my_joinfile "start" "end"

I

save current trace
contents to file

load trace contents
from file

run program to fill the
trace

append current trace
contents to loaded
trace contents

run program to fill the
trace

append current trace
contents

display timing for
concatenated trace

close loaded trace file

record numbers to specify the trace recording to be added

/TIMEGAP 0.lus

©1989-2024 Lauterbach

General Commands Reference Guide T |

247

<trace>.List

List trace contents

Format:

<items>:

<option>:

<format>:

<trace>.List [<record> | <record_range> | <time> | <time_range>] [<items> ...]
[/<options>]

FILE | Track | FlowTrace | BusTrace
NorthWestGravity

CORE <number> | SplitCORE | TASK <task>
Mark <jtem> | Raw | TimeZero

Y% <format>

DEFault | ALL | CPU | LINE | PORT

Run

CYcle | Data[.<subitem> | BDATA | List[.<subitem>]
Address | BAddress | FAddress IsYmbol | sYmboIN | PAddress | PsYmbol
Var | VarName | VarValue

Time[.<subitem>] | CLOCKS|.<subitem>]

FUNC | FUNCR | FUNCVar | IGNORE

LeVel | MARK[.<marker> | FLAG[.<flag_index>]
Trigger | Trigger.A | Trigger.B

SPARE

<special_lines>

FLOWERROR | FIFOFULL (trace error diagnosis)

FAddress | FsYmbol | FCOUNT | FLen (program flow diagnosis)
TP | TPC | TPINFO (raw trace data and decoded packet)
TSINFO (timestamp calculation diagnosis)

TPO | TP1 | TP2 | ... (trace port pins)

ARTIAPCore | ARTIAPEvent | ARTIAPData | ARTIAP

Ascii | BINary | Decimal | Hex | Signed | Unsigned
HighLow | Timingl TimeAuto | TimeFixed | LEN <size>

Opens a window showing the recorded trace data. For trace modes other than RTS (see <trace>.Mode),
the trace contents can only be displayed if the trace is in OFF or break state. Please refer to the
<trace>.state command for more information.

£ BaTrace List EI@
[& | Goto...|| #iFind... [Achart |[BProfie || BEMPS || % More |[XLess |
record |run |address cycle |data symbol t1.back |
-00000005 R:00002280 Tetch DADDODOA “Warmleharm's1evetOx5 8 0.100us ~
beq 0x22B0 =
-00000004 R:00002284 fetch E1A0D0EZ “armleharm'sievet+Ox5C 0.100us L
I -
690 primz = 1 + 1 + 3;)
Ol
-00000003 ch 3 ‘harmleharm'sieve+rOxs0 0.100us
add riz,r
-00000002 R:0000228C C ‘armleharm'sievet+Ox6d 0.100us
691 primz;
add r3,r2,rlz
-00000001 R:00002290 fetch E3530012 “Marmleharm'sievetOx6s 0.100us
532 while [k == SIZE)
omp r3,#0x12 i
J P }

Please refer to your Processor Architecture Manual for target-specific information and options.

©1989-2024 Lauterbach

General Commands Reference Guide T | 248

<record> The recorded trace data is displayed starting at the selected record.

<record_range> The recorded trace data is displayed for the selected range of trace
records (e.g. (-10000.)--(-2000.)).

<time> Defines which timestamp is centered on the x-axis when the window is
opened. Timestamps at the beginning or end of the x-axis are not
centered.

NOTE: Only zero-time timestamps can be used as <time> parameters.

You can display the zero-time timestamps in a Trace window by adding
the Tlme.Zero column to Trace.List.

<time_range> Defines which timestamp is displayed on the left of the x-axis when the
window is opened.

NOTE: Only zero-time timestamps can be used as <time_range>
parameters.

You can display the zero-time timestamps in a Trace window by adding
the Tlme.Zero column to Trace.List.

<bookmark> Defines which bookmark position is centered on the x-axis when the
window is opened. Bookmark positions at the beginning or end of the x-
axis are not centered.

NOTE: You can only use the names of trace bookmarks, which are
created with the <trace>.BookMark command.

<items> The columns of the <trace>.List window can be defined using the <items>.
The order of the columns in the window is according to the order of the
<item> parameters given (with a few exceptions like the run column that
always appears at the very left).
Note that the default columns are hidden, when you manually specify the
columns you want to display. The default columns can be included again in
the user-defined column display using the option DEFaulit.
Example: Trace.List List.ADDRESS DEFault
For details on the available columns, see further down.

For SMP systems, each core is represented in the Trace.List window by a different background color.

©1989-2024 Lauterbach General Commands Reference Guide T | 249

BuTrace.List EI-

[®setup... | Goto...)[#3 Find... | il Chart | B8] Profile || Bl MIPS |[# boe| X Less
record |run |address lcycle |data symbol |t1.back
1
249 1 nPoll1Cycles++;
1 addi r28,r28,0x1
1 b OxFFF1076C
-0000000100 |3 P:FFF10A2C ptrace .Sdemo' ProcessDataExchange+0xF4 0.076us
3 rmr r3o,r3
308 |3 } while(!5etTransmitSemaphore(n5SlaveCorelID, nOwnCorelID));
3 mr r4,r3l
3 mr r3,r3
3 b1 OxFFF10818
3
3 int SetTransmitSemaphore(unsigned int nCoreID, unsigned int nOwnCoreID) /= re
323 |3
3 - stwu ri,-0x20(r1)
3 | mflr ro
3 stw r28,0x10(r1)
3 stw r29,0x14(r1)
3 stw
3 stw
3 stw
3 mr
3 mr
324 |3 int i=0;
3 T4 r29,0x0
325 |3 int ret=0;
3 T4 r28,0x0
326 |3 unsigned int* volatile nCoreSemaphore = (unsigned int*) &(CoreTransmitBuffer[n
3 Tis rl0,-0x100
3 mr ril0,ril0
3 slwi r9,r3l,0x6
3 add rl0,r10,r9
3 stw ri0,0x8(r1)
3 | mbar 0x0
327 |3 if (nCoreID != nOwnCoreID)
3 cmplw r31,r30
3 beq OxFFF10878
329 (3 return ret;
E r3,r28
3303
3 r28,0x10(r1)
3 r29,0x14(r1)
3 r30,0x18(r1)
3 r31,0x1C(r1)
3 Twz ro,0x24(rl)
3 | mtlr ro
3 addi ri,rl,0x20
3 | blr
-0000000097 |0 P:FFF10A3C ptrace demoProcessDataExchange+0x104 0. 040us =
0 - cmpwi r3,0x0 s
o beq OxFFF10AZ24
1] do m
307 |0 nSlaveCorelID = Randomize(CORES); —
0 1d r3,0xd * —
¢ [| +
Core number, additionally different background colors

Core 3

Core 0

©1989-2024 Lauterbach

General Commands Reference Guide T

250

Description of Buttons in the <trace>.List Window

Setup ... Open a <trace>.state window, to configure the trace.

Goto ... Open a <trace>.GOTO dialog box, to move the cursor to a specific record.

Find ... Open a <trace>.Find dialog box, to search for specific entries in the trace.

Chart Display the program execution time at different symbols as a time chart.
See the <trace>.Chart.sYmbol command.

Profile Open a <trace>.PROfileChart.sYmbol window.

MIPS Open a MIPS.PROfileChart.sYmbol window.

More/Less Switch step-by-step from full display (all CPU cycles including dummies)

to HLL display and vise versa.

If no parameters are specified, a predefined set of items will appear in the window. By selecting items,
specific items can be displayed in any order defined by the user. It is possible to remove a selection from the
list by appending the keyword.OFF. The display format of the entries can be changed by the %<format>
options.

©1989-2024 Lauterbach General Commands Reference Guide T | 251

Options

FILE Displays trace memory contents loaded with Trace.FILE.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

BusTrace The trace works as a bus trace. This option is usually not required.

Track Track the <trace>.List window with other trace list windows (tracking to

record number or time possible).

Mark <item> Bold print all cycles on a yellow background which contain the specified
item.
NorthWestGravity With NorthWestGravity: The record numbering in the top left corner

stays fixed as you resize the <trace>.List window.

Without NorthWestGravity: The record numbering scrolls as you resize

the window.
Raw Displays all channels as raw hexadecimal values (where applicable)
TASK <task> Displays the trace recording of the specified task only.
TimeZero Use timestamp of first entry in listing as global reference (item
Time.Zero).
Trace.FILE testl ; load trace file
Trace.List /FILE ; display trace listing, source for the
; trace data is the loaded file
Trace.List /Mark Address sieve ; mark all trace lines which contain the

; address sieve

In the case of an SMP system, the following options are provided:

SplitCORE Displays the trace recording of all cores side by side.

CORE <number> Displays the trace recording of the specified core.

©1989-2024 Lauterbach General Commands Reference Guide T | 252

Formats

Ascii Displays single bytes as ASCII characters
BINary Displays single bytes in binary values
Decimal Displays single bytes in decimal values
Hex Displays single bytes in hex values
HighLow Displays single bits as 'H' or 'L' character
LEN <size> Specifies the width of non numeric fields (e.g. symbols)
Signed Displays single bytes signed
TimeAuto Displays time values in a floating display format (short)
TimeFixed Displays time values in a fixed point format (long format)
Timing Displays single bits as vertical timing
Unsigned Displays single bytes unsigned
Examples:

; display trace listing, limit the symbol names to 20 characters
Trace.List Address CYcle Data.L %LEN 20. sYmbol TIme.Back

; display trace listing, show the external trigger input 0 as vertical

; timing

Trace.List %Timing TIme.ZERO DEFault

The following <items> define the columns shown in the <trace>.List windows

DEFault Default trace display.
The default trace display can be configured with the command
SETUP.ALIST.

ALL Select all available channels (superset of DEFault)

CPU Set of channels describing the CPU state (similar to the original setting of
DEFault but no source code display).

LINE Set of channels which contains all CPU control lines.

©1989-2024 Lauterbach

General Commands Reference Guide T |

253

Run Gives various information about the execution of the current record.
. GO: the first instruction that was executed by the CPU after
starting program execution with Go.
BRK Indicates that the program execution was stopped.
. T : Indicates a trigger event.
] f : Foreground program
. b : Background program
. ft : Trigger event occurred in the foreground program
. bt: Trigger event occurred in the background program
] 0,1,2,3 ... in SMP systems, the run column indicates the number
of the core that executed the given code; additionally, the
background color of the records changes to high-light the relevant
core (light red, light green, ...).
Address start address of each displayed block of executed opcodes; for displaying
the address of each single opcode, use the channel List.Address.
sYmbol Symbolic address with path and offset
(as find item will search on all processor busses)
sYmbolIN Symbolic address without path but with offset

sYmbollnline

Inline symbol name with path.

sYmbollnlineN

Inline symbol name without path.

AAddress

Physical (absolute) CPU address

AAddress.0--31

Physical address bits A0..A31

PAddress This column display the address of the instruction that was executed before
a read or write access was performed.

PsYmbol This column display the address of the instruction that was executed before
a read or write access was performed.

FAddress Flowtrace execution address (when flowtrace available)

FsYmbol Symbolic flowtrace execution address

BAddress Bus address, same like physical address, but also displayed when the bus is

not transferring data

©1989-2024 Lauterbach

General Commands Reference Guide T | 254

Var

Symbolic display of data accesses to HLL variables

VarName Returns the names of the HLL variables.

VarValue Returns the values of the HLL variables.

CYcle Bus cycle

Data CPU data full width

Data.B CPU data single byte

Data.B0O CPU data lower byte

Data.Wo0 CPU data lower word

Data.TO CPU data lower triple

Data.0..31 CPU data bit 0 to 31

Data.0--7 CPU data bits 0 to 7 as single bits (8 bit processor)

Data.0--15 CPU data bits 0 to 15 as single bits (16 bit processor)

Data.0--31 CPU data bits 0 to 31 as single bits (32 bit processor)

Data.sYmbol Display the data value symbolically

BData Like Data, but always displays the data even when the bus is idle

List.Address Lists the address for each individual opcode (instead of the start address of
blocks of executed opcodes)

List.Asm Disassembled mnemonics

List.Mix Disassembled mnemonics and HLL source

List.HlII HLL source only, dequeueing based on disassembler

List.HIIOnly HLL source only no dequeueing

List.NoFetch

Suppresses the display of op-fetches

List.NoPFetch

Suppresses the display of prefetch cycles

List.NoCycle

Suppresses the display of more than one cycle between lines

List.Label

Label of disassembled mnemonic

©1989-2024 Lauterbach

General Commands Reference Guide T

255

List. Comment

Comments to disassembled mnemonics

List.Queue

Start address of disassembled mnemonic

List.TASK

Displays OS Awareness information (system-calls etc.)

List.Reorder

Reorders bus cycles logically (only some processors)

List.NoDummy

Suppresses the display of dummy cycles (where applicable)

List.Bondout

Display internal bondout information (where applicable)

List.TIme Display time information in assembler or HLL lines
List.CTS Display CTS information (Context Tracking System)
List. SOURCE- Display source file name for each line

FILE

Time Time marker (default Time.Fore)

Time.Fore Time marker, relative time to next record
Time.Back Time marker, relative time to previous record
Time.Zero Time marker, relative to global reference
Time.REF Time marker, relative to reference point
Time.Trigger Time marker, relative to trigger point

Time.FUNC Time spent in a function (*1)

Time.FUNCEX Time spent in calls (*1)

Time.FUNCIN Time spent in code of function (*1)
Time.MARKAB Time relative back to the last marker A
Time.MARKAF Time relative forward to the next marker A

Time.MARKBB

Time relative back to the last marker B

Time.MARKBF Time relative forward to the next marker B
TIme.MARKCB Time relative back to the last marker C
TIme.MARKCF Time relative forward to the next marker C

©1989-2024 Lauterbach

General Commands Reference Guide T

256

Time.MARKDB

Time relative back to the last marker D

TIme.MARKDF

Time relative forward to the next marker D

CLOCKS.Back

Number of clocks relative time to previous record

CLOCKS.Fore

Number of clocks relative time to next record

CLOCKS.Trigger Number of clocks relative to trigger point

CLOCKS.REF Number of clocks relative to reference point

CLOCKS.Zero Number of clocks relative to global zero point

FUNC Function nesting display (*1)

FUNCVar Function nesting plus variables

FUNCR Record number associated with this entry/exit point (*1)

IGNORE Record ignored or used for performance/nesting analysis

LeVel Trigger unit logical level

MARK.all Display markers

MARK.A Display marker A

FLAG.all Flags of the trigger unit in a short form

FLAG.0 Flag 0 of the trigger unit

Trigger.0 External trigger bit 0

Trigger.0--7 External trigger input bit 0--7

SPARE Displays an empty block

VarsYmbol HLL display of accesses to variables including bitfields and symbols.
tracelD If a context ID or ownership packet is decoded and if it can not be assigned

to a task or any other protocol-specific content such as service, intr etc. the
cycle type tracelD and the packet content is displayed.

©1989-2024 Lauterbach

General Commands Reference Guide T | 257

(1): The trace must be the same as for the command <trace>.STATistic.Func. The combination of the

FUNC keyword with the List. TASK keyword makes the function nesting display task sensitive.

FLOW ERROR Diagnosis

i BxTrace.List FLOWERROR FAddress Fs¥mbol FCOUNT DEFault o2 =
B setup... LﬂGoto... || #iFind... [Adchart][_EProﬂle] Hvrs | $More || Xiess |
TGOLEN flowerror faddress fsymbol ount run |address cycle |data |

—— FLOW ERROR (ERROR IN WRAPPER PROTOCOL)

m| »

-0149464499 | flowerror LP:0000000008048C80 ..main+0x29F 0067 0O LP :0000000008048C80 ptr
0
0 S
0 o
670 0 for (J = 0; J < 10; j++) -
] M - = 3
FLOWERROR Display flow error column

Flow Trace Decoding

7] BrTrace.List FAddress FsYmbol FCOUNT DEFault o e e
Fsetup... || MLcoto... | F3Fnd... || Adchart | EProfile || EIMIPS || 4 More X Less
address fsymbol ount [run address ycle |data symbo]l ti.back
-00000055 F:400023E0 iigwabc‘GTobaT\stDoubTeNormaTwze+Ux288 0038 [F:400023E0 |*r':e stDoubTeNormaTwze+Ux288 0.360us .
B i 00 £
mr rlo,r3o
srawi r9,r30,0x1F -
slwi rll,rl2,0x1F
sTwi r9,rl0,0x14
14 r12,0x0
14 r10,0x0
or rl2,rl2,rl0
or 3
or
or r3,ril, 148
addi ril,rl,0x30
b1 0x4 OOOLAAO
-00000054 F:40002AA0 \\diabc\Global'_restgpr_23_1 0004 F: 40002AAO p c ..abc\Globall_restgpr_23_1 0.380us
-00000053 F:40002AA4 \\diabc\Global'_restgpr_24_1 0004 1“ D: 4OUU?FU4 ;g ﬁgﬂ911/ 0000001C ..c\Global'__SP_TEST+0x50C 0.740us’
Wz r24,-0x20(r <
J¢ I 3
FAddress To decompress the recorded trace information the program code starting at
FAddress is read.
FsYmbol Symbolic address of FAddress.
FCOUNT To decompress the recorded trace information FCOUNT number of byte is
read.
FLen (deprecated)

©1989-2024 Lauterbach

General Commands Reference Guide T

258

Trace Raw Data and Packet Decoding

i) BTrace.List TP TPC TPINFO DEFault == Ech="
(& setup... || 13 Goto... || #iFind... || Adchart || EFrofile | HMPs || #More || Xiess |
record [tp tpc [tpinfo run |address cycle |data symbol
0] bx ri4 o
-0000547030 4984 84 Atom a=E 0 NR:40301B80 ptrace . Amain+0x3Ad =
698 0 func22((short) 33, (long) 44
0r mov r,#0x21
0] mov rl,#0x2C b
0] mov r2,#0x37
0| bl 0x403010a4
-0000547029 49 Branch address a=0x24 mask=0x3F 0 NR:403010A4 pirace .deve\func22
0
0| int func22(short x1, long x2, short x3)
498 0]
0F str rll, [r13,#-0x4]!
of add ril.ri3,#0x0 -
J 4 1 3
TP All raw trace data as recorded at the trace port.

For multicore systems the stream of trace data may contain information for
multiple cores (e.g. in “wrapped mode” for CoreSight systems).

TPC Raw trace data pertaining to a single core.
For multicore systems this data is extracted from the overall trace data
stream.
TPINFO Information obtained by decoding a single trace packet (which may consist
of multiple bytes).
BiiTrace List Address CYcle List ADDRESS List EXEC BEAT TP NEXUS TSINFO =N =R
B Setup... | 38 Config...| [} Goto.. | #3Find.. | fMlChart | HProfile | A MIPS 2 More X Less
record |address cycle |beat tp nexus |
[F00633746 0 A6 0298 ~
100633747 11 0071 -
100633748 301 0007 =
1+00633749 P:10001334 ptrace 0 1C 0070 | TE?DE:IC SRC=0 PT-IBHM B=0 (branch) I=23 UADDR=00003954 HIST=000000C3 (EN Y
MoV r1,r q -
jli_s Ox1
1+00633750 0 o 0300
100633751 1 08 0021
100633752 0 AA 0248
1+00633753 11C 0071
100633754 3c3 030F
100633755 c P:10002458 ptrace 0 1}c 0070 ; l(T%??Ef(lc SRC=0 PT-IBHM B=0 (branch) I=03 UADDR=0000396C HIST=00000001 (-)
b)x10001F20
add_s r2,r0,r0
{ add_s r3,rl,rl v
i o
BEAT All raw trace data as recorded at the Nexus port.

Displays the same data as TP, but in a different format.

BEAT displays the data in the format “MSEQ[1..0]-BLANK-MDQ[7..0]", e.g.
“8 427, whereas TP displays the same data in the format “MDOJ7..0]-
MSEO[1..0]", e.g. “10B".

©1989-2024 Lauterbach

General Commands Reference Guide T | 259

7] BiTrace.List TSINFO DEFault =NE=n
(& setup.... || 13 Goto... || FiFind... || Arichart || EProfie || EmPs % More X Less
record [tsinfo run |address cycle |data symbo 1. back |

1] bgt 0x40301E78

-0022171903 |ext: 44.570s cycle:0: Ox35B3A5 1 NR:40301E78 ptrace ..ieve_armsieve'background+0x3C 6.900us

767 il cntl-——;
1 1dr r3,0x40301EDC 5
1| add r3,pc,r3 o
1| 1dr 3 Fr3] [
1| sub r2,r3,#0x1
1| 1dr r3,0x40301EEQ
1| add r3;pe,r3
NSt rZilr3d
766 1 while (bcnt1=0)

1| 1dr r3,0x40301EE4
1| add F3ipE.F3
1| 1dr r3,[r3]
1| cmp r3,#0x0
1| bgt 0x40301E78

-0022171901 |ext: 44.570s cycle:0: Ox391A1E 0 NR:403014CC pirace ..arm\sieve\initLinkedList+0x11C 18.900us
0r ldr r2,0x40301584 -

_J P b
TSINFO Timestamp calculation background information, required for the diagnosis of
Complex timing scenarios.

©1989-2024 Lauterbach General Commands Reference Guide T | 260

Context ID/Ownership Trace Packet Decoding

£ BuTracelList EI@
(2 Setup... || {3 Goto... || #¥Find... || A Chart || EEProfile | EEMIPS | & More || X Less |
record run |address cycle |data symbol ti.back
38| 1
er xO le Ox LST/

39 1 //
—8888;18223 1 oy 0000 task 0000000041607 308 Shap er;O 0. 000us
- 1 FFFF i

///2//
1 FFFOOOOOSOSS 58
315 (1
4] // 7 / 7 ///%)
7 BuTracelist ol s
(2 Setup... || 3 Goto... || F¥Find... || fviChart || HProfile || HIMIPS | 4 More || X Less |
record |run |address cycle |data symbol ti.back
1 1dr T XU [XlJ "GX cS] | Page Number l -

391 ///{//
-0000293341 | 1 traceid 000006D7 0.000us *
-0000293335 | 0 N5SX:0000: FFFFO00008C2A370 ptrace Mwmlinux\sched/core'__schedule+0xB0 <0.005us

0| Tdr w2, [x19,#0x4]
0| 1dr w0, [x19,#0x74]
? cmp uc.uﬂ
3270 | 0 2000000 0 A 00 s A A e o A o A =

task If a Context ID or ownership packet is decoded and if it is assignable to a
task, the "task" cycle type and the task name is displayed. The displayed
data value is a TRACE32 internal value.

traceid If a Context ID or ownership packet is decoded and if it can not be assigned
to a task or any other protocol-specific content such as service, intr etc. the
cycle type "traceid" and the packet content is displayed.

If the machine ID is encoded, the machine name is also displayed ("sender" in the screenshot below).

£ [BuTraceList DEFault] [s

2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less
record run addr‘ess cycle |data symbol t1.back |
862 | O mtspr r4, SPRG3 /* restore r4 */ A
mfspr r4,spr275
863 (O /* restore context */
v
-30750144 O task 00020000DAE257CE sender: : :tMipcDemo 0.078us N
-30750141 :00000B00 ptrace .set_WIND_RTP_parentRtpId+0x1CC 0. 000us
r275,r3
,0x0, 0x0F , 0x0D
30BBOS hd
ARTIAP Trace Decoding

ARTI (AUTOSAR Real-Time Interface) Trace Driver format defined on AUTOSAR Adaptive Platform is in
MIPI STP (SYStem Trace Protocol) format.

©1989-2024 Lauterbach General Commands Reference Guide T | 261

HE == =]
B senp.. || 38 anfig... || (3 Goto...|| #3Find... || M chart & More | X Less
record |artiapcore |artiapevent |artiapdata cycle |data symbol [ti.back |
+00200112 (2 TASK_WAIT Ox770, task_id A:00620016 d3Zmts 00000770 0.105us A
+00200119 cB 5 0. 000us =
+00200120 (2 TASK_SWITCH 0x0, next_id A:00620015 d32mts 00000000 0. 000us =
+00200131 m8 67 0. 000us W
+00200132 cB 18 0. 000us
+00200134 (7 TASK_PREEMPT 0x0, task_id A:00670018 d32mts 00000000 19.838us ()
+00200141 cB 5 0. 000us
+00200142 (7 TASK_SWITCH Ox1, next_id A:00670015 d32mts 00000001 0. 008us
+00200149 cB B 0. 000us
+00200150 (7 TASK_WAIT Ox1, task_id A:00670016 d32mts 00000001 1.553us
+00200157 cB 5 0. 000us
+00200158 (7 TASK_SWITCH 0x0, next_id A:00670015 d32mts 00000000 0. 000us
+00200165 cB 0. 000us
+00200166 (7 TASK_PREEMPT 0x0, task_id A:00670018 d32mts 00000000 32.888us
+00200173 cB 5 0. 000us
00200176 |7 TASK_SWITCH Ox1, next_id A:00670015 d32mts 00000001 0. 000us
+00200181 cB B 0. 000us
+00200183 (7 TASK_WAIT Ox1, task_id A:00670016 d32mts 00000001 1.545us
+00200192 cB 5 0. 000us
+00200193 (7 TASK_SWITCH 0x0, next_id A:00670015 d32mts 00000000 0. 000us
+00200199 m8 54 0. 000us
+00200200 cB 18 0. 000us
+00200202 (4 TASK_PREEMPT 0x0, task_id A:00640018 d32mts 00000000 1.605us
+00200209 cB 5 0. 000us
+00200211 (4 TASK_SWITCH 0x8, next_id A:00640015 d32mts 00000008 0. 008us hd
IMPORT
The items are only supported when the hardware contains Arm System Trace Macrocell (STM).
ARTIAPCore Decode STM MasterlD into Core index based on board information.
ARTIAPEvent Decode STM Channel as OS Event.
ARTIAPData Decode STM data into meaningful data based on OS Event.
ARTIAP ARTIAP shows 3 items: ARTIAPCore ARTIAPEvent ARTIAPData.
See also
B <trace>.BookMark B <trace>.Timing
B <trace>.View B |Probe.state
0 Analyzer. RECORD.ADDRESS() 0 Analyzer. RECORD.DATA()
1 Analyzer.RECORD.OFFSET() 1 Analyzer.RECORDS()
1 Analyzer.REF()
A ’Release Information’ in’Legacy Release History’
©1989-2024 Lauterbach General Commands Reference Guide T 262

<trace>.ListNesting

Analyze function nesting

Format: <trace>.ListNesting [/<option>]
<option>: CORE <number>

SplitCORE

<generic_options>

The command Trace.ListNesting is mainly used to investigate issues in the construction of the call tree for
the nesting function run-time analysis. Typical commands for the nesting function run-time analysis are the
commands Trace.STATistic.Func or Trace.STATistic.TREE.

<option>

For a description of the generic options, see <trace>.List.

CORE <number>

Filters the Trace.ListNesting window by the specified core.

SMP tracing only. Processing is done for all cores, but only the specified core is displayed.
All other cores are temporarily hidden in the window.

SplitCORE Displays the trace recording of the cores side by side in the

SMP tracing only. Trace.ListNesting window.

The Trace.ListNesting window provides the nesting details. If a function entry point is selected, the path to

the function exit is highlighted.

! B:Trace ListMesting = e |
(& setup... | A Goto... || #¥Find... || =/ TREE || Avichart || % chart || HProfile | BMPS || $More || Xless |
recor 1. back |

-01629003 EE_e200z7_ir

r—EE_e200zx_ca

-01829001
-01828999 (=
-01828998 (@
-01828991
-01828989
-01828987
-01828983
-01828982
-01828977
-01828975 (=
-01828974
-01828972
-01828970
-01828968

EE_oo_In
EE E_oo_In
EE_oo_Inc

EE_rg_in
[:EE_r' in

- @

ounter_Interrupt
EE_oo_IncrementCounter

EE_oo_ActivateTask
ri
rt+0

z7_setup_decrementer

tCounterImplementation
CounterImplementation+0x180
ounter+0x104

) 6 A

+0x170

enter+0x14

If the function exit is located far apart, you can use the Down Arrow (v) to jump to the function exit.

©1989-2024 Lauterbach

General Commands Reference Guide T | 263

The interrupt nesting if marked specially (see screenshot below).

{E] B:Trace ListNesting o=
(& setup... n.Goto][#Find... || EJTREE || fvichart || wchart || BlProfile || BEMPS || # More [XLess |
record | | Ly
-00012912 ‘ ‘ ‘ ‘ ‘ l:PreIerook W188 av—— 1.500us .
-00012911 PreIsrHook+0x0A av—— 1.500us (g
interrupt .
1-00012910 [= 21.
-00012908 = SInterruptDispatcherl W 395——a vw—— 16.000us =
-00012907 |= = S_isr_ISR1 "123——a v—— 6.000us
-00012905 [SCICLEA" '210——a v—— 1.480us
-00012904 SCI 'LELR+EN1— awv—— 1.480us
-00012903 4 awv—— 6.000us i
-00012901) erl+0x20 av—— 16.000us L4
-00012900 OSInterru p"[‘1sp ner+0x24 awv—— 21.260us
-00012899 |= = S_isr_ISR2 ‘\133——a v—— 4.760us
-00012598 —SCICLEAR 4210——awv—— 1.240us -
4 3

Code optimizations are the main reason for issues in the construction of the call tree. TRACE32 indicates
these issues as PROBLEMs or WORKAROUNDs.

PROBLEMs

A PROBLEM is a point in the trace recording that TRACES32 can not integrate into the current
nesting.

PROBLEMs are marked with (!) in the Trace.ListNesting window. The name of the expected

function is shown.

. PROBLEMSs are ignored in the construction of the call tree.

. PROBLEMs may affect the construction of the call tree, so it is important to inspect them. The
Statistic Markers can be used to solve a PROBLEM.

To inspect a PROBLEM, proceed as follows:

1. Go to the start of the trace recording.

2. Use the Find... command from the Edit menu. Type (!)

as find item.

3. Open a Trace Listing to inspect the problem in detail.

Trace.List List.TASK List.ADDRESS DEFault /Track

Find ()
Findwhat: ()
et
[Match case ©'lp @ Down
Y BuTrace ListNesting [= ==
(& setup... || A Goto... || FiFind... || =|TREE || Avichart || i chart || BProfie || EMPS || #$More || XlLess |
record ti.back |
01529041 EE haT_terminate_task V120 aw—— 2.90us .
01829040 EE hal_terminate_task+0x58 - av— 2.960us (g
-01829040 EE_oo_TerminateTask [}l 1 =
-01829038 ,—EE thread end_instance B T et
task: NO TASK (FFFFFFFF) =
-01829034 |= = || ||| —EE_l quStk exchan awv—— 9.120us [|
——— task: Taské (00000005)
01829030 ||| “—EE rq?stl' _exchange+0x24 “av— ———
4 2

©1989-2024 Lauterbach

General Commands Reference Guide T

264

WORKAROUND

J A WORKAROUND is a point in the trace recording that TRACES32 can not integrate into the
current nesting.

. TRACES2 attempts to integrate this point into the function nesting, by deriving information from
previous scenarios in the nesting.

. WORKAROUNDSs are marked with (?) in the Trace.ListNesting window.

. WORKAROUNDs may affect the construction of the call tree, if the derived information is wrong.
It is recommended to inspect the WORKAROUNDs.

To inspect a WORKAROUND, proceed as follows:

1. Go to the start of the trace recording.
2. Use the Find... command from the Edit menu. Type (?) as find item.
3. Open a Trace Listing to inspect the problem in detail.

Trace.List List.TASK List.ADDRESS DEFault /Track

Find s)
vt) |
Direction Cancel
[Match case ©)Up © Down

E BuTrace.ListMesting | = || =] || 3 |

(& setup...|[13 Goto... |[#4Find... || =|TREE |[rvichart || = chart || EProfile || FMPS || 4 More || A_;ss__]
record ti.back i

-02490374 | [TTT —EE_oo ‘w'a'ltEvent
task: NO_TASK (FFFFFFFF)
-02490362 EE std_change_context
-02490360 EE std_change_context+0xEC
-02490360 EE_rq2stk_exchange [@]
— interrupt

-02490201 @DummyFnl+0xBG 127 36.
02490200 E| EE_e200zx_decrementer_handler————————\140——a »—— 36.520us —
-02490199 l:save _registers l——a v—— 2.340us —
-02490198 _registers+0x46 awv—— 2.340us — ~

4 F

See also
B |Probe.state

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 265

<trace>.ListVar List variable recorded to trace

Format 1: <trace>.ListVar %[<format>] [{<var>}] [{/<options>}]
Format 2: <trace>.ListVar <range> [%[<format>]] [{<var>}]
<format>: DEFault | STandDard | Decimal | Hex
<range>: <record_range> | <time_range>
<options> TASK <task>

CORE <core_number>

Split | SplitFill

List | Mark | Track

FILE

Filter <filter>

©1989-2024 Lauterbach General Commands Reference Guide T | 266

Displays a list of all variable recorded if it is used without parameters.

&% BuTrace.ListVar EI@
& .. | Goto...| FiFind... | 4 Draw

4505 |varname varvalue t1.back |
-130486 [vTong 12345678 A
-130464 [vshortrecord.x, vshortrecord.y 1335, 1336 2.200us _
-130389 [vshortrecord.x, vshortrecord.y 1336, 1337 7.500us =
-130377 mstaticl 304455690 1.200us W
-130355 |mstatic2 608911380 2. 200us
-130351 |mstatic2 608911380 0.400us 2
-130338 mstatic2 608911380 1.300us
-130253 |mstatic2 4 8.500us
-130249 [TreeMPtr branch_public 0.400us
-130239 [TreeMFPtr.__pfn 0x07C9 1.000us
-130235 [TreeMFPtr.__delta 0 0.400us
-129953 [TreeMPtr branch_public 28.200us
-129942 [TreeMFPtr.__delta 0 1.100us
-129935 (TreeMFPtr.__pfn 0x07C9 0. 700us
-129930 [TreeMFPtr.__delta 0 0.500us
-129101 |mstaticl 1 82.900us
-129069 |mstaticl 2 3.200us
-128852 |mstaticl 2 21.700us hd

The option Mark allows to mark the specified variable access.

; mark trace entry when a 0x0 is written to variable mstaticl
Trace.ListVar /Mark Address Var.RANGE (mstaticl) CYcle Write Data 0x0

€ BuTrace ListVar /Mark Address Var. RANGE(mstatic1) CYcle Write Data 0x0 [= |- = |[555]

2 ... || Goto...|| #4Find... | 9 Draw

4505 |varname varvalue t1.back |
~128490 [mstaticl 1 1.100us
-128467 |mstatic2 2 2.300us _
-128463 |mstatic2 2 0.400us =
-128450 |mstaticl 2 1.300us o,
-128417 |mstaticl [3.300us
-128413 |mstaticl & 0.400us "™
-128397 |mstatic2 32 1.600us
-126628 |mstaticl 1] 176.900us
-126617 |nestdvar.c 1 1.100us
-126612 |nestdvar.d 2 0.500us
-126607 |nestdvar.e 3 0.500us
-126602 0.500us ¥

Format 1 represents the standard syntax, in which the variable names follow the %<format> parameter.

The following options provide a representation in which variable values can be better compared:

Split Each specified variable gets its own column. If a variable is
accessed its value is displayed.
Write accesses are printed in black, read accesses are printed in

gray.

SplitFill Each specified variable gets its own column. Whenever one of the
specified variables is displayed, the current values of all other
specified variables are displayed as well.

Write accesses are printed in black, everything else is printed in

gray.

©1989-2024 Lauterbach General Commands Reference Guide T |

267

Examples for Format

//Display all
Trace.ListVar
//Display all
Trace.ListVar
//Display all

Trace.ListVar
Trace.ListVar
//Display all

//fi1il1ll in the current value of the not accessed variable to each line

1:

accesses
$DEFault
accesses
$DEFault
accesses

to the variable mstaticl

mstaticl

to the listed variables

mstaticl fstatic fstatic2

to the listed variables, but display
//the values of each variable in a separate column

$DEFault mstaticl mstatic2 vlong /Split

%$Hex mstaticl fstatic fstatic2 /Split
accesses to the listed variables, but display
//the values of each variable in a separate column

Trace.ListVar %$DEFault mstaticl mstatic2 vlong /SplitFill

&% BuTrace.ListVar %DEFault mstatic] mstatic2 viong /Split = =R
2 ... || Goto...|| #4Find... | 9 Draw

855 |mstaticl mstatic2 wvlong ti.back |
-007942 |-675580272 0.500us
-007931 |-675580272 1.100us
-007869 |-675580272 6.200us =
-007717 |-675580272 15.200us o,
-007698 12345678 1.900us
-007693 12345678 0.500us ™
-007682 12345678 1.100us
-007677 -663234593 0.500us
-007666 -663234593 1.100us
-007661 -2014395135 0.500us
-007650 -2014395135 1.100us
-007645 253831348 0.500us
-007634 253831348 1.100us
-007629 1846477560 0.500us
-007605 |-675580272 2.400us
-006172 34 143.300us
-003975 12345678 219.700us
-003866 |-675580272 10.900us
-0035844 -1351160544 2. 200us
-003840 -1351160544 0.400us
-003827 -1351160544 1.300us ¥
& BuTrace ListVar %DEFault mstatic] mstatic2 vlong /SplitFill = =R

2 ... || Goto...|| #4Find... | 9 Draw

855 |mstaticl mstatic2 wvlong ti.back |
-122667 |-945954696 34 14694488589 0.500us A
122656 |-945954696 34 1469448889 1.100us _
122651 |-945954696 34 -1368415196 0.500us =
-122640 |-945954696 34 -1368415196 1.100us W
122635 |-945954696 34 -857266680 0.500us
122611 |-945954696 34 -857266680 2.400us 2
121167 |-945954696 34 -857266680 144.400us
118970 |-945954696 34 12345678 219.700us
-118861 |-945954696 34 12345678 10.900us
118839 |-945954696 -15891909392 12345678 2. 200us
118835 |-945954696 -1891909392 12345678 0.400us
118822 |-945954696 -15891909392 12345678 1.300us
118737 |-945954696 4 12345678 8.500us
117585 |1 4 12345678 115. 200us
117553 |2 4 12345678 3.200us hd

©1989-2024 Lauterbach

General Commands Reference Guide T

268

Format 2 represents the advanced syntax, here it is possible to restrict the display to the specified
<record_range> or <time_range>.

Examples for Format 2:

Trace.ListVar (-14874903.)--(-14874761.)

Trace.ListVar 1.8s--10.8s

Trace.ListVar (-14874903.)--(-14874761.) vfloat

Trace.ListVar 1.8s--10.8s mstaticl fstatic fstatic2 /SplitFill

See also
B [Probe.state M Trace

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 269

<trace>.LOAD Load trace file for offline processing

Format: <trace>.LOAD [<file>] [[Config]

Loads trace data from a file into the debugger. Typically <trace>.LOAD is used to analyze data in a
simulator or to compare different recordings.

The command loads the data into the “normal” trace buffer i.e. the same buffer that is filled when recording
data using an analyzer (e.g. via PowerTrace, PowerProbe, Powerlntegrator etc.). As the standard trace
commands work on this buffer, they automatically work on the loaded data. To highlight that loaded data is
displayed, windows are marked by a red label LOAD label in the bottom-left corner.

To save trace data, use the command <trace>.SAVE.

<file> The default extension for the file name is *.ad.

NOTE: There is a similar but slightly different command <trace>.FILE. It loads the trace
data into a dedicated file trace buffer. To have trace commands (e.g. Trace.List)
work on the file trace buffer, they need to be invoked with the parameter /FILE.

An example for working on loaded trace data:

Trace.LOAD test4 ; load trace contents from file

Data.LOAD.El1f demo.elf /NoCODE ; load symbol information for the
; post-processing

Trace.List ; display loaded trace contents
Trace.Chart.sYmbol ; symbol analysis of trace
Trace.STATistic.Func ; function run-time analysis

©1989-2024 Lauterbach General Commands Reference Guide T | 270

The TRACE display and analysis commands are re-directed to the selected trace method if:

Trace.LOAD is executed without the parameter <file>.

Trace.LOAD

A trace configuration command is executed.

Trace.Init

Re-direct trace display and
analysis commands to the selected
trace method

the trace configuration command
Trace.Init re-directs the trace
display and analysis commands to
the selected trace method

The program execution is started while Trace.AutoArm is set to ON.

If the Trace.METHOD Probe or Trace.METHOD Integrator was selected, when the trace contents were
saved, the option /Config can be used to re-activate the Probe/Integrator and NAME settings.

Trace.METHOD Probe

7 eee

Trace.SAVE probetestl

QUIT

Trace.LOAD probetestl /Config

Trace.List

See also

’

select the trace method Probe
for the PowerProbe

save the trace contents to the
file probetestl

end TRACE32

use a TRACE32 instruction set
simulator to postprocess the
PowerProbe trace data

load the trace contents from the
file probetestl

load the Probe settings and NAMEs

B <trace>.FILE

B <trace>.SAVE

B RunTime.state

A ’Release Information’ in’Legacy Release History’

]

B |Probe.state

B RunTime

©1989-2024 Lauterbach

General Commands Reference Guide T | 271

<trace>.MERGEFILE Combine two trace files into one

Format: <trace>.MERGEFILE <file> [<trace_area>] [/<options> ...]
<trace_area>: <string>

<range>

<value>

<time_range>

<option>: TIMEGAP <time>
ZIP
QuickCompress
Compress
NoCompress

Combines two trace files into one. This is useful for traces recorded for different cores working in AMP mode.

TIMEGAP <time> Allows a seamless concatenation with regards to the timestamp

ZIP, Control the compressing of the resulting file. These option are obsolete
QuickCompress, because the resulting file is compressed by default.

Compress,

NoCompress

See also

W Trace

©1989-2024 Lauterbach General Commands Reference Guide T | 272

Trace.METHOD

Select trace method

Format:

<method>:

Trace.METHOD <method>

Analyzer
ART
CAnalyzer
ClIProbe
FDX
Integrator
IProbe

LA
LOGGER
Onchip
Onchip2
Probe
SNOOPer
NONE

Selects the trace method you want to use. This allows you to work with a trace method other than the one
suggested by TRACE32.

For information about how TRACES32 makes its suggestion, see “What to know about the TRACE32

default settings for Trace.METHOD”, page 119.

Trace Methods

Description

Analyzer

o TRACE32 PowerTrace or RiscTrace
o TRACES32 Instruction Set Simulator

Trace memory is provided by one of the following TRACES32 tools:

J TRACERS2 Front-End to virtual targets supporting trace

ART

Advanced Register Trace.

CAnalyzer

Compact Analyzer. Trace memory is provided as follows:
J TRACE32 CombiProbe
J pTrace (MicroTrace)

J PowerDebug/Debug Cable configuration

ClProbe

The Lauterbach Analog Probe within the CombiProbe / pTrace
(MicroTrace) is used to record signals.

©1989-2024 Lauterbach

General Commands Reference Guide T

273

Trace Methods Description

FDX Fast Data eXchange.

The target application needs to write the required trace information to a
small ring buffer (min. size 2 trace records). The contents of the ring buffer
is transferred to the TRACE32 software while the program execution is
running and saved there for later display.

If the on-chip debug unit provides a Debug Communications Channel
(DCC) the required trace information can be transferred directly to the
TRACERS2 software.

HAnalyzer Trace RAM is provided by the host. This method is used for targets that
provide a specifically implemented trace channel over interfaces like
USBS3.

Integrator The Lauterbach logic analyzer Powerlntegrator is used to record the trace
information.

IProbe The Lauterbach IProbe logic analyzer within the PowerTrace 11 /
PowerTrace Il is used to record signals.

LA LA (Logic Analyzer).

Trace information not recorded by TRACE32 can be loaded and
processed. This requires that the TRACES2 software is familiar with the
format of the trace information.

LOGGER The target application can write the required trace information to target
RAM. TRACES2 loads the trace information from the target RAM for
display and processing.

Onchip The trace information is saved in the first/second onchip trace buffer

Onchip2 provided by the chip.

Probe The Lauterbach logic analyzer PowerProbe is used to record the trace
information.

SNOOPer SNOOPer trace. For details, see “Application Note for the SNOOPer
Trace” (app_snooper.pdf).

NONE A dummy trace method indicating that the trace feature, including the
Trace.* commands, is not yet operational. The only command exceptions
are Trace.METHOD and Trace.state.

Select the trace method you want to use, using either the Trace.METHOD
command, the Trace.state window, or a PRACTICE script (*.cmm).

For more information including illustrations, see “What to know about the
TRACES32 default settings for Trace.METHOD”, page 119.

©1989-2024 Lauterbach

General Commands Reference Guide T | 274

See also

B <trace>.Mode W <trace>.state B Analyzer B ART

B CAnalyzer B FDX B HAnalyzer B Integrator

W |Probe LA B LOGGER B Onchip

B Probe B SNOOPer B SystemTrace 1 Trace. METHOD.Analyzer()

1 Trace. METHOD.ART() 1 Trace. METHOD.CAnalyzer() O Trace.METHOD.FDX() 1 Trace. METHOD.HAnalyzer()
1 Trace.METHOD.Integrator() ' Trace. METHOD.IProbe() 1 Trace. METHOD.LA() 1 Trace. METHOD.LOGGER()

(1 Trace. METHOD.ONCHIP() d Trace.METHOD.Probe() 1 Trace. METHOD.SNOOPer()

A ’Trace Functions’ in 'General Function Reference’
A ’'Release Information’ in ’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 275

<trace>.Mode Set the trace operation mode

Format: <trace>.Mode [<mode>]
<mode>: Fifo

Stack

<other modes>

Selects the trace operation mode. The supported modes depend on the selected trace method. Please refer
to the description of the trace operation mode for the selected trace method for more information, e.g. for the
trace method Analyzer, refer to Analyzer.Mode. The most common operation modes are:

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break. This mode is supported
by all trace methods.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace. This mode is supported by all trace
methods.

Leash Stops the program execution when trace is nearly full.

©1989-2024 Lauterbach General Commands Reference Guide T | 276

STREAM The trace data is immediately conveyed to a file on the host after it was
placed into the trace memory of the TRACE32 trace tool. This procedure
extends the size of the trace memory to up to several T Frames.

STREAM mode can only be used if the average data rate at the trace
port does not exceed the maximum transmission rate of the host
interface in use. Peak loads at the trace port are intercepted by the trace
memory of the TRACE32 trace tool, which can be considered to be
operating as a large FIFO.

Depending on the command group, STREAM mode can only be used for
some TRACE32 trace tools:
. Analyzer:
- PowerTrace Serial / PowerTrace Serial 2
- PowerTrace Il / PowerTrace I
- TRACE32 POWERTRACE/ ETHERNET supports STREAM
mode for some trace protocols. If it is not supported, the
command Trace.Mode STREAM is blocked.
. CAnalyzer:
- All configurations

. Integrator:

- Powerlntegrator Il (Probe A-E only)
. IProbe:

- All tools except PowerTrace |l
. ClProbe:

- All tools

The streaming file is placed into the TRACES32 temp directory
(OS.PresentTemporaryDirectory()) by default and is named
<trace32_instance_id>stream<method>.t32 (trace32_instance_id is the
value of OS.ID(), method is one of a/ca/i/ip/cip). If you explicitly want to
specify a location for the streaming file use the command
<trace>.STREAMFILE <file>.

PIPE The trace data is immediately conveyed to the host and distributed to
user-defined trace sinks. Not supported with PowerTrace Ethernet
256/512MB. See <trace>.PipeWRITE.

RTS The RTS radio button is only an indicator that shows if Real-time Profiling
is enabled. For enabling RTS use the command RTS.ON.

See also

B Trace. METHOD B <trace>.STREAMCompression
B <trace>.STREAMFILE B <trace>.STREAMFileLimit

B <trace>.STREAMLOAD B <trace>.STREAMSAVE

B Analyzer.Mode B ART.Mode

B CIProbe.Mode B FDX.Mode

B HAnalyzer.Mode B Integrator.Mode

B |Probe.Mode H LA .Mode

B LOGGER.Mode B Onchip.Mode

B Probe.Mode B SNOOPer.Mode

©1989-2024 Lauterbach General Commands Reference Guide T | 277

<trace>.OFF Switch off

Format: <trace>.0OFF

Disables both trace memory and the trigger unit. The trace memory can be read and the trigger unit be

programmed.
See also
B |Probe.state B RunTime B RunTime.state 1 Analyzer.STATE()
<trace>.PipeWRITE Connect to a named pipe to stream trace data
Format: <trace>.PipeWRITE [<name>]

Connect to a named pipe to stream the raw trace data to an external application. If <name> is omitted, the
debugger disconnects from the named pipe.

Example: (for Windows)

Trace.Mode PIPE ; switch to PIPE mode
Trace.PipeWRITE \\.\pipe\ptrace ; connect to named pipe
; run test
Go ; trace data now streamed to
050 ; external application
Break
Trace.PipeWRITE ; disconnect from named pipe
See also
B Trace
<trace>.PlatformCLOCK Set clock for platform traces
PowerPC QorlQ
Format: <trace>.PlatformCLOCK <frequency>

Sets the clock for platform traces (DDRTrace, OCeaNTrace).

©1989-2024 Lauterbach General Commands Reference Guide T | 278

This command is only available for PowerPC QorlQ cores. Refer to “QorlQ Debugger and NEXUS Trace”
(debugger_ppcqgoriq.pdf) for more information.

<trace>.PortFilter Specify utilization of trace memory

Format: <trace>.PortFilter AUTO | OFF | MIN | PACK | MAX

If a TRACES32 trace tool is used and the trace information is conveyed to the host computer at the recording
time, it is advantageous to reduce the amount of data to be conveyed. This goal can be achieved by the

following:

J Reducing the recording of idle cycles (applies only if the on-chip trace logic generates idle
cycles).

. Not conveying TRACE32 tool time stamps to the host computer, if they are not required for the

intended analysis.

The command Trace.PortFilter allows the following configurations:

AUTO Best setting is done automatically by TRACES32 (default). This means in
detail:
. With streaming (Trace.Mode STREAM) or PIPE Mode
(Trace.Mode.PIPE) all TRACE32 trace tools operate in PACK
mode.
. With real-time profiling (RTS.ON) all TRACE32 trace tools operate
in MAX mode.
Otherwise:
. CombiProbe and pTrace (MicroTrace) operate in PACK mode.
. A PowerTrace with an AutoFocus Il or AutoFocus MIPI preproces-
sor operates in PACK mode.
. All other PowerTrace setups operate in MIN mode.
OFF All generated trace information is recorded (for diagnostic purposes
only).
MIN Idle cycles are partly not recorded.
PACK No idle cycles are recorded. Caveats: The accuracy of the TRACES2 tool
time stamps is reduced.
MAX No idle cycles are recorded and no TRACES32 tool time stamps are
conveyed to the host computer.

See also
H RTS.ON

©1989-2024 Lauterbach General Commands Reference Guide T | 279

<trace>.PortSize Set external port size
Embedded cores in Xilinx FPGAs [Zynq]

Format: <trace>.PortSize112131|...116 | AUTO

Informs the debugger that the externally visible port size differs from the internal port size setting of
TPIU.PoriSize and sets the specified external port size. Use this command if there is application-specific
logic between the TPIU and the analyzer, for example in the programmable logic part of an FPGA SoC.

The external port size value refers to the number of data pins that are physically connected to the analyzer.

The internal port size value refers to the setting that will be programmed into the target’s TPIU.

AUTO The external port size value of <trace>.PortSize equals the internal port size
(default) value of TPIU.PortSize.
1...16 Use the specified number of data pins as the external port size.

See also

B TPIU.PortSize
A ’Introduction’ in ’'Debugging Embedded Cores in Xilinx FPGAs [Zynq]

<trace>.PortType Specify trace interface

Format: <trace>.PortType TPIU | STM | SWV (CombiProbe)

<trace>.PortType TPIU | TPIUX2 | TPIUX3 | TPIUX4 | STM | RTP | TPIU+RTP
(Preprocessor AutoFocus Il)

<trace>.PortType HSSTP | SETM3 (Preprocessor Serial)

Inform TRACES32 PowerView about the trace port interface type provided by your target. This might be
necessary for the following TRACES32 trace tools:

TRACE32 CombiProbe:

TPIU (default) CombiProbe is connected to TPIU.
STM CombiProbe is connected to STM interface.
SWv CombiProbe is connected to Serial Wire Viewer interface.

©1989-2024 Lauterbach General Commands Reference Guide T | 280

TRACES32 Preprocessor AutoFocus lI:

TPIU TRACE32 AutoFocus Il Preprocessor is connected to TPIU (default).
Also supported by LA-7991 PP-ARM-ETM-AF.

TPIUX2 TRACE32 AutoFocus Il is connected to a trace port interface that
provides 2 ETMv3 interfaces, multicore chip without TPIU (NEC Triton
only).

TPIUX3 TRACE32 AutoFocus Il is connected to a trace port interface that
provides 3 ETMv3 interfaces, multicore chip without TPIU (NEC Triton
only).

TPIUX4 TRACE32 AutoFocus Il is connected to a trace port interface that
provides 4 ETMv3 interfaces, multicore chip without TPIU (NEC Triton
only).

STM TRACE32 AutoFocus Il Preprocessor is connected to STM interface.
Also supported by LA-7991 PP-ARM-ETM-AF.

RTP TRACE32 AutoFocus Il Preprocessor is connected to Ram Trace Port
interface.

TPIU+RTP TRACES2 AutoFocus Il Preprocessor is connected to a trace port
interface that includes a TPIU and a Ram Trace Port interface.

TRACE32 Preprocessor Serial:

HSSTP TRACE32 Preprocessor Serial is connected to a HSSTP interface
(default).
SETM TRACE32 Preprocessor Serial is connected to a SETM interface.

©1989-2024 Lauterbach

General Commands Reference Guide T |

281

<trace>.PROfile Rolling live plots of trace data

The <trace>.PROfile command group displays plots that are based on polling trace hardware and update in
real time. See also Count.PROfile, Data.PROfile and Var.PROfile for similar plots of data polled directly
from the target.

See also
B |Probe.state

<trace>.PROfile.channel Display profile of signal probe channels
Format: <trace>.PROfile.channel [<items ...>][/options]
<options>: Autolnit | AutoArm

Displays a rolling live plot of analog or digital channels of e. g. a Mixed-Signal Probe. If no <items> are given,
the command plots all analog channels that are enabled (see POD.ADC).

With the options Autolnit and AutoArm, the window can be tied to the execution of the target program.

Channels are sampled approximately every 100 milliseconds and data is shown for the last 100 seconds.
Sampling happens independently from the normal operation of the trace (i. e. <trace>.Arm or
<trace>.0OFF). This command is intended as a visual aid for slow or interactive changes of channels, not as
a replacement for windows like <trace>.DRAW.channel or <trace>.Timing.

<trace>.PROfile.CTU Display complex trigger unit counter profile
Format: <trace>.PROfile <counter> [<gate>]
<gate>: 0.1s11.0s | 10.0s

The contents of a trigger unit counter can be displayed as a function of time. Time counters are displayed in
percent and event counters as events/s. Refer to “Complex Trigger Unit for Nexus MPC5xxx”
(app_ctu_mpc5xxx.pdf) for more information.

©1989-2024 Lauterbach General Commands Reference Guide T | 282

<trace>.PROfileChart

Profile charts

The <trace>.PROfileChart command group displays distributions versus time graphically as color chart
with fixed time intervals. The result is a stacked graph where the total ratio at a given time represent the sum

of the ratios for all items at that time.

ratio |

M B::Trace PROfileChart.s¥mbol [=E]=]
(& setup...|[i Groupﬂ[Config.. |Ln, Goto... | 3‘3 Find... |[4» In_]LN Out MM Full [% in |[X out| F Full][Fine ”_
10.000us [l (other) [l main func2 M funcl [] Func2a W funcZb
250.000us 300.000us 350.000us 400.000u

100.0

80.0

60.0

40.0

20.0

To draw the Trace.PROfileChart graphic, TRACE32 PowerView partitions the recorded instruction flow
information into time intervals. The default interval size is 10 us. For each time interval rectangles are draw
that represent the time ratio, events or time consumed within the time interval. For the final display this basic

graph is smoothed.

14 B:Trace PROFileSTATistic.sYmbol /Track = = ==

(& setup... || i Groups.. (28 Config...|[¥ Goto... || #1Find... |[=] Detailed||
items: 29. total: 34.65

address | 224.685us 244.685us |

0.000us OOOUS 0.000us | «

main 0.278us 2.958us 0.275us |
func2 0.248us 0.000us 0.000us
funcl 0.000us 0.000us 0.000us
func2a 6.275us 0.000us 0.000us
funcZb 3. 200us 1.508us 0. 000us
func2d 0. 000us 5.535us 0. 000us
ca'I'I _via_r0 0. 000us 0. 000us 0. 000us

func3 0. 000us 0. 000us 0. 000us | =
funcs 0.000us 0.000us 1.480us
funcs 0.000us 0.000us 8.245us
func? 0.000us 0.000us 0.000us
funcl0 0.000us 0.000us 0.000us
funcll 0.000us 0.000us 0.000us
funcl3 0.000us 0.000us 0.000us

funcl4d 0.000us 0.000us 0.000us ||
funcls 0.000us 0.000us 0.000us
funclé 0.000us 0.000us 0.000us
funcl? 0.000us 0.000us 0.000us
funcl8 0.000us 0.000us 0.000us
funcl9 0.000us 0.000us 0.000us

func20 0.000us 0.000us 0.000us | =
A gl L

M B::Trace.PROfileChart.sYmbol /Steps

(& setup...|[il Group_”

Config..]Ln, Goto... “ 41 Find

10.000us [l (other)

ratio 1

W main

s 240.000us

100.

0.

80.

70.

60.

50.

40.

30.

20.

10.

o

v 4 |m|»

func2b

4 (ml vy 4 3

©1989-2024 Lauterbach

General Commands Reference Guide T |

283

The time interval size can be changed using the Fine and Coarse buttons.

M B:Trace PROfileChart.s¥mbol = | B |
& Setup... || il Groups... || 3% Config...|| I} Goto... 3‘3 Find... || 4» In][N out| MM Full]| % In |[X out|[E Full]l Fine [[Coarse]
100.000us [l (other) [main func2 funcl I funCZa I funcZb
0s -6.100s -6.000s -5.900s -5.800s
ratio 1 1 1 1 |
100.0 |E|
80-0 PUPETEPISPSVSPSVINEN C_T: -6.042: -
§ C-Z: 104345
scale: 10.000ms
60.0 interval: 100.000us
| itern: sieve
40.0 '
20.0
0.0 k -
.. T T >
Fine Decrease the time interval size by the factor 10
Coarse Increase the time interval size by the factor 10

The time interval size can also be set manually using the /InterVal option:

Trace.PROfileChart.sYmbol /InterVal 5.ms

The tooltip at the cursor position shows the color assignment

; change the time

I

and the used interval size.

M| B:Trace. PROfileChart.s¥mbol /InterVal 5.us |- E]
& Setup... || iii Groups... || 3% Config...|| I} Goto... }3 Find... || 4» In_]LN out/[MMFull][# n |[X out|[EF
5.000us [l (other) [main func2 W funcl [] funCZa
0.000us 240.000us 260.000us 280.000us 300.
ratio |] 1 1 L

100.0

» 4 [m »

C-T: 222.760us
C-7: 12930s
scale: 10.000us
interval: 5.000us

item: funcZa

<[

interval size to 5.ms

©1989-2024 Lauterbach

General Commands Reference Guide T

284

Use the control handle on the right upper corner of the Trace.PROfileChart window to get a color legend.

| B::Trace.PROfileChart.sYmbol /InterVal 5.us EI@
(& Setup...]miGroups... (2% config...[1% Goto... | #3Find... || 4» In |[»4 out|[MM Full][% I |[X out|[F Full]| Fine][
C-T: +0000001152 238.760us | C€-Z: +12.930s scale: 10.000us
(other) main func? funcl
func2a funcZb func2d __call_via_r0
func3 funcs funcs func?
5.000us funcl0 B funcll funcl3 funcl4
. 0.000us 240.000us 260.000us 280.000us 300.000us
ratio

K=

» 4[]

__m

1

Control

& andle

The color assignment is done per default statically (FixedColors), i.e. colors are assigned fixed to items.
Fixed color assignment has the risk that two functions with the same color are drawn side by side and

thus may convey a wrong impression of the dynamic behavior. Alternatively, a dynamic color

assignment can be used instead (AlternatingColors), i.e. colors are assigned by the recording order of

the items again and again for each measurement. The color assignment can be changed from the

Trace.PROfileChart window using the Config button or using the /Color option in the command line.

-

— S e
B ... || i Goupsl 2% (onfig... IQ Goto...| #3Find... | I In |pOeout B Full| & In | o out| [Full| Fine | Coarse
C.—'I T -3.469ms | C-Z: +B814.916ms scale: 10.000us
(other) funcZc = .
__aeabi_i2d W __adddf3 a= Chart Config 7 O X
__ aeabi_dcmplt_from_thumb __aeabi_dcmplt
10.000us __cmpdf2 ﬁ aeabi_dmul_from_thumb - Sort Sort visible COLOR
65 0m -3.600 -3.550m -3
el e S || ®oFF ® Global ® FixedColors
SR O Nesting O Window O Atematinglolors
O GROUP Sort core
80.0 O Address (® CoreTogether
O sYmbol (O CoreSeparated
60. O IntemalRatio
O TotalRatio
40. O Ratio
O Count
20. O TotalMAX
O RatioMAX
0.
[Al windows

©1989-2024 Lauterbach

General Commands Reference Guide T

285

Options

This section describes the options of the <trace>.PROfileChart command group. Not all options are
supported by all <trace>.PROfileChart commands.

Track

The cursor in the <trace>.PROfileChart window follows the cursor
movement in other trace windows. Default is a time tracking. If no time
information is available tracking to record number is performed.

The zoom factor of the <trace>.PROfileChart window is retained, even if
the trace content changes.

ZoomTrack

Same as option Track. If the tracking in performed with another
<trace>.PROfileChart window the same zoom factor is used.

Sort [<sort_visible>]

[<sort_core>]
[<sort>]

Specify sorting criterion for analyzed items. For almost all commands the
analyzed items are displayed in the order they are recorded by default.

Details on the sorting criterion can be found at the description of the
command Trace.STATistic.Sort.

InterVal <time>

Allows to divide the time period recorded by the trace (total) into time slices.
Additional analysis details can be displayed for these time slices.

Address

<address | range>

Display the results for the selected address or address range

FILE Use the trace contents loaded with the command <trace>.FILE.

FlowTrace Trace works as a program flow Trace. This option is usually not required.

BusTrace Trace works as a bus trace. This option is usually not required.

INLINE Treat inline functions as separate functions (default).

NoINLINE Discard inline function from the results.

LABEL Include all symbols in the results.

NoLABEL Only include functions in the results.

RecScale Display trace in fixed record raster. This is the default.

TimeScale Display trace as true time display, time relative to the trigger point
(respectively the last record in the trace).

TimeZero Display trace as true time display, time relative to zero point. For more
information about the zero point refer to ZERO.

TimeREF Display trace as true time display, time relative to the reference point. For

more information about the reference point refer to <trace>.REF.

©1989-2024 Lauterbach

General Commands Reference Guide T | 286

Filter <item>

Filter the described item.

TASK <task_magic>,
etc.

Operating system task in OS-aware debugging and tracing.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Trace information is analyzed independently for each task. The time chart
displays these individual results.

MergeTASK Trace information is analyzed independently for each task. The time chart
summarizes these results to a single result.

CORE <n> Time chart is only displayed for the specified core. Only available for SMP
multicore tracing.

SplitCORE Trace information is analyzed independently for each core. The time
chart displays these individual results. Only available for SMP multicore
tracing.

MergeCORE Trace information is analyzed independently for each core. The time
chart summarizes these results to a single result. Only available for SMP
multicore tracing.

JoinCORE Core information is ignored for the time chart. Only available for SMP

multicore tracing.

Draw Options:

Steps

Connect the dots for the data values by steps.

Vector

Connect the dots for the data values by vectors.

Color FixedColors

Colors are assigned fixed to items (default).

Fixed color assignment has the risk that two functions with the same
color are drawn side by side and thus may convey a wrong impression of
the dynamic behavior.

Color
AlternatingColors

Colors are assigned by the recording order of the items again and again
for each measurement.

See also

<trace>.Chart

<trace>.PROfileChart.AddressGROUP

<trace>.PROfileChart.Address
<trace>.PROfileChart.AddressRate

<trace>.PROfileChart. COUNTER
<trace>.PROfileChart.DIStance
<trace>.PROfileChart.DURation
<trace>.PROfileChart.INTERRUPT

<trace>.PROfileChart.DatasYmbol
<trace>.PROfileChart.DistriB
<trace>.PROfileChart. GROUP

|
[|
|
|
[|
[<trace>.PROfileChart.Line

©1989-2024 Lauterbach General Commands Reference Guide T | 287

<trace>.PROfileChart. MODULE
<trace>.PROfileChart. PROGRAM
<trace>.PROfileChart.Rate
<trace>.PROfileChart.sYmbol
<trace>.PROfileChart. TASKINFO
<trace>.PROfileChart. TASKKernel
<trace>.PROfileChart. TASKSRV
<trace>.PROfileChart. TASKVSINTR
<trace>.PROfileSTATistic
BMC.PROfileChart

IProbe.state

RunTime.state

A ’'Release Information’ in’Legacy Release History’

<trace>.PROfileChart.PAddress
<trace>.PROfileChart.PsYmbol
<trace>.PROfileChart. RUNNABLE
<trace>.PROfileChart. TASK
<trace>.PROfileChart. TASKINTR
<trace>.PROfileChart. TASKORINTERRUPT
<trace>.PROfileChart. TASKVSINTERRUPT
<trace>.PROfileChart.Var

<trace>.STATistic

EVENTS.PROfileChart

RunTime

©1989-2024 Lauterbach

General Commands Reference Guide T

288

<trace>.PROfileChart.Address Address profile chart

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.Address [<trace_area>] <address1> [<address2> ...]
[/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
Filter <item>

Sort <item>

Address <address | range>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

Display the time interval between up to 8 program events as a profile chart.

<option>

<trace_area>

Refer to <trace>.PROfileChart for a description of the options.

For parameter descriptions and, see Parameters under <trace>.Chart.

B B:Trace. PROfileChart. Address func2 func3 EI@

ratio L

2 senp... || §if Goups... | 38 Gorfig... | (3 Goto...|| #4Find... || 0 In |0« out | @ Full| S 1n || © out|| Bl Full| Fine || Coarse

10.000us [l Cother) [func3 I funcz

800.000ms -700.000ms -600.000ms -500.000ms -400.000ms -300.000ms -200.000ms -100.000ms 0.

100.0

Example:

Trace.PROfileChart.Address func2 func3

See also

B <trace>.PROfileChart

©1989-2024 Lauterbach

General Commands Reference Guide T | 289

<trace>.PROfileChart.AddressGROUP

Address group time chart

Format: <trace>.PROfileChart.AddressGROUP [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
Track | ZomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Address <item> | <range>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

The time for accessed address groups is displayed as time profile chart (flat statistic). The results include

groups for both program and data addresses.

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

B B::Trace PROfileChart. AddressGROUP [s

B senp... || §if Goups... | 28 Gorfig... || (3 Goto...| #3Find... || 0 1n | »0cout @0 Full| © 1 || S out|| & Full| Fine ||Coarse
10.000us [l Cother) [l "DATAL" "DATA3" ["DATAZ2"
. |000ms -80.000ms -60.000ms -40.000ms -20.000ms 0.
ratio 1 1 1 1 -

o m

80.0

60.0

J

©1989-2024 Lauterbach General Commands Reference Guide T

290

Example:

GROUP.Create "DATAl" 0x0000--0x1FFF /RED
GROUP.Create "DATA2" 0x2000--0x6FFF /OLIVE
GROUP.Create "DATA3" 0x7000--0x9fff /AQUA

Trace.PROfileChart.AddressGROUP

See also

B <trace>.PROfileChart B <trace>.PROfileChart. GROUP
B BMC.PROfileChart.AddressGROUP

©1989-2024 Lauterbach General Commands Reference Guide T | 291

<trace>.PROfileChart.AddressRate

Address rate profile chart

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.AddressRate [<irace_area>] <address1> [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
Filter <item>

Sort <item>

Address <address | range>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

Display the frequency of execution for the selected address.

<option>

<trace_area>

See also

Refer to <trace>.PROfileChart for a description of the options.

For parameter descriptions and, see Parameters under <trace>.Chart.

B <trace>.PROfileChart

©1989-2024 Lauterbach

General Commands Reference Guide T

292

<trace>.PROfileChart. COUNTER Display a profile chart

Format: <trace>.PROfileChart. COUNTER[%<format>][<trace_area>][<items>]
[/<option>]
<format>: ZeroUp. [<width>] | Up. [<width>] | Down. [<width>] | Frequency. [<width>] |

POWER. [<width>]

<width>: DEFault | Byte | Word | Long | Quad | TByte | HByte | SByte

<items>: DEFault | ALL | <cpu> | <signals> | Port[.<subitem>] | MARK][.<marker>] |
ENERGY.Abs | POWER[.OFF] | SAMPLE[.OFF] | SPARE[.OFF] |
LOW | HIGH | FINDINDEX

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
InterVal <time>
Filter <filter_item>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

Shows the time profiles of a counter that is traced as data value.

<option> Refer to <trace>.PROfileChart for a description of the options.
<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
ZeroUp The counter does not increment steadily but starts counting from zero on

each trace record.

Up The counter starts counting from zero and increments steadily (default).
Down The counter starts counting at its maximum value and decrements steadily.
Frequency The trace records do not contain counter values but frequencies.

POWER Used for ETA traces.

©1989-2024 Lauterbach General Commands Reference Guide T | 293

Example: sample data cache / data buffer hits and misses on a TriCore processor with SNOOPer trace and
BenchMark Counter

BMC.RESet ; reset BMC configuration

BMC.M1CNT DATA_X_ HIT ; count data cache / data buffer
; hits

BMC.M2CNT DATA_X_ CLEAN ; count data cache / data buffer
; misses

BMC . SnoopSet ON ; configure the SNOOPer trace for

; event counter recording

SNOOPer .PROfileChart .COUNTER

I B:SNOOPer.PROfileChart COUNTER =N R <"
(2 setup...[jif Groups... | 22 Config...| & Goto... || #3Find... || 0 n |[»D«out|[E¥ Full[& In |[S out|[E] Full]| Fine |[coarse]

10.000ms [l DCMISS:0 M DCcAcCESS:0 Jll DCMISS:1 Il DCACCESS:1
-1.400s -1.200s -1.000s -800.000ms -600.000ms -400.000ms -200.000ms
events/sec]]]]]]] |
500.0e+6

m

400.0e+6

300.0e+6

200.0e+6

100.0e+6

< <

The resultis a stacked graph i.e. the total number of events/s at a given time represent the sum of the events
for all counters at that time.

See also
B <trace>.PROfileChart
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 294

<trace>.PROfileChart.DatasYmbol

Analyze pointer contents graphically

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.DatasYmbol [<irace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE | FlowTrace | BusTrace

RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
LABEL | NoLABEL | INLINE | NoINLINE
InterVal <time>

Filter <filter_items>

Sort <item>

Track | ZoomTrack

Vector | Steps

Color [FixedColors | AlternatingColors]

Analyzes the contents of a pointer graphically.

<option>

<trace_area>

See also

Refer to <trace>.PROfileChart for a description of the options.

For parameter descriptions and, see Parameters under <trace>.Chart.

B <trace>.PROfileChart

B BMC.PROfileChart.DatasYmbol

©1989-2024 Lauterbach

General Commands Reference Guide T

295

<trace>.PROfileChart.DIStance Time interval for a single event

Format: <trace>.PROfileChart.DIStance [<trace_area>] [/<option>]
<trace>.Chart.DIStance (deprecated)

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Steps | Vector

Display the time interval for a single event graphically.

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

Example: use the option /Filter to filter out the event of interest.

Trace.PROfileChart.DIStance /Filter Address SVC_Handler

H B:Trace PROFileChart.DiStance /Filter Address SVC_Handler = =R
Z2 snp... | Goto...| #4Find... | fy Chart || v In | »0¢0ut | @ Full| S 1n || © out|| [Ful
. -1.600s -1.400s -1.200s -1.000s -800.
time L 1 1 | 1 |
_ _ _ "~
1.080ms]| ~ _ _ T E
] v
1.060ms{ | .
"~
1.040ms 7 |
1.020ms | |
1.000ms{
980.000us | |
960.000us | |
940.000us | °
920.000us | — : : : - : : o
W
11 €0 > € >
See also

B <trace>.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide T | 296

<trace>.PROfileChart.DistriB Distribution display in time slices

Format: <trace>.PROfileChart.DistriB [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Address <address | range> | InterVal <time>
Filter <filter_items> | Sort <item>
Track | ZoomTrack
Vector | Steps | Color [FixedColors | AlternatingColors]

Shows a graphical representation of the specified trace item as a percentage of a time slice.

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

Example: Display distribution of data value for AVG_QADC

Trace.PROfileChart.DistriB Data.L /Filter Address AVG_QADC

N I B:Trace. PROfileChart DistriB Data /Filter Address AVG_QADC =N EER
/2 Setup... | iif Groups... | 28 Config...|| (3 Goto... | #3Find... | «OvIn 0+ Out| M Fulll S 1In | S out| [Full| Fine | Coarse
(other) data=0x1D43 data=0x1D4C data=0x1p4A [data=0x1D4B
data=0x1049 [data=0x1D48 data=0x1D4D data=0x1D47
10.000us
-2.500s -2.000s -1.500s -1.000
ratio 1 1 1 1 |
"~
100.0

v
80.0

60.0

40.0

20.0

See also
B <trace>.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide T | 297

<trace>.PROfileChart.DURation

Time between two events

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.DURation [<trace_area>] [/<option>]
<trace>.Chart.DURation (deprecated)

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

ATOA | ATOB

BTOA | BTOB

FilterA <filter> | FilterB <filter>

FILE

FlowTrace | BusTrace

CORE <core> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF

Track | ZoomTrack

Vector | Steps

Graphical display of time intervals between two events.

<option>
<trace_area>
FilterA <item>
FilterB <item>
ATOA

ATOB

BTOA

BTOB

Refer to <trace>.PROfileChart for a description of the general options.

For parameter descriptions and, see Parameters under <trace>.Chart.

Specify the first event, see example below.

Specify the second event, see example below.

Display the time interval from A to A, see example below.
Display the time interval from A to B, see example below.
Display the time interval from B to A, see example below.
Display the time interval from B to B, see example below.

If no selective tracing is possible and more specific events should be
displayed it is also possible to use the options:

In order to use the command Trace.STATistic.DURation:

J Check if both events are exported by a trace packet. Information reconstructed by TRACE32 is

not analyzed.

. Alternatively use a TraceEnable breakpoint export the event as a trace packet.

The options FilterA and FilterB provide you with the means to describe your event.

©1989-2024 Lauterbach

General Commands Reference Guide T |

298

Trace.Mode Leash

Break.Set 0x9cb0 /Program /TraceEnable

Break.Set 0x9e3c /Program /TraceEnable

Go

WAIT !STATE.RUN()

Trace.STATistic.DURation /FilterA Address 0x9cb0 /FilterB Address 0x9e3c

Trace.PROfileChart.DURation /FilterA Address 0x9cb0

/FilterB Address 0x9e3c

£| B:Trace.STATistic.DURation /FilterA Address 0x09ch0 /FilterB Address 0x09e3c
[& setw... [Chart || # Zoom |[X Zoom |[£ Move |[T Move
zamples: 12144, awvr: 17.032us min: 16.325us max: 51.155us
total: 4.002s in: 206.832ms out: 3.796s ratio: 5.167%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 15.360us | _0.000% -
17.920us 11278. | 92.868%
20.480us 32. | 0.263% |+
23.040us 196. | 1.613% |mmmm—mm
25.600us 318. | 2.618% |——
28.160us 90. | 0.741% |+
30.720us 80. | 0.658% |+
33.280us 89. | 0.732% |+
35. 840us 11. | 0.090% |+
38.400us 9. | 0.074% |+
40. 960us 6. | 0.049% |+
43.520us 11. | 0.090% |+
46.080us 6. | 0.049% |+
48. 640us 6. | 0.049% |+
51.200us 12. | 0.098% |+
53.760us 0.| 0.000%
56.320us 0.| 0.000%
- 0.| 0.000% -
J(I3
] B:Trace.PROfileChart.DURation /FilterA Address 0x09ch0 /FilterB Address 0x09e3¢ ==
[& seup... |[Fy Goto...|[# Find... |[f Chart | 4p In][40t |[d Full[2 1n][X 0x)(F Ful
.000s -3.000s -2.000s -1.000s 0. 000
time L L L |
L :
50.000usf—~ (A - - T b
40.000us . . e A
20,0000z . . AT A
20.000us . . .]| | . .]| | .
om mirirc- =
4 (L ok ¥
Displays min and max duration per 10 pixels
©1989-2024 Lauterbach General Commands Reference Guide T | 299

] B:Trace.PROfileChart.DURation /FilterA Address 0x09ch0 /FilterB Address 0:x09e3¢ ==]
(& s,)L Goto...|[#3 Find... [l Chart |[4p In |[b40ut)M Full (2 In |[X 0] [Z Full
R .100s -2.000s -1.500s -1.800s
time | 1 | 1 |
soowusl;l
so.000us| -
soooous) ||\
30.000us] . Hﬂ - . H . . HHH ’7 . . . H
ool (N WL WD o mr— ie
1o.000ued oo N
J<|W'r < =T C

Displays min and max duration per 10 pixels (with a higher resolution)

See also
B <trace>.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide T | 300

<trace>.PROfileChart. GROUP Group profile chart

Format: <trace>.PROfileChart.GROUP [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Address <address | range> | InterVal <time>
Filter <filter_items> | Sort <item> | Track | ZoomTrack
Vector | Steps | Color [FixedColors | AlternatingColors]

Analyzes the group behavior and displays the result as a color chart with fixed time intervals. The results
only include groups within the program range. Groups for data addresses are not included.

<option> Refer to <trace>.PROfileChart for a description of the options.
<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
Example:

GROUP.Create "INPUT" \jguant2 \jguantl \jidctred \jdinput /AQUA
GROUP.Create "JPEG" \jdapimin \jdcolor \jddctmgr \jdcoefct /NAVY
Trace.PROfileChart.GROUP

M| B:Trace.PROfileChart.GROUP = | B |25
|WSEUJp...||i:|iGo.|:s...|| 2= onfig... || 3 Goto...|| F1Find...|[4| »e MM Full| % 1 ||X Oufﬂ; Full| Fine |(Coarse |
10.000us [l (other) ["JPEG" "INPUT"
_ |00ms -501.800ms -501.600ms -501.400ms -501.200ms -501.000ms
ratio] 1 1 1 1 i

120.0

100.0

» 4 [m| »

80.0

60.0

40.0

20.0

4 [l 4 2

©1989-2024 Lauterbach General Commands Reference Guide T | 301

See also

B <trace>.PROfileChart

B <trace>.PROfileChart.AddressGROUP

B BMC.PROfileChart. GROUP

A ’Release Information’ in’Legacy Release History’

<trace>.PROfileChart.INTERRUPT Display interrupt profile chart

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.INTERRUPT [<trace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF

CORE <core> | SplitCORE | MergeCORE | JoinCORE
Sort <item>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

The time spent in different interrupts is displayed graphically as profile chart. This feature is only available if
TRACE32 has been set for OS-aware debugging.

<option>

<trace_area>

See also

Refer to <trace>.PROfileChart for a description of the options.

For parameter descriptions and, see Parameters under <trace>.Chart.

B <trace>.PROfileChart

©1989-2024 Lauterbach

General Commands Reference Guide T | 302

<trace>.PROfileChart.Line HLL-line profile chart

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.Line [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
Filter <item>

Sort <item>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

Analyzes the dynamic program behavior for high-level code lines and displays the result as a color chart with

fixed time intervals.

Trace.PROfileChart.Line is based on a flat function run-time analysis.

<option>

<trace_area>

Refer to <trace>.PROfileChart for a description of the options.

For parameter descriptions and, see Parameters under <trace>.Chart.

ratio

H B:a.PROfileChart.line = =R
B senp... || §if Goups... | 28 Gorfig... || (3 Goto...| #3Find... || 0 1n | »0cout @0 Full| © 1 || S out|| & Full| Fine ||Coarse
10.000us |l Cother) M \.\src\sieve.c4236--237 |l \.\src\sieve.c\238--238
0000s -2.465150000s -2.465100000s -2.465050000s -2.465000000s

100.0

See also

B <trace>.PROfileChart

B BMC.PROfileChart.Line

©1989-2024 Lauterbach

General Commands Reference Guide T | 303

<trace>.PROfileChart. MODULE Module profile chart

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.MODULE [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>

Filter <item>

Sort <item>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

Analyzes the dynamic program behavior for symbol modules and displays the result as a color chart with
fixed time intervals. The list of loaded modules can be displayed with sYmbol.List.Module.

Trace.PROfileChart. MODULE is based on a flat function run-time analysis.

<trace_area>

<option>

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

ratio L

H B:Trace PROFileChart MODULE = =R
2 senp... || §if Goups... | 38 Gorfig... | (3 Goto...|| #4Find... || 0 In |0« out | @ Full| S 1n || © out|| Bl Full| Fine || Coarse
10.000us |l Cother) M head Il memset W init/main fork W setup

5 -461.900ms -461.850ms -461.300ms -461.750ms -461.700ms -461.650ms -461.600ms -461.550

100.0

<m » <

See also

B <trace>.PROfileChart

B BMC.PROfileChart. MODULE

©1989-2024 Lauterbach

General Commands Reference Guide T | 304

<trace>.PROfileChart.PAddress Which instructions accessed data address

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.PAddress [<trace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>

Filter <item>

Sort <item>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

The command provides a graphical profile chart of the instructions that accessed data addresses. You can
select a specific address using the /Filter option.

<trace_area>

<option>

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

©1989-2024 Lauterbach

General Commands Reference Guide T | 305

<trace>.PROfileChart.PROGRAM

Example:

; display a profile chart of all addresses that accessed mstaticl
Trace.PROfileChart.PAddress /Filter sYmbol mstaticl

B B:Trace. PROfileChart.PAddress /Filter Address mstaticl [s

2 senp... || §if Goups... | 38 Gorfig... | (3 Goto...|| #4Find... || 0 In |0« out | @ Full| S 1n || © out|| Bl Full| Fine || Coarse
(other) mair+0x2A func2+0x2C [l func2+0x32 [l func2a+0x8 [l func2b+0x8
10. 000us func2c+0x8 func2d+0x8 mair+0x25E
. |00s -1.000s -800.000ms -600.000ms -400. 000ms -200.000ms 0.00
ratio 1 1 1 1 1 | i
100.0

See also

B <trace>.PROfileChart

Program profile chart

Format: <trace>.PROfileChart.PROGRAM [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

Analyzes the dynamic execution behavior brocken down by loaded object files (program) and displays the
result as a color chart with fixed time intervals. The loaded programs can be displayed with the command

sYmbol.Browse *.

©1989-2024 Lauterbach General Commands Reference Guide T |

306

Trace.PROfileChart.PROGRAM is based on a flat function run-time analysis.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileChart for a description of the options.
See also
B <trace>.PROfileChart B BMC.PROfileChart. PROGRAM
<trace>.PROfileChart.PsYmbol Which functions accessed data address
Format: <trace>.PROfileChart.PsYmbol [<trace_area>] [/<option>]
<option>: FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
INLINE | NoINLINE | LABEL | NoLABLE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>

Filter <item>

Sort <item>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

The command provides a graphical profile chart of the functions that accessed data addresses. You can
select a specific address using the /Filter option.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.

©1989-2024 Lauterbach General Commands Reference Guide T | 307

Example:

; display a profile chart of all functions that accessed mstaticl
Trace.PROfileChart.PsYmbol /Filter sYmbol mstaticl

ratio

H B:Trace. PROfileChart.PsVmbol /Filter Address mstatic = =R
2 senp... || §if Goups... | 38 Gorfig... | (3 Goto...|| #4Find... || 0 In |0« out | @ Full| S 1n || © out|| Bl Full| Fine || Coarse
10.000us [l (other) [main W func? B funca funczb [l func2e [l func2d
00s -1.000s -800. 000ms -600.000ms -400.000ms -200.000ms 0.0

> Lm >

See also

B <trace>.PROfileChart

©1989-2024 Lauterbach

General Commands Reference Guide T

308

<trace>.PROfileChart.Rate

Event frequency

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.Rate [<trace_area>] [/<option>]
<trace>.Chart.Rate (deprecated)

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE

FlowTrace | BusTrace

Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
INLINE | NoINLINE | LABEL | NoLABEL
Address <address | range>

Filter <item>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

Graphical display of the event frequency over the time. Displays the rate of all cycles except dummy cycles.

<trace_area>

<option>

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

©1989-2024 Lauterbach

General Commands Reference Guide T |

309

Example: Display the TARGET FIFO OVERFLOW (FIFOFULL) rate over the time.

Trace.PROfileChart.Rate /Filter FIFOFULL

Hi B::Trace PROfileChart.Rate /Filter FIFOFULL = |E =]

[WSeUJp...]@(]mps...][&2 @nfg.. (¥ Goto...|[#3Find...|[40 In|[»4 |MFull[# |[X outlF Full| Fine |[coarse]
10.000us hits
20s -4.010s -4.000s -3.990s -3.980s
events/sec ! I I L

35000.04 - - - o - o

» 4[] »

soooo. ol | |- -l b

25000.0

20000.0).

m

15000.04

10000.07

5000.0

Jemlr « [b

See also
B <trace>.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide T | 310

<trace>.PROfileChart. RUNNABLE Runnable profile chart

Format: <trace>.PROfileChart.RUNNABLE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

The command provides a graphical profile chart of AUTOSAR runnables. This feature can only be used if
ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS Awareness

Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

See also
B <trace>.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide T | 311

<trace>.PROfileChart.sYmbol Dynamic program behavior graphically (flat)

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.sYmbol [<ifrace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE | FlowTrace | BusTrace

RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
LABEL | NoLABEL | INLINE | NoINLINE
Address <address | range>

InterVal <time>

Filter <filter_items>

Sort <item>

Track | ZoomTrack

Vector | Steps

Color [FixedColors | AlternatingColors]

Analyzes the dynamic program behavior and displays the result as a color chart with fixed time intervals.
Trace.PROfileChart.sYmbol is based on a flat function run-time analysis.

<trace_area>

<option>

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

M B::Trace.PROfileChart.sYmbol

(===

(& Setup..-“iliGroupﬂ[ll Conﬁg...|Lﬂ, Goto... || #3Find... || 4» I.HJLN Out| (M Full l 2n|[Xou)ZE Full]l Fir.19][2

ratio

10.000us [l Cother) [l main W func? M funcl B funcza |l funcZb

250.000us 300.000us 350.000us 400.000u
| | | |

100.07.

80.04-

60.07

40.0

20.0

See also

4 [m| »

B <trace>.PROfileChart

B BMC.PROfileChart.sYmbol B CTS.PROfileChart.sYmbol

©1989-2024 Lauterbach

General Commands Reference Guide T | 312

<trace>.PROfileChart.TASK

Dynamic task behavior graphically (flat)

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.TASK [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE | FlowTrace | BusTrace

RecScale | TimeScale | TimeZero | TimeREF

CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>

Sort <item>

Track

ZoomTrack

Vector | Steps

Color [FixedColors | AlternatingColors]

Analyzes the dynamic task behavior and displays the result as a color chart with fixed time intervals. This
command requires OS-ware tracing.

<trace_area>

<option>

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

Example to analyze CPU load:

; group all
; all other

; merge the
; use white

tasks that contain an idle loop to the group "Idle"
tasks are members of the group "other"

result of all "Idle" group members and
as "Idle" group color

GROUP.CreateTASK "Idle" "Idle_ Task" /Merge /WHITE

; merge the
GROUP.Merge

; use green
GROUP.COLOR

result of all "other" group members
"other"

as "other" group color
"other" GREEN

; display the CPU load graphically
Trace.PROfileChart.TASK

©1989-2024 Lauterbach

General Commands Reference Guide T |

313

|7 Bz Trace.PROfileChart. TASK =101 =]
... | fif Goups... | 28 Config... | Y Goto...| F3Fnd.., | 10 | 0cou |ER FUl| Sn | S o |§|Full| Fine |Coarse|
10.000us [l (unknown) M group "other™ group "idle" ‘
: -1.550s -1.500s -1.450s -1.400s -1.350s
ratio 1 1 1 1 1 |
F3
40.01 s
35.0) ’ %
30.0] .
25.0) .
20.04 -
15.01
10.01
Som
0.0 _MHH ki m_un.pu T T T T e A L T T HHiHH ihiith HH“H& Hil=
DR oz
(unknown) represents the time before the first task information was recorded to the trace.
See also
W <trace>.PROfileChart W BMC.PROfileChart. TASK M CTS.PROfileChart. TASK
A 'CPU Load Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
<trace>.PROfileChart. TASKINFO Context ID special messages
Format: <trace>.PROfileChart. TASKINFO [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |

<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

Displays a graphical profile chart of special messages written to the Context ID register for ETM trace. The
range of special values has to be reserved with the ETM.ReserveContextlD command. These special
values are then not interpreted for task switch or memory space switch detection.

©1989-2024 Lauterbach General Commands Reference Guide T | 314

This can be used for cores without data trace to pass data by the target application to the trace tool by writing
to the ContextID register.

See also

B <trace>.PROfileChart

B BMC.PROfileChart. TASKINFO

B CTS.PROfileChart. TASKINFO

<trace>.PROfileChart.TASKINTR

ISR2 profile chart (ORTI)

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.TASKINTR [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE | FlowTrace | BusTrace

RecScale | TimeScale | TimeZero | TimeREF

CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>

Sort <item>

Track

ZoomTrack

Vector | Steps

Color [FixedColors | AlternatingColors]

Displays graphical profile chart for ORTI based ISR2. This feature can only be used if the ISR2 can be
traced based on the information provided by the ORTI file.

<trace_area>

<option>

See also

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

B <trace>.PROfileChart

B BMC.PROfileChart. TASKINTR

B CTS.PROfileChart. TASKINTR
A 'Trace Features’ in’OS Awareness Manual OSEK/ORTI’

©1989-2024 Lauterbach

General Commands Reference Guide T |

315

<trace>.PROfileChart. TASKKernel Task profile chart with kernel markers

Format:

<trace_area>:

<option>:

<trace>.PROfileChart.TASKKernel [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE | FlowTrace | BusTrace

RecScale | TimeScale | TimeZero | TimeREF

CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>

Sort <item>

Track

ZoomTrack

Vector | Steps

Color [FixedColors | AlternatingColors]

Displays profile chart for results of Trace.STATistic. TASKKernel. This feature is only available if TRACE32
has been set for OS-aware debugging.

<trace_area>

<option>

See also

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

B <trace>.PROfileChart

B BMC.PROfileChart. TASKKernel

B CTS.PROfileChart. TASKKernel

©1989-2024 Lauterbach

General Commands Reference Guide T | 316

<trace>.PROfileChart. TASKORINTERRUPT Task and interrupt profile chart

Format:

<trace_area>:

<option>:

<trace>.PROfileChart. TASKORINTERRUPT [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE | FlowTrace | BusTrace

RecScale | TimeScale | TimeZero | TimeREF

CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>

Sort <item>

Track

ZoomTrack

Vector | Steps

Color [FixedColors | AlternatingColors]

Analyzes the dynamic task and interrupt behavior and displays the result as a color chart with fixed time
intervals. This command requires OS-ware tracing.

<trace_area>

<option>

See also

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

B <trace>.PROfileChart

B BMC.PROfileChart. TASKORINTERRUPT

B CTS.PROfileChart. TASKORINTERRUPT

©1989-2024 Lauterbach

General Commands Reference Guide T | 317

<trace>.PROfileChart. TASKSRV Profile chart of OS service routines

Format: <trace>.PROfileChart.TASKSRYV [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

The time spent in OS service routines and different tasks is displayed as profile chart. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI

command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area>

<option>

See also

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

B <trace>.PROfileChart
B CTS.PROfileChart. TASKSRV

B BMC.PROfileChart. TASKSRV

©1989-2024 Lauterbach

General Commands Reference Guide T | 318

<trace>.PROfileChart. TASKVSINTERRUPT Interrupted tasks

Format: <trace>.PROfileChart. TASKVSINTERRUPT [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

Displays a graphical profile chart of tasks that were interrupted by interrupt service routines. This command
requires OS-ware tracing.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileChart for a description of the options.

See also

B <trace>.PROfileChart B BMC.PROfileChart B ETA.PROfileChart Bl MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide T | 319

<trace>.PROfileChart. TASKVSINTR Profile chart for task-related interrupts

Format:

<trace_area>:

<option>:

<trace>.PROfileChart. TASKVSINTR [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FILE | FlowTrace | BusTrace

RecScale | TimeScale | TimeZero | TimeREF

CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>

Sort <item>

Track

ZoomTrack

Vector | Steps

Color [FixedColors | AlternatingColors]

Displays a graphical profile chart for task-related interrupt service routines. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please

refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area>

<option>

See also

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

B <trace>.PROfileChart

B BMC.PROfileChart. TASKVSINTR

B CTS.PROfileChart. TASKVSINTR

©1989-2024 Lauterbach

General Commands Reference Guide T | 320

<trace>.PROfileChart.Var Variable profile chart

Format:

<option>:

<trace>.PROfileChart.Var [<record_range>] [<scale>] [/<option>]

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack

RecScale | TimeScale | TimeZero | TimeREF
Filter <item>

Address <address | range>

Sort <item>

InterVal <time>

Vector | Steps

Color [FixedColors | AlternatingColors]

Displays a profile chart for variable accesses in the trace recording.

<trace_area>

<option>

Example:

For parameter descriptions and, see Parameters under <trace>.Chart.

Refer to <trace>.PROfileChart for a description of the options.

Trace.PROfileChart.Var /Filter CYcle WRITE

B B:Trace.PROfileChart.Var /Filter CYcle WRITE [s

ratio L

2 senp... || §if Goups... | 38 Gorfig... | (3 Goto...|| #4Find... || 0 In |0« out | @ Full| S 1n || © out|| Bl Full| Fine || Coarse

10.000us |l Cother)
-8.950ms

W vbfield W stral M statl W statz
-8.900ms -8.850ms -8.300ms -8.750ms

100.0

80.0

60.0

40.0

20.0

<m » <

See also

B <trace>.PROfileChart

©1989-2024 Lauterbach

General Commands Reference Guide T | 321

<trace>.PROfileSTATistic

Statistical analysis in a table versus time

The command group <trace>.PROfileSTATistic shows the results of numerical interval analysis in tabular

format.
% B:Trace.PROFileSTATistic.sVmbol = =R
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | 3 Goto... | #3Find... | =|Detailed|| ¢ Chart | I Profile
items: 31. total: 2.228s samples: 52120926.
address -2.228s 2.228s -2.228s 2.228s 2.228s -2.228s |
(other) 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us |~
uler_core_rq_preempt_stk 7.230us 1.056us 1.146us 1.111us 0.492us 0.550us
heduler_core_pop_running 0.180us 1.289us 1.279us 0.359us 0.193us 0.979us
cheduler_task_terminated 0.461us 0.724us 0.489us 0.624us 0.863us 0.249us
osEE_task_end 0.646us 0.111us 0.110us 0.000us 0.458us 0.080us
tex_m_scheduler_task_end 0.307us 0.679us 0.445us 0.885us 0.755us 0.824us
osEE_hal_restore_ctx 0.246us 0.365us 0.030us 0.395us 0.316us 0. 344us
Ter_task_wrapper_restore 0.689us 0.571us 1.213us 1.130us 1.466us 1.518us
nge_context_from_running 0.121us 0.027us 0.170us 0.242us 0.147us 0.148us
heduler_task_set_running 0.120us 1.014us 1.131us 1.199us 1.214us 0.994us
osEE_activate_isr?2 0.000us 0.646us 0.612us 0.343us 0.646us 0.709us
osEE_cortex_m_isr2_stub 0.000us 0.747us 0.748us 0.857us 0.661us 0.831us
MO_Ovf_Reload_IROHandler 0.000us 0.107us 0.140us 0.240us 0.113us 0.100us |+
£ >

Options

This section describes the options of the <trace>.PROfileSTATistic command group. Not all options are
supported by all <trace>.PROfileChart commands.

<option>:

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK

CORE <core> | SplitCORE | MergeCORE | JoinCORE
RecScale | IndexScale | TimeScale | TimeZero | TimeREF
InterVal <time>

Ratio | Compress | ROTATE

Filter <item>

INCremental | FULL

Sort <item>

Track

©1989-2024 Lauterbach

General Commands Reference Guide T | 322

FILE Use the trace contents loaded with the command <trace>.FILE.
FlowTrace Trace works as a program flow Trace. This option is usually not required.
BusTrace Trace works as a bus trace. This option is usually not required.

TASK <task_magic>,
etc.

Operating system task in OS-aware debugging and tracing.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Trace information is analyzed independently for each task. The time chart
displays these individual results.

MergeTASK Trace information is analyzed independently for each task. The time chart
summarizes these results to a single result.

CORE <n> Time chart is only displayed for the specified core. Only available for SMP
multicore tracing.

SplitCORE Trace information is analyzed independently for each core. The time
chart displays these individual results. Only available for SMP multicore
tracing.

MergeCORE Trace information is analyzed independently for each core. The time
chart summarizes these results to a single result. Only available for SMP
multicore tracing.

JoinCORE Core information is ignored for the time chart. Only available for SMP
multicore tracing.

RecScale Display trace in fixed record raster. This is the default.

IndexScale Results with index display.

TimeScale Display trace as true time display, time relative to the trigger point
(respectively the last record in the trace).

TimeZero Display trace as true time display, time relative to zero point. For more
information about the zero point refer to ZERO.

TimeREF Display trace as true time display, time relative to the reference point. For

more information about the reference point refer to <trace>.REF.

InterVal <time>

Allows to divide the time period recorded by the trace (total) into time slices.
Additional analysis details can be displayed for these time slices.

Ratio

Ratio of time spent over the complete measurement is displayed instead
of time.

©1989-2024 Lauterbach

General Commands Reference Guide T | 323

ROTATE Rotate x- and y-axis.

Filter <item> Filter the described item.

INCremental Intermediate results are displayed while the TRACE32 software analyzes
the trace contents (default).

FULL The result is displayed after the TRACE32 software finished the analysis.
Sort [<sort_visible>] Specify sorting criterion for analyzed items. For almost all commands the
[<sort_core>) analyzed items are displayed in the order they are recorded by default.
[<sort>]

Details on the sorting criterion can be found at the description of the
command Trace.STATistic.Sort.

Track The cursor in the <trace>.PROfileChart window follows the cursor
movement in other trace windows. Default is a time tracking. If no time
information is available tracking to record number is performed.

The zoom factor of the <trace>.PROfileChart window is retained, even if
the trace content changes.

See also

B <trace>.Chart B <trace>.PROfileChart B <trace>.STATistic B BMC.PROfileSTATistic
B EVENTS.PROfileSTATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 324

<trace>.PROfileSTATistic.Address Statistical analysis for addresses

Format: <trace>.PROfileSTATistic.Address [<trace_area>] <address1>
[<address2> ...] [I<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for addresses.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also

B BMC.PROfileSTATistic.Address

<trace>.PROfileSTATistic.AddressGROUP Stat. for address groups
Format: <trace>.PROfileSTATistic.AddressGROUP [<irace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for address groups. The results include
groups for both program and data addresses.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also
B <trace>.PROfileSTATistic. GROUP B BMC.PROfileSTATistic.AddressGROUP

©1989-2024 Lauterbach General Commands Reference Guide T | 325

<trace>.PROfileSTATistic. COUNTER Statistical analysis for counter

Format: <trace>.PROfileSTATistic. COUNTER [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for counter traced as data value.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

<trace>.PROfileSTATistic.DatasYmbol Statistic analysis for pointer content

Format: <trace>.PROfileSTATistic.DatasYmbol [<frace_area>] [/[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for pointer contents symbolically.

See also
B BMC.PROfileSTATistic.DatasYmbol

©1989-2024 Lauterbach General Commands Reference Guide T | 326

<trace>.PROfileSTATistic.DistriB

Distribution statistical analysis

Format: <trace>.PROfileSTATistic.DistriB [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for the statistical distribution of a selected

item or based on the symbolic addresses if no item is specified.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
Example:

Trace.profileSTATistic.DistriB Data.B /Filter Address
Var .RANGE (flags[31])

#t B:Trace.profileSTATistic.DistriB Data.B /Filter Address V.RANGE(flags[3]) = =R
2 ... || 1if Goups... | 38 Gonfig... || Goto...|| A Goto...|| #4Find... | =|Detaled | Pl Chart || BE Profile
items: 3. total: 1.000s samples: 3486.
class -1.000s |-999.990ms |-999. 980ms |-999.970ms |-999. 960ms |-999. 950ms |-999. 940ms |-999. 930ms |-999. 920ms |
(other) 10. 000us 10. 000us 10. 000us 10. 000us 10. 000us 10. 000us 10. 000us 10. 000us 10. 000us
d. b=0x1 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us
d. b=0x0 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us
< >

See also

B BMC.PROfileSTATistic.DistriB

©1989-2024 Lauterbach General Commands Reference Guide T

327

<trace>.PROfileSTATistic. GROUP Statistical analysis for groups

Format: <trace>.PROfileSTATistic. GROUP [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for groups. The results only include groups
within the program range. Groups for data addresses are not included.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also
B <trace>.PROfileSTATistic. AddressGROUP B BMC.PROfileSTATistic. GROUP

©1989-2024 Lauterbach General Commands Reference Guide T | 328

<trace>.PROfileSTATistic.INTERRUPT Statistical analysis for interrupts

Format: <trace>.PROfileSTATistic.INTERRUPT [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for interrupts. This command requires OS-
ware tracing.
{4t BuTrace.PROfileSTATisticINTERRUPT = =R

J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | 3 Goto... | #3Find... | =|Detailed|| ¢ Chart | I Profile
items: 4. total: 620.209ms samples: 0.

address [-356.909ms |-356.899ms |-356.889ms |-356.879ms |-356.869ms |-356.859ms |
SysTick_Handler 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us
MO_Ovf_Reload_IROHandler 9.988us 10.000us 10.008us 10.028us 9.989%us 9.989%us
Pendsv_Handler 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us
(none) 0.013us 0.000us 0.000us 0.000us 0.011us 0.011us

£ >
<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

See also
B BMC.PROfileSTATistic.INTERRUPT

©1989-2024 Lauterbach General Commands Reference Guide T | 329

<trace>.PROfileSTATistic.Line Statistical analysis for HLL lines

Format: <trace>.PROfileSTATistic.Line [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for HLL code lines.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also

B BMC.PROfileSTATistic.Line

©1989-2024 Lauterbach General Commands Reference Guide T | 330

<trace>.PROfileSTATistic. MODULE Statistical analysis for modules

Format: <trace>.PROfileSTATistic. MODULE [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for the code execution broken down by
symbol module. The list of loaded modules can be displayed with sYmbol.List.Module.

2 BirTrace. PROFileSTATistic, MODULE = =R
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | 3 Goto... | #3Find... | =|Detailed|| ¢ Chart | I Profile
items: 26. total: 620.209ms samples: 14511632.
address 6.339ms |-206.329ms |-206.319ms |-206. 309ms |-206.299ms |-206.289ms |
ee_cortex_m_asm [0.400us 0.916us 0.753us 0.799us 0.485us 0.850us |~
ee_oo_sched_entry_points [2.891us 2.623us 2.689%us 2.310us 2.500us 2.906us
ee_cortex_m_irqstub |0.756us 0.733us 0.031us 0.690us 0.663us 0.836us
ee_oo_kernel |0.799us 0.257us 0.565us 1.015us 0.744us 0.704us
ee_oo_sched_partitioned [1.529us 1.373us 1.793us 1.823us 1.915us 1.393us
ee_std_change_context [0.121us 0.148us 0.529us 0.101us 0.170us 0.148us
|_cortex_m_change_context |0.647us 0.884us 0.738us 0.764us 0.646us 0.811us
ee_oo_scheduler |2.243us 2.350us 2.434us 1.660us 2.020us 1.590us |v
£ >
<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available

options.

See also

B BMC.PROfileSTATistic. MODULE

©1989-2024 Lauterbach General Commands Reference Guide T |

331

<trace>.PROfileSTATistic.PAddress Which instr. accessed data address

Format: <trace>.PROfileSTATistic.PAddress [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format of the instructions that accessed data
addresses. You can select a specific address using the /Filter option.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
Example:

; display a profile statistic of all addresses that accessed mstaticl
Trace.PROfileSTATistic.PAddress /Filter sYmbol mstaticl

<trace>.PROfileSTATistic. PROGRAM Statistical analysis for programs
Format: <trace>.PROfileSTATistic. PROGRAM [<trace_area>] [[<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |

<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for the code execution broken down by
loaded object file (program). The loaded programs can be displayed with the command sYmbol.Browse *.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also

B BMC.PROfileSTATistic. PROGRAM

©1989-2024 Lauterbach General Commands Reference Guide T | 332

<trace>.PROfileSTATistic.PsYmbol Which functions accessed data address

Format: <trace>.PROfileSTATistic.PsYmbol /Filter Address <address> [/<option>]

Shows the results of numerical interval analysis in tabular format of the functions that accessed data
addresses. You can select a specific address using the /Filter option.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
Example:

; display a profile statistic of all function that accessed mstaticl
Trace.PROfileSTATistic.PsYmbol /Filter sYmbol mstaticl

<trace>.PROfileSTATistic. RUNNABLE Statistical analysis for runnables
Format: <trace>.PROfileSTATistic. RUNNABLE [<trace_area>] [[<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for AUTOSAR runnables. This feature is
only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

©1989-2024 Lauterbach General Commands Reference Guide T | 333

See also
B BMC.PROfileSTATistic. RUNNABLE

<trace>.PROfileSTATistic.sYmbol Statistical analysis for symbols
Format: <trace>.PROfileSTATistic.sYmbol [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for different debug symbols.

2 BiiTrace. PROFileSTATistic.sVmbol = =R
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | 3 Goto... | #3Find... | =|Detailed|| ¢ Chart | I Profile
items: 31. total: 2.228s samples: 52120926.
address -2.228s -2.228s -2.228s -2.228s -2.228s -2.228s |
(other) 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us |~
uler_core_rq_preempt_stk 7.230us 1.056us 1.146us 1.111us 0.492us 0.550us
heduler_core_pop_running 0.180us 1.289us 1.279us 0.359us 0.193us 0.979us
cheduler_task_terminated 0.461us 0.724us 0.489us 0.624us 0.863us 0.249us
osEE_task_end 0.646us 0.111us 0.110us 0.000us 0.458us 0.080us
tex_m_scheduler_task_end 0.307us 0.679us 0.445us 0.885us 0.755us 0.824us
osEE_hal_restore_ctx 0.246us 0.365us 0.030us 0.395us 0.316us 0. 344us
Ter_task_wrapper_restore 0.689us 0.571us 1.213us 1.130us 1.466us 1.518us
nge_context_from_running 0.121us 0.027us 0.170us 0.242us 0.147us 0.148us
heduler_task_set_running 0.120us 1.014us 1.131us 1.199us 1.214us 0.994us
osEE_activate_isr?2 0.000us 0.646us 0.612us 0.343us 0.646us 0.709us
osEE_cortex_m_isr2_stub 0.000us 0.747us 0.748us 0.857us 0.661us 0.831us
MO_Ovf_Reload_IROHandler 0.000us 0.107us 0.140us 0.240us 0.113us 0.100us |+
£ >
<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

See also
B BMC.PROfileSTATistic.sYmbol

©1989-2024 Lauterbach General Commands Reference Guide T | 334

<trace>.PROfileSTATistic.TASK Statistical analysis for tasks

Format: <trace>.PROfileSTATistic.TASK [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for OS tasks. This command requires OS-
ware tracing.

% B:Trace PROFileSTATistic TASK = =R
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | 3 Goto... | #3Find... | =|Detailed|| ¢ Chart | I Profile
items: 4. total: 2.228s samples: 0.
address -2.143s -2.143s -2.143s -2.143s -2.143s -2.143s '
Cunknown) 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us
Taskl 4.761lus 4.779%us 4.15%9us 3.841us 3.820us 3.719us
TimerISR 5.239us 5.221us 5.841us 6.159us 6.180us 6.281lus
SystemTimer 0.000us 0.000us 0.000us 0.000us 0.000us 0.000us
£ >
<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also
B BMC.PRO(fileSTATistic. TASK
A 'CPU Load Measurement’ in 'Application Note Profiling on AUTOSAR CP with ARTI’
<trace>.PROfileSTATistic. TASKINFO Context ID special messages
Format: <trace>.PROfileSTATistic.TASKINFO [<frace_area>] [I<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays a profile statistic of special messages written to the Context ID register for ETM trace. The range of
special values has to be reserved with the ETM.ReserveContextID command. These special values are
then not interpreted for task switch or memory space switch detection.

©1989-2024 Lauterbach General Commands Reference Guide T | 335

This can be used for cores without data trace to pass data by the target application to the trace tool by writing
to the ContextID register.

See also
B BMC.PROfileSTATistic. TASKINFO

<trace>.PROfileSTATistic. TASKINTR Statistical analysis for ISR2 (ORT]I)

Format: <trace>.PROfileSTATistic.TASKINTR [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows the results of numerical interval analysis in tabular format for ORTI based ISR2. This feature can only
be used if ISR2 can be traced based on the information provided by the ORTI file.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also

B BMC.PROfileSTATistic. TASKINTR
A ’Trace Features’ in’OS Awareness Manual OSEK/ORTI’

©1989-2024 Lauterbach General Commands Reference Guide T | 336

<trace>.PROfileSTATistic. TASKKernel Stat. analysis with kernel markers

Format: <trace>.PROfileSTATistic.TASKKernel [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Numerical interval analysis in tabular format for results of Trace.STATistic. TASKKernel. This command
requires OS-ware tracing.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also

B BMC.PROfileSTATistic. TASKKernel

<trace>.PROfileSTATistic. TASKORINTERRUPT Interrupts and tasks
Format: <trace>.PROfileSTATistic. TASKORNTERRUPT [<trace_area>] [[<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Numerical interval analysis in tabular format for tasks and interrupts. This command requires OS-ware

tracing.
<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also

B BMC.PROfileSTATistic. TASKORINTERRUPT

©1989-2024 Lauterbach General Commands Reference Guide T | 337

<trace>.PROfileSTATistic. TASKSRV Analysis of OS service routines

Format: <trace>.PROfileSTATistic. TASKSRV [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

The time spent in OS service routines and different tasks is displayed in tabular format. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI

command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also

B BMC.PROfileSTATistic. TASKSRV

<trace>.PROfileSTATistic. TASKVSINTERRUPT Interrupted tasks
Format: <trace>.PROfileSTATistic. TASKVSINTERRUPT [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Numerical interval analysis in tabular format for tasks that were interrupted by interrupt service routines. This
command requires OS-ware tracing.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
See also
B BMC.PROfileSTATistic B ETA PROfileSTATistic B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference Guide T | 338

<trace>.PROTOcol

Protocol analysis

See also

B <trace>.PROTOcol.Chart B <trace>.PROTOcol.Draw

B <trace>.PROTOcol. EXPORT B <trace>.PROTOcol.Find

B <trace>.PROTOcol.list B <trace>.PROTOcol.PROfileChart
B <trace>.PROTOcol.PROfileSTATistic B <trace>.PROTOcol.STATistic

B <trace>.PROTOcol.Chart B <trace>.PROTOcol.Draw

B <trace>.PROTOcol. EXPORT B <trace>.PROTOcol.Find

B <trace>.PROTOcol.list B <trace>.PROTOcol.PROfileChart
B <trace>.PROTOcol.PROfileSTATistic B <trace>.PROTOcol.STATistic

B |Probe.state

<trace>.PROTOcol.Chart Graphic display for user-defined protocol
Format: <trace>.PROTOcol.Chart <protocol> <parlist> [<items> ...] [/<option>]
<protocol>: JTAG | CAN | USB | I12C | 12S | ASYNC | SWDP | SPI | PROBEUSB
<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter
<items>: Y% <format>
<line>
DEFault | ALL
Time.Back | Time.Fore | Time.REF
Time.Zero | TIme.Trigger
SyncClock
SPARE
<parlist> Refer to “Protocol specific Options”, page 351.
Options:
FILE Display trace memory contents loaded with the command Trace.FILE.
Track Track other trace list window (tracks to record number or time)

©1989-2024 Lauterbach

General Commands Reference Guide T | 339

RecScale Record Scaling

TimeScale Timed Scaling
Filter

Iltems:
Time.REF Time marker, relative to reference point
Time.Trigger Time marker, relative to trigger point
Time.Zero Time marker, relative to global reference
SyncClock Synchronous clock event

Example: Display the user-defined protocol “proto1” on line x.0

PP: :Analyzer.PROTOcol.Chart protol x.0

See also
B <trace>.PROTOcol

©1989-2024 Lauterbach General Commands Reference Guide T | 340

<trace>.PROTOcol.Draw

Graphic display for user-defined protocol

Format: <trace>.PROTOcol.Draw <protocol> <parlist> [<items> ...] [[<option>]
<protocol>: JTAG | CAN | USB | I12C | I2S | ASYNC | SWDP | SPI | PROBEUSB
<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter
<items>: Y% <format>
<line>
DEFault | ALL
Time.Back | Time.Fore | Time.REF
Time.Zero | Time.Trigger
SyncClock
SPARE
<parlist> Refer to “Protocol specific Options”, page 351.
Options:
FILE Display trace memory contents loaded with the command Trace.FILE.
Track Track other trace list window
(tracks to record number or time)
RecScale Record Scaling
TimeScale Timed Scaling
Filter Filter the described item.
Items:
Time.REF Time marker, relative to reference point
Time.Trigger Time marker, relative to trigger point

©1989-2024 Lauterbach

General Commands Reference Guide T

341

Time.Zero Time marker, relative to global reference

SyncClock Synchronous clock event

Example: Display the user-defined protocol “proto1” on line x.0

PP: :Analyzer.PROTOcol .Draw protol x.0

See also
B <trace>.PROTOcol

<trace>.PROTOCcol.EXPORT Export trace buffer for user-defined protocol
Format: <trace>.PROTOCcol.EXPORT <protocol> <parlist> <file> [<range> ...]
<protocol>: JTAG | CAN | USB | I12C | 12S | ASYNC | SWDP | SPI | PROBEUSB
<parlist> Refer to “Protocol specific Options”, page 351.

Example: Export the user-defined protocol “proto1” on line x.0 to test.Ist

PP: :Analyzer.PROTOcol .EXPORT protol x.0 test.lst

See also
B <trace>.PROTOcol

©1989-2024 Lauterbach General Commands Reference Guide T | 342

<trace>.PROTOcol.Find Find in trace buffer for user-defined protocol

Format: <trace>.PROTOcol.Find <protocol> <parlist> [<items> ...] [[<option>]
<protocol>: JTAG | CAN | USB | I12C | I2S | ASYNC | SWDP | SPI | PROBEUSB
<option>: FILE
Back
NoFind
<parlist> Refer to “Protocol specific Options”, page 351.
Options:
FILE Display trace memory contents loaded with the command Trace.FILE.
Back Search back
NoFind

Example: Find in the user-defined protocol “proto1” on line x.0

PP: :Analyzer.PROTOcol.Find protol x.0

See also

B <trace>.PROTOcol B <trace>.PROTOcol.list M <trace>.PROTOcol

©1989-2024 Lauterbach General Commands Reference Guide T

343

<trace>.PROTOcol.list

Display trace buffer for user-defined protocol

Format: <trace>.PROTOcol.list <protocol> <parlist> [<items> ...] [[<option>]
<protocol>: JTAG | CAN | USB | 12C | 12S | ASYNC | SWDP | SPI | PROBEUSB
<option>: FILE
Track
<items>: Y% <format>
<line>
DEFault | ALL
Time.Back | Time.Fore | Time.REF
Time.Zero | TIme.Trigger
SyncClock
SPARE
<format>: Hex | Decimal | BINary | Ascii
Timing | HighLow
LEN <size>
TimeAuto | TimeFixed
<parlist> Refer to “Protocol specific Options”, page 351.
Options:
FILE Display trace memory contents loaded with the command Trace.FILE.
Track Track other trace list window
(tracks to record number or time)
Formats:
Timing Display single bits as vertical timing
HighLow Display single bits as HIGH/LOW value
Hex Display single bytes in hex values
Decimal Display single bytes in decimal values
BINary Display single bytes in binary values
Ascii Display single bytes as ascii characters

©1989-2024 Lauterbach

General Commands Reference Guide T

344

LEN <size>
TimeAuto

TimeFixed

Items:

DEFault

ALL

Time
Time.Back
Time.Fore
Time.REF
Time.Trigger
Time.Zero
SyncClock
SPARE

Specify the width of non numeric fields (e.g. symbols)

The unit of time is selected automatically.

The displayed unit of time is fixed.

Default selections (see list below)

Select all recorded data (superset of DEFault)
Time marker (default Time.Fore)

Time marker, relative time to previous record
Time marker, relative time to next record
Time marker, relative to reference point

Time marker, relative to trigger point

Time marker, relative to global reference
Synchronous clock event

Displays an empty block

Example: Displays the user-defined protocol “proto1” on line x.0

PP: :Analyzer.PROTOcol.list protol x.0

©1989-2024 Lauterbach

General Commands Reference Guide T

345

; JTAG <tck> <tms> <tdi> <tdo> <trst> <initstate>
; when the sampling is started the JTAG state machine is in state
; run-test/idle

Trace.PROTOcol.list JTAG X.8 X.9 X.4 X.12 X.14 run-test/idle
; CAN <canline> <...> (see "Options for CAN" for details)
Trace.PROTOcol.list CAN X.7 NominalFrequency 1.0MHz DEFault
; USB <+signal> <-signal>

Trace.PROTOcol.list USB X.17 X.18

; I2C <scl> <sda>

Trace.PROTOcol.list I2C X.22 X.23

; asynchronous communication interface
; ASYNC <asyline> <frequency> +|- <parity> <length> <stopbit>

Trace.PROTOcol.list ASYNC X.6 3600. + EVEN 7 1STOP STRING
Trace.PROTOcol.list ASYNC X.5 2400. - NONE 5 2STOP CHAR

; special protocols
; TRACE32 offers a API that allows to use special, customer specific

; protocols

Trace.PROTOcol.list protojtag.dll X.4 X.12 X.14

; examples for special protocols are provided under ~~/demo/proto
See also
B <trace>.PROTOcol B <trace>.PROTOcol.Find

B <trace>.PROTOcol.STATistic B <trace>.REF
B <trace>.PROTOcol
A

‘Release Information’ in ’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 346

<trace>.PROTOcol.PROfileChart Profile chart for user-defined protocol

Format: <trace>.PROTOcol.PROfileChart <protocol> <parlist> [<items> ...]
[/<option>]
<protocol>: JTAG | CAN | USB | I12C | I2S | ASYNC | SWDP | SPI | PROBEUSB
<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter
<items>: Y% <format>
<line>
DEFault | ALL
TIme.Back | Time.Fore | Time.REF
Time.Zero | TIme.Trigger
SyncClock
SPARE
<parlist> Refer to “Protocol specific Options”, page 351.
Options:
FILE Display trace memory contents loaded with the command Trace.FILE.
Track Track other trace list window (tracks to record number or time)
RecScale Record Scaling
TimeScale Timed Scaling
Filter
©1989-2024 Lauterbach General Commands Reference Guide T | 347

Items:

Time.REF
Time.Trigger
TIme.Zero

SyncClock

See also

Time marker, relative to reference point
Time marker, relative to trigger point
Time marker, relative to global reference

Synchronous clock event

B <trace>.PROTOcol

<trace>.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

Format:

<protocol>:

<option>:

<items>:

<trace>.PROTOcol.PROfileSTATistic <protocol> <parlist>[<items> ...]
[/<option>]

JTAG | CAN | USB | 12C | I2S | ASYNC | SWDP | SPI | PROBEUSB

FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter

%<format>

<line>

DEFault | ALL

TIme.Back | Time.Fore | Time.REF
Time.Zero | Time.Trigger
SyncClock

SPARE

<parlist>

Options:

FILE

Refer to “Protocol specific Options”, page 351.

Display trace memory contents loaded with the command Trace.FILE.

©1989-2024 Lauterbach

General Commands Reference Guide T | 348

Track Track other trace list window (tracks to record number or time)

RecScale Record Scaling
TimeScale Timed Scaling
Filter

Items:
Time.REF Time marker, relative to reference point
Time.Trigger Time marker, relative to trigger point
Time.Zero Time marker, relative to global reference
SyncClock Synchronous clock event

See also

B <trace>.PROTOcol

©1989-2024 Lauterbach General Commands Reference Guide T | 349

<trace>.PROTOcol.STATistic

Display statistics for user-defined protocol

Format:

<protocol>:

<option>:

<items>:

<format>:

<trace>.PROTOCcol.STATistic <protocol> <parlist> [<items> ...] [/<option>]

JTAG | CAN | USB | I12C | 12S | ASYNC | SWDP | SPI | PROBEUSB

FILE
BEFORE
AFTER

List

Filter
Accumulate
INCremental
FULL

%<format>

<line>

DEFault | ALL

TIme.Back | Time.Fore | Time.REF
Time.Zero | TIme.Trigger
SyncClock

SPARE

Hex | Decimal | BINary | Ascii
Timing | HighLow

LEN <size>

TimeAuto | TimeFixed

<parlist>

Options:

FILE
Track

Refer to “Protocol specific Options”, page 351.

Display trace memory contents loaded with the command Trace.FILE.

Track other trace list window
(tracks to record number or time)

Example: Display statistics in the user-defined protocol “proto1” on line x.0

PP: :Analyzer.PROTOcol.STATistic protol x.0

See also

B <trace>.PROTOcol

W <trace>.PROTOcol.list B <trace>.PROTOcol

©1989-2024 Lauterbach

General Commands Reference Guide T |

350

Protocol specific Options

Options for ASYNC
<parlist>: <signal> [<baudrate> [<polarity> [<parity> [<bits> [<stopbits> [<disp=>]1111]
<baudrate>: 1. ... 1000000.
<polarity>: +1-
<parity>: NONE | ODD | EVEN
<bits>: 5161718
<stopbits>: 1STOP | 2STOP
<disp>: CHAR | STRING

©1989-2024 Lauterbach

General Commands Reference Guide T

351

Options for CAN

<parlist>: <signal> [<setting> ...]

<setting>: NominalFrequency <frequency>
DataFrequency <frequency>
NominalTiming <fq> <PropSeg> <PhaseSeg1> <PhaseSeg2> <SJW>
DataTiming <tq> <PropSeg> <PhaseSeg1> <PhaseSeg2> <SJW>
Filter <name> <frameType> <id> <byteOffset> <size> <endian> <format>
DRAWRange <min> <max>
Level <level>

<frequency>: <frequency, e. g. 1MHz>
<tg>: <time, e. g. 0.1us>
<PropSeg>: <integer>

<PhaseSeg1> <integer>
<PhaseSeg2> <integer>

<SJW>: <integer>

<id>: <integer>

<byteOffset>: <integer>

<min>: <integer>

<max>: <integer>

<id>: <string>

<frameType>: Base | Extended

<size>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
<endian>: LE | BE

<format>: Decimal | DecimalU | Hex

<level>: PCS | BITS | FIELDS | FRAMES | FILTERS

CAN decoder for buses compliant with ISO 11898-1:2015 (CAN-FD). To record CAN, the probe must be
connected to the RX line of a CAN transceiver. Do not connect the probe directly to the CAN lines.

©1989-2024 Lauterbach General Commands Reference Guide T | 352

Most <setting>s are optional with the following constraints:

. Either NominalFrequency or NominalTiming must always be specified.
. For the <trace>.PROTOcol.Draw command, at least one Filter must be specified.

NominalFrequency Specify the baud rate.

DataFrequency This sets up a sample point at 70 % of a period; use these commands if
you do not know or care about the exact timing parameters of the CAN
bus.

NominalTiming Specify the exact timing parameters as defined in the CAN specification.

DataTiming For <tg>, specify the effective time of a time quantum derived from the

base clock and the baud rate prescaler. Prefer to use this family of
options over the Frequency options, at least for CAN-FD buses.

Filter Add a filter to decode fixed-format frames.
For every data frame with matching type (i. e. base or extended) and ID,
extract the specified data. The number of filters is limited only by the
maximum length of a PRACTICE command. The <name> is only used to
identify the filter in the List and EXPORT commands.

DrawRange Specify upper/lower bounds for Draw window.
This setting is only relevant for the <trace>.PROTOcol.Draw command. If
not given, this option is automatically chosen to encompass the full range
of all defined filters. Note that the draw range is limited to either signed or
unsigned 32-bit integers.

Level Specify the display level.
For the <trace>.PROTOcol.list command, this is the default level and can
be changed with the More and Less buttons. For the
<trace>.PROTOcol.EXPORT command, only FRAMES and FILTERS are
valid.
The available levels are as follows:

. PCS: Phases of the Physical Coding Sub-layer
. BITS: Decoded bits of the protocol

. FIELDS: Decoded fields of the protocol

. FRAMES: Complete CAN frames

. FILTERS: Data extracted with the Filter setting

NOTE: Prior to R.2020.09, TRACES32 included a CAN decoder that was not compatible
with CAN-FD. This old decoder had a different command line syntax. To use the
old decoder, type <trace>.PROTOcol.<sub_cmd> CANLEGACY <...>.

©1989-2024 Lauterbach General Commands Reference Guide T | 353

Options for 12C

<parlist>:

<sck>:
<sda>:

<glitch_ns>:
<data>:

<scl> <sda> [<glitch_ns>]

(All commands except <trace>.PROTOcol.FIND)
<scl> <sda> <data> [<glitch_ns>]
(<trace>.PROTOcol.FIND)

<signal>
<signal>

<integer>
<integer>

If not specified, the default glitch filter is 50 ns.

Options for 12S

<parlist>:

<sck>:
<sd>:
<WS>:

<glitch_ns>:
<data>:

<sck> <sd> <ws> [<glitch_ns>]

(Al commands except <trace>.PROTOcol.FIND)
<sck> <sd> <ws> <data> [<glitch_ns>]
(<trace>.PROTOcol.FIND)

<signal>
<signal>
<signal>

<integer>
<integer>

©1989-2024 Lauterbach

General Commands Reference Guide T

354

Options for JTAG

<parlist>:

<tck>:
<tms>:
<tdi>:
<tdo>:
<trst>.

<initial_
state>:

<tck> <tms> <tdi> <tdo> [<trst>] [<initial_state>]

<signal>

Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-scan
Update-DR
Capture-DR
Select-DR-scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR
Test-Logic-Reset

©1989-2024 Lauterbach

General Commands Reference Guide T

355

Options for USB

<parlist>:

<+signal>:
<-signal>:

<Slate>:

<+signal> <-signal> [<state>]

<signal>
<signal>

BUSRESET
GAP
SYNC
EOP
ERRORS
SOF
#SETUP
#PRE
#IN
#OUT
#ACK
#NACK
#STALL
#DATAO
#DATA1
#OTHER

©1989-2024 Lauterbach

General Commands Reference Guide T

356

<trace>.REF

Set reference point for time measurement

<option>: FILE

Format: <trace>.REF [<time> | <record> | "<trace_bookmark>"]

Sets the reference point for time measurements using the Time.REF column of the Trace.List window. The
default reference point is always the last record in trace memory. The reference point can also be set via
context menu entry Set Ref in Trace.List, Trace.Chart, Trace.Timing etc. windows.

<time>

<record>

<trace_bookmark>

Examples:

Trace.REF +2000.
Trace.REF 100us

Trace.REF "MyRef"

Sets the reference point to the global ZERO point. If the time for each trace
event is calculated based on timestamps generated by the processor, the
global ZERO point is at the start of the trace recording currently stored in the
trace buffer. If the time for each trace event is based on timestamps generated
by the trace module, the global ZERO point is set to the start of the first debug
session after the start of TRACE32 PowerView.

Sets the reference point to the time index of the specified record number.

Sets the reference point to the time index of the specified bookmark
location. You can create trace bookmarks with the <trace>.BookMark
command.

; set reference to record +2000
; set ref. point to absolute time

; set ref. point to bookmark "MyRef"

See also
B <trace>.GOTO B <trace>.PROTOcol.list B <trace>.Timing B <trace>.View
B |Probe.state B RunTime B RunTime.state 1 Analyzer.REF()
<trace>.RESet Reset command
Format: <trace>.RESet

Resets the trace unit to its default settings.

See also

B |Probe.state B RunTime H RunTime.state

©1989-2024 Lauterbach

General Commands Reference Guide T | 357

<trace>.SAVE

Save trace for postprocessing in TRACES32

[Parameters] [Options] [Examples]

Format:

<option>:

<trace_area>:

<trace>.SAVE <file> [<trace_area>] [{/<options>}]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

FlowTrace
BusTrace
ZIP

PACK
NoCompress

The trace memory contents are stored to the selected file. What is actually saved to the file depends on the

Trace.Mode:
J Trace.Mode FlowTrace: Trace raw data plus decompressed addresses, data and op-codes are
saved.

If the program and data flow is output by the CPU in a compressed format, it is decompressed before
saving it to a file for postprocessing. By reading the source code information the addresses, data
value and op-codes are decompressed.

. All other settings for Trace.Mode: Only the trace raw data are saved into <file> if the information
from the external busses, ports etc. are recorded to the trace buffer.

Parameters

<file>

The default extension of the file name is *.ad.

For some TRACE32 devices additional setting are saved to <file>:
. PowerProbe (Trace.METHOD Probe)
All Probe settings and all NAME settings are saved to <file>.
. Powerlntegrator (Trace.METHOD Integrator)
All Integrator settings and all NAME settings are saved to <file>.

©1989-2024 Lauterbach

General Commands Reference Guide T | 358

<trace_area>

<trace_bookmark>

Specify two <trace_bookmarks> to define the <trace_area> you want to

save to the file.

. If you specify only one <trace_bookmark>, then the <trace_area>
ranges from that bookmark up to the end of the trace recording.

See example.

<record_range>

You need to specify two record numbers to define the <trace_area> you
want to save to the file.
See example.

<record>

Specify two record numbers to define the <trace_area> that you want to

save to the file.

] If you specify only one <record>, then the <trace_area> ranges
from that record number up to the end of the trace recording.

See example.

<time_range>

You need to specify two absolute timestamps that are based on the zero
time to define the <trace_area> you want to save to file.

See example.

<time> Specify two absolute timestamps that are based on the zero time to
define the <trace_area> you want to save to the file.

. If you specify only one absolute timestamp, then the <trace_area>
ranges from that timestamp up to the end of the trace recording.
Options

FlowTrace Obsolete.

BusTrace Save only the trace raw data, if a flow trace is used. This option is helping
if a decompression of the program and data trace information is not
possible.

PACK Save the trace contents is a compact way. PACK is less effective and
slower then ZIP. It is only recommended if the option ZIP is not available.

ZIP Save the trace contents is a compact way.

NoCompress Obsolete.

©1989-2024 Lauterbach

General Commands Reference Guide T | 359

Example for <trace_bookmark>

Trace.List

Trace.BookMark "First" -123366.

Trace.BookMark "Last" -36675.

BookMark.List

Trace.SAVE testb "First"

Example for <record_range>

"Last"

[Parameter Descr.]

display trace listing

mark the trace record -123366.
with the bookmark "First"

mark the trace record -36675.
with the bookmark "Last"

list all bookmarks

save trace contents between
bookmarks "First" and "Last"
to the file testb

; display trace listing
Trace.List

; save trace contents between record

; to the file testr

Trace.SAVE testr (-107032.)--(-21243.)

Example for <record> <record2>

[Parameter Descr.]

-107032. and record -21243.

Trace.List

Trace.SAVE testv -107032.

Example for <time_range>

-21243.

[Parameter Descr.]

display trace listing

save trace contents between
record -107032. and record
-21243.to the file testv

; display trace listing

Trace.List TIme.ZERO DEFault

[Parameter Descr.]

; save trace contents between the point of time 4.us and the point of

; time 1.952ms to the file testt

Trace.SAVE testt 4.us--1.952ms

©1989-2024 Lauterbach

General Commands Reference Guide T | 360

More Examples

Trace.SAVE test4 7

QUIT g

Trace.LOAD test4 7

Data.LOAD.El1lf demo.elf /NoCODE g

Trace.List 5

Trace.STATistic.Func 8

; save trace contents to the file test4
Trace.SAVE test4

; use saved trace contents as reference

; load the saved trace contents
Trace.FILE test4

save trace contents to the file
test4

end TRACE32

off-line postprocessing of the
trace contents e.g. with a
TRACE32 Instruction Set Simulator

load the saved trace contents

load the symbol information if
you like to have HLL information
for the trace analysis

display the loaded trace contents
as trace listing

perform a function run-time
analysis on the loaded trace
contents

HLL information is required

; display the trace contents loaded from the file test4.ad as trace

; listing
Trace.List /FILE

; compare the current trace contents with the trace contents loaded from
; testd.ad with regards to the addresses

Trace.ComPare (-27093.)--(-8986.) Address /FILE
See also
B <trace>.EXPORT B <trace>.LOAD B <trace>.STREAMSAVE B |Probe.state
B RunTime B RunTime.state

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T | 361

<trace>.SelfArm Automatic restart of trace recording

Format: <trace>.SelfArm [ON | OFF]
<trace>.AutoTEST [ON | OFF] (deprecated)

Trace.SelfArm ON automatically restarts the trace recording. There are mainly two use cases for this
command.

Snapshot without stopping the program execution

If stopping the program execution it not advisable, but you are interested in the target state at a specific point
of the program execution, proceed as follows:

1. Display the information of interest on the screen.

Please make sure to display only information that can be updated while the program execution is

running.
2. Use a trigger to specify your point of interest.
3. Activate the self-arm mode.

Whenever the trace recording is stopped by the trigger, all information displayed by TRACES32 is updated
before the trace recording is automatically restarted.

©1989-2024 Lauterbach General Commands Reference Guide T | 362

Example for ARM11:

Data.LOAD.El1lf armla.Elf /PlusVM

Trace.

Break.

Trace.

Trace

Go

Trace.

Automated

List

Set sieve /TraceTrigger

Mode AutoInit ON

.Mode SelfArm ON

Mode SelfArm OFF

run-time analysis

load source code to virtual

memory within TRACE32 in order to

enable the trace display while

program execution is running

display the information of
interest

specify the trigger point

clear the trace buffer and
re-activate the trigger

before the trace recording
is automatically restarted

activate the self-arm mode

stop automatic restarting of
trace recording

To automate an incremental run-time analysis, proceed as follows:

1. Prepare the run-time analysis and open a run-time analysis window.
2. Switch the trace to Leash mode.
3. Activate the self-arm mode.

Whenever the trace recording/program execution is stopped because the trace buffer is full, the current trace
contents is analyzed and the analysis window is updated correspondingly. Afterwards the program execution

is restarted.

©1989-2024 Lauterbach

General Commands Reference Guide T

363

Example:

Trace.

Trace.

Trace

Trace.

Go

Trace.

See also

STATistic.Func /ACCUMULATE

Mode Leash

.Mode AutoInit ON

Mode SelfArm ON

Mode SelfArm OFF

open a window that performs a
continuous nested function
run-time analysis

switch the trace to Leash mode

clear the trace buffer
before the trace recording
is automatically restarted

activate the self-arm mode

stop automatic restarting of
trace recording

B <trace>.SnapShot B |Probe.state

©1989-2024 Lauterbach

General Commands Reference Guide T |

364

<trace>.ShowFocus

Display data eye for AUTOFOCUS preprocessor

Format: <trace>.ShowFocus

The Trace.ShowFocus command displays the data eyes as they are “seen” by a preprocessor with

AUTOFOCUS technology resulting from the following commands:

o Trace.AutoFocus

o Trace.TestFocus

Description of Buttons in the Trace.ShowFocus Window

Setup ... Open Trace.state window to configure the trace.
Scan Perform a Trace.TestFocus scan.
Scan+ Perform a Trace.TestFocus /Accumulate scan.
AutoFocus Perform a Trace.AutoFocus scan.
Data Open a Trace.ShowFocusEye window.
Clock Open a Trace.ShowFocusClockEye window.
Store ... Save the current AUTOFOCUS configuration to a file
(STOre <file> AnalyzerFocus).
Load ... Load an AUTOFOCUS configuration from a file
(DO <file>).
O Move all sampling points 1 * <time_clock> to the left.
i Move all sampling points 1 * <time_clock> to the right.

©1989-2024 Lauterbach

General Commands Reference Guide T

365

Description of the Trace.ShowFocus Window

Clock period

-

¥ B:Trace.ShowFocus =[]
[W Setup...][Scan][Scan+][AutoFocus][ﬂAnalog]Lﬁ Ftare...][=2 Load..]u[»]

f=156.8MHz .0aa -1.088 +8.800 1.8080 +2.800 +3.000 +4.TEE 5. <d— time axis

line | ! .

1911 1Se in [ns]
+2. 867
+1.989
+1.755
+1.287
+8.975
+8.897
+8.975

41
+8.897
+8.897

Zero delay

Data channel Data channel
delay name

Sampling points (red lines)

Setup violations on
falling, rising, both edges

4

Data eyes

In the Trace.ShowFocus window the data eyes are white, whereas setup violations are marked as follows:

Setup violation on High red line
the rising edge

Setup violation on Low red line
the falling edge

Setup violation on Grey bar
both edges

The x-axis of the Trace.ShowFocus window corresponds to the time axis, whereas the y-axis corresponds
to the data channels of the ETM trace port. In the example above we have an 8-bit ETMv1.x architecture
with the channels TRACESYNC (TS), PIPESTAT (PS[3:0]) and TRACEPKT (TP[7:0]).

©1989-2024 Lauterbach General Commands Reference Guide T | 366

A preprocessor with AUTOFOCUS technology has programmable delays for the clock channel as well as
all data channels. With that in mind the x-axis (time-axis) has the following meaning:

Data delay greater Negative value
than clock delay

Both clock and data Zero
delay are zero

Clock delay greater Positive value
than data delay

In the example above there is a channel to channel skew of more than 1 ns that has been compensated by
choosing individual sampling points for each data channel. The time resolution for clock and data channel
adjustment is not necessarily the same. In the example the time resolution for data channel adjustment is
relatively coarse (500-600 ps), whereas the clock channel can be adjusted in fine delay steps (78 ps). The
actual values are functions of voltage, temperature and process. However they are measured for each
Trace.AutoFocus or Trace.TestFocus execution, so the numbers displayed in the Trace.ShowFocus
window do have a physical meaning (time unit is ns).

The example shows the Trace.ShowFocus window as it might appear when using the LA-7991 OTP (see
Preprocessor for ARM-ETM AutoFocus for details). For the re-programmable version both clock and data
delays are typically 270 ps and the Trace.ShowFocus window for the same application might look like this:

PBzASE o =]

W Setup.. I TestFocus IAccumuIateIﬂ AutoFocuI g Store... I 3 Load.. | 4 | 3 |
+1.000 +2.000

R Trace.ShowFocus as it
+1.024 appears for a
IR re-programmable LA-7991
+0.768
+0.768
+0.768
+0.768
+0.768
+0.768
+0.768

NOTE: The NEXUS AutoFocus adapter does not support this feature.
See also
B <trace>.TestFocus B <trace>.TestFocusClockEye
B <trace>.ShowFocusClockEye B <trace>.ShowFocusEye
B <trace>.TestFocus B <trace>.TestFocusEye

A ’Installation’ in ’AutoFocus User’s Guide’
A ’Installation’ in’Arm ETM Trace’

©1989-2024 Lauterbach General Commands Reference Guide T | 367

<trace>.ShowFocusClockEye Display clock eye

Format: <trace>.ShowFocusClockEye [<channel>]

<channel>: TS | PS[0...2] | TP[O0...32] (ETM V1.x)
TCTL | TP[0...32] (ETM V3.x)

The command Trace.ShowFocusClockEye displays a graph reflecting the clock waveform. Basically it
shows data eyes from a different point of view.

The result of the command Trace.ShowFocusClockEye shows a single ETM channel or all ETM
channels superimposed. Further are:

. X-axis: time range [ns]

. Y-axis: voltage range [V]

it BzAnalyzer.ShowFocusClockEye i) [=]]
& setup... Scan Scan+ | AutoFocus | M Digital | & anneII 2 Ehannell 4 | » |
f=150.0MHz +0.000 +2.500 +5|
all 1] i—|
o =
2.0
1.0
o0} o=
JIET o
Color Legend
White area Data eye.
Green area Setup violation on the rising edge.
Red area Setup violation on the falling edge.
Superimposed area Setup violation on both edges.
(green and red)

©1989-2024 Lauterbach General Commands Reference Guide T | 368

Description of Buttons in the <trace>.ShowFocusClockEye Window

Setup ... Open Trace.state window to configure the trace.
Scan Perform a Trace.TestFocusEye scan.
Scan+ Perform a Trace.TestFocusEye /Accumulate scan.
AutoFocus Perform a Trace.AutoFocus.
Digital Open a Trace.ShowFocus window scan.
Channel (previous) Display Trace.ShowFocusClockEye for a single trace line (previous).
Channel (next) Display Trace.ShowFocusClockEye for a single trace line (next).
o Move all sampling points 1 * <time_clock> to the left.
N Move all sampling points 1 * <time_clock> to the right.
Examples
Trace.ShowFocusEye ; Display data eye with
; all trace channels superimposed
Trace.ShowFocusEye PS2 ; Display data eye for the
; trace channel PS2
NOTE: The NEXUS AutoFocus adapter does not support this feature.
See also
B <trace>.ShowFocus B <trace>.ShowFocusEye B <trace>.TestFocusEye W <trace>.TestFocus

<trace>.TestFocusClockEye

u
A ’'Diagnosis’ in ’AutoFocus User’s Guide’
A ’Diagnosis’ in’Arm ETM Trace’

©1989-2024 Lauterbach General Commands Reference Guide T | 369

<trace>.ShowFocusEye Display data eye
[Color Legend] [Buttons] [Example]

Format: <trace>.ShowFocusEye [<channel>]

<channel>: TS | PS[0...2] | TP[0...32] (ETM V1.x)
TCTL | TP[0...32] (ETM V3.x)
LANE[O0...n] (only with serial preprocessor or PowerTrace Serial)

The command Trace.ShowFocusEye displays the data eye as it is 'seen’ by a preprocessor with
AUTOFOCUS technology or PowerTrace Serial resulting from the command Trace.TestFocusEye.

The result of the command Trace.ShowFocusEye shows a single trace channel or all trace channels
superimposed. The unit of the axis differs for AUTOFOCUS:

J X-axis: time range [ns] or [UI]

J Y-axis: voltage range [V] or [percentage]

it BzAnalyzer.ShowFocusEye ;Iglll

& setup... Scan Scan+ | AutoFocus | b Digital | & C neII 2 Ehannell 4| }I

f=150.0MHz +0.000 +2.500 +5
all
3

e i

and PowerTrace Serial technology:

. X-axis: time range [Ul]
J Y-axis: voltage range [percentage of eye height]
A BaAnalyzer ShowFocusEye |[E=3EsR <
DS cana)[wv.Lone. [Lone. [Lone .| Lane. @ colors.)
All Lanes 5 -8.4 -8.3 -8.2 -8.1 8.8 8.1 8.2 8.3 8.4
Rate: 5.8Gbps

|E=R(EoR

A BuAnalyzerShowFocustye

£ 5cen J[_wLone J|_aLene]| lans] & Lane J[@osiors]
5 -8.4 -8.3 -8.2 -8.1

All Lanes 88 81 02 03 0.4
Rate: 5.8Ghps

|E=R(EoR

A BuAnalyzerShowFocustye

£ 5cen J[_wLone J|_aLene]| lans] & Lane J[@osiors]
All Lanes 5 -8.4 -8.3 -8.2 -8.1
Rate: 5.8Gbps

0.0 0.1 0.2 0.3 0.4

©1989-2024 Lauterbach General Commands Reference Guide T | 370

Color Legend for AUTOFOCUS

[Back to Top]
White area Stable data.
Green area Setup violation on the rising edge.
Red area Setup violation on the falling edge.
Superimposed area Setup violation on both edges.
(green and red)

Color Legend for PowerTrace Serial
[Back to Top]

White area Stable data eye.
Black areas Unstable data.
White area Stable data eye.
Grey/Black areas Unstable data.
Dark Blue area Stable data eye.

Blue/Green/Orange/ Unstable data.
Yellow/Red areas

©1989-2024 Lauterbach General Commands Reference Guide T | 371

Descriptions of Buttons in the <trace>.ShowFocusEye Window:

[Back to Top]
Setup ... Open Trace.state window to configure the trace.
Scan Perform a Trace.TestFocusEye scan.
Scan+ Perform a Trace.TestFocusEye /Accumulate scan.
AutoFocus Perform a Trace.AutoFocus scan.
Digital Open a Trace.ShowFocus window.
Channel (previous) Display Trace.ShowFocusEye for a single trace line (previous).
Channel (next) Display Trace.ShowFocusEye for a single trace line (next).
o Move all sampling points 1 * <time_clock> to the left.
i Move all sampling points 1 * <time_clock> to the right.
Examples
[Back to Top]

Trace.ShowFocusEye

Trace.ShowFocusEye

; Display data eye with
; all trace channels superimposed

PS2 ; Display data eye for the
; trace channel PS2

NOTE: The NEXUS AutoFocus preprocessor does not support this feature.

See also

B <trace>.TestFocus
M <trace>.ShowFocus
B <trace>.TestFocusEye

B <trace>.TestFocusClockEye
B <trace>.ShowFocusClockEye

©1989-2024 Lauterbach

General Commands Reference Guide T | 372

<trace>.SIZE Define buffer size

Format: <trace>.SIZE [<size>]

Sets the <size> of trace memory which is used for trace recording. If the command is called with size zero,
the trace size will be set to its maximum size. If the configured trace size is larger that the maximum size
allowed by the used trace method, then the maximum size is set or an error message is returned.

Reducing the size used for trace recording helps to reduce time needed for trace data download and trace
analysis (statistical analysis, trace chart display etc, searching for an event in the trace), because of the
smaller amount of recorded data. There is no other benefit besides that.

See also
B RunTime B RunTime.state 1 Analyzer.RECORDS() 1 Analyzer.SIZE()

A ’'Release Information’ in’Legacy Release History’

<trace>.SnapShot Restart trace capturing once

Format: <trace>.SnapShot
<trace>.TEST (deprecated)

Restart the trace capturing. Effectively the same as executing the commands Trace.OFF, Trace.Init and
Trace.Arm.

Most often used to restart the trace recording:

J After the trace capturing was stopped by a trigger (e.g. by a TraceTrigger breakpoint).

J When the trace works in Stack mode and trace capturing was stopped because the trace buffer
was full.

See also

B |Probe.state B <trace>.SelfArm

©1989-2024 Lauterbach General Commands Reference Guide T | 373

<trace>.SPY Adaptive stream and analysis

Format: <trace>.SPY

Trace.SPY allows display intermediate trace analysis results while streaming (see <trace>.Mode
STREAM). If the average data rate at the trace port is high, the analysis time is reduced, and vise versa.

The Trace.SPY command requires that trace decoding is possible while the program execution is running.
This is possible, if the core architecture in use provides run-time access to memory or if the object code is
loaded to the TRACE32 virtual memory. It is recommended to load the object code to the TRACES32 Virtual
Memory in any case, because the trace analysis is then faster.

The Trace.SPY command only works if the trace is currently in Arm mode.

Example:
Data.LOAD.El1lf demo.elf /VM ; copy object code to TRACE32
; Virtual Memory
Analyzer .Mode STREAM ; select trace mode STREAM
Go ; start the program execution
IF Analyzer.STATE() !=1

PRINT "No switch to SPY mode possible™
Trace.SPY ; enable analysis of streaming file
Trace.List

Trace.Arm ; switch back to standard recording

©1989-2024 Lauterbach General Commands Reference Guide T | 374

File Edit View Var Bresk Run CPU Misc Trace Probe Perf Cov MPCSXXX Window Help
(M A+ e[rn|[E 20 0w sdE @LL
& rTrace ==]=]
METHOD ~
® Analyzer | Canalyzer O Onchip O ART (O LoGGER O SNOOPer O FDX OLa
Hanalyzer (Integrator Probe (O IProbe
state — used ACCESS
O Disable I Jauto ~| | &F Tronchip |
O oFF 16798888. o TRACEPORT
OArm ~ SIZE : o
Otrigger &setup...| (Y Goto... | FFind... rfwichart | EProfile | EEMIPS | # More | X less
O break L record run |address lcycle |data |symbol [ti.back =
[Mode 680 ! Flags[k 1 = FALSE -
y ags = H =
V| OFifo Tis r12,0x4000 ;riz, =
LS — || @ addi ri2,ri2,0x4128 16680 N
. T4 ril,0x0 . ~
@ it O Leash sthx rii,ri2,r29 -"‘-E;‘ .
681 += primz;
& Snapshot ® sTREAM add r29,r29,r3o i k.k,primz
OFPE i b 0x40001318 i .L520 i abe i abetsd
+00000016798887 F:40001318 ptrace iabch\diabch\sieve+0x70 0.985us
&7 AutoArm RTS 678 while (k <= SIZE)
[Autolnit J: cmpwi r29,0x12 : k,18
bgt 0x40001338 i .L519 (- v
|B: bl
|oompcments| ‘ trace ‘ | Data | ‘ Var ‘ | List | ‘ FERF ‘ | SYStem | ‘ Step ‘ | Go | ‘ Break ‘ | sYmbol | ‘ other ‘ | previous |
| CETEENE | | u v
See also
W |Probe.state W Trace

©1989-2024 Lauterbach

General Commands Reference Guide T

375

<trace>.state

Display trace configuration window

Format:

<trace>.state

Displays the trace configuration window. The trace methods are displayed at the top of the window. The
configuration options below the trace methods adjust to the currently selected trace method, compare
screenshot on the left with the screenshot on the right.

& B::Trace.state

[= O[Sl

METHOD

Onchip @ Analyzer | CAnahyzer

Hénzhzer (Integrator () Probe Probe OLA

state

O Disable
®oFF
O Arm
Otrigger

O break
SPY

commands
@ Init
& SnapShot

AutoArm
[autolInit

used

(_JART

| O LoGGER Osvoorr (O FDX (O NONE

ACCESS

Rl ¥ & B::Trace.state EI@
0.
METHOD

SIZE CLOCK
|1310?2 | | ® Onchip Analyzer | CAnahrer | HAnahzer I’:e;'z::' IProbe OLA

§ OarT OLOGGERUsioorer OFDX (O NONE
Mode Mode
@ Fifo I sLAVE
O stack
O Leash

STREAM
PIPE
RTS

A After you have selected the desired trace method (Trace.METHOD), you can work with the commands
that start with Trace. This principle is illustrated in the two PRACTICE script snippets below.

B For descriptions of the commands in the Trace.state window, please refer to the <trace>.*
commands in this chapter. Example: For information about OFF, see <trace>.OFF.

Trace.METHOD Analyzer

Trace.List

Trace.METHOD SNOOPer

Trace.List

See also

;Select the trace method, here Analyzer

;The trace listing now refers to the
;method Analyzer

;Select the trace method, here SNOOPer

;The trace listing now refers to the method SNOOPer

B Trace. METHOD

B FDX.ENableChannel
Bl FDX.OutChannel

B FDX.READ

B FDX.CLEAR

B FDX.InChannel
B FDX.PipeREAD
B FDX.TImestamp

B FDX.CLOSE

B FDX.METHOD

B FDX.PipeWRITE
B FDX.TraceChannel

B FDX.DISableChannel
B FDX.Out

B FDX.Rate

B FDX.WRITE

©1989-2024 Lauterbach

General Commands Reference Guide T |

376

A ’Trace Functions’ in 'General Function Reference’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 377

<trace>.STATistic

Statistic analysis

The <trace>.STATistic commands can be used for statistical analysis based on the information sampled to

the trace buffer.

In contrast to the performance analyzer (PERF commands), the statistical analysis commands provide a
higher precision and much more information about the analyzed item, but since the size of the trace buffer is
limited, the observation time is limited. Statistic evaluations can be made after the trace memory stops

sampling.

Example for TRACE32-ICD and TRACE32-PowerTrace:
IIf no selective tracing is possible, use the option /Filter to filter out the event of interest.

Go
Break

Trace.STATistic.DistriB Data.B /Filter Address Var.RANGE (flags[31])

| B:iTrace, STATistic.DistriB Data.B /Filter Address V.RANGE(flags[3]) = =R
B senp... || 38 @nfig... | (A Goto... | | Detsled | M Chart || B Profile
items: 3. total: 1.000s samples: 3486.
class [total min max avr count (change) |ratio¥% [1% 2% 5% 10%
(other) [176.389ms | 176.389ms | 176.38%ms - 0. 17.638%
d. b=0x1 18. 360ms 15. 800us 15. 800us 15.814us 1162.(1/0 1. 835% |e—
d.b=0x0 | 805.252ms | 688.600us | 699.100us | 693.584us 1162. (0/1 | 80.525%
< >

If selective tracing is possible, use the /TraceEnable filter to extend the observation time:

Break.Set InterruptEntry /Program /TraceEnable

Go
Break
Trace.STATistic.DIStance /Filter

Address InterruptEntry

©1989-2024 Lauterbach

General Commands Reference Guide T | 378

Parameters

List items

The <list_items> can be arranged by pushing the Config button in the <trace>.STATistic window.

= = E=]
& setup... | 1ii Goups.. || 8 Gorfig.. [Got sz
Sort Sort visible Custom Sort Filters available selected
i @ OFF @ Global Internal - Total
4 f = IAVeR; MIN
__scheduler_task_wrapper_restors O Nesting O Window IMII\? B MAX
E_cortex_m_system_timer_handlet| 7 group Sart core IMAX AVeRage
osEE_counter_incremerd
i B T . Int IBAR.L Count
o0sEE_counter_handle_alary O Address ® QureTogether Elltzrrnn; = InDtL;TnalRatio
osEE_handle_actior O symbol O QreSeparated EAVeRage InternalBAR.LOG
osEE_task_activatec O internalRat EMIN
0sEE_scheduler_task_inseri O EMAX =
0sEE_scheduler_task_insert_r¢| O TotaRatio ExternallNTR
0sEE_scheduler_rg_insert O Ratio ExtternallNTRI
osEE_sn_priority_inserd ExternalTASK
osEE_counter_insert_rel_trigger O count ExternalTASK
osEE_counter_1 nsert_abs_tr;gggr) TotalMAX Add or remaove: INTRCount
osEE_t{
Cropt] ORatioMAX [] ThScomt £
FTMO_ovf_Reload_IRQHandlet
[&l Windows

The table below include a description of the List items. Please note that not all List items are available for
all <trace>.STATistic commands.

DEFault
NAME
GROUP
TASK
Total

Time

TotalRatio

TotalBAR.log,
TotalBAR.LINear

Count
MIN, MAX

AVeRage

Default trace statistics display.

Event name.

Group name assigned by GROUP commands.

Task name for event.

Total time within the event.

Total time the event was true.

For function nesting analysis, the time spent in interrupt routines is by
default taken out of the measurement.

Ratio of time spent within the event over the complete measurement
time. If nesting analysis is used (e.g. <trace>.STATistic.Func), then

called subroutines are included.

Graphical display of the ratio (linear or logarithmic).

Number of occurrences of the event.
Minimum and maximum time the event was true.

Average time the event was true.

©1989-2024 Lauterbach

General Commands Reference Guide T | 379

Internal
IAVeRage
IMIN, IMAX
InternalRatio

InternalBAR.log,
Internal.LINear

External
EAVeRage

EMIN, EMAX
ExternalTASK
ExternalTASKMAX
INTRCount
TASKCount

Ratio, BAR.log,
BAR.LINear

CountRatio,
CountBAR.log,
CountBAR.LINear
TotalMIN, TotalMAX

RatioMIN,
RatioMAX

CountMIN,
CountMAX

CORE

Time spent within the event.
Average time spent in the event.
Shortest/longest time spent in the event.

Ratio of time spent in the event.

Graphical display of the ratio (linear or logarithmic) spent in the event.

Time spent within sub functions.

Average time spent within sub functions.

Shortest/longest time spent within sub functions.

Total time in other tasks.

Max time one function pass was interrupted by other tasks.
Number of interrupts that occurred during the function run-time.

Number of other tasks that interrupted the function.

Ratio of time spent in events to total measurement time in percent and as

graphical bars.

Ratio of count to total count in percent and as graphical bars.

Shortest/longest time period in the task.

Shortest/highest ratio in the task.

Shortest/highest ratio in the task.

Core number.

©1989-2024 Lauterbach

General Commands Reference Guide T |

380

Format

DEFault Default format.

LEN <size> Specifies the width of non numeric fields (e.g. symbols)
TimeAuto Adapt the time display. (default)

TimeFixed Display all time information in seconds.

©1989-2024 Lauterbach General Commands Reference Guide T | 381

Options

This section describes the options of the <trace>.STATistic command group. Not all options are supported
by all <trace>.STATistic commands.

JoinCORE Analysis is performed for all cores. The core information is discarded.
(default)

SplitCORE Same as JoinCORE.

MergeCORE Same as JoinCORE.

CORE <number> Analysis is performed for the specified core.

TASK [!] <task>

Analysis is performed for the specified task only or excluding the task.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Splits up the results for different tasks.

MergeTASK Trace information is analyzed independently for each task. The trace
statistics summarizes these results to a single result.

INLINE Treat inline functions as separate functions (default).

NoINLINE Discard inline functions from the results.

LABEL Include all symbols in the results.

NoLABEL Only include functions in the results.

FILE Displays trace memory contents loaded with Trace.FILE.

FlowTrace The trace works as flow trace. This option is usually not required.

BusTrace The trace works as a bus trace. This option is for diagnosis only and
usually not required.

ACCUMULATE By default only the current trace contents is analyzed by the statistic
functions. The option /ACCUMULATE allows to add the current trace
contents to the already displayed results.

©1989-2024 Lauterbach

General Commands Reference Guide T |

382

INCremental

Intermediate results are displayed while the TRACE32 software analyses
the trace contents (default).

FULL The result is displayed after the TRACES32 software finished the analysis.

Track Track the Trace.STATistic window with other trace list windows (tracking
to record number or time possible).

NoMerge (For diagnosis purpose only).

Address ... Perform statistic on specified addresses, assign statistic information for

all other functions to (other).

Filter <item>

Filter the described item. The recorded trace information is first filtered and
then analyzed.

InterVal Divide the time period recorded by the trace (total) into time slices and
analyze the time slices, see Interval Analysis.

Number Define the number of classes.

LOG Display the bars in the result display in a logarithmic format (default).

LINear Display the bars in the result display in a linear format.

BEFORE Display the time before the event. That means how long the previous
state lasted until the listed state was reached.

AFTER Display the time after the event. That means how long the state lasted

after it was reached (default).

List <list_items>

Specify the result that should be displayed in the window. Refer to List
items.

/Sort <item>

Sorting the analysis result. Refer to Sorting.

INTR The time spent in interrupts is included to the measurement like a
function call.
CLOCKS The measurement results display the number of clocks instead of time

information.

©1989-2024 Lauterbach

General Commands Reference Guide T | 383

CountFirst Count the occurrence of the start address of a program symbol region or
(default) of a function.

CountChange Count how often the address range of a program symbol region or of a
function was entered.

CountALL Count all executed instructions.

IncludeOWN, Refer to the Analysis Options.

IncludeTASK,

IncludeINTR

ARTIAP Option for AUTOSAR Real-Time Interface on Adaptive Platform trace

decoding. Decode MIPI STP (System Trace Protocol) format trace which
is defined in ARTI Trace Driver on AUTOSAR Adaptive Platform.

InterVal Analysis

The InterVal option allows to divide the time period recorded by the trace (total) into time slices. Additional
analysis details can be displayed for these time slices.

I Trace.STATistic.TASK /InterVal <time> | <event>

; divide trace into 10.ms time slices
Trace.STATistic.TASK /InterVal 10.ms

; divide trace in time slices, a new time slice is started when the
; function FunccpuO_generateData is entered
Trace.STATistic.TASK /InterVal sYmbol FunccpuO_generateData

©1989-2024 Lauterbach General Commands Reference Guide T | 384

Sorting

/Sort <item>

Sorting the Analysis Result

OFF Sorting by program flow (default)
Nesting Sorting by nesting

Address Sorting by addresses

sYmbol Sorting by names

TotalRatio/Ratio

Sorting by TotalRatio

Count Sorting by Count
Window (ineffectual)
Global

The sorting can also be arranged by pushing the Config button in the Trace.STATistic.Func window.

-

If All Windows is selected, the selected sorting method is applied to all
Trace.STATistic and Trace.Chart windows.

See also Trace.STATistic.Sort.

See also

= = E=]
X ... || §if Goups...]| =8 config... QGot: s]
Sort Sort visible Custom Sort Filters available selected
i @ OFF @ Global Internal - Total
4 f = IAVeR; MIN
__scheduler_task_wrapper_restors O Nesting O Window IMII\? B MAX
E_cortex_m_system_timer_handlet] ™ group Sart core IMAX AVeRage
osEE_counter_incremeri}
i i = Int IBAR.L Count
o0sEE_counter_handle_alary O Address ® QureTogether Elltzrrnn; = InDtL;TnalRatio
osEE_handle_actior| O symbol O QreSeparated EAVeRage InternalBAR.LOG
osEE_task_activatec O internalRat EMIN
0sEE_scheduler_task_inser{ O EMAX =
0sEE_scheduler_task_insert_re¢| O TotaRatio ExternallNTR
0sEE_scheduler_rg_insert O Ratio ExtternallNTRI
osEE_sn_priority_inserd ExternalTASK
osEE_counter_insert_rel_trigger O count ExternalTASK
0sEE_counter_i nsert_abs_tr;gggr O TotalMAX Add or remove: INTRCount
osEE_t{
treot | Oraous — |||
FTMO_ovf_Reload_IRQHandlet
[Al windows

<trace>.Chart
<trace>.PROfileSTATistic
<trace>.STATistic.AddressDIStance
<trace>.STATistic.AddressGROUP
<trace>.STATistic. COLOR
<trace>.STATistic.DatasYmbol
<trace>.STATistic.DistriB
<trace>.STATistic.FIRST

<trace>.PROfileChart
<trace>.STATistic.Address
<trace>.STATistic.AddressDURation
<trace>.STATistic.ChildTREE
<trace>.STATistic.CYcle
<trace>.STATistic.DIStance
<trace>.STATistic.DURation
<trace>.STATistic.Func

©1989-2024 Lauterbach

General Commands Reference Guide T | 385

<trace>.STATistic.FuncDURation
<trace>.STATistic. GROUP
<trace>.STATistic.INTERRUPT
<trace>.STATistic.InterruptlsKernel
<trace>.STATistic.InterruptlsTaskswitch
<trace>.STATistic.LAST
<trace>.STATistic.LINKage
<trace>.STATistic. MODULE
<trace>.STATistic.ParentTREE
<trace>.STATistic. PROGRAM
<trace>.STATistic. RUNNABLE
<trace>.STATistic.Sort
<trace>.STATistic. TASK
<trace>.STATistic. TASKINFO
<trace>.STATistic. TASKKernel
<trace>.STATistic. TASKORINTERRUPT
<trace>.STATistic. TASKSRV
<trace>.STATistic. TASKStateDURation
<trace>.STATistic. TASKVSINTERRUPT
<trace>.STATistic. TREE
<trace>.STATistic.Var
EVENTS.STATistic

RunTime

A ’'Release Information’ in ’Legacy Release History’

<trace>.STATistic.FuncDURationInternal
<trace>.STATistic.Ignore
<trace>.STATistic.InterruptlsFunction
<trace>.STATistic.InterruptlsKernelFunction
<trace>.STATistic.INTERRUPTTREE
<trace>.STATistic.Line
<trace>.STATistic.Measure
<trace>.STATistic.PAddress
<trace>.STATistic.PROCESS
<trace>.STATistic.PsYmbol
<trace>.STATistic. RUNNABLEDURation
<trace>.STATistic.sYmbol
<trace>.STATistic. TASKFunc
<trace>.STATistic. TASKINTR
<trace>.STATistic. TASKLOCK
<trace>.STATistic. TASKORINTRState
<trace>.STATistic. TASKState
<trace>.STATistic. TASKTREE
<trace>.STATistic. TASKVSINTR
<trace>.STATistic.Use

BMC.STATistic

IProbe.state

RunTime.state

©1989-2024 Lauterbach

General Commands Reference Guide T

386

<trace>.STATistic.Address Time between up to 8 program events

Format:

<option>:

<trace>.STATistic.Address <address1> [<address2> ...] [[<option>]

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER

CountChange | CountFirst | CountAll
List <item>

InterVal <time>

Filter <filter>

Address <address | range>
ACCUMULATE

INCremental | FULL

CLOCKS

Sort <item>

Track

Displays the time interval between up to 8 program events.

<option>

Analysis background:
address1 —
address2 —
address2
address3 5
address1 =

address1

address2 —

Examples:

Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

Trace.STATistic.Address sieve funcl func2

Trace.STATistic.Address 0x125c 0x1264 0x1274 0x1290 Oxl2ac 0x12b8 0x12d8

See also

B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T | 387

<trace>.STATistic.AddressDIStance Time interval for single program event

Format: <trace>.STATistic.AddressDIStance <address> [<timemin>] [<increment>]
[/<option>]
<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
ACCUMULATE

INCremental | FULL
Number <record>
LOG | LINear

Displays the time interval for a single program event. Without parameter the assignment of classes (16) is
done automatically. With arguments the classes can be set up manually.

<address> Program event.

<timemin> Allows to specify the time for the first result class.

<increment> Allows to specify the increment for the next result class.

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

The following 2 commands are equivalents:

Trace.STATistic.AddressDIStance InterruptEntry

Trace.STATistic.DIStance /Filter Address InterruptEntry

The parameter <timemin> allows to specify the time for the first result class, the parameter <increment>
allows to specify the increment for the next result class.

Trace.STATistic.AddressDIStance InterruptEntry 15.0us 1.0us
See also

B <trace>.STATistic W <trace>.STATistic.DIStance

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 388

<trace>.STATistic.AddressDURation Time between two program events

Format:

<option>:

<trace>.STATistic.AddressDURation <address1> <address2>
[<timemin>] [<increment>] [/<option>]

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
ACCUMULATE

INCremental | FULL

Number <record>

LOG | LINear

The statistic distribution between two program events is analyzed. This command can be used to analyze
the run-time of a single function or interrupt response times.

<address1>
<address2>

<timemin>
<increment>

<option>

Program events.

Allows to specify the time for the first result class.
Allows to specify the increment for the next result class.

Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

; Analyze the run-time of a single function

; func9: start address of the function

; sYmbol.EXIT(func9): Exit address of the given function
Trace.STATistic.AddressDURation func9 sYmbol.EXIT (func9)

= | B:Trace STATistic. AddressDURation funcd Var.END(funcd)-3 ===
(& setup...|[ulchart || % zoom || X Zoom || 4 Move || T Move
samples: 9897. awr: 19.399%us min: 18.357us max: 19.891lus
total: 19.122s dn: 191.997ms out: 18.930s ratio: 1.004%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |

< 18.240us 0. 0.000% i

18. 560us 59. 0.596% |+

18. 880us 17. 0.171% |+

19.200us 31. 0.313% |+

19.520us 9697. | 97.979%

19. 840us 80. 0.808% |+

20.160us 13. 0.131% |+

20.480us 0. 0.000%

20. 800us 0. 0.000%

21.120us 0. 0.000%

21.440us 0. 0.000%

21.760us 0. 0.000%

22.080us 0. 0.000%

22.400us 0. 0.000%

22.720us 0. 0.000%

23.040us 0. 0.000%

23.360us 0. 0.000%
= 0. 0.000% -

J(13
©1989-2024 Lauterbach General Commands Reference Guide T | 389

By default TRACE32 PowerView builds 16 result classes. For a graphical display of the results, use the
command Trace.PROfileChart.DURation.

The <option> Number allows a user-defined number of result classes.

Trace.STATistic.AddressDURation func9 sYmbol.EXIT (func9) /Number 6.

The parameter <timemin> allows to specify the time for the first result class, the parameter <increment>
allows to specify the increment for the next result class.

Trace.STATistic.AddressDURation func9 sYmbol.EXIT (func9) 15.us 1.us

Trace filter allow a more effective usage of the trace memory:

Trace.Mode Leash

Break.Set func9 /Program /TraceEnable

Break.Set sYmbol.EXIT(func9) /Program /TraceEnable
Go

WAIT !STATE.RUN()

Trace.STATistic.AddressDURation func9 sYmbol.EXIT (func9)

See also
B <trace>.STATistic

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 390

<trace>.STATistic.AddressGROUP

Address group run-time analysis

Format:

<format>:

<list_item>:

<option>:

<trace>.STATistic.AddressGROUP [%<format>] [<list_item> ...] [/<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL

NAME | GROUP | CORE

Total | TotalMIN | TotalMAX

Ratio | RatioMIN | RatioMAX

BARI.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK

BEFORE | AFTER

CountChange | CountFirst | CountAll

InterVal <time>

Filter <filter>

Address <address | range>

ACCUMULATE
INCremental | FULL
CLOCKS

Sort <item>

Track

The time for accessed address groups and the number of accesses is calculated (flat statistic). The results
include groups for both program and data addresses.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

| BiTrace STATistic. AddressGROUP = =R
2 ... || §if Goups... | 38 Gonfig... || Goto...|| =|Detaikd | = Tree || il Chart || B Profie
items: 3. total: 721.982ms samples: 1718597,
address [total min count {all) ratio® [1% 2% 5% 10% 20%

(other)
"DATAL"
"DATAZ"

669.193ms
13.390ms
39.399ms

<

r
0.434us
0.232us
0.3259us

max
53.600us
0.900us
1.500us

0.100us
0.100us
0. 200us

1541099,
57B20.
119678.

©1989-2024 Lauterbach

General Commands Reference Guide T | 391

Example:

GROUP.Create "DATAl" 0x6800--0x68FF /RED
GROUP.Create "DATA2" 0x6700--0x67FF /GREEN

Trace.STATistic.AddressGROUP

See also
B <trace>.STATistic B <trace>.STATistic. GROUP

A ’'Release Information’ in ’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 392

<trace>.STATistic.ChildTREE Show callee context of a function

Format:

<format>:

<list_item>:

<option>:

<trace>.STATistic.ChildTREE <address> [Y%<format>] [<list_item> ...]
[/<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL

TREE | LEVEL | GROUP | TASK

Total | TotalRatio | TotalBAR

Count | MIN | MAX | AVeRage

Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK

Filter <filter>

Address <address | range>
ACCUMULATE

INCremental | FULL

CLOCKS

NoMerge

Sort <item>

Track

Show call tree and run-time of all functions called by the specified function. The function is specified by

its start <address>.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach

General Commands Reference Guide T | 393

Example:

Trace.STATistic.ChildTREE master_selection

= | B:Trace STATistic.ChildTREE master_selection =n o<
(& setup.... || iiiGroups... || 82 Config...| I} Goto... || =|Detailed || fEiNesting || =chart |
funcs: 47. total: 95.510ms

range tree count avr |

master_selection [E master_selection 22. 4.34Ims | .

start_input_pass tart_input_pass 22. 2.675ms |

start_pass_huff_decoder = start_pass_huff_decoder 22. 2.574ms || |
jpeg_make_d_derived_th] = jpeg_make_d_derived_th] 132. 423.287us
alloc_small alloc_small 88. 5.841us
latch_guant_tables = latch_quant_tables 22. 53.82%us
alloc_small L— alloc_small 66. 5.428us
per_scan_setup =l per_scan_setup 22. 33.975us
jdiv_round_up — jdiv_round_up 44, 2.405us

start_input_pass E start_input_pass 22. 7.356us || |

start_iMCU_row L— start_iMCU_row 22. 4.397us |
jinit_color_deconverter |[—= jinit_color_deconverter 22. 773.546us
build_ycc_rgh_table E build_ycc_rgh_table 22. 754.837us
alloc_small — a'I'Ioc_sma?'I 88. 4.680us
alloc_small alloc_small 22. 6.045us
repare_range_limit_table |—= prepare_range_limit_table 22. 336.1%7us
alloc_small L— a 'Ioc_sma?'l 22. 4. 608us
jinit_d_main_controller |[—= jinit_d_main_controller 22. 193.081us
alloc_sarray = alloc_sarray 66. 42.941us
alloc_large = alloc_large 66. 22.475us
jpeg_get_large — jpeg_get_large 66. 18. 985us

alloc_sma 'IJ a'IJloc_sma'I'I 66. 6.579%us | ~
4 | L F

See also

W <trace>.STATistic

B BMC.STATistic.ChildTREE

A ’Release Information’ in’Legacy Release History’

<trace>.STATistic. COLOR

]

B <trace>.STATistic.ParentTREE

Assign colors to function for colored graphics

Format: <trace>.STATistic.COLOR FixedColors | AlternatingColors
FixedColors Colors are assigned fixed to functions.
(default)

AlternatingColors

measurement.

Colors are assigned by the recording order of the functions for each

See also

B <trace>.STATistic

A ’PowerView - Screen Display’ in ’PowerView User’'s Guide’

©1989-2024 Lauterbach

General Commands Reference Guide T | 394

<trace>.STATistic.CYcle

Analyze cycle types

<option>: FILE

INCremental | FULL
IdleThreshold <clocks>
TASK <task>
ACCUMULATE

Format: <trace>.STATistic.CYcle [<time_range>] [/<option>]

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)

Performs a statistical analysis of the cycle types.

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic

options.

Example based on CoreSight ETMv3 for a Cortex-R4:

ETM.DataTrace ON
ETM.CycleAccurate ON
Trace.CLOCK 450.MHz

; full data trace

; cycle accurate tracing

; inform TRACE32 about the core
; clock

T BuTrace STATistic.Cicle EI@
&Setup... B MIPS | ER RWINST B ALL
records: 131072. instr: 108136.
time: 13.107ms instr/second: 8.250247MHz
clocks: 5898150, cpi: 54.54
cycles bytes cycles/second bytes/second
TTow Tetch 108136. 216692, 8.250247MHz 16.532539MB
flow read 15354, 49440, 1.171435MHz 3.77203MB
Flow write 7370, 9260. 562.294KHz 706.492KB
cycles bytes cycles/second bytes/second
bus Tetch 108346. 216692, 8.266269MHz 16.532539MB
bus read 15354, 49440, 1.171435MHz 3.77203MB
bus write 7371. 9261. 562.371KHz 706.569KE
instructions ratio frequency
instr 108136. 100. 000% 8.250247MHz
cond instr pass 0. 0. 000% 0.Hz
cond instr fail 0. 0.000% 0.Hz
load instr 14934, 13.5810% 1.139391MH=z
store instr 6950. 6.427% 530.251KHz
load/store instr 0. 0. 000% 0.Hz
uncond branch 19776. 18.288% 1.508812MHz
cond branch 17457. 16.143% 1.331883MHz
branches ratio frequency
uncond dir 19566. 18.093% 1.492739MHz
uncond indir 210. 0.194% 16.021KHz
cond not taken 5472. 5.060% 417.486KHz
cond dir taken 11985. 11.083% 914. 396KHz
cond indir taken 0. 0.000% 0.Hz
calls 210. 0.194% 16.021KHz
returns 210. 0.194% 16.021KHz
traps 0. 0. 000% 0.Hz
interrupts 0. 0. 000% 0.Hz
number ratio frequency clocks
idles 0. 0.000%
fifofulls 0. 0.000%
trace gaps 0. 0. 000%
stopped 0. 0. 000%
©1989-2024 Lauterbach General Commands Reference Guide T | 395

survey
records Number of records in the trace
time Time period recorded by the trace
clocks Number of clock cycles recorded by the trace
instr Number of instructions
instr/second Instructions executed per second
cpi Average clocks per instruction
(clocks/instr)
details
flow fetch Number of cycles for instruction fetching
flow read Number of cycles that performed a read access
flow write Number of cycles the performed a write access
bus fetch Number of fetch cycles
bus read Number of data read cycles
bus write Number of data write cycles
instr Number of executed/not executed instruction
slot instr Number of instructions executed in a branch delay slot

cond instr pass

Number of conditional instructions that passed (taken branch instructions
not included)

cond instr fail

Number of conditional instructions that failed (failed branch instructions
not included)

load instr

Number of load instructions

store instr

Number of store instructions

load/store instr

Number of instructions that do a load and a store

uncond branch

Unconditional branch instructions

©1989-2024 Lauterbach

General Commands Reference Guide T | 396

details

cond branch

Conditional branch instructions

uncond dir

Number of unconditional direct branches taken

uncond indir

Number of unconditional indirect branches taken

cond not taken

Number of failed conditional branch instructions

cond dir taken

Number of taken direct conditional branches

cond indir taken

Number of taken indirect conditional branches

traps Number of traps

interrupts Number of interrupts

idles Number of “wait for interrupt” (coprocessor instruction or WFI instruction)
or number of times that 1000. clock cycles passed without a broadcast of
trace information.
The option IdleThreshold allows to modify the number of clock cycles
that need to pass for a idle detection.

fifofulls Number of trace FIFO overflows (FIFOFULL)

trace gaps Number of trace gaps (filtered trace information)

stopped Number of debug stops

event ... Number of trace events (architecture specific)

See also

B <trace>.STATistic

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T | 397

<trace>.STATistic.DatasYmbol

Analyze pointer contents numerically

Format:

<format>:

<list_item>:

<option>:

<trace>.STATistic.DatasYmbol [%<format>] [<list_item> ...] [[<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL

NAME | GROUP | CORE

Total | TotalMIN | TotalMAX

Ratio | RatioMIN | RatioMAX

BARI.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK

LABEL | NoLABEL | INLINE | NoINLINE

BEFORE | AFTER

CountChange | CountFirst | CountAll

InterVal <time>

Filter <filter>

ACCUMULATE
INCremental | FULL
CLOCKS

Sort <item>

Track

The command Trace.STATistic.DatasYmbol analyzes the contents of a pointer numerically.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

& B::Trace.STATistic.DatasYmbol

WSetup... == Config..|| [} Gota...
sanples: 26214. total: 16.253ms
address total min max avr count ratiod 14 24
.00a .00a .00a .00a a. a.aea

ast 5.243ns 1.008us 1.008us 1.008us 5243. 32,259/ ——
cstrl 5. 767ns 1.108us 1.108us 1.108us 5243. 35,4857 ——
sinewave 2.621ns B.500us B.500us B.500us 5243.(-1) 16. 1267 \n—
flags 2.621ns B.500us B.500us B.500us 5242 16. 1267, \n—
< ¥

©1989-2024 Lauterbach

General Commands Reference Guide T |

398

If a full program and data trace is analyzed, the following command is recommended:

; analyze the contents of the pointer vpchar numerically
Trace.STATistic.DatasYmbol /Filter Address vpchar

A more effective usage of the trace memory is possible, if only write accesses to the pointer are recorded in
the trace.

set a filter to record only write cycles to the pointer vpchar to the

; trace
Var.Break.Set vpchar /Write /TraceEnable

; analyze the contents of the pointer
Trace.STATistic.DatasYmbol

; analyze the contents of the pointer, sort the result by symbol names
Trace.STATistic.DatasYmbol /Sort sYmbol

See also
B <trace>.STATistic
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 399

<trace>.STATistic.DIStance Time interval for a single event

Format: <trace>.STATistic.DIStance [<timemin>] [<increment>] [[<option>)

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
Filter <filter>
ACCUMULATE | INCremental | FULL | LOG | LINear

Displays the time interval for a single event. Without parameter the assignment of classes (16) is done
automatically. With arguments the classes can be set up manually.

<timemin> Allows to specify the time for the first result class.
<increment> Allows to specify the increment for the next result class.
<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.
= BuTrace.STATistic.DIStance EI@
B setup...| Iyl Chart | © Zoom 1 Zoom Bl Full
samples: 1116530. avr: 0.525us min: 0.000us max: 1.699us
total: 586.679ms 1in: 586.461lms out: 218.420us ratio: 99.962%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us 0. | 0.000%
0.200us 527977. | 47.287%
0.400us 16828. | 1.507%
0.600us 69632. | 6.236%
0.800us 23743. 2.126% |————
1.000us 24199. | 2.167%
1.200us 453226. | 40.592%
1.400us 921. | 0.082% |«
1.600us 2. | <0.001% [«
1.800us 2. | <0.001% [«
> 0. | 0.000%

Trace.SAVE measurel
Trace.FILE measurel
Trace.STATistic.DIStance /FILE

; add the current trace contents to already displayed results
Trace.STATistic.DIStance /ACCUMULATE

; Define 10 classes
Trace.STATistic.DIStance /Number 10.

See also
B <trace>.STATistic B <trace>.STATistic.AddressDIStance

A 'Jitter Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 400

<trace>.STATistic.DistriB Distribution analysis

Format:

<format>:

<list_item>:

<options>:

<trace>.STATistic.DistriB [Y%<format>] [<items> ...] [I<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL | <cpu> | <signals> | Port[.<subitem>] | MARK][.<marker>] |
ENERGY.Abs | POWER[.OFF] | SAMPLE[.OFF] | SPARE[.OFF] |
LOW | HIGH | FINDINDEX

FILE

FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
LABEL | NoLABEL | INLINE | NoINLINE
BEFORE | AFTER

CountChange | CountFirst | CountAll
List [<list_item> ...]

InterVal <time>

Filter <filter>

Address <address | range>

ACCUMULATE
INCremental | FULL
CLOCKS

Sort <item>

Track

The statistic distribution of any data is displayed if <item> is specified. Displayed are the number of
occurrences and the time after the events, i.e. the time an event is assumed to be valid. Without <item> the

statistic is based on symbolic addresses.

<format>

<option>

See also

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

W <trace>.STATistic

B BMC.STATistic.DistriB

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T | 401

<trace>.STATistic.DURation Time between two events

Format: <trace>.STATistic.DURation [<timemin>] [<increment>] [[<option>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
ATOA | ATOB | ATOC | ATOD
BTOA | BTOB | BTOC | BTOD
CTOA | CTOB | CTOC | CTOD
DTOA | DTOB | DTOC | DTOD
FilterA <filter> | FilterB <filter>
ACCUMULATE
INCremental | FULL
Number | LOG | LINear

Analyzes the statistic distribution between two events. To determine the time interval between two
instructions (addresses) Trace.STATistic.AddressDURation is more suitable.

<timemin> Allows to specify the time for the first result class.

<increment> Allows to specify the increment for the next result class.

ATOA Display the time interval from A to A.

BTOA Display the time interval from B to A.

BTOB Display the time interval from B to B.

FilterA <item> Specify the first event.

FilterB <item> Specify the second event.

Other options Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

Example: This example analyzes how long it takes when the contents of a variable changes from 0x0 to
0x1.

Var.Break.Set flags /Write /TraceEnable

Trace.STATistic.DURation /FilterA Data O0x0 /FilterB Data 0x1

©1989-2024 Lauterbach General Commands Reference Guide T | 402

£ B:Trace.STATistic.DURation /FilterA DATA 0x0 /Filter8 DATA 0:d ==
(& setup...|[ul chart || Zoom || X Zoom || 4 Move || T Move
samples: 25642, avr: 136.430us min: 35.800us max: 1.054ms
total: 4.9555 din: 3.498s out: 1.457s ratio: 70.598%

up to |count ratio 1% 2% 5% 10% 20% 50% 100

< 0.000us 0. 0.000% i
81.920us 23077. | 89.996%
163. 840us 0. 0.000%
245.760us 0. 0.000%
327.680us 0. 0.000%
409.600us 0. 0.000%
491.520us 0. 0.000%
573.440us 0. 0.000%
655. 360us 0. 0.000%
737.280us 0. 0.000%
819. 200us 0. 0.000%
901.120us 0. 0.000%
983.040us 0. 0.000%
1.065ms 2565. | 10.003%
1.147ms 0. 0.000%
1.229ms 0. 0.000%
1.311ms 0. 0.000%

> 0. 0.000% hi

J 4 | I F

In order to use the command Trace.STATistic.DURation:

J Check if both events are exported by a trace packet. Information reconstructed by TRACE32 is

not analyzed.

. Alternatively use a TraceEnable breakpoint export the event as a trace packet.

The options FilterA and FilterB provide you with the means to describe your event.

See also

B <trace>.STATistic

©1989-2024 Lauterbach

General Commands Reference Guide T

403

<trace>.STATistic.FIRST

Start point for statistic analysis

Format:

<trace>.STATistic.FIRST <value> | <time> | <string>

The Trace.STATistic commands analyze the complete trace contents by default. The command
Trace.STATistic.FIRST allows to freely select a start point for the statistic analysis.

Bu:Trace.List EI@
2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less
record run |address cycle |data symbaol ti.back
mov r3,r0
strb 3, [r7,#0x0B]

r3,Lr
L r3,r
t r3“.[r. , #0x z+ Set Zero
i b EIX‘COUOJ‘J‘E‘ [] Toggle Bookmark
664 . étr[']i] = {6 SetCTS
r r3, [r7,#0x0C t,
al ra,ra,r -
1drb r2,[r7,#0x0B] Q| View
strb r2,
in A Chart
655 Tdr fg': 1 .zflgéli?tr Ll Igno.rein S.tai.:istic
adds r3, Use in Statistic
?5'- r3, '~% = First in Statistic
r rs, i . .
-0000000036 T:200 -ace + Lastin Statistic m\sieve\encode+0x5C 1.21%us
lgrd :;:; : 4 4 Full Statistic
ldrb r3, here v
Example for <value>:
Trace.List display trace listing
Trace.STATistic.FIRST -123366. select trace record -123366.
as start point for the trace
analysis
Trace.STATistic.LAST -36675. select trace record -36675.

Trace.STATistic.Func

as end point for the trace
analysis

perform a function run-time
analysis

©1989-2024 Lauterbach

General Commands Reference Guide T | 404

Example for <time>:

Trace.List TIme.ZERO DEFault

Trace.STATistic.FIRST 0.3us

Trace.STATistic.Func

See also

display trace listing

select trace record with time
stamp 0.3 us (zero time)

as start point for the trace
analysis

perform a function run-time
analysis between the specified
start point and the end of the
trace buffer

B <trace>.STATistic

A ’'Release Information’ in’Legacy Release History’

B <trace>.STATistic.LAST

©1989-2024 Lauterbach

General Commands Reference Guide T |

405

<trace>.STATistic.Func Nesting function runtime analysis

Format:

<format>:

<list_item>:

<option>:

<trace>.STATistic.Func [%<format>] [<list_items> ...] [I<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL

NAME | GROUP | TASK

Total | TotalRatio | TotalBAR

Count | MIN | MAX | AVeRage

Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK

Filter <filter>

Address <address | range>
ACCUMULATE

INCremental | FULL

CLOCKS

NoMerge

Sort <item>

Track

Analyzes the function nesting and calculates the time spent in functions and the number of function calls.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach

General Commands Reference Guide T | 406

Considerations

Please be aware that any gap in the trace recording (FIFOFULL) might result in
a incorrect analysis results.

The trace can be tested for FIFOFULLSs as follows:

; Process the complete trace contents
Trace.FLOWPROCESS

IF Analyzer .FLOW.FIFOFULL() !=0
PRINT "Trace.STATistic.Func not possible due to FIFOFULL errors."

If it is not possible to eliminate the FIFOFULLSs, it is recommended to use the command
Trace.STATistic.sYmbol.

Analysis of the Function Nesting

In order to prepare the results for the command Trace.STATistic.Func, TRACE32 post-processes the
program flow recorded by the PowerTrace to find:

. Function entries
The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications for function entries are implemented depending on the processor
architecture and the used compiler.

. Function exits
A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications for function exits are implemented depending on the processor
architecture and the used compiler.

. Entries to interrupt service routines (asynchronous)

If an interrupt was identified, the following entry to an HLL function is regarded as entry to the
interrupt service routine.

Interrupts are identified as follows:
- The trace port broadcasts the occurance of an interrupt (e.g. PPC4xx).

- An entry to the vector table is detected and the vector address indicates an
asynchronous/hardware interrupt (e.g. ARM9).

- If the vector table base address is configurable the usage of the command
SYStem.Option.VECTORS might be necessary (e.g. MPC5xxx).

If an interrupt is detected in the trace, it is marked as in the screenshot below.

©1989-2024 Lauterbach General Commands Reference Guide T | 407

B::Trace.List

(o8)

-0001627178

|
—+ interrupt
| T:1FFE30D4 ptrace

* SysTick Exception Handler.

2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less
record run |address cycle |data symbaol i
cmp r3,#0x0
bne 0x1FFEQ77C
-0001627182 T:1FFEQ77C cancel “Werika3app'code\FuncTaskl+0x44

.ortex_m_system'SysTick_Handler

> Lm >

. Exits of interrupt service routines

A RETURN/RETURN FROM INTERRUPT within the HLL interrupt service routine is regarded

as exit of the interrupt service routine.

. Entries to TRAP handlers (synchronous)

If an entry to the vector table was identified and if the vector address indicates a synchronous

interrupt/trap the following entry to an HLL function is regarded as entry to the trap handler.

If a TRAP is detected in the trace, it is marked as in the screenshot below.

i BuTrace.List EI@
2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less
record run |address cycle |data symbaol i

ra

262 SVC
SVC 0x0
— trap (5vC)
-0001624417 | T:1FFED568 ptrace

["% FUNC(void, 0S_CODE) SVC_Handler (void)
®/
<

/% svCall exception to remove Original PendSV stack-frame
#0

‘Werika3app'GlobalisvC_Handler

> Lm >

. Exits of TRAP handlers

A RETURN/RETURN FROM INTERRUPT within the HLL trap handler is regarded as exit of the

trap handler.

©1989-2024 Lauterbach

General Commands Reference Guide T

408

Interpretation of the Result

funcs: 1398. total: 28 .5865 intr: 59.7/1ins

Number of analyzed Total measurement Total time in interrupt
functions time service routines over
the total measurement
time
= | B::Trace.STATistic.Func EI@
& setup... || ii Goups... | 22 Qonfig... || Goto...|| =|Detailed || fE Nesting|| % Chart
funcs: 106. total: 731.487ms intr: 3.236ms
range [total min max avr count intern¥® [1%
(root) 11.318ms - 11.318ms - - 0.534% [+ ~
| scheduler_task_wrapper_restore 455.523us 0.2%us 1.073us 0.628us 725. 0.062% |+
E_cortex_m_system_timer_handler 6.953ms 5.55%us | 19.954us 9. 590us 725. 0.016% |+
osEE_counter_increment 6.836ms 5.473us 19.703us 9.42%us 725. 0.205% |+
osEE_counter_handle_alarm 5.331ms 3.106us 6. 504us 3.871us 1377. 0.095% |+
osEE_handle_action 1.726ms 0. 846us 4.040us 1.254us 1377. 0.187% |+
osEE_task_activated 342.039us 0.093us 0.419us 0.248us 1377. 0. 046% |+
osEE_scheduler_task_insert 11.882us 1.957us 2.702us 2.376us 5. | <0.001% |+
osEE_scheduler_task_insert_rq 10.977us 1.710us 2.431us 2.195us 5. | <0.001% |+
osEE_scheduler_rg_insert 8.209us 1.425us 2.125us 1.642us 5. | <0.001% |+
osEE_sn_priority_insert 6. 560us 1.034us 1.766us 1.312us 5. | <0.001% |+
osEE_counter_insert_rel_trigger 2.907ms 1.361lus 2.820us 2.111us 1377. 0.079% |+
osEE_counter_insert_abs_trigger 2.323ms 0.847us 2.358us 1.687us 1377. 0.317% |+
osEE_task_end 128.841us 0.052us 0.586us 0.178us 724. 0.017% |+
(root) - - - - - | 0.000%
FTMO_Ovf_Reload_IRQHandler 3.235ms 3.928us 4.861lus 4.475us 723. 0.351% |+ v
< >

Some additional explanations with regards to the function name (column range):
. (root): is the root of the analyzed function nesting.

J HLL interrupt service routines: HLL interrupt service routines are indicated in the analysis as
shown below:

+umts_bute_buildyintr_os_wrappers_intr_os_prologuebd

. HLL trap handler: HLL trap handler are indicated in the analysis as shown below:

—*__fArmVYectorSui

If Trace.STATistic. TASKFunc was performed instead of Trace.STATistic.Func, because TRACES32
detected an RTOS, the following function names will appear:

J <function>@<task_name>: The name of the task in which the function is called is appended to
the function name.

wreomih D ived s _UDivedlT iner_Task

. (root)@<task_name>: is the root of the analyzed function nesting for the task <task_name>.

. (root)@(root): program section where no task-assignment is possible (e.g. measurement started
within a task) are summarized here.

©1989-2024 Lauterbach General Commands Reference Guide T | 409

The following description of the <list_item> that provide the analysis results is kept quite general. An
accurate description is given together with the Analysis Options.

<list_item> Default Display

Total The total time within the function.

MIN The shortest measured time it took to execute the function. The time
includes the execution times of all sub-function calls. The time used for
interrupt requests is not included, unless the window is opened with option
IncludeINTR.

If the function was never executed completely, the MIN time is not
displayed.

MAX The longest measured time it took to execute the function. The time
includes the execution times of all subfunction calls. The time used for
interrupt requests is not included, unless the window is opened with option
IncludeINTR.

AVeRage The average time it took to execute the function. The time includes the
execution times of all subfunction calls.

The time used for interrupt requests is not included, unless the window is
opened with option IncludeINTR

Count Number of calls of the function.

If a function is never completely executed, no number of calls is displayed.

If function entries or exits are missing, this is display in the following format:

<times within the function>. (<number of missing function entries><number of missing function exits>).

count

2. (2/0)

Interpretation examples:

1. 950. (0/1): 950. times within the function, 1 function exit is missing.

9. (1/0): 9. times within the function, 1 function entry is missing.

2
3. 11. (1/1): 11. times within the function, 1 function entry and 1 function exit is missing.
4

9. (0/3): 9. times within the function, 3 function exits missing.

If the number of missing function entries or exits is higher the 1. the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

In some cases a further treatment of the trace contents might help. For more
information refer to Adjusting the Measurement.

©1989-2024 Lauterbach

General Commands Reference Guide T | 410

<list_item> Time only in Function

Internal Total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines, other tasks ...

IAVeRage Average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines, other tasks ...

IMIN Shortest between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines, other tasks ...

IMAX Longest time spent in the function between function entry and exit

without called sub-functions, TRAP handlers, interrupt service routines,
other tasks ...

InternalRatio

<internal_time_of_function>/<total_measurement_time> as a numeric
value.

InternalBAR <internal_time_of_function>/<total_measurement_time> graphically.

<list_item> Time in Sub-Functions

External Total time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks ...

EAVeRage Average time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks ...

EMIN Shortest time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks ...

EMAX Longest time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks ...

<list_item> Interrupt Times

INTR Total time the function was interrupted.

INTRMAX Max. time 1 function pass was interrupted.

INTRCount Number of interrupts that occurred during the function run-time.

©1989-2024 Lauterbach

General Commands Reference Guide T | 411

<list_item> Time in Other Tasks (Trace.STATistic. TASKFunc only)

ExternalTASK Total time in other tasks.

ExternalTASKMAX Max. time 1 function pass was interrupted by other tasks.

TASKCount Number of other tasks that interrupted the function.

<list_item> Total Time Ratio

TOTALRatio <total_time_of_function>/<total_measurement_time> as a numeric
value.

InternalBar <total_time_of_function>/<total_measurement_time> graphically.

©1989-2024 Lauterbach

General Commands Reference Guide T

412

Analysis Options

<option> Configuration of the Analysis

(default) Function run-times are calculated without interrupts.

—— Start of measurement

_ — Entry to funci

|1

- — Exit of func1

-T- Entry to funci

func2

TRAP1

INTR of func1i
External of func1i
Total of funci
Total of (root)

e N i A

func3

interrupt 1

—_ —— Exit of funci

— Entry to funci

- g — Exit of funci

—_ End of measurement

©1989-2024 Lauterbach General Commands Reference Guide T | 413

<option> Configuration of the Analysis

IncludeINTR Function run-times include times in interrupts. In other words, interrupts
are treated as sub-functions.

—— Start of measurement

— : — Entry to funci
— ; — Exit of funci

T- Entry to func1

func2

TRAP1

Total of (root)

INTR of func1i
External of func1
Total of funci

func3

interrupt 1

— Exit of func1

— — Entry to funci
- : —_ Exit of funci

—_ End of measurement

©1989-2024 Lauterbach General Commands Reference Guide T | 414

<option> Configuration of the Analysis (RTOS)

IncludeOWN + Function run-times without interrupts and without times in other tasks
(default).
INTRROOT Interrupts are assigned to (root) @ (root)

:I: Start of measurement

First task switch recorded to trace
First entry to TASK1 —

—_ ' ~|: Entry to func1 in TASK1

func2 in TASK1

TASK2

T func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

Total of (root)@root

Total of func1 @ TASK1
Total of (root) @ TASK1

func4 in TASK1

INTR of func1 @ TASK1
External of func1 @ TASK1

TASK3

func4 in TASK1

:I: :|: interrupt1 in TASK1

1 —— Exit of func1 in TASK1

— — Entry to func1 in TASK1
I —— Exit of func1 in TASK1

Last exit of TASK1 ___

©1989-2024 Lauterbach General Commands Reference Guide T | 415

<option> Configuration of the Analysis (RTOS)

IncludeTASK + Function run-times without interrupts but with times in other tasks.

INTRROOT Interrupts are assigned to (root) @ (root)

:I: Start of measurement

First task switch recorded to trace
First entry to TASK1 —

' ~|: Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

Total of (root)@root

Total of func1 @ TASK1
Total of (root)@ TASK1

func4 in TASK1

INTR of func1 @ TASK1
External of func1 @ TASK1

TASK3

func4 in TASK1

:I: :I: interrupt1 in TASK1

4 —— Exit to func1 in TASK1

- — Entry to func1 in TASK1
— : —— Exit of func1 in TASK1

Last exit of TASK1 __

©1989-2024 Lauterbach General Commands Reference Guide T | 416

<option> Configuration of the Analysis (RTOS)

IncludeOWN + Function run-times without interrupts and without times in other tasks
(default).
INTRTASK Interrupts are assigned to (root) @ <task_name>

:I: Start of measurement

First task switch recorded to trace
First entry to TASK1 —

- ' ~|: Entry to func1 in TASK1
func2 in TASK1
TASK2
T func2 in TASK1
T 5 z | g
gt) s 2 ?I‘: 3 func3 in TASK1
P @ L = = ®
2 % ° 1 g g
e 5 2 g o
2 5 2 = g TRAP1 in TASK1
‘.6) - “5 B —_
£ 5 s | | 3
£ % __ 2 2 .
w func4 in TASK1
TASK3
T func4 in TASK1
:I: interrupt1 in TASK1
. Exit to func1 in TASK1

_ — Entry to func1 in TASK1

N

- : —__ Exit of func1 in TASK1

Last exit of TASK1 __

©1989-2024 Lauterbach General Commands Reference Guide T | 417

Adjusting the Measurement

. Trace.STATistic.FIRST/ Trace.STATistic.LAST

The Trace.STATistic commands analyze the complete trace contents by default. The command
Trace.STATistic.FIRST allows to freely select the start point for the statistic analysis; the
command Trace.STATistic.LAST allows to freely select the end point for the statistic analysis.

. sYmbol.MARKER.Create FENTRY / FEXIT

If the function nesting analysis can’t identify code sections as HLL functions (e.g. assembler
function, unusual function exits) these code sections can be marked manually as functions by
using the marker FENTRY and FEXIT.

Example 1:

Internal of func2

INTR

Entry to func1

func2

ass_int as assembler routine

func3

—

Since func3 is the HLL function executed after an interrupt occurred, it is regarded as interrupt
service routine.

Internal of func2

INTR

Entry to func1

func2

ass_int as assembler routine

func3

—

Since ass_int is now marked as a function, it is correctly identified as interrupt service routine.

; mark
sYmbol

; mark

sYmbol .

; list

sYmbol .

the entry of the assembler function ass_int as function entry

.MARKER.Create FENTRY ass_int

the exit of the assembler function ass_int as function exit
MARKER.Create FEXIT ass_int+0x15F

the marker
MARKER.list

©1989-2024 Lauterbach

General Commands Reference Guide T | 418

Example 2:

Entry to func1
N
o ——
c
=] func2
©
©
g ass_int (assembler part of the interrupt service routine)
E
e interruptt
e | interrup
ass_int (assembler part of the interrupt service routine)

b

Since interrupt1 is the HLL function executed after an interrupt occurred, it is regarded as
interrupt service routine. The assembler code from ass_int is added to the time in func2.

N
(%)
E Entry to funci
©
®
: ——
g func2
£ _
ass_int (Assembler part of the interrupt service routine)
= interrupti
c interrupt
ass_int (Assembler part of the interrupt service routine)

Since ass_int is now marked as function, it is correctly identified as interrupt service routine. interrupti
is a sub-function called by ass_int now.

©1989-2024 Lauterbach General Commands Reference Guide T | 419

i sYmbol.MARKER.Create KENTRY / KEXIT

If the KERNEL is using special methods to call/lend KERNEL functions, this might annoy the
function nesting analysis. In such a case it is recommended to exclude the KERNEL from the
function nesting by using the markers KENTRY/KEXIT.

Example:

~|: Entry to func1 in TASK1

func2 in TASK1

KERNEL prologue

kfunca in KERNEL

kfuncb in KERNEL

KERNEL epilogue

| func2 in TASK1

The KERNEL is manipulating the return address on the stack in order to return quickly into
TASK1. This behavior will annoy the function nesting analysis.

Entry to func1 in TASK1

func2 in TASK1

. KERNEL is excluded from the function nesting

func2 in TASK1

The usage of the markers KENTRY/KEXIT excluded the KERNEL from the function nesting in
order to get a correct function nesting.

©1989-2024 Lauterbach General Commands Reference Guide T | 420

Advanced example for RTOS RTXC on a StarCore CPU:

; mark all interrupt service routines as kernel entries
sYmbol .ForEach "sYmbol.NEW.MARKER KENTRY *" " isr *"

; mark all RTE instructions in the specified program range as kernel exit
Data.Find P:RTXCProlog--P:RTXCProlog_end %$Word 0x9£f73
WHILE FOUND ()

(

sYmbol .MARKER.Create KEXIT P:TRACK.ADDRESS ()
Data.Find

)

sYmbol .MARKER.list

See also

B <trace>.STATistic B BMC.STATistic.Func B CTS.STATistic.Func

A ’Release Information’ in’Legacy Release History’
A ’Function Run-Times Analysis’ in "Training Arm CoreSight ETM Tracing’
A ’Function Run-Times Analysis - SMP Instance’ in "Training Nexus Tracing’

©1989-2024 Lauterbach General Commands Reference Guide T | 421

<trace>.STATistic.FuncDURation Statistic analysis of single function

Format: <trace>.STATistic.FuncDURation <function_name | address> [[<option>]

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
MACHINE <machine_magic> | <machine_id>| <machine_name>
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Number <record>
Filter <filter>
Address <address | range>
ACCUMULATE | INCremental | FULL | CLOCKS | NoMerge
LOG | LINear

Analyzes the function runtime between function entry and exit.

. The time spent in called subroutines is included.

J The time spent in called interrupt service routine and other tasks is excluded.
= | B::Trace STAT.FuncDURation consume_markers EI@
|&Setup...]m Chart]| 21 Zoom]| =1 Zoom] &l Full]

samples: 1323. avr: 804.64%s min: 22.19%5us max: 1.721ms
total: 199.335s in: 1.065s out: 198.271s ratio: 0.534%
up to |count ratio 1% 2% 5% 10% 20% 50% 100
< 0.000us 0. 0.000% o
200.000us 661. | 49.962%
400.000us 0. 0.000%
600. 000us 0. 0.000%
800.000us 0. 0.000%
1.000ms 0. 0.000%
1.200ms 0. 0.000%
1.400ms 0. 0.000%
1.600ms 328. | 24.792%
1.800ms 334, | 25.245%
2.000ms 0. 0.000%
2.200ms 0. 0.000%
2.400ms 0. 0.000%
2.600ms 0. 0.000%
2.800ms 0. 0.000%
3.000ms 0. 0.000%
3.200ms 0. 0.000%
= 0. 0.000% -
4 }
See also
B <trace>.STATistic.FuncDURationInternal B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’
A ’Function Run-Times Analysis - SMP Instance’ in "Training Nexus Tracing’

©1989-2024 Lauterbach General Commands Reference Guide T | 422

<trace>.STATistic.FuncDURationinternal

Statistic analysis of single func.

Format: <trace>.STATistic.FuncDURationinternal <function_name | address>

Analyzes the function runtime between function entry and exit. The time spent in called subroutines, traps,
interrupt service routine and other tasks is excluded.

= | B::Trace. STAT.FuncDURationInternal consume_markers o || = || 23
(& setup... || iwichart |[Szoom || Szoom || Elrul |
samples: 1323. awvr: 7.643us min: 7.270us max: 8.024us
total: 199.335s in: 10.112ms out: 199.325s ratio: 0.005%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 7.250us 0. 0.000% i
7.300us 661. | 49.962%
7.350us 0. 0.000%
7.400us 0. 0.000%
7.450us 0. 0.000%
7.500us 0. 0.000%
7.550us 0. 0.000%
7.600us 0. 0.000%
7.650us 0. 0.000%
7.700us 0. 0.000%
7.750us 0. 0.000%
7.800us 0. 0.000%
7.850us 0. 0.000%
7.900us 0. 0.000%
7.950us 0. 0.000%
8.000us 181. | 13.681%
8.050us 481. | 36.356%
= 0. 0.000% -
4 13
See also

B <trace>.STATistic.FuncDURation

A ’Release Information’ in’Legacy Release History’

B <trace>.STATistic

©1989-2024 Lauterbach

General Commands Reference Guide T

423

<trace>.STATistic. GROUP Group run-time analysis

Format: <trace>.STATistic. GROUP [%<format>] [<list_item> ...] [/<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <filter> | Sort <item> | Address <address | range>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

The time spent in groups and the number of calls is calculated (flat statistic). The results only include groups
within the program range. Groups for data addresses are not included.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>

<option> Refer to Options under <trace>.STATistic.

Example:

GROUP.Create "INPUT" \jquant2 \jguantl \jidctred \jdinput /AQUA
GROUP.Create "JPEG" \jdapimin \jdcolor \jddctmgr \jdcoefct /NAVY
Trace.STATistic.GROUP

= | B:Trace STATistic. GROUP [= | & ==
(& setup... || iiiGroups... || 52 Config...| R Goto... || = |Detailed|| =[Tree || Avchart || EProfile |
items: 3. total: 2.707s samples: 33424699.
address |[total min max avr count ratio¥% [1% i
(other) 1.454s 0.360us [818.380us [102.983us 141158, (0/1) | 53.702% | e .
"IPEG" 1.252s 0.308us | 733.780us 89.515us 13992. 46, 263% |m—
"INPUT" 917.274us 0.405us 28.000us 3.185us 288. 0.033% |« hi
Fl 10 F
See also
W <trace>.STATistic W <trace>.STATistic.AddressGROUP
B BMC.STATistic. GROUP B CTS.STATistic. GROUP

B GROUPCreate

©1989-2024 Lauterbach General Commands Reference Guide T | 424

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 425

<trace>.STATistic.lgnore Ignore false records in statistic

Format: <trace>.STATistic.lgnore [<record> | <range>] [/<options>]

<option>: FILE

The specified record(s) are ignored in the statistic analysis. This command can be used, when single
records (caused by prefetch etc.) confuse the statistic analysis.

FILE Displays trace memory contents loaded with Trace.FILE.

See also
B <trace>.STATistic

©1989-2024 Lauterbach General Commands Reference Guide T | 426

<trace>.STATistic.INTERRUPT Interrupt statistic

Format: <trace>.STATistic.INTERRUPT [%<format>] [<list_item> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL

NAME | GROUP | TASK

Total | TotalRatio | TotalBAR

Count | MIN | MAX | AVeRage

Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

Analyzes the function nesting and calculates the time spent in interrupts and the number of interrupt calls.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.
See also
B <trace>.STATistic MW CTS.STATistic.INTERRUPT

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 427

<trace>.STATistic.InterruptisFunction Statistics interrupt processing

Format: <trace>.STATistic.InterruptisFunction ON | OFF

In order to calculate the results for the nesting function run-time analysis the trace recording is post-
processed. One important issue in this processing is the identification of interrupt entries and exits.

TRACE32 provides two methods to identify interrupt entries and exits:
J Default: Trace.STATistic.InterruptisFunction OFF

. Recommended: Trace.STATistic.InterruptisFunction ON

Trace.STATistic.InterruptisFunction OFF

The screenshot below shows the function nesting for the interrupt.

4 B:Trace.Chart.Func /Track

MPSetup... HﬂiGroups... HII Conﬁg...” I} Goto... ” F#1Find... H 4 In]| 2] Out”KNFuM
-2.535ms -2.530ms -2.525ms
rangeliy| | L 1
0SSetPID0 8 --| |
FuncTASK4
05_ResumeAllInterrupts
—+ 0SInterruptDispatcherl
05Checkstack
055etPIDO
0STrustedISR2
PrelsrHook
0S_isr_ISRL
SCICLEAR!
05_isr_ISR2
PostIsrHook
Indirect branch | | Entry to
to Interrupt interrupt service Return from
Vector Table routine interrupt
instruction
1. The first HLL function called after the indirect branch to the Interrupt Vector Table is regarded as

interrupt service routine (here OSInterruptDispatcher1).

2. The return from interrupt is regarded as the exit of this function (here OSinterruptDispatcher1).

Please be also aware that some trace port protocols require special setups for the Interrupt Vector Table. For
details, please refer to your Processor Architecture Manual.

©1989-2024 Lauterbach General Commands Reference Guide T | 428

Trace.STATistic.InterruptisFunction ON

&= B::Trace.Chart. Func fTrack

WSetup... i1 Groups...|| =m Canfig... Wﬁmmmm
-435.120ms -435.100ms -435.080ms -435.060ms
range ix | 1 1 1 |
s __irq_handTer i T - - - - 11— A
c1kIsr <) | 1— - —A—— 1 .
gti_CounterSw ¥ . LI) . .
DRVBuzzer_Test M L s
gti_ReadOvfTimer 4"))) . e .
DrvTouch_IsrHandler ¥)) . . . ——
DrvTouch_FSMGettingPositionProcess bl
DrvTouch_FSMMainProcess ¥)) . . . o HE
DRWC Tk _GetTicksWalue ¥)) . . . |)
IS_Dispatch 4 L
get_CPSR_disable_interrupt 4"))))) . 1 .
gti_TimerSw M . . | . . i
getFreefctionIndex 4 - - - - — I
_\< > ? A >
Indirect branch Return from
to Interrupt interrupt
Vector Table
1. Interrupt entry is the point in the trace recording at which the indirect branch to the Interrupt
Vector Table occurs.
2. Interrupt exit is the point in the trace recording at which the return from interrupt is executed.

TRACES2 handles the time between interrupt entry and exit as a function. The name given to this function is
the label of the interrupt vector address.

Please be aware that method only works if interrupts are exit by regular return from interrupt.

Please be also aware that some trace port protocols require special setups for the Interrupt Vector Table. For
details, please refer to your Processor Architecture Manual.

See also
B <trace>.STATistic

©1989-2024 Lauterbach General Commands Reference Guide T | 429

<trace>.STATistic.InterruptisKernel Statistics interrupt processing

Format: <trace>.STATistic.InterruptisKernel ON | OFF

Same as <trace>.STATistic.InterruptisFunction, however no function nesting analysis is performed inside
interrupts.

See also
W <trace>.STATistic

<trace>.STATistic.InterruptisKernelFunction Statistics interrupt processing

Format: <trace>.STATistic.InterruptisKernelFunction ON | OFF

Same as <trace>.STATistic.InterruptisFunction. The interrupt address ranges are additionally considered
as KERNEL in TASKKernel analysis, e.g. using <trace>.STATistic. TASKKernel.

See also
B <trace>.STATistic

<trace>.STATistic.InterruptlsTaskswitch Statistics interrupt processing
Format: <trace>.STATistic.InterruptisTaskswitch ON | OFF
Default: OFF.

When set to ON, this command delays a task switch that occurs within an interrupt after the return from
interrupt instruction. The interrupt will be then assigned to the task that has been execution before the task
switch. This can also be achieved using the command sYmbol.MARKER.Create TASKSWITCH.

The command only affects trace windows that analyze the program flow or task switches.

See also
B <trace>.STATistic

©1989-2024 Lauterbach General Commands Reference Guide T | 430

<trace>.STATistic.INTERRUPTTREE Display interrupt nesting

Format:

<format>:

<option>:

<list_item>:

<trace>.STATistic.INTERRUPTTREE [%<format>] [<list_item> ...] [[<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL

NAME | GROUP | TASK

Total | TotalRatio | TotalBAR

Count | MIN | MAX | AVeRage

Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
InterVal <time>

Filter <filter>

Address <address | range>
ACCUMULATE

INCremental | FULL
CLOCKS

NoMerge

Sort <item>

THreshold <float>

Track

The results of this command shows a graphical tree of the interrupt nesting.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach

General Commands Reference Guide T | 431

£/ BrTrace.STATistic.INTERRUPTTREE

2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
funcs: 5. total: 1.783s intr: 61.961lms
range [tree [total min max lavr |count =
(none) [= (none) 1.783s - 1.783s - -
_systen' SysTick_Handler —#SysTick_Handler 38.101ms | 15.836us | 35.752us | 21.514us 1771.
MD v‘F Re'load _IRQHandler —FTMO_0Ovf_Reload_IRQHandl.. 23.38lms | 12.940us | 13.622us| 13.239us 1766.
PendSV_Hand]ler —PendsSV_Handler 478.685us 0.276us 0.778us 0.621us 771.
021 SVC_Handler —#5VC_Handler 114.629%us 0.109us 0.411us 0.149us 771.
<
See also
B <trace>.STATistic B CTS.STATistic.INTERRUPTTREE
©1989-2024 Lauterbach General Commands Reference Guide T | 432

<trace>.STATistic.LAST

End point for statistic analysis

Format:

<trace>.STATistic.LAST <value> | <time> | <string>

The Trace.STATistic commands analyze the complete trace contents by default. The command
Trace.STATistic.LAST allows to freely select an end point for the statistic analysis.

Bu:Trace.List EI@
2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less
record run |address cycle |data symbaol ti.back i
mov r3,r0 ~
strb r3, [r7,#0x0B] p
= .
R+ Set Ref ~
z b Set Zero
- } [] Toggle Bookmark
664 stri]l = ¢ Y Set CTS
1dr r3, [r7,#0x0C] .
Tdr r2,[r7,#0x4] Copy
add r3,r3,r2]
1drb r2,[r7,#0x08B] Q, View
strb r2,[r3] £ List
int 1; il Chart
655 for (i = 0; str[i]; i++){ . L
1dr r3,[r7,#0x0C] v | Ignore in Statistic
adds '-:.5'] Use in Statistic
?BL Lgl-"? :% * First in Statistic
-0000000036 g TR0 strace thumb_ii_v7m\siev SYEETEe T 1 ous
r r2, -
add r'lj'. 4 Full Statistic
ldrb r3, here 4 v

Example for <value>:

Trace.List

Trace.STATistic.FIRST -123366.

-36675.

Trace.STATistic.LAST

Trace.STATistic.Func

; display trace listing

; select trace record -123366.
; as start point for the trace
; analysis

; select trace record -36675.
; as end point for the trace
; analysis

; perform a function run-time
; analysis

©1989-2024 Lauterbach

General Commands Reference Guide T | 433

Example for <time>:

Trace.List TIme.ZERO DEFault ; display trace listing

Trace.STATistic.LAST 468.2us ; select trace record with timestamp
; 468.2 us (zero time) as end point for
; the trace analysis

Trace.STATistic.Func ; perform a function run-time analysis
; from the beginning of the trace buffer
; to the specified end point

See also
B <trace>.STATistic B <trace>.STATistic.FIRST

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 434

<trace>.STATistic.Line

High-level source code line analysis

Format:

<format>:

<options>:

<list_item>:

<trace>.STATistic.Line [Y%<format>] [<list_item> ...] [[<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)

TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll

InterVal <time> | Filter <filter> | Address <address | range>
ACCUMULATE | INCremental | FULL

CLOCKS
Sort <item>

Track

Analyzes the time spent in high-level source code lines.

<format>,

<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

= BuTrace.STATistic.Line EI@
[& setup... | iii Groups... || 22 Gonfig... |[Goto....|[= Detzied || E[Tree || AviChart |[BE Profile |
items: 21. total: 14.589ms samples: 108629.
address |[total min max avr count ratio% 1% 2% 5% 10% 20% |
(other) 0.000us 0.000us - 0.000us 0. 000% L
harm.ch692--692 1.015ms 0. 200us 0. 200us 0. 200us 5075 5.957% ————————————————
“arm.ch697--697 | 232.900us 0.100us 0.100us 0.100us 2329 1.596% —
“arm.ch698--699 | 402.400us 0.100us 0.100us 0.100us 4024 2.758% —
“arm.cY685--686 | 804, 800us 0. 200us 0. 200us 0. 200us 4024 5.516% ——————————— A
“arm.c\685--686 | 868.400us 0. 200us 0. 300us 0.205us 4236 5.952% ——————————— =
“arm. c\687--688 3.219ms 0. 800us 0. 800us 0. 800us 4024 22.065%
“arm.c4689--690 | 465. 800us 0. 200us 0. 200us 0. 200us 2329 3.192% ——
“arm.ch691--691 | 232. 900us 0.100us 0.100us 0.100us 2329. 1.596% —
“arm. c\693--694 1.647ms 0. 600us 0. 600us 0. 600us 2746. (0/1) | 11.289%
“arm.ch695--695 | 274.500us 0.100us 0.100us 0.100us 2745, 1.881% —
“arm.c\696--696 | 274.500us 0.100us 0.100us 0.100us 2745 1.5881%
‘arm. c\700--701 84, 800us 0.400us 0.400us 0.400us 212, 0.581% +
\\Elr"m.c\\G?l——G?lJ 21.200us 0.100us 0.100us 0.100us 212. 0.145% + S
4 m

See also

B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T

435

<trace>.STATistic.LINKage Per caller statistic of function

Format:

<format>:

<list_item>:

<option>:

<trace>.STATistic.LINKage <address> [%<format>] [<items> ...] [[<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL

NAME | GROUP | TASK

Total | TotalRatio | TotalBAR

Count | MIN | MAX | AVeRage

Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK

Filter <filter>

Address <address | range>
ACCUMULATE

INCremental | FULL

CLOCKS

NoMerge

Sort <item>

Track

Performs a function run-time statistic for a single function itemized by its callers. The procedure for recording
the data is the same as for the <trace>.STATistic.Func command.

<address>

<format>,
<list_item>

<option>

Has to be the function entry address.

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach

General Commands Reference Guide T | 436

Example:

Trace.STATistic.LINKage alloc_small

£ | B:Trace.STAT.LINKage alloc_small EI@
(& setup.... || iiiGroups... || 52 Config...| 1} Goto... || =|Detailed | fE|Nesting || =chart |
funcs: 20. total: 5.433ms

range [total min max avr count |

init_marker_reader | 31.100us | 31.100us | 31.100us| 31.100us 1. -
jinmt_input_controller 7.400us 7.400us 7.400us 7.400us 1.
jpeg_t32_src 37.620us 8.380us | 29.240us | 18.810us 2.
jpeg_alloc_guant_table | 19.860us 9.620us | 10.240us 9.930us 2.
et_sof | 867.180us 38.480us 58. 860us 39.417us 22.
jpeg_alloc_huff_table | 30.840us 7.400us 8. 500us 7.710us 4.
jinit_master_decompress | 208.060us 9.380us 9.520us 9.457us 22.
prepare_range_limit_table | 101. 380us 4.560us 4.700us 4.608us 22.
jinit_color_deconverter | 133.000us 6.040us 6.060us 6.045us 22.
build_ycc_rgh_table | 411. 880us 4.300us 5.320us 4.680us 88.
jinit_upsampler | 200. 860us 9.120us 9.140us 9.130us 22.
alloc_sarray 1.087ms 5.180us | 10.380us 8.232us 132.
jinit_d_post_controller | 161. 860us 7.260us 7.420us 7.357us 22.
jinit_inverse_dct | 450.400us 4.680us 5.560us 5.118us 88.
jinit_huff_decoder | 122.180us 5. 540us 5. 560us 5.554us 22.
jinit_d_coef_controller | 114.540us 4. 800us 5.440us 5.206us 22.
Jinit_d_main_controller | 162.740us 7.280us 7.420us 7.3%us 22.
alloc_funny_pointers | 413.740us 4.300us 4.940us 4.702us 88.
latch_quant_tables | 358. 260us 4.560us 7.160us 5.428us 66.
jpeg_make_d_derived_th1 | 513.980us 5. 540us 5. 940us 5.841us 88.

The function alloc_small was called by the listed 20. functions. The dependency between the run-time of the
function allow_small and its callers is analyzed.

See also

B <trace>.STATistic

B BMC.STATistic.LINKage

A ’'Release Information’ in’Legacy Release History’

B CTS.STATistic.LINKage

©1989-2024 Lauterbach

General Commands Reference Guide T

437

<trace>.STATistic.Measure Analyze the performance of a single signal

Format: <trace>.STATistic.Measure [%<format>] [<list_items> ...] [/<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | <cpu> | <signals> | Port[.<subitem>] | MARK][.<marker>]
LOW | HIGH
<option>: FILE | ACCUMULATE | INCremental | FULL
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)

This command allows to analyze the performance of a single signal. It is mainly used with PowerProbe or
PowerIntegrator.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.

Typical application for the <trace>.STATistic.Measure:

. to check the best threshold level for a symmetric signal (e.g. a symmetric clock signal).
. to detect spikes (e.g. a signal has a defined period of 10.ns, detect if there is any much smaller
period).
Example:
Trace.STATistic.Measure 1i.ADDS8 ; analyze address line 1i.ADDS8

; analyze the data line i.DAT6, start the analysis at record number
; -5000. and finish the analysis at record number -4000.

Trace.STATistic.Measure (-5000.)--(-4000.) i.DAT6
fz| B::Integrator. STAT Measure i.ADDS =] E3
P Setup...l & Init I

recs: 524288 time: 336.922ms
lead: 3.9@Bus tail: 2.746ns
NS 38580 W 38579
i.ADDE avr min max
S time 3.820us B8.296us 138 .988us
e time 7.988us @.896us 173.7088us
period | 18.92Bus 1.196us 236.788us
frequency | 91.587KHz 4.224KH=z 836.189KHz
duty cucle| 28:72 A:10@ 99:1

©1989-2024 Lauterbach General Commands Reference Guide T | 438

Description of the window elements:

recs The number of records that are analyzed.
time The time that is analyzed.
lead The time from the beginning of the analysis until the first edge.
tail The time from the last edge until the end of the analysis.
e The number of low states.
= The number of high states

The analysis can also be activated by selecting the signal in the Trace.Timing display and by using the pull-
down menu provided via the right mouse button.

- 0] x|

& Count

L Low
T High
% Falling
i Rising

’T Mo Trigger

=4 Change Name |

¥ Remove Channel

It is also possible to analyze only the selected part of the complete recording time.

S Bit I [=] E3
.| =4 Name...
—1.54|
line L L —
iDATAR T L T TNl [U LTl Tl
i DATAL | L [| I T O
PDATSAGY L L L L L LI
i.DATEY i : Sy | I N
i.DATZA K i [L g n m
i.DATEA 1 | 1 Integrator
i.DATIZ 1 1 | "
iDATIEZe T Ak
PDATALAN L A | <
. R Set Ref 4
24 Set Zero
B::Integrator STAT Measure [625. o Set LTS =] |
WSetup...I & Init I oo
recs: 14481 time o V=Y
lead: 20@.594us tai] =1
S g _ﬂﬂTlmlng
i.DATE avr min max
S time 8.879%us 8.882us B.618us
e time @.389%us 8.884us 2.998us
period @8.890us 8.812us B.622us
frequency | 11.164954MHz 1.687636MHz 83.116883MHz
duty cucle | 28:80 A:10@ 99:1

©1989-2024 Lauterbach

General Commands Reference Guide T

439

See also
B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

<trace>.STATistic. MODULE Code execution broken down by module
Format: <trace>.STATistic. MODULE [%<format>] [<list_items> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time>
Filter <filter>
Address <address | range>

ACCUMULATE
INCremental | FULL
CLOCKS

Sort <item>

Track

Shows a statistical analysis of the code execution broken down by symbol module. The list of loaded
modules can be displayed with sYmbol.List.Module.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.
See also
M <trace>.STATistic M <trace>.STATistic. PROGRAM
B BMC.STATistic. MODULE W CTS.STATistic. MODULE

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 440

<trace>.STATistic.PAddress Which instructions accessed data address

Format:

<format>:

<list_item>:

<option>:

<trace>.STATistic.PAddress [%<format>] [<list_items> ...] [[<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

FILE | FlowTrace | BusTrace

CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK

BEFORE | AFTER

CountChange | CountFirst | CountAll

InterVal <time> | Filter <filter>| Address <address | range> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS

Track

The command provides a statistic about the instructions that accessed the data addresses. This command
is generally used with the /Filter Address option.

<format>,
<list_item>

<option>

Example:

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

Trace.STATistic.PAddress /Filter Address mstaticl

£ | B:Trace STATistic.PAddress /Filter Address mstaticl = | 2|2z
(& setup... || iii Groups... | 38 Config...][A Goto... || E[Detailed|| E|Tree || fdchart || EProfile |
items: 6. total: 7.204s samples: 24365.
address [total min max avr count ratio¥% [1% 2% i
(other) [351.260us | 351.260us | 351.260us | 351.260us 0. 0.004% |+
func2+0x40 88.431ms 1.600us 20.500us 9.074us 9746. 1.227% |mem
func2+0x50 6.005ms 0.980us 1.240us 1.232us 4873. 0.083% |+
func2c+0x0C 2.211s | 440.820us 1.450ms | 453.869us 4872. 30.693%
func2d+0x14 4.898s 1.003ms 1.006ms 1.006ms 4870. 67. 989% |m——
func2b+0x14 60.720us 15.180us 15.180us 15.180us 4. <0.001% |+ -
4 1 3

See also

B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T | 441

<trace>.STATistic.ParentTREE Show the call context of a function

Format: <trace>.STATistic.ParentTREE <address> [%<format>] [<list_items> ...]
[/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL

TREE | LEVEL | GROUP | TASK

Total | TotalRatio | TotalBAR

Count | MIN | MAX | AVeRage

Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

Show call tree and run-time of all callers of the specified function. The function is specified by its start

<address>.
<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach General Commands Reference Guide T | 442

Example:

Trace.STATistic.ParentTREE alloc_small

I

= | B:Trace STATistic. ParentTREE alloc_small =l <
(& setup.... || iiiGroups... || 52 Config...|[1 Goto... || =|Detailed|| fE|Nesting || =chart |
funes: 153. total: 5.433ms

range tree count avr total |

alToc_small [E alToc_small 758. 7.168us 5.433ms | .

alloc_sarray |[—= alloc_sarray 132. 8.232us 1.087ms |

jinit_d_main_controller G2 jinit_d_main_controller 66. 6.579us | 434.240us || |

master_selection —E master_selection 66. 6.579us | 434.240us || |

jinit_master_decompress —E jinit_master_decompress 66. 6.579us | 434.240us |||

jpeg_start_decompress B jpeg_start_decompress 66. 6.579us | 434.240us |||

JPEG_DecompressInit —E JPEG_DecompressInit 66. 6.579%us | 434.240us || |

main —Emain 66. 6.579%us | 434.240us || |

(root) — (root) 66. 6.579us | 434.240us |-
jinit_upsampler —E jinit_upsampler 44, 9.645us | 424.400us
master_selection = master_selection 44, 9.645us | 424.400us
jinit_master_decompress —E jinit_master_decompress 44, 9.645us | 424.400us
jpeg_start_decompress —E jpeg_start_decompress 44, 9.645us | 424.400us
JPEG_DecompressInit —E JPEG_DecompressInit 44, 9.645us | 424.400us
main —E main 44, 9.645us | 424.400us
(root) — (root) 44, 9.645us | 424.400us
JPEG_DecompressInit '—= JPEG_DecompressInit 22. 10.361us | 227.940us
main —E main 22. 10.361us | 227.940us
(root) L— (root) 22. 10.361us | 227.940us
jpeg_make_d_derived_thl |[—= jpeg_make_d_derived_thl 88. 5.841us | 513.980us
start_pass_huff_decoder —E start_pass_huff_decoder 88. 5.841us | 513.980us
start_input_pass B start_input_pass 88. 5.841us | 513.980us
master_selection = master_selection 88. 5.841us | 513.980us
jinit_master_decompress —E jinit_master_decompress 88. 5.841us | 513.980us
jpeg_start_decompress '~ jpeg_start_decompress 88. 5.841us | 513.980us
JPEG_DecompressInit —E JPEG_DecompressInit 88. 5.841us | 513.980us
main —E main 88. 5.841us | 513.980us
(root) L— (root) 88. 5.841us | 513.980us
jinit_inverse_dct |[—= jinit_inverse_dct 88. 5.118us | 450.400us
master_selection || —E master_selection 88. 5.118us | 450.400us
jinit_master_decompress —E jinit_master_decompress 88. 5.118us | 450.400us
jpeg_start_decompress '~ jpeg_start_decompress 88. 5.118us | 450.400us
JPEG_DecompressInit —E JPEG_DecompressInit 88. 5.118us | 450.400us
main —E main 88. 5.118us | 450.400us

(root) L— (root) 88. 5.118us | 450.400us | =

See also

B <trace>.STATistic

B BMC.STATistic.ParentTREE

B <trace>.STATistic.ChildTREE
W CTS.STATistic.ParentTREE

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T

443

<trace>.STATistic.PROCESS Re-process statistics

Format: <trace>.STATistic.PROCESS [/<option>]

<option>: ARTIAP

Starts re-processing of statistic and chart windows.

ARTIAP Option for AUTOSAR Real-Time Interface on Adaptive Platform trace
decoding. Decode MIPI STP (System Trace Protocol) format trace which is
defined in ARTI Trace Driver on AUTOSAR Adaptive Platform.

It can be used to process ARTIAP trace without executing

<trace>.Chart. TASK/TASKState or <trace>.STATistic. TASK/TASKState
related commands.

See also
B <trace>.STATistic

©1989-2024 Lauterbach General Commands Reference Guide T | 444

<trace>.STATistic. PROGRAM Code execution broken down by program

Format: <trace>.STATistic.PROGRAM [%<format>] [<list_items> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <filter> | Address <address | range>
ACCUMULATE | INCremental | FULL | CLOCKS
Sort <item> | Track

Shows a statistical analysis of the code execution broken down by loaded object files (program). The loaded
programs can be displayed with the command sYmbol.Browse *.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.
See also
B <trace>.STATistic B <trace>.STATistic. MODULE M BMC.STATistic. PROGRAM B CTS.STATistic. PROGRAM

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 445

<trace>.STATistic.PsYmbol Shows which functions accessed data address

Format: <trace>.STATistic.PsYmbol [%<format>] [<list_items> ...] [/<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time>
Filter <filter>
Address <address | range>

ACCUMULATE
INCremental | FULL
CLOCKS

Sort <item>

Track

The command provides a statistic about the functions that accessed the data addresses. This command is
generally used with the /Filter Address option.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>

<option> Refer to Options under <trace>.STATistic.

Trace.STATistic.PsYmbol /Filter sYmbol mstaticl

Trace.STATistic.PsYmbol /Filter sYmbol mstaticl CYcle Write

£ | B Trace STATistic.Ps¥mbaol /Filter sYmbol mstaticl =l =)
| & setup... || iiicroups... || & Config...|| (¥ Goto... || = |Detailed| =|Tree || felchart | HProfile |
tems: 5. total: 7.204s samples: 24365.
address total min max avr count ratio¥% 1% 2% 5% 1
(other) | 351.260us | 351.260us | 351.260us | 351.260us 0. 0.004% [« .
func2 | 94.436ms 0.980us | 20.500us 6.460us 14619. 1. 310% m—
func2c 2.211s | 440.820us 1.450ms | 453.869%us 4872. 30.693%
func2d 4.898s 1.003ms 1.006ms 1.006ms 4870. 67.989%
func2b | 60.720us | 15.180us | 15.180us | 15.180us 4. <0.001% +
« n [

©1989-2024 Lauterbach General Commands Reference Guide T | 446

Preconditions:
. Has to be implemented for the processor architecture in use.

J Data access has to be clearly assignable to an instruction.

If TRACES2 was able to clearly assign the data access to an instruction can be checked as follows:

Trace.FindAll sYmbol mstaticl

$9 B:Trace FindAll sYmbol mstaticl ===
15501 run |address cycle [data symbo | t1.back
-0004999283 D:40004058 rd-Tong 70271264 “.\diabc\diabc\mstaticl o~
-0004997929 D:40004058 rd-long 7027126A ‘\M\diabc\diabc'\mstaticl 1.007ms |
-0004997925 D:40004058 wr-long 7027126A ‘\M\diabc\diabc'\mstaticl 1.725us —
-0004997923 D:40004058 rd-long 7027126A ‘\M\diabc\diabc'\mstaticl 0.865us
-0004997919 D:40004058 wr-long 862DA22C “M\diabc\diabcimstaticl 1.600us =
-0004997917 D:40004058 rd-long 862DA22C “M\diabc\diabcimstaticl 0.865us
-0004997885 D:40004058 rd-long 4C68AFFE “\\diabc\diabc'\mstaticl 12.700us
-0004996981 D:40004058 rd-long 4C68AFFE “\\diabc\diabc'\mstaticl 443.895us
-0004995638 D:40004058 rd-long 4C68AFFE “\\diabc\diabc'\mstaticl 1.007ms
-0004995634 D:40004058 wr-long 4C68AFFE “\\diabc\diabc'\mstaticl 1.725us
-0004995632 D:40004058 rd-long 4C68AFFE “\\diabc\diabc'\mstaticl 0.865us
-0004995628 D:40004058 wr-Tlong AED7EFBF ‘\diabc\diabc'\mstaticl 1.605us =
4 13

A red cycle type indicates that a clear assignment was not possible.

; PAddress: address of instruction that performed the data access

; PsYmbol: symbolic address of instruction that performed the data access

Trace.List PAddress PsYmbol DEFault

B::TraceList PAddress PsYmbol DEFault (= |

(& setup.... | M Goto... || #iFind... | Adchart || EProfile || EIMIPS | & More || Xless |
record paddress psymbo] run |address cycle |data symbol ti.back |
Twz r0,0x14(r1) -
mt1r r0 =
addi rl,ri,0x10 -

-
-0000007650 | D:40004058 wr-Tlong 2A2D390A \\diabc\diabc\mstaticl 1.35%5us 2
p)

Both columns are empty if no clear assignment is possible.

See also

B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T

447

<trace>.STATistic. RUNNABLE

Runnable runtime analysis

Format:

<format>:

<list_item>:

<option>:

<trace>.STATistic. RUNNABLE [%<format>] [<list_items> ...] [/<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

FILE

FlowTrace | BusTrace

TASK <task> | SplitTASK | MergeTASK
CORE <item> | SplitCORE | MergeCORE
IncludeOwn | IncludeTASK | IncludeINTR
InterVal <time>

Filter <item>

Address <address | range>

INCremental | FULL

ACCUMULATE

CLOCKS

NoMerge

Sort <item>

Track

Analyzes the function nesting and calculates the time spent in AUTOSAR Runnables and the number of

Runnable calls.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

See also

B <trace>.STATistic

M CTS.STATistic. RUNNABLE M TASK.Create. RUNNABLE M TASK List. RUNNABLES

A ’Runnable Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach

General Commands Reference Guide T |

448

<trace>.STATistic. RUNNABLEDURation Runnable duration analysis

[build 139722 - DVD 02/2022]

Format: <trace>.STATistic. RUNNABLE <address | name> [[<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <item> | SplitCORE | MergeCORE
IncludeOwn | IncludeTASK | IncludeINTR
InterVal <time> |
Filter <item>
Address <address | range>
INCremental | FULL
ACCUMULATE
CLOCKS
NoMerge
Number <record>
LOG | LINear

Analyzes the time spent in AUTOSAR Runnables. This is currently limited to runnable analysis based on
regular function tracing.

<option> Refer to Options under <trace>.STATistic.

See also
B <trace>.STATistic
A ’Runnable Runtime Analysis’ in 'Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach General Commands Reference Guide T | 449

<trace>.STATistic.Sort Specify sorting criteria for statistic commands

<sort_

<sort>:

Format:

visible>:

<sort_core>:

<trace>.STATistic.Sort [<sort_visible>] [<sort_core>] [<sort> [<filters>]]

Window | Global

CoreTogether | CoreSeparated (SMP systems only)

OFF

Address | sYmbol [<wildcard_list ...>] | GROUP
Nesting | InternalRatio | TotalRatio

Ratio

Count

TotalMIAX | RatioMAX

Specify sorting criterion for the results of the command groups <trace>.STATistic and <trace>.Chart.

After item <sort>, a list of whitespace separated filters can be specified. The items that match any of the
filters are shown first, then the rest if the items is shown according to the selected criterion. The filters can
include wildcards (* and ?).

If the command is entered without parameters, a Trace.STATistic.Sort dialog is displayed.

2= Chart Config

Sort
® OFF
@] Mesting
O GROUP
O Address
O sYmbol
O intermalRatio
O TotaRatio
(O Ratio
O count
O TotalMAX
O RatioMAX

I Al windows

Sort visible
@® Global
O window
Sort core
(® CoreTogether
@] (oreSeparated

- O X

Custom Sort Filters

Add or remove:

The sorting criterion specified by Trace.STATistic.Sort applies to all <trace>.STATistic and <trace>.Chart
analysis windows (check box All Windows ON).

©1989-2024 Lauterbach

General Commands Reference Guide T | 450

To specify the sorting criterium for an individual statistic window use the Config button of this statistic
window or use the /Sort option when you enter the command.

#u] B:Trace.Chart.sYmbol EI@
& setup... || iiicroups... | 2 [#3Find... || 4 1n | p4out)MMFull]
. 000us 10.000us 20.000us 30.000us
addressf¥, | | |
sievew o R
mainds 1L TR
funclORy |~ I Nl
func2i| W R B P I -
funcli 111 .]
func8 i 2 Chart Config - [} X
¢ Tk).
Sort Sort visible Custom Sort Filters
O oFF @® Global
(O Nesting O window
O GROUP Sort core
O Address (® CoreTogether
O sYmbo (O CoreSeparated
() InternalRatio
@ TotalRatio
(_) Ratio
O Count
O TotalMax Add or remove:
O RatioMAX i
I Al windows

Trace.Chart.sYmbol /Sort TotalRatio

Default Sorting Criterion

; sort the time chart by the
; criterion TotalRatio

OFF is the default mode for most statistic windows. OFF means that the analyzed items are displayed in

their recording order.

Statistic windows that are focused on the program’s call hierarchy e.g Trace.STATistic.TREE use Nesting

as default mode.

©1989-2024 Lauterbach

General Commands Reference Guide T | 451

Window vs. Global

Global (default)

The sorting criterion is strictly maintained.

Window

The sorting criterion is applied. The analyzed items active in the
items.

Window might be useful if you scroll horizontally.

displayed time interval are displayed first, followed by the non-active

Trace.Chart.sYmbol /Sort Window sYmbol

¥yl B::Trace.Chart.s¥mbol /Sort Window s¥mbol

=N Hoh/e<)

[WSetup...

il Groups... | 8 Config...|| 13 Goto... || #iFind... [4»1n |[p40ut][MMFull

address i

8.000us 19.000us
| |

20.000us

Tuncl 4y
func2 4y
func2 0k
func24
func25ay
func26 iy
func27 M
funca7 Wy
mai r
(other) ¥
funcl0kM
funcll iy
funcl3aM
funcl4 iy
funcl? M
funclcqy

J{.m.r.{......................r.

m

©1989-2024 Lauterbach

General Commands Reference Guide T

452

CoreTogether vs. CoreSeparated (SMP Systems only)

CoreTogether The analyzed items are displayed per core. Additional sorting criteria
(default) apply to this per core order.
CoreSeparately The core information has no impact on the sorting order.

Trace.Chart.sYmbol /ZoomTrack /Sort CoreTogether sYmbol

Trace.Chart.sYmbol /ZoomTrack /Sort CoreSeparated sYmbol

fu Bi:Trace.Chart.s¥mbol /ZoomTrack /Sort CoreTogether s¥mbol = | el
| & setup... || il Groups... |[38 Config...|| ¥ Goto... || F3Find... || 4»In |[p4Out|[MMFull|
-26.625ms -26.620ms -26. b
addressiy| | | |
(other) : 04
main:ORH .] : . . i
s1eve: (| I
sieveQ:0& : : ; : ;
sievec: 0 ; 3 ; ; ; : ; L |
(other) : 14y . .
main: iy
sieve: Ll
57 eve - 1 4|
sievec:li
Cother) - 2 |« |
4 {1 F 4 3

¥y B::Trace.Chart.s¥Ymbol /ZoomTrack /Sort CoreSeparated s¥Ymbol =ea @
| & setup... || il Groups... || 38 Config...|| ¥ Goto... || F3Find... || 4»In |[p4Out|[MMFull|
-26.625ms -26.620ms -26. b
addressiy| | | |
(other) : 04
(other) 1@
Cotther) - 2 |
main: O Wy |
main:lay
s1eve: (| I
sieve:l iy
sieveD: O/ : : ; . ;
57 eve - 1 4|
sievec: OHy : ; ; 5 ; ; ; L |
sievec: 1
4 {m 13 4 3

©1989-2024 Lauterbach

General Commands Reference Guide T

453

Standard Sorting Criteria

Address

Sort result by address

sYmbol [<filters>]

Sort result alphabetically by symbol names

GROUP

Sort result by their grouping

Count

Sort analyzed items by their occurrence

Example for sort criterion sYmbol [<filters>].

; display items starting with string "SPI" first, then items starting
; with string "SUP" then rest
Trace.STATistic.Sort sYmbol Spi* SUP*
Trace.Chart.sYmbol
#u| B:Trace.Chart.sYmbol EI@
(& setup... |[§ii Groups..|[88 Config...][12 Goto... |[#3Find... |[4»1n || p4out)[MMFull]
-941150 -941100 -941050 -941000

address i

Spi1_THwSetChanneTCont g K¥
Spi_lHwSet JobConfighH¥

Spi_l5syncStartloby
Spi_lSyncTransmitl6B1tDataqy
Spi_SetupEB M

Spi_SyncTransmit 4
SUP_CalculateParityl6Ebitiy
SUP_CYCLICHKY
SUP_HandleWatchdogErrorCounterFlaghH
SUP_Hand1eWatchdogkey iy
SUP_SetVstately

SUP_SpiTransmit iy
SUP_SwitchStateByOperationMode iy
(other) ¥
__text_inttab0_intvec_0024¥
Dio_F1ipChannel &

Spi_lsyncStartChannelRy

Dio_lCheckChanne]Id

2= Chart Config - O

Sort Sort visible Custom Sort Filters

O oFF @ Global Spi*
(O Nesting O window sup=
O GROUP Sort core
O Address (® CoreTogether
® sYmbol (O CoreSeparated
O intermalRatio

O TotaRatio

(O Ratio

O count

Add or remove:

[IE

O TotalMAX
O RatioMAX

I Al windows

©1989-2024 Lauterbach

General Commands Reference Guide T

454

Example for sort criterion GROUP.

GROUP.List
Trace.STATistic.Sort GROUP

Trace.Chart.sYmbol

GROUP other

GROUP my_code

GROUP toms_code

GROUP ralfs_code

111 B:GROUP.List == =]
, k= 0@ |0 ® | %) 2| & &
M Bu:Trace.Chart.sYmbol /Sort GROUP group 5 enable i
B "my_code -
[WSetup...]@Groups...”== Conﬁg...” I Goto...]L uncl 5
0.000us 10. | funcl0 V
address |, | funcll N
Ffuncic & | 1 funcl3 V
func2 & | funcl4 W
funcza & | Im funcl? W
func2b & | W = "ralfs_code" N
func2c & m func3 W
funch ¥ [funcd W
funce W T func4? V
func? W I E "toms_code" N
funcs o | e func20 v
funcd & | mim func24 W
main & 0 | | Wl [l func25 W
sieve ¥ SO func2é W
funcl &t m func2? W
tuncl0 W | ‘m "other" W
funcll & | -
funcl3 W | . J < I
func1d of B
funcly | | “a
func20 | m
func24 & | B {1
func25 | B 1
func26 | Sl
func27 | e
Tuncs [y . i
funcd W ‘i
func4? Ar| .|||. 11
ToCnery A
N 5

©1989-2024 Lauterbach

General Commands Reference Guide T

455

Sorting Criteria for the Nesting Analysis

Nesting Calling functions are displayed atop of called function.
InternalRatio Sort result be internal ratio.
InternalRatio: <time_in_function>/<total_measurement_time> as a
numeric value.
TotalRatio Sort result by total ratio.

InternalRatio: <total time_of function>/<total_measurement_time> as a
numeric value, <total time_of_function> includes called subfunctions
and traps.

Example for criterion Nesting.

Trace.Chart.Func /ZoomTrack /Sort Nesting

%4 B:Trace.Chart.Func /ZoomTrack /Sert Nesting

(& setup... || iii Groups... | 38 Config...][13 Goto... |[#4Find... [4»1n || p4out)[MMFull]

-2.777350000s -2.7773
| | |

range [y
(root) X

maink
func2 4
func2aly
func2b iy
func2chqy
func2dp
funcd 4y
func3 i
funcs i
funch
func? 4
funcBH
funcI
funcl 4y
funclOkH

L

o T . . . \

©1989-2024 Lauterbach

General Commands Reference Guide T | 456

Sorting Criteria for the Flat Analysis

Ratio Sort analyzed items by their ratio.

TotalMAX Flat analysis with InterVal option only.

Sort analyzed items by maximal total time per specified interval.

RatioMAX Flat analysis with InterVal option only.

Sort analyzed items by maximal ratio per specified interval.

Trace.STATistic.sYmbol /InterVal 10.ms /Sort RatioMAX

£ | B:Trace. STATistic.sYmbol /InterVal 10.ms /Sort RatioMAX = B[]
(& setup.... || iiGroups... || 2 Config...|[R Goto... || =|Detailed|| =[Tree || Avchart |[EProfile |
items: 73. total: 2.915s samples: 20364672.
intervals: 291. avr: 10.000ms min: 10.000ms max: 10. 000ms
address |[total totalmax |ratiomax |countmax |max count ratio¥ i
sieve 1.407s 5.212ms | 52.115% 70. 74.780us 18870. 48.263% -
funcl0 | 235.336ms | 872.720us 8.727% 7. | 124.800us 1888. 8.071%
_d_add | 174.787ms | 656.520us 6.565% 77. 8.140us 20766. 5.995%
sfpDoubleNormalize | 170.470ms | 640.260us | 6.402% 70. 8.760us 18878. 5.847%
_d_mul | 155.148ms | 576.200us 5.762% 42. 15.220us 11327. 5.321%
__lsr64 67.322ms | 269.320us 2.693% 124. 2.340us 31068, 2.309%
_restgpr_27_1 68.083ms | 254.112us 2.541% 189. 1.523us 50972. 2.335%
__1s764 50.702ms | 197.380us 1.973% 96. 2.580us 24663. 1.739%
main | 49.392ms | 177.680us 1.776% 1. 4.400us 1.(1/0) 1.694% i

See also
B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 457

<trace>.STATistic.sYmbol Flat run-time analysis

Format: <trace>.STATistic.sYmbol [%<format>] [<list_item> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<list_item>: DEFault | ALL
Total | MIN | MAX | AVeRage | TotalMIN | TotalMAX
Ratio | RatioMIN | RatioMAX
Count | CountRatio | CountBAR | CountMIN | CountMAX
NAME | CountRatio | CountBAR
CountChange | CountFirst | CountALL

<options>: FILE | FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <item> | SplitCORE | MergeCORE
LABEL | NoLABEL | INLINE | NoINLINE
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <item> | Sort <item> | Track
Address <function1>ll<function2> ...
Address <function _m>--<function_n>ACCUMULATE
INCremental | FULL | CLOCKS

The execution time in different symbol regions is displayed. Displayed are the number of entries into the
range and the time spent in the range.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach General Commands Reference Guide T | 458

= B::Trace. STATistic.s¥mbol

sanples: 9618389 total: 20.586s
address total min nax avr count ratiod 14 24
869.101us 0.882us A.6780us 0.844us 19598 0.084% [+ ~
EM_stop_mode | 16.455s @.014us 4.957s | 235.@71ns 7a. 79.931) | e——
11_task_utra_profile_exit_dsn 1.45%Bms @.0858us 8.775us B8.879us 18294 . 0.0887/% [+
su_profile_readtime | 783.912us @.Aa5us @.3085us #.843us 18297. a.0a3x |+
su_palFuzzyTimerUpdateflarn | 21.189us @.885us 1.631us 8.353us 6l . <@.001% |+
suPalReadTime | 35.9B6us a.A81us 1.528us 8.849us 735. <@.881% +
suPalReadTimeInHuTicks | 85.2@81us 8.0892us 2.880us B8.348us 245. <0.001% [+
__UDived [317.6082us 1.0@6us 1.620us 1.163us 273. 0.881% +
suPalSetAlarn 6.698us 8.A82us 1.175us 8.152us 44, <@.881% +
___CU_SC1PP_callee_save | 14.331ms @.085us 1.158us B8.@831us 468841 . 8.0694 [+
——_CH_SC1¥@_cal lee_restore | 11.131ms @.083us 1.426us 8.824us 468834 . B854 |+
EM_ExecNull Task 4.974ns a.A18us 1.978us 8.878us 64859, a.8247 [+
WDOG_WURAPPER_Refresh 1.289ns @.885us A.789us 8.870us 18306 0.886% [+ v
< | »

Exampile: filter the specified functions out of the trace stream and then analyze the filtered trace information

Trace.STATistic.sYmbol /Filter Address main]| |func2]| |funcl0]| | func26

init
main main main
func2 func2
func10 func10
. func26

Recording (filtered functions are displayed in black)
(other)

main main main

func2
func10
func26
Analysis result
| B:Trace STATistic.sYmbol /Filter Address main|[func2||funcl0||func26 ol a0 s
& setup.... | f#iGroups... | 22 Config...|[R Goto... || Z|etailed|| = Tree | fyichart || HFrofie |
items: 5. total: 9.577s samples: 7608.
address [total min X r ount ratio®% 1% 2% 5% 10% 20% 50% 100
(other) 5.831s 5.831s 5. 831s 5. 8315 . 60.883% .
main 2.590us 2.590us 2.590us 2.590us 1. <0.001% |«
func2| 1.496s | 580.615us | 599.530us | 589.932us 2536. 15.622%
funclO | 413.647ms | 162.865us | 163.415us | 163.110us 2536, (0/1) | 4.319% | ——
func26| 1.836s | 724.065us | 724.740us | 724.402us 2535. 19.175% -
‘ n ,
©1989-2024 Lauterbach General Commands Reference Guide T | 459

Example: Perform statistic on specified functions, assign statistic information for all other functions to (other)

Trace.STATistic.sYmbol /Address func2||funcl0||sfpDoubleNormalize

Trace.STATistic.sYmbol /Address func2--func?

£ BuTrace STATistic.s¥mbol /Address func2|[funcl0||sfpDoubleMormalize EI@
(& setup... || iz Grovps... | 22 Config... | R Goto... || = Detailed|| =|Tree | rwiChart || HEProfile |
items: 4. total: 3.746s stopped: 5.831s samples: 27356737.
address [total min max avr count ratio%¥ |1% 2% 5% 10% 20%
(other) 3.198s 1.475us | 768.640us 32.1%2us 99353. (0/1) | 85.379% I
func2 | 26.270ms 0.365us 8.020us | 10.359us 2536. 0.701% |+
sfpDoubleNormalize | 219.059ms 0.490us 8. 260us 8.638us 25360. 5. B4TY | e—
funclO | 302.371ms | 118.975us | 119.365us | 119.231us 2536. 8.071%
“ m 2
£ B:TraceSTATistic.sYmbol /Address func2--func? EI@
[setup... || & croups... || 22 Config... [A Goto... || = Detailed|| =lTree || fvichart || EEProfile |
items: 11. total: 3.746s stopped: 5.831s samples: 27356737.
address [total min max avr count ratio% (1% 2% 5% 10% 20% |
(other) 3. 5665 0.365us | 917.075us 46. 867us 76080. (0/1) | 95.182% -
func2 26.270ms 0.365us 8.020us 10.35%us 2536. L701% [+
func2a| 22.048ms 8.385us 8.760us 8.6%us 2536. 0. 588% |+
funczb | 17.348ms 6.530us 6. 910us 6.841us 2536. 0.463% |+
func2c 53. 200ms 0.365us 1.605us 20.978us 2536. 1.420% |m—
func2d | 21.884ms 8.385us 8.755us 8.629us 2536. 0.584% |+
funcd 9.065ms 3.325us 3.580us 3. 575us 2536. 0.241% |+
func3 2.349ms 0.740us 0.9%0us 0.926us 2536. 0.062% |+
funch 6.405ms 2.340us 2.595us 2.526us 2536. 0.170% |+
funcé | 10.641ms 0.365us 1.975us 4.196us 2536. 0.284% |«
func? | 11.257ms 0.735us 3.950us 4.43%s 2536. 0. 300% |+
4 .".f 3
See also
B <trace>.Chart.sYmbol B <trace>.STATistic B BMC.STATistic.sYmbol B CTS.STATistic.sYmbol
A ’Release Information’ in’Legacy Release History’
A ’Function Run-Times Analysis - SMP Instance’ in "Training Nexus Tracing’
©1989-2024 Lauterbach General Commands Reference Guide T | 460

<trace>.STATistic.TASK Task activity statistic

Format:

<format>:

<option>:

<list_item>:

<trace>.STATistic.TASK [Y%<format>] [<list_items> ...] [/<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

FILE | FlowTrace | BusTrace

CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal | Filter <item> | Sort <item> | Track
ACCUMULATE | INCremental | FULL | CLOCKS

ARTIAP

Task run-times are analyzed. “OS-aware Tracing” (trace32_concepts.pdf) has to be enabled in order to
use this command.

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
Survey

tasks Number of recorded tasks.

total Time period recorded by trace.

= | B:Trace STATistic. TASK o <
| & setup... || §iiGroups... | 38 Config...|| £ |Detailed|| E]Nesting || Mdchart || EProfile |
tasks: 6. total: 22.623ms
range [total min max avr count ratio¥% [1% 2% 5% 10% '
(unknown) 9.706ms 9.706ms 9.706ms 9.706ms 0. 42.901% -
TASKO 1.319ms | 123.760us | 129.000us | 119.935us 11. 5.831%
TASK4 2.995ms | 296.520us | 306.020us | 299.486us 10. 13.238%
TASK3 2.998ms | 298.000us | 302.780us | 299.764us 10. 13.250%
TASK2 4.376ms | 435.760us | 440.280us | 437.644us 10. 19.345%
TASKL 1.229ms | 121.760us | 124.260us | 122. 884us 10. 5.431%
4 114 3
©1989-2024 Lauterbach General Commands Reference Guide T | 461

Task details

column <list_item> description

range Task name

(unknown): TRACES2 assigns all trace information
generated before the first task information to the
(unknown) task.

total Total Time period in the task during the recorded time period.
min, max, avr MIN Shortest, longest and average time in task.

count Count Number of time in task.

ratio Ratio Ratio of time in the task with regards to the total time

period recorded.

(graphical bar) BAR.LOG Ratio of time in the task with regards to the total time
period recorded graphically.

group GROUP Display of group name assigned by command
GROUP.CreateTASK.

Survey (InterVal option)
tasks Number of recorded tasks.
total Time period recorded by trace.
intervals Number of intervals.
min, max, avr Shortest, longest and average interval length.
= | BiiTrace. STATistic. TASK /InterVal = =R
J& Setup... || fif Groups... | 38 Config... | =|Detailed | {E]Nesting | % Chart | I Profile
tasks: 9. total: 1.868s
intervals: 186810. avr: 10.000us min: 10.000us max: 10. 000us
range [total min max avr count ratio¥% [1% 2% 5% 10% |
Taskl | 983.014ms 4.060us | 982.520us | 491.016us 2002. | 52.621% ~
SystemTimer 31.380ms | 11.140us 30.880us | 16.907us 1856. 1.679% |e—
TimerISR 16.882ms 8.399%us 9.521us 9.120us 1851. 0.903% |+
Task2 33.040us 9. 280us 12.580us 11.013us 3. 0.001% |+
Tasks 22.291ms 4.820us 28.141us 25.418us 877. 1.193% |mem
Task4 11.766ms 7.441us 28.501us 26.499us 444, 0.629% [+
Task3 4.878ms 6.440us 28.220us 26.952us 181. 0.261% [+
Idle | 794.787ms 4.021us | 952.521us | 479.654us 1657. | 42.545% v

©1989-2024 Lauterbach General Commands Reference Guide T | 462

Task details (InterVal option)
column item description
totalmax TotalMAX Longest time period in the task within an interval.
ratiomax RatioMAX Highest ratio of time in the task within an interval.
countmax CountMAX Highest number of time in the task within an interval
totalmin TotalMIN Shortest time period in the task within an interval.
ratiomin RatioMIN Shortest ratio of time in the task within an interval.
countmin CountMIN Shortest number of time in the task within an interval
See also
<trace>.STATistic W <trace>.STATistic. TASKFunc
BMC.STATistic. TASK B CTS.STATistic. TASK

>r> > > > HN

'CPU Load Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
'Release Information’ in ’Legacy Release History’

'OS-Aware Tracing’ in "Training Arm CoreSight ETM Tracing’

'OS-Aware Tracing - Single Core’ in "Training Nexus Tracing’

'OS-Aware Tracing - SMP Systems’ in "Training Nexus Tracing’

©1989-2024 Lauterbach

General Commands Reference Guide T | 463

<trace>.STATistic. TASKFunc Task related function run-time analysis

Format: <trace>.STATistic. TASKFunc [Y%<format>] [<list_items> ...] [/<option>]
(legacy)

For details, refer to <trace>.STATistic.Func.

See also
B <trace>.STATistic. TASK B <trace>.STATistic

A ’'Release Information’ in’Legacy Release History’

<trace>.STATistic. TASKINFO Context ID special messages
Format: <trace>.STATistic. TASKINFO [%<format>] [<list_item> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

Displays a run-time statistic of special messages written to the Context ID register for ETM trace. The range
of special values has to be reserved with the ETM.ReserveContextlD command. These special values are
then not interpreted for task switch or memory space switch detection. This can be used for cores without

data trace to pass data by the target application to the trace tool by writing to the ContextID register.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.
See also
B <trace>.STATistic B BMC.STATistic. TASKINFO M CTS.STATistic. TASKINFO

©1989-2024 Lauterbach General Commands Reference Guide T | 464

<trace>.STATistic. TASKINTR ISR2 statistic (ORTI)

Format: <trace>.STATistic. TASKINTR [%<format>] [<list_item> ...] [/<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

Displays an ORTI based ISR2 run-time statistic. This feature can only be used if the ISR2 can be traced
based on the information provided by the ORTI file.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>

<option> Refer to Options under <trace>.STATistic.
= | BiiTrace STATistic TASKINTR = =R
&2 setup... || il Goups... || 22 Gonfig... | = Detalled || Nesting|| | Chart || B Profile
intrs: 23. total: 1.39%s
range [total min max avr count ratio¥% [1% 2% 5% i
Tunknown) 10.774ms 10.774ms 10.774ms 10.774ms 1. 0.771% |+ ~
CounterIsr_Core0 25.939ms 3.487us 10. 500us 4.837us 5363. 1.857% |w—
INVALID_ISR 1.359s 1.333us | 718.773us | 253.525us 5362. | 97.370%
(unknown) 10.766ms | 10.766ms | 10.766ms | 10.766ms 1. 0.771% |+
CounterIsr_Corel 7.047ms 3.707us 6.113us 4.377us 1610. 0.504% |+
INVALID_ISR 1.378s 1.407us | 995.593us | 855.014us 1612. | 98.723%
SignalIsr_0OsCore_Corel 17.720us 5.520us 6.573us 5.907us 3. 0.001% |+
(unknown) 10.774ms | 10.774ms | 10.774ms | 10.774ms 1. 0.771% |+
CounterIsr_Core2 7.052ms 3.713us 9.153us 4.380us 1610. 0.505% |+
INVALID_ISR 1.378s 1.420us | 995.567us | 855.005us 1612. | 98.722%
SignalIsr_0OsCore_Core2 18.853us 5. 580us 7.580us 6.284us 3. 0.001% |+
(unknown) 10.774ms | 10.774ms | 10.774ms | 10.774ms 1. 0.771% |+
CounterIsr_Core3 7.051ms 3.740us 9.120us 4.379us 1610. 0.505% |+
INVALID_ISR 1.378s 1.407us | 995.573us | 855.006us 1612. | 98.722%
SignalIsr_0OsCore_Core3 18.413us 5.507us 7.367us 6.138us 3. 0. 001% |+ v
< >
See also
B <trace>.STATistic B BMC.STATistic. TASKINTR B CTS.STATistic. TASKINTR

A ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
A ’Trace Features’ in’OS Awareness Manual OSEK/ORTY

©1989-2024 Lauterbach General Commands Reference Guide T | 465

<trace>.STATistic. TASKKernel Task analysis with kernel markers (flat)

Format: <trace>.STATistic. TASKKernel [% <format>] [<list_items> ...] [/<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

The command Trace.STATistic.TASKKernel refines the command Trace.STATistic.TASK for RTOS
systems that dont assign a task ID to the kernel. In such a case no task run-time is calculated for the kernel

if the command Trace.STATistic.TASK is used.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.

If the TRACE32 TASK awareness was configured, TRACE32 implies that the kernel writes the identifier of
the current task to the address TASK.CONFIG(magic).

PRINT TASK.CONFIG (magic)

©1989-2024 Lauterbach General Commands Reference Guide T | 466

Measurement performed by Trace.STATistic.TASK (no task ID for the kernel):

Point in time where the kernel write the task ID of
task RR_Task to the address TASK.CONFIG(magic)

Timer_Task RR_Task
Kernel
- - -
Time in task Timer_Task Time in task RR_Task
calculated by Trace.STATistic.TASK calculated by Trace.STATistic.TASK

Measurement performed by Trace.STATistic. TASKKernel (KENTRY/KEXIT marker):

Point in time where the kernel write the task ID of
task RR_Task to the address TASK.CONFIG(magic)

Timer_Task RR_Task

Kernel

KENTRY marker e
KEXIT marker

| -
Time in task Timer_Task calculated Time in task RR_Task calculated
by Trace.STATistic. TASKKernel by Trace.STATistic. TASKKernel

- -

Time in kernel calculated
by Trace.STATistic. TASKKernel

The refined measurement of Trace.STATistic. TASKKernel requires that the kernel entries and kernel exits
are marked by the command sYmbol.MARKER.Create.

sYmbol .MARKER.Create KENTRY os_prologue ; mark the address os_prologue
; as kernel entry point

sYmbol .MARKER.Create KEXIT os_epilogue ; mark the address os_epilogue
as kernel exit point

sYmbol .MARKER.list ; list all markers

©1989-2024 Lauterbach General Commands Reference Guide T | 467

Advanced example for RTOS RTXC on a StarCore CPU:

; mark all interrupt service routines as kernel entries
sYmbol .ForEach "sYmbol.MARKER.Create KENTRY *" " isr *"

; mark all RTE instructions in the specified program range as kernel exit
Data.Find P:RTXCProlog--P:RTXCProlog_end %$Word 0x9£f73

WHILE FOUND ()
(

sYmbol .MARKER.Create KEXIT P:TRACK.ADDRESS ()

Data.Find

sYmbol .MARKER.list

& B::Trace.STATistic. TASKKernel

WSetup... i1 Groups...|| Bm Eonfig...

£ Task Challl] Task Profl @ Init_|

tasks: 21. total: 28.586s

range total min max avr count internd 14 |

(root) 1.541s 1.541s 1.541s 1.541s a. 7.487/ | e—
(kernel) | 188.895ns B8.543us | 57.866us 1.898us 99857 . B8.528% |«
L1 _Controller_GSM_Task | 152.214ns B8.122us | 389.187us 4.585us 33198. B8.739% |«

BBP6CDE8 | 18.731s B.865us 4.957s 3.535ns 5299. 90.988/, |w—

Timer_Task | 145.254us 8.181us | 25.938us 3.158us 16. <@.0a1% +
L1_Task 4.823ns B.868us | 718.148us | 31.426us 128. B8.819% |«
COMN_ILD_TASK | 557.771us B8.859us | 38.152us 3.134us 178. B8.882% |«
CONN_NETMUX_TASKLET | 588.744us B.86Bus | 22.117us 1.884us 322. B8.882% |«
PM_PROKY_Task | 42.247us B.185us | 14.685us 3.250us 13. <@.801% |«
SCHA11 Log_flush_task | 57.82%us B.178us | 31.794us 9.638us 6. <@.801% |«
MM_TASK 2.933ns B8.113us | 132.589us 3.318us 886. B.814/ |«
RR_task | B@8.295us B8.118us | 147.348us 6.518us 124. B8.883% |«
L1_Controller_UTRA_Task | 117.868us 8.206us | 41.527us | 14.733us 8. <@.0a1% +
RLC_UTRA_Task | 82.897us B8.12Bus | 18.828us 1.727us 48. <@.801% |«
IDR_Task | 124.855us B8.159us | 28.547us 2.681us 48. <@.801% |«
SPL_RX_FRAME_SEQUENCER | 41.118ns B.89%6us | 17.131us B.693us 59308 . B8.199% |«
SPL_TX_SEQUENCER | 18.127us B.896us B8.531us B8.253us 8. <@.801% |«
SPL_R¥_BLOCK_SEQUENCER | 57.493us B.863us 6.448us B.756us 76. <@.801% |«

L1_Pr'uFile_TaskJ 71.298us B.168us | 24.578us 7.922us 9. <@.801% |« v

< >

If the processor allows to restrict the trace information output to the program flow and specific write

accesses, it is recommended to restrict the output to the program flow plus write cycles to
task.config(magic), since more information can be recorded into the trace buffer.

Break.Set TASK.CONFIG (magic)
Go
Break

Trace.STATistic.TASKKernel

See also

/Write /TraceData

B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

B BMC.STATistic. TASKKernel

B CTS.STATistic. TASKKernel

©1989-2024 Lauterbach

General Commands Reference Guide T

468

<trace>.STATistic. TASKLOCK Analyze lock accesses from tasks

Format: <trace>.STATistic. TASKLOCK <address> | <name> [/<option>]

<option>: FILE
FlowTrace | BusTrace
List <item>
Filter <item>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>

Analyzes lock accesses from tasks.

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

See also
B <trace>.STATistic

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 469

<trace>.STATistic. TASKORINTERRUPT Statistic of interrupts and tasks

Format: <trace>.STATistic. TASKORINTERRUPT %<format>] [<list_items> ...]
[/<option>

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

Analyzes Task and interrupt run-times in one single window.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>
<option> Refer to Options under <trace>.STATistic.

See also

B <trace>.STATistic B BMC.STATistic. TASKORINTERRUPT

B CTS.STATistic. TASKORINTERRUPT

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 470

<trace>.STATistic. TASKORINTRState

Task and ISR2 statistic analysis

Format:

<format>:

<list_items>:

<Slate>:

<state_item>:

<option>:

<trace>.STATistic. TASKORINTRState [Y%<format>] [<items> ...] [/[<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | DefaultByltem | ALL | ALLByltem

<state>[.<state_item>]

Time [.<state>] | MAX [.<state>]| MIN [.<state>] | AVeRage [.<state>]
Count [.<state>] | Total [.<state>]

Count | Ratio | BAR.log | BAR.LINear

UND | RUN | RDY | WAIT | REL | ACT | SUSP | INTR

all | Total | MIN | MAX | AVeRage | Count | Ratio | BAR

FILE | FlowTrace | BusTrace

CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS

Track

The time tasks and interrupt spent in different states is measured.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

Description of the states:

UND

RUN

RDY

WAIT

REL

ACT

Undefined
Running
Ready
waiting
Released

Activated

©1989-2024 Lauterbach

General Commands Reference Guide T |

471

SUSP Suspended

INTR Interrupted

Before using this function the task and interrupt state transitions must be sampled by the trace. This feature
is highly dependent on the used RTOS kernel, and needs the TASK to be configured. Please see kernel
specific “OS Awareness Manuals” manuals for more information.

Please refer for more information to <trace>.STATistic. TASKState.

See also
W <trace>.STATistic

A ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
A ’Release Information’ in’Legacy Release History’

<trace>.STATistic. TASKSRV Analysis of time in OS service routines
Format: <trace>.STATistic.TASKSRYV [%<format>] [<items> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

The time spent in OS service routines and the number of calls is measured.

<format>, Refer to Parameters under <trace>.STATistic.
<list_item>

<option> Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach General Commands Reference Guide T | 472

This feature is only available, if an OSEK/ORTI system is used, and if the OS Awareness is configured with

the TASK.ORTI command.
= | B:Trace STATistic. TASKSRY | <
[WSetup...]@iGroups... (== Conﬁg...”EDetaiIed|uEi|Nesting || mdchart || EProfile |
srvs: 15, total: 2.775ms
range [total min max avr count ratio¥% [1% 2%
(unknown) | 799.460us 799.460us | 799.460us 0. 28, B00K |e—
05Serviceld_Start0s | 195.820us | 195.820us | 195.820us | 195. 820us 1. 6.995% |e———
055erviceld_StartupHook 1.700us 1.700us 1.700us 1.700us 1. 0.061% |+ i
055erviceld_PreTaskHook | 235.960us 4.460us 4.940us 4.627us 51. 5. 645% |e—
055erviceld_GetTaskID | 158. 340us 1.500us 1.660us 1.568us 101. 5. 705% | e—
055erviceld_ActivateTask | 158.260us | 15.700us | 16.100us | 15.826us 10. 3. B55% |e—
055erviceld_PostTaskHook | 260.740us 5. 000us 5.400us 5.215us 50. 6. 543% | e———
055erviceld_SuspendAl lInterrupts | 64.020us 1.500us 2. 560us 2.134us 30. 2. 306% | e——
05ServiceId_ResumeAllInterrupts | 409.460us 1.540us | 20.360us | 13.649%us 30. 14.754% -
Fl 1 F
See also
B <trace>.STATistic B BMC.STATistic. TASKSRV B CTS.STATistic. TASKSRV
A ’'Release Information’ in’Legacy Release History’
©1989-2024 Lauterbach General Commands Reference Guide T | 473

<trace>.STATistic. TASKState Performance analysis

Format: <trace>.STATistic.TASKState [Y%<format>] [<items> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_items>: DEFault | DefaultByltem | ALL | ALLByltem

<state>[.<state_item>]

Time [.<state>] | MAX [.<state>]| MIN [.<state>] | AVeRage [.<state>]
Count [.<state>] | Total [.<state>]

Count | Ratio | BAR.log | BAR.LINear

ARTI | ALLARTI
<state>: UND | WAIT | REL
<state>: RUN | RDY | ACT | SUSP | INTR | LIFE | PER
TRACE32
default
<state>: IPTICETIGETIRTIDTI|PERISTI|NSTI|PRE
TRACE32
ARTI

<state_item>: all | Total | MIN | MAX | AVeRage | Count | Ratio | BAR

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS
MACHINE <machine_magic> | <machine_id>| <machine_name>
Track
ARTIAP

The time tasks spent in different states is measured. Before using this function the task state transitions must
be sampled by the trace. This feature is highly dependent on the used RTOS kernel, and needs the TASK to

be configured. Please see kernel specific “OS Awareness Manuals” manuals for more information.

<format> Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach General Commands Reference Guide T | 474

= | BiTrace. STATistic. TASKState = =R
2 ... || 38 Gonfi.. || (Y Goto...|| =|Detaed | Pl Chart
tasks: 8. total: 1.123s
task [total.und |count.und [total.run |max.run avr.run count.run |max.rdy count.rdy |max.wait count.wait |
Cunknown) 0.000us 1. | 295.040us - - . - 1. - 0.
TimerISR | 298.040us 9. 749ms - - 1115. - 1115. - 0.
Taskl | 306.740us 1 835.663ms | 835.663ms | 835.663ms 1704, 20.466ms 1703, - 0.
SystemTimer | 544, 279%us 1 17.963ms - - 1117. - 1117. - 0.
Task4 | 856.436ms 1. 3.651ms 33.041us 27.453us 137. 9.459us 4. - 0.
Task5 | 856.461ms 1. 6. 921ms 32.981lus 26.117us 272. 9. 001us 7. - 0.
Task3 | 856.485ms 1 1.521ms 33.161us 28.163us 56. 8.73%us 2. - 0.
Idle| 856.510ms 1 246.725ms - - 514. - 513. - 0.
£ >
= BuTrace STATistic. TASKState
2 ... || 38 Gonfi.. || (Y Goto...|| =|Detaed | Pl Chart
tasks: 8. total: 1.123s
task [total.susp min.susp |max.susp |avr.susp |count.susp min.Tlife |max.life |avr.life |count.life min.per |
Cunknown) 0.000us - - - 0. - - - 0. -
TimerISR 0.000us - - - 0. - - - 0. -
Taskl | 266.067ms - - 266.067ms 1. - 856.129ms | 856.129ms 1. -
SystemTimer 0.000us - - - 0. - - - 0. -
Task4 | 262.380ms 1.932ms 2.033ms 1.973ms 133. 24.479us 41.940us 27.721lus 133. 1.956ms
Task5 | 259.061ms | 896.419%us 1.060ms | 977.588us 265. 24,320us 41. 600us 26.347us 265. | 921.07%us
Task3 | 264.480ms 1.942ms 5.001ms 4.898ms 54. 24. 860us 41.900us 28.486us 54. 1.966ms
Idle 0.000us - - - 0. - - - 0. -
£ >
= BuTrace STATistic. TASKState
2 ... || 38 Gonfi.. || (Y Goto...|| =|Detaed | Pl Chart
tasks: 8.] =
task |max. per avr. per ratio® [1% 2% 5% 10% 20% 50% 100§
Cunknown - - 0.026% [+
TimerISR - - 0. 868% |+
Taskl - - 74.446%
SystemTimer - - 1. G00% | e—
Task4 2.061ms 2. 009m: 0.325% |+
Tasks 1.088ms 1.005m: 0.616% |+
Task3 5.029ms 4. 965m: 0.135% |+
Idle - - 21.979%
>
ratio% Percentage of CPU usage consumed by the task

©1989-2024 Lauterbach

General Commands Reference Guide T

475

List items

TIme[.<state>] The total time the task was in this state.
MAX[.<state>] The maximum time the task was in this state.
AVeRage][.<state>] The average time the task was in this state.

NOTE: This value can be wrong if intermediate states exist.

Count[.<state>] The number of times a state was entered.
NOTE: This value can be wrong if intermediate states exist.

Ratio The ratio of CPU runtime consumed by this task.
BAR.log, BAR.LIN Graphical display of ratio column.
ARTI Shows ARTI timing metrics.
ALLARTI Shows all ARTI timing metrics.
State
UND UNDefined Shows the time spent by the task in an unknown state.
WAIT WAITing Shows the waiting time spent by the task.
REL RELeased Shows the time spent by the task in released state.
TRACES32 default states

Initially, not all items with their derived states are displayed, however it is possible to extend the window
columns by opening the “config” menu and moving the entry from available to selected.

ACT ACTivated Shows the time spent by the task from activation to start.

INTR INTeRrupted Shows the time elapsed from an interruption until the task is
resumed.

LIFE alive Shows the time spent by the task from activation to
termination.

PER PERiod Shows the time spent by the task from start to start.

RDY ReaDy Shows the time spent by the task remaining in the ready
state, from which it was pre-empted by one or more higher
priority tasks.

©1989-2024 Lauterbach General Commands Reference Guide T | 476

RUN RUNnNing Shows the execution time spent by the task without taking
account of preemption or waiting periods.
SUSP SUSPended Shows the time spent by the task from termination to
activation.
TRACE32 ARTI states

AUTOSAR defines its own set of timing parameters, therefore we provide separate states for ARTI to align it.
These states will be displayed using either the /ARTI or /ALLARTI options.

CET Core Execution Time Same as RUN.

DT Delay Time Same as PER.

GET Gross Execution Shows the execution time spent by the task, including all

Time preemptions and waiting time.
It also reflects the LIFE time minus the ACT time.

IPT Initial Pendig Time Same as ACT.

NST Net Slack Time Shows the “potential additional” run-time of the task: the ST
minus all CET blocks of any task or ISRs with higher priority
during the ST.

PER PERiod Shows the time spent by the task from activation to
activation (period not as measured but as configured).

PRE PREempted Same as RDY.

RT Response Time Same as LIFE.

ST Slack Time Same as SUSP.

See also “Trace.STATistic. TASKState” in Application Note Profiling on AUTOSAR CP with ARTI, page 26
(app_autosar_cp_arti.pdf).

See also

B <trace>.STATistic

A ’'Release Information’ in’Legacy Release History’

A ’Task Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach

General Commands Reference Guide T | 477

<trace>.STATistic. TASKStateDURation Task state runtime analysis

[build 135081 - DVD 09/2021]

Format: <trace>.STATistic. TASKStateDURation [<state> ...] [/<option>]
<state>: UND | RUN | RDY | WAIT | REL | ACT | SUSP | INTR
<option>: FILE | FlowTrace | BusTrace

CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
ACCUMULATE | INCremental | FULL | CLOCKS

MACHINE <machine_magic> | <machine_id> | <machine_name>
Number <record>

FLAT | LOG | LINear

Analyzes the time tasks spent in certain states

<option> Refer to Options under <trace>.STATistic.

Possible <state> are: UNDefined, RUNning, ReaDY, WAITing, SUSPended, RELeased, ACTivated,
INTeRrupted.

See also
B <trace>.STATistic
A ’Task Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

©1989-2024 Lauterbach General Commands Reference Guide T | 478

<trace>.STATistic. TASKTREE Tree display of task specific functions

Format: <trace>.STATistic. TASKTREE [%<format>] [<list_items> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | TREE | LEVEL | GROUP | TASK

Total | TotalRatio | TotalBAR | Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
InterVal <time | event> | Address <address | range> | Filter <item>
ACCUMULATE | INCremental | FULL | CLOCKS
NoMerge | Sort <item> | THreshold <float> | Track

The results of this command shows a graphical tree of the function nesting.

<format>, Refer to Parameters under <trace>.STATistic.

<list_item>

<option> Refer to Options under <trace>.STATistic.
See also

B <trace>.STATistic. TREE B <trace>.STATistic
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 479

<trace>.STATistic. TASKVSINTERRUPT

Statistic of interrupts, task-related

Format:

<format>:

<option>:

<list_item>:

<trace>.STATistic. TASKVSINTERRUPT [%<format>] [<items> ...] [[<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

FILE

FlowTrace | BusTrace

CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event>
Filter <item>

Address <address> | <range>
ACCUMULATE

INCremental | FULL
CLOCKS

NoMerge

Sort <item>

Track

Displays a runtime statistic of tasks that were interrupted by interrupt service routines.

<format>,
<list_item>

<option>

See also

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

W <trace>.STATistic

B BMC.STATistic

B CTS.STATistic. TASKVSINTERRUPT B MIPS.STATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide T

480

<trace>.STATistic. TASKVSINTR ISR2 statistic (ORTI), task related

Format: <trace>.STATistic. TASKVSINTR [%<format>] [<items> ...] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE
FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event>
Filter <item>
Address <address> | <range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

Displays an ORTI based ISR2 runtime statistic against task runtimes. This feature can only be used if the
ISR2 can be traced based on the information provided by the ORTI file.

<format>, Refer to Parameters under <trace>.STATistic.

<list_item>

<option> Refer to Options under <trace>.STATistic.
See also

B <trace>.STATistic
A ’'Trace Features’ in’OS Awareness Manual OSEK/ORTI

©1989-2024 Lauterbach General Commands Reference Guide T | 481

<trace>.STATistic.TREE

Tree display of nesting function run-time analysis

Format:

<format>:

<option>:

<list_item>:

<trace>.STATistic.TREE [Y%<format>] [{<list_items>}] [/<option>]

DEFault | LEN | TimeAuto | TimeFixed

DEFault | ALL | TREE | LEVEL | GROUP | TASK

Total | TotalRatio | TotalBAR | Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

FILE

FlowTrace | BusTrace

CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK

Address <address> | <range>

Filter <item>

ACCUMULATE

INCremental | FULL

CLOCKS

NoMerge

Sort <item>

THreshold <float>

Track

The results of this command shows a graphical tree of the function nesting.

<format>,
<list_item>

<option>

Refer to Parameters under <trace>.STATistic.

Refer to Options under <trace>.STATistic.

©1989-2024 Lauterbach

General Commands Reference Guide T

482

E | B:Trace STATistic. TREE follie | =)
(& setup... | difGroups... || &5 Config...]| A Goto... || =Detailed|| ENesting || % chart |
funcs: 36. total: 1.858s stopped: 2.250s
range |[tree total min max avr count intern¥% [1% 2% '
(root) [2 (root) 1.858s - 1.858s 1.858s - 0. 000% -
main |.—= main 1.858s - 1.858s 1.858s 1.(0/1) 1. 911% |e——
func2 & func2 19.782ms 15.280us 15.900us 15.725us 1258. 0.701% |+
funcl — funcl 6.746ms 1.340us 1.980us 1.788us 3774. 0.363% [+
func2a — func2a 10.937ms 8. 500us §. 880us §.69%4us 1258. 0.588% |+
func2b — funczb 8. 610ms 6.420us 7.040us 6. 844us 1258. 0.463% |+
funcZc — funcZc 560.462ms | 436.260us | 455.460us | 445.51%us 1258, (0/1) | 30.172% |s—
func2d — func2d 10. 849ms 8.260us 8.760us 8.631lus 1257, 0.584% |«
funcd — func4 4.495ms 3.200us 3.700us 3.576us 1257. 0.241% |+ -
func3 — func3 1.161ms 0.720us 1.120us 0.924us 1257. 0.062% |+ 7
funch — funcs 3.179ms 2. 340us 2. 600us 2.52%us 1257. 0.171% |+
funcé I funcé 40.534ms 31. 800us 32.440us 32.247us 1257. 2.182%
func? — func? 30.151ms 23.540us 24.180us 23.987us 1257. 1.623%
funcg — funcé 16.897ms 13.320us 13. 560us 13.442us 1257. 0.909% |+
func9 & func9 18. 368ms 14.180us 14. 800us 14.613us 1257. 0.496% |+
funcl — funcl 9.140ms 1.340us 2.100us 1.818us 5028. 0.492% |«
funcl0 — funcl0 149,906ms | 118, 860us | 119.400us | 119, 257us 1257, 8.070%
funcll — funcll 3.334ms 2.220us 2.720us 2.652us 1257. 0.179% |+
funcl3 & funcl3 16.507ms 12.700us 13.320us 13.132us 1257. 0.225% |+
funcl3 = funcl3 12.321ms 9. 360us 9.980us 9.802us 1257, 0.225% |+
funcl3 -2 funcl3 8.135ms 6.040us 6.660us 6.472us 1257, 0.225% |+
funcl3 L— funcl3 3.952ms 2.700us 3. 340us 3.144us 1257. 0.212% |«
funcl4 — funcl4 1.858ms 1.100us 1.620us 1.478us 1257. 0.100% |+
funcls I funcls 1.938ms 1.100us 1.740us 1.542us 1257. 0.104% |+
funclé6 — funclé 1.859ms 1.100us 1.620us 1.47%us | 1257. 0.100% |+ -
4 n b
See also
W <trace>.STATistic W <trace>.STATistic. TASKTREE
B BMC.STATistic. TREE B CTS.STATistic.ChildTREE
B CTS.STATistic. TREE
A ’Release Information’ in’Legacy Release History’
<trace>.STATistic.Use Use records
Format: <trace>.STATistic.Use [<trace_area>] [/<options>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |

<time_range> [<time_scale>]

<option>: FILE

The specified record(s) are used for performance and nesting analysis. This command can be used, when
some records should be used, which are ignored due to the <trace>.STATistic.lgnore.

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

See also
B <trace>.STATistic

©1989-2024 Lauterbach General Commands Reference Guide T | 483

<trace>.STATistic.Var Statistic of variable accesses

Format: <trace>.STATistic.Var [Y%<format>] [{<list_items>}] [[<option>]
<format>: DEFault | LEN | TimeAuto | TimeFixed
<list_item>: DEFault | ALL | NAME | GROUP | CORE | BARJ[.log | .LINear]

Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE
FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountALL
Address <address> | <range>
Filter <item>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

The command provides a graphical chart of variable accesses.

<format>, Refer to Parameters under <trace>.STATistic.

<list_item>

<option> Refer to Options under <trace>.STATistic.
Example:

; Display a statistic of all variable accesses:
Trace.STATistic.Var /Filter sYmbol mstaticl /Filter CYcle Write

; Display a statistic of write accesses to the mstaticl variable
Trace.STATistic.Var /Filter sYmbol mstaticl /Filter CYcle Write

See also

B <trace>.STATistic

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T

484

<trace>.STREAMCompression Select compression mode for streaming

Format: <trace>.STREAMCompression OFF | LOW | MID | HIGH

LOW . Trace information is streamed compressed to the host computer.

(default) . Trace information is saved to file as received.

MID . Trace information is streamed compressed to the host computer.
. Trace information is zipped before it is saved to file.

HIGH . Trace information is streamed compressed to the host computer.
. Trace information is zipped very compactly before it is saved to file.

OFF . Trace information is streamed un-compressed to the host com-

(for diagnostic puter.

purposes only) . Trace information is saved un-compressed to file.

Example:

Trace.STREAMCompression LOW

Trace.Mode STREAM

See also
B <trace>.STREAMFileLimit B <trace>.STREAMSAVE B <trace>.Mode B |Probe.state

©1989-2024 Lauterbach General Commands Reference Guide T | 485

<trace>.STREAMFILE Specify temporary streaming file path

Format: <trace>.STREAMFILE <file>

Set the path and file name for the temporary streaming file e.g. a high-capacity or high-speed drive
dedicated for this use case.

TRACE32 automatically creates a streaming file which is placed into the TRACES32 temp directory
(OS.PresentTemporaryDirectory()) by default and is named <trace32_instance_id>streama.t32
(0S.1D()).

Example:

Trace.STREAMFILE "d:\temp\mystream.t32" ; specify the location for
; your streaming file
Trace.Mode STREAM ; select the trace mode STREAM
NOTE: The file limit of the streaming file must be set before starting streaming. Later
changes are not taken into account.
See also
B <trace>.STREAMFileLimit B <trace>.Mode B |Probe.state B Onchip.Mode

©1989-2024 Lauterbach General Commands Reference Guide T | 486

<trace>.STREAMFileLimit Set size limit for streaming file

Format: <trace>.STREAMFileLimit <+/- limit_in _bytes>

Sets the maximum size allowed for a streaming file. If the maximum size is exceeded, the trace recording is
stopped and the warning "Streaming trace terminated" is displayed.

The limit value is given in bytes and can have a positive or negative sign:
. Positive value: The maximum size of the streaming file in bytes

. Negative value: Specifies the amount of space to leave on the disk before stopping streaming.
The maximum file size is calculated based on the amount of available disk space at the time of
starting streaming.

The default setting is -1.000.000.000 i.e. stops trace recording when less than a GB of space is left on the
storage medium.

NOTE: The maximum size of the streaming file must be set before starting streaming.
Later changes are not taken into account.

See also
B <trace>.STREAMFILE B <trace>.STREAMCompression
B <trace>.Mode B |Probe.state

B Onchip.Mode

©1989-2024 Lauterbach General Commands Reference Guide T | 487

<trace>.STREAMLOAD

Load streaming file from disk

Format: <trace>.STREAMLOAD <file>

Load a streaming file that was saved with the command Trace.STREAMSAVE to TRACE32.

In order to display trace information the target state at the recording time has to be reconstructed within

TRACE32. This can be complex, especially if target software with an operating system that uses dynamic
memory management to handle processes/tasks (e.g. Linux) is used.

£ BuTrace List

(=[O sl

(& setup...)[1} Goto... || #3Find... |[A chart ||£ Profile ||_E MIPS |[4# More|[X Lesd

run |address

cycle

data symbol i

stw
mrctr
stw
mf xer

STREAMLOAD 4

r

w3} AL LA L L

3,0x80(r1)
3,0x7C(r1)
3,0x78(r1)
3 ,0x74(r1)

3,0x0(r1)
3,rl

r4,0x2

rl,0x6910(r4)

1

» 4 [m»

A After loading the trace data from the streaming file, the STREAMLOAD label in the bottom-left corner
indicates that the contents of a loaded streaming file are being displayed.

Example 1: Reconstruction of the target state at the recording time for a bare metal Cortex-R4 application.

; specify the target CPU

SYSTEM.CPU TMS570PSFC61
SYStem.Option.BigEndian ON

SYStem.Up

; specify ETM settings that were used at the time of recording

ETM.PortSize 16.
ETM.PortMode Bypass
ETM.DataTrace OFF
ETM.ContextID OFF

ETM.ON

; load source code and debug information
Data.LOAD.El1f demo.axf
; load saved streaming file

Trace.STREAMLOAD C:\T32_ARM\r4_max.sad

Trace.List

©1989-2024 Lauterbach

General Commands Reference Guide T

488

Example 2: Reconstruction of the target state at the recording time for NEXUS Power Architecture:

; specify the target CPU

SYStem.CPU MPC5646C

; specify the NEXUS settings that were used at the time of recording
NEXUS.PortSize MDO12

NEXUS.PortMode 1/2

NEXUS.BTM ON

NEXUS.HTM ON

NEXUS.PTCM BL_HTM ON

NEXUS.ON

SYStem.Up

; mapping logical to physical address is 1:1
; load source code and debug information
Data.LOAD.E1f im02 bflx.elf

; load the 0OS Awareness

TASK.ORTI im02_ bflx.ort

; load saved streaming file
Trace.STREAMLOAD my_stream

Trace.List

See also
B <trace>.Mode M <trace>.STREAMSAVE

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 489

<trace>.STREAMSAVE Save streaming file to disk

Format: <trace>.STREAMSAVE <file>

Save the streaming file to a permanent file. Use Trace.STREAMLOAD to load this file for analysis.

The contents of the streaming file are in a proprietary format and not intended for use in external

applications.
<file> The default extension for the streaming file is *.sad.
See also
B <trace>.STREAMCompression B <trace>.STREAMLOAD
B <trace>.Mode B <trace>.SAVE

A ’Release Information’ in’Legacy Release History’

<trace>.TCount Set trigger counter
Format: Integrator.TCount [<value>]
<values: 0. ... 16777215.

Sets the number of trigger events that will be ignored by the trace or logic analyzer, before a trigger event
ends the recording (state: break). A counter value zero means that the recording stops immediately after the
first trigger. A value of 1 halts the recording at the second trigger event, and so on.

Trigger Signal
\ / \ /)

| I
| | Trigger
Trigger Counter =0 | Trigger Counter = 1 | Counter =2
- - -~

See also
B [Probe.state

©1989-2024 Lauterbach General Commands Reference Guide T | 490

<trace>.TDelay Trigger delay

Format: <trace>.TDelay <time> | <cycles> | <percent>%
ETM.TDelay <value> (deprecated)

<time>: 0... 200.s
<percent>: 0 ... 1000%
<cycles>: 0 ... 4000000000.

Selects the delay time between trigger point and break (end of recording). Use this command in order to
record events that occurred after the trigger point.

The trigger delay may also be defined in percent of the trace buffer size. The delay can be larger (up to 10x)
than the total trace buffer size. Logic analyzers also support setting a delay time.

Analyzer.TDelay 40% ; trigger delay is 40% of trace depth.

Selects the delay time between trigger point and break of the port analyzer. The time can be larger than the
time for a full sample of the analyzer. The trigger delay time may be defined in percent relating to the total
trace time.

ARM Pretrigg.Delay Trigger point TDelay time Break

Trigger system active li

Sampling I

©1989-2024 Lauterbach General Commands Reference Guide T | 491

With a mouse click to the corresponding area in the port analyzer state window this command can be

executed too.

Port.TDelay 10.ms

Port.TDelay 50%

Port.TDelay 99%

Port.TDelay 200.

Trigger

delay

0% Trigger
Trace

25% Trigger
Trace

50% Trigger
Trace

75% Trigger
Trace

100% Trigger
Trace

200% Trigger
Trace

See also

7

point

point

point

point

point

point

the trigger delay is 10 ms

the trigger point is in the mid of the trace
memory

the trigger point is at the beginning to the trace
memory

the trigger point 200 record before end of trace

—
—
—
R
R

-

B |Probe.state

©1989-2024 Lauterbach

General Commands Reference Guide T | 492

<trace>.TERMination Use trace line termination of preprocessor

Format: <trace>.TERMination ON | OFF

By default the trace line termination of the preprocessor is used during a trace capture. Undefinable
FLOWERRORSs may occur if the output drivers of the CPU are not strong enough. In this case it is
recommended to switch the trace line termination OFF.

©1989-2024 Lauterbach General Commands Reference Guide T | 493

<trace>.TestFocus Test trace port recording

Format: <trace>.TestFocus [<address_range>] [/<option>]

<option>: Accumulate
Config
KEEP
ALTERNATE
NoTraceControl

The command Trace.TestFocus tests the recording at a high-speed trace port.

The command Trace.TestFocus can be used if:

. The program execution is stopped.

To test the trace port, the test pattern generator of the trace port is used if available. Otherwise, a test
program is loaded and started by TRACE32.

J The program execution and the trace recording is running.

Testing the trace port while the application program is running might be helpful to detect trace
port problems caused by the application program.

The trace data from the application program are used to test the trace port. Here a reduced test
scenario is processed that checks the correctness of the program flow recording and for short-
circuits between the trace port lines. This test requires that the program code is loaded to the
virtual memory.

Data.LOAD.El1f arm.elf /PlusVM ; Load the application code
; to the target memories and
; to the virtual memory of
; TRACE32

. The program execution is running and the trace recording is stopped.

To test the trace port, the test pattern generator of the trace port is used if available. Otherwise, the
trace data from the application program are used.

If a test program is used, TRACE32 attempts to load the test program to the memory addressed by the PC
or the stack pointer. It is also possible to define an <address_range> for the test program.

Trace.TestFocus ; start trace port test

Trace.AutoFocus 0x24000000++0xfff ; start the test and load
; test program to address
; 0x24000000

If TRACES2 is unable to load the test program the following error message is displayed:
“Don’‘t know where to execute the test code”.

©1989-2024 Lauterbach General Commands Reference Guide T | 494

By default, the original RAM content is restored after the trace port test and the trace recording is deleted.

Accumulate

Config

KEEP

ALTERNATE

NoTraceControl

If the application program varies the CPU clock frequency, this affects
also the trace port. In such a case it is recommended to overlay the test
results for all relevant CPU clock frequencies by using the option
/Accumulate.

Allows to define a RAM address range for the download of the test
program.

After a trace port test the trace is cleared and any loaded test program is
removed from the target RAM.

With the option /KEEP, the test trace is not cleared and can be viewed
with the Trace.List command. If a test program was loaded by TRACE32,
it also remains in the target RAM.

If the trace port provides a test pattern generator, it is always used for the
test. The option /ALTERNATE forces TRACE32 to use its own test
program.

Informs the TRACE32 software that the trace control signal is not
available on the trace connector.

; advise the command Trace.TestFocus to download the test program
; always to the address range 0x24000000++0xfff
Trace.TestFocus 0x24000000++0xfff /Config

The result of the command Trace.TestFocus can be processed in a PRACTICE script as follows:

Trace.TestFocus

IF FOUND()

PRINT %ERROR "Trace port test failed"

ELSE

PRINT "Trace port recording ok"

©1989-2024 Lauterbach

General Commands Reference Guide T | 495

Preprocessor with AutoFocus Technology

The Trace.TestFocus command calls the data eye finder for the current hardware configuration of a
preprocessor with AUTOFOCUS technology and verifies the correctness of traced test data. In contrast to
Trace.AutoFocus, the preprocessor configuration remains unchanged.

A complete trace port test executes the following steps:

1. The data eye finder is called. The source for the trace data for the test are the trace port’s pattern
generator, a test program or the application program.

2. When the eye finder is done, the test is started once again to verify the correctness of the trace
recording.

3. The data eyes resulting from the <trace>.TestFocus command can be viewed in the
<trace>.ShowFocus window.

See also

B <trace>.TestFocusClockEye B <trace>.ShowFocus

B <trace>.ShowFocusClockEye B <trace>.ShowFocusEye

B <trace>.TestFocusEye 1 AUTOFOCUS.FREQUENCY()

0 AUTOFOCUS.OK()

A ’Release Information’ in’Legacy Release History’

<trace>.TestFocusClockEye Scan clock eye
Format: <trace>.TestFocusClockEye [<address_range>] [[<option>]
<option>: Accumulate | Config | KEEP | ALTERNATE | Utilisation | NoTraceControl

Scans the clock eye. To view the result, use the command Trace.ShowFocusClockEye.

NOTE: The NEXUS AutoFocus adapter does not support this feature.
<option> For a description of the options, see Trace.TestFocus.
See also
B <trace>.TestFocus B <trace>.ShowFocus
B <trace>.ShowFocusClockEye B <trace>.ShowFocusEye

B <trace>.TestFocusEye

©1989-2024 Lauterbach General Commands Reference Guide T | 496

<trace>.TestFocusEye Check signal integrity

Format: <trace>.TestFocusEye [<address_range>] [[<option>]

<option>: Accumulate
Config
KEEP
ALTERNATE
NoTraceControl

Scans the data eye to determine the integrity of the electrical trace signals.

The command Trace.TestFocusEye starts an eye finder to test the quality of the trace signals, if a
preprocessor with AUTOFOCUS technology is used. The test result can be displayed with the command
Trace.ShowFocusEye. If the result shows that an individual trace signal has a significantly smaller data eye
than other signals, the hardware layout should be checked to see if this signal shows any unusual features.

The test procedure and the options used by the command Trace.TestFocusEye are similar to the
command Trace.TestFocus.

<option> For a description of the options, see Trace.TestFocus.

The command Trace.TestFocusEye can also be used with PowerTrace Serial. For this tool no additional
parameters (e.g. <address_range>) or options are available.

See also
B <trace>.TestFocus B <trace>.TestFocusClockEye
B <trace>.ShowFocus B <trace>.ShowFocusClockEye

B <trace>.ShowFocusEye

A ’'Release Information’ in’Legacy Release History’

<trace>.TestUtilization Tests trace port utilization
Format: <trace>.TestUtilization [/<option>]
<options: KEEP | CONTENTS

Tests trace port utilization. The result is printed to the AREA window. This command is supported for the
trace methods Analyzer, CAnalyzer and Onchip.

This command is only supported for ETM trace.

©1989-2024 Lauterbach General Commands Reference Guide T | 497

<trace>.THreshold Optimize threshold for trace lines

Format 1: <trace>.THreshold VCC | CLOCK | </evel>
(Preprocessor for ARM-ETM with AUTOFOCUS only)

Format 2: <trace>.THreshold <clock> <data>

The command Trace.THreshold can be used to optimize the threshold level for the trace lines sampled via
a TRACE32-Preprocessor (e.g. ARM-ETM, OCDS Level 2, AUD ...). The optimization of the threshold level
should result in less errors in the trace recording.

VCC The preprocessor and the TRACE32 software measure the VCC of the
target. 1/2 VCC is then automatically used as the threshold level for the trace
lines. The result is also displayed in the THreshold field of the <trace>.state
window.

CLOCK The threshold level is changed until the duty cycle of the trace clock reaches
a ratio of 1:1. This setting is only recommended if the trace clock has a duty
cycle of 1:1. The result is displayed in the THreshold field of the
<trace>.state window.

<level> The threshold level can be entered directly.

Trace.THreshold VCC
Trace.THreshold CLOCK

Trace.THreshold 1.6 ; the unit is Volt

Enhanced parameters for the Preprocessor for ARM-ETM with AUTOFOCUS:

<clock> <data>

For the Preprocessor for ARM-ETM with AUTOFOCUS different threshold levels can be defined for the
clock and the data lines

Trace.THreshold 0.86 0.79 ; the unit is Volt

©1989-2024 Lauterbach General Commands Reference Guide T | 498

<trace>.Timing

Waveform of trace buffer

Format:

<option>:

<trace>.Timing [<record_range>] [{<items>}] [/<options>]

FILE
Track
RecScale
TimeScale
TimeZero
TimeREF

Displays the trace memory contents like command <trace>.List, but in form of a timing display. As a default
the external trigger channels are displayed.

FILE

Track

RecScale

TimeScale

TimeZero

TimeREF

Display trace memory contents loaded with Trace.FILE.

The cursor in the <trace>.Timing window follows the cursor movement
in other trace windows. Default is a time tracking. If no time information is
available tracking to record number is performed.

The zoom factor of the <trace>.Timing window is retained, even if the
trace content changes.

Display trace in fixed record raster. This is the default.

Display trace as true time display, time relative to the trigger point.

Display trace as true time display, time relative to zero.

Display trace as true time display, time relative to the reference point.

i BuTrace.Timing EI@
[Zsep... |[=4name...[A Goto...|[#iFind... [O In | »00ut)[ERFul][Coff | ®@Am || @ Inic || € Swepshot| used: | 851592.
. .441500000s -7.441000000s -7.440500000s -7.440000000s

line | | 1 1 1 |
n. ATOMSLO_3 4y =
n. ATOMSLO_4 gy R Z Z Z Z P T Z Z Z Z —
n. ATOMSLO_S Hy
n-ATONSLO.S 6l — : :
n. ATOMSLO_7 b — : ' — Z Z Z Z Z Z L Z 1=

A 4 (| ¢ 4 3
©1989-2024 Lauterbach General Commands Reference Guide T | 499

Buttons
ZoomInT Zooms in Trace by a factor of 2.
Zoom Out T Zooms out Trace by a factor of 2.
Zoom Full T Display the complete trace buffer in the window.
Goto ... Open an <trace>.GOTO dialog box.
Find ... Open an <trace>.Find dialog box.
Set Ref Set an analyzer reference point to the current record.
Set Zero Set the global time reference to the current record.
View Display all information about the current record (<trace>.View).
List Open an <trace>.List window.

Examples:

Open Port Analyzer timing window in standard display format
E: :Port.Timing

~.

; Open Port Analyzer timing window and display last file loaded with
; " Port.FILE <file>"
E::Port.Timing /FILE

; Open Port Analyzer timing window starting at record -100. in standard
; display format

E::Port.Timing -100. DEFault
See also
B <trace>.List B <trace>.REF
B <trace>.View B [Probe.state
Bl RunTime B RunTime.state
1 Analyzer.RECORD.ADDRESS() 1 Analyzer.RECORD.DATA()
1 Analyzer.RECORD.OFFSET() 1 Analyzer.RECORDS()

1 Analyzer.REF()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 500

<trace>.TMode Select trigger mode

Format: <trace>.TMode [High | Low | Rising | Falling]

Selects the trigger condition, edge or level trigger and the corresponding line polarity. The edge trigger is
asynchronous and needs a minimum pulse width of 20 ns.

Example:
E::Port.TMode Rising
E: :Port.TSELect Port
E: :Port.SELect Port.00 ; trigger on the rising edge of P.00
E::Port.TDhelay 100.us ; sample till 100.us after trigger
<trace>.TraceCONNECT Select on-chip peripheral sink
Format: <trace>.TraceCONNECT <component>

<trace>.TraceCONNECT NONE
<trace>.TraceCONNECT AUTO

Default: AUTO.
Selects the on-chip peripheral used as trace sink on the SoC.
Example: The two ETFs of an ARM CoreSight based SoC are selected as trace sink.

;note that the two approaches to select the first ETF are equivalent:

Onchip.TraceCONNECT ETF1 ; selects the ETF1l as onchip-trace sink
;or

Trace.METHOD Onchip

Trace.TraceCONNECT ETF1 ; selects the ETF1l as onchip-trace sink

;note that the two approaches to select the second ETF are equivalent:

Onchip.TraceCONNECT ETF2 ; selects the ETF2 as onchip-trace sink
;or

Trace.METHOD Onchip

Trace.TraceCONNECT ETF2 ; selects the ETF2 as onchip-trace sink

©1989-2024 Lauterbach General Commands Reference Guide T | 501

<trace>.TRACK Set tracking record

Format: <trace>.TRACK <time> | <record> | " <trace_bookmark>"

Sets the tracking record to the specified trace bookmark, time, or record number. The blue cursor moves to
the specified destination in all Trace.* windows opened with the /Track option. All other Trace.* windows
opened without the /[Track option do not respond to the <trace>.TRACK command.

Example:

;set the tracking record to the record -12000.
Trace.TRACK -12000.

;without /Track: this window does not respond to the Trace.TRACK command
Trace.List $TimeFixed TIme.ZERO DEFault

;with /Track: this window responds to the Trace.TRACK command, i.e. the
;blue cursor selects the tracking record -12000.
Trace.List $TimeFixed TIme.ZERO DEFault /Track

;display only selected trace information about the record currently
;selected in the Trace.List ... /Track window
Trace.View $TimeFixed TIme.ZERO DEFault /Track

See also
B RunTime H RunTime.state B <trace>.GOTO B BookMark
B |Probe.state 1 TRACK.ADDRESS() 1 TRACK.RECORD() 1 TRACK.TIME()
<trace>.TRIGGER Trigger the trace
Format: <trace>.TRIGGER

Forces a manual trigger.

See also

W Trace

©1989-2024 Lauterbach General Commands Reference Guide T | 502

<trace>.TSELect Select trigger source

Format: <trace>.TSELect [<source>]

<source>: BusA [ON | OFF]
EXT [ON | OFF]

Selects the trigger source for the port analyzer.

BusA Trigger lines on the trigger bus. This lines may be controlled by the state
analyzer, by the timing analyzer or the pattern generator.

EXT ON | OFF The external trigger input on the ETM connector is turned off by default.
Analyzer.TSELect EXT can enable or disable the trigger source.

See also

W Trace

©1989-2024 Lauterbach General Commands Reference Guide T | 503

<trace>.View Display single record

Format: <trace>.View [<record>] [<channels>] [/<options>]
<option>: FILE
Track

Displays a single record in a more detailed format. The syntax of the channel definitions is the same as for
the <trace>.List command. Without arguments all channels are displayed.

Example 1:

;display all information about a specific record, here record -12000.
Trace.View -12000.

;display only selected trace information about a specific record
Trace.View -12000. TIme.ZERO DEFault CORE

Example 2:

;open a Trace.List window with all records. Display the ti.zero column
;as the first column, followed by the DEFault columns
Trace.List TIme.ZERO DEFault /Track

;display only selected trace information about the record currently
;selected in the Trace.List window
Trace.View TIme.Zero DEFault CORE /Track

1, BuTraceView TImeZero DEFault CORE /Track EI@
[& s, | Goto... || F4Find... || ist | 2= Timing][i Chart |[BEProfile || & Prev || w Next |
= 0000005 165165 | D:000022CA rd-Tong O000BEAT "\ arm e arm ST Svernac i

[1]

See also

B <trace>.List

B <trace>.Timing

B RunTime

1 Analyzer.RECORD.ADDRESS()
1 Analyzer.RECORD.OFFSET()
1 Analyzer.REF()

A ’Release Information’ in’Legacy Release History’

]

B <trace>.REF

B [Probe.state

B RunTime.state

1 Analyzer.RECORD.DATA()
1 Analyzer.RECORDS()

1 Analyzer.SIZE()

©1989-2024 Lauterbach

General Commands Reference Guide T

504

<trace>.ZERO Align timestamps of trace and timing analyzers

Format: <trace>.ZERO [<time> | <record> | "<trace_bookmark>"]

Use this command to align the zero time point for trace and timing analyzer sources with time bases of
different origin.

<time> Moves the ZERO point by specified time.
<record> Sets the ZERO point to the time index of the specified record number.
<bookmark> Sets the ZERO point to the time index of the specified bookmark location.

You can create trace bookmarks with the <trace>.BookMark command.

no parameter Reset zero time point back to initial location.

The table below shows the different sources for time information. As the different sources are not related,
they all have an individual zero time point.

Timestamp Trace data source Original zero time point

Timestamps Analyzer (no processor Permanently set to beginning of first

generated by generated timestamps) debug session or trace recording after

TRACES2 hardware PowerProbe, Integrator, starting up TRACE32 PowerView.
IProbe, etc. All trace data sources using TRACE32

hardware generated timestamps have a
common zero time point.

Timestamps Onchip Trace Depends on CPU architecture and trace
generated by target Analyzer Trace (with protocol.
processor processor generated Starting a new trace recording usually
timestamps enabled) moves the zero time point to a new
location.
Timestamps loaded Trace.LOAD <file> /FILE Same as in original recording
from files.

Due to the different zero time points of the various data sources, it is required to align the zero time
points, before trace or timing recordings can be observed in a correlated manner. This is usually
achieved by locating a common event in the different sources and selecting this event as common zero
time point.

See also
B |Probe.state B RunTime H RunTime.state

©1989-2024 Lauterbach General Commands Reference Guide T | 505

TRACEPORT

TRACEPORT Configure trace hardware

Using the TRACEPORT command group, you can configure the communication between the target trace
port and the TRACE32 PowerTrace tool. Logically the TRACEPORT command group is located between
the physical pins of the target platform and the TRACES32 trace input stage (preprocessor), see illustration

below.
Trace Trace
source source
1 2
| |
|
Target
Trace (Example)
routing
TRACEPORT
Communication
TRACE32
PowerTrace tool with preprocessor TRACE32 PowerView
(GUI)

For trace port configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the

TRACEPORT.state window.
¢ B:TRACEPORT state =n| Wl <
commands configuration state
[REset || - LanecCount Type: AURORA
[&Tace | [AUTO (1lane) v] Source: TPIU
2 List LaneSpeed Destination: Analyzer

(AUTO (1500Mbps) ~|

¥ advanced
¥ pin mapping
See also
B TRACEPORT.EndsKiP B TRACEPORT.LaneCount
B TRACEPORT.LanePolarity B TRACEPORT.LaneSpeed
B TRACEPORT.MsgBItEndian B TRACEPORT.MsgBYteEndian
B TRACEPORT.MsgLOngEndian B TRACEPORT.MsgWOrdEndian
B TRACEPORT.OSCFrequency B TRACEPORT.PinReMap
B TRACEPORT.RefCLocK B TRACEPORT.RESet

©1989-2024 Lauterbach General Commands Reference Guide T

506

B TRACEPORT.StartsKiP B TRACEPORT.state
B SYStem.CONFIG.TRACEPORT

A 'TRACEPORT Function’ in 'General Function Reference’
A ’'Trace Port Utilization’ in ’PowerTrace Serial User's Guide’

TRACEPORT.EndsKiP Define number of bytes skipped at the end of frame

For serial trace ports (AURORA) only

Format: TRACEPORT.EndsKiP [<option>]

<option>: AUTO 101218

Allows to cut off data bytes at the end of each data packet or data frame. Depending on the target
configuration, the last bytes of a frame contain CRC information, which is not used by TRACE32. With the
command TRACEPORT.EndsKiP it is possible to remove the unused bytes.

AUTO TRACE32 defines the number of bytes to be cut.
0 Don’t cut any bytes.
2 Cut 2 bytes at the end of each frame.
8 Cut 8 bytes at the end of each frame.
See also
B TRACEPORT B TRACEPORT.state

©1989-2024 Lauterbach General Commands Reference Guide T | 507

TRACEPORT.LaneCount Select port size of the trace port

For serial trace ports (AURORA/PCle) only

Format: TRACEPORT.LaneCount <size>

<Size>: AUTO | 1Lane | 2Lane | 3Lane | 4Lane | 5Lane | 6Lane | 7Lane | 8Lane

Specifies the number of used lanes for the trace port. The number must match the target configuration, else
the trace link between the target and the TRACE32 hardware cannot be established.

AUTO TRACES32 defines the lane count.
1Lane, 2Lane, Number of used lanes.
3Lane, 4Lane, In case of PCle the lane setup will be done automatically.

5Lane, 6Lane,
7Lane, 8Lane

See also
B TRACEPORT B TRACEPORT.state O TRACEPORT.LaneCount()
TRACEPORT.LanePolarity Set polarity for each lane of the trace port
For serial trace ports (AURORA) only
Format: TRACEPORT.LanePolarity <value>
<value>: AUTO | <bit mask>

Allows to change the polarity for each lane separately. This is necessary when the p/n-signals of a lane are
crossed due to e.g. layout reasons.

AUTO TRACES32 defines the value.

Oy... Polarity defined by user bit mask depending on the lane count.

©1989-2024 Lauterbach General Commands Reference Guide T | 508

Example:

TRACEPORT.LaneCount 4Lane
TRACEPORT.LanePolarity 0y0101 ; polarity changed for Lane 0 and 2

TRACEPORT.LaneCount 2Lane
TRACEPORT.LanePolarity 0Oyll ; polarity changed for Lane 0 and 1

See also

B TRACEPORT

B TRACEPORT.state

TRACEPORT.LaneSpeed Inform debugger about trace port rate

For serial trace ports (AURORA/PCle) only

Format:

<data_rate>:
For AURORA only

<data_rate>:
For PCle only

TRACEPORT.LaneSpeed <data_rate>

AUTO | 625Mbps | 750Mbps | 850Mbps | 931Mbps | 1000Mbps | 1040Mbps |
1250Mbps | 1500Mbps | 1563Mbps | 1700Mbps | 1862Mbps | 2000Mbps
2079Mbps | 2500Mbps | 3000Mbps | 3125Mbps | 3400Mbps | 3724Mbps |
4000Mbps | 4158Mbps | 4250Mbps | 5000Mbps | 6000Mbps | 6250Mbps |
6800Mbps | 7448Mbps | 8000Mbps | 10000Mbps | 1075Mbps | 12000Mbps |
12500Mbps | 2150Mbps | 2340Mbps | 4300Mpbs

GEN1 | GEN2 | GEN3

Informs the debugger about the lane <data_rate>. The data rate must match the configuration on the target
side, else the link between the target and the TRACES32 hardware (Aurora trace channel) cannot be

established.

Remember that not all TRACE32 PowerTrace tools support all data rates.
Contact support@lauterbach.com if a lane speed is not supported.

AUTO TRACE32 defines the value.

625Mbps, ... Data rate in megabits per second.

GENT, ... Limits the data rate of the PCle link to 2500Mbps (GEN1), 5000Mbps
(GEN2) or 8000Mbps (GENS3).

©1989-2024 Lauterbach

General Commands Reference Guide T | 509

Example:

TRACEPORT . LaneSpeed 3125Mbps

TRACEPORT.LaneSpeed 3125M ; M is the short form of Mbps
See also
B TRACEPORT B TRACEPORT.state
TRACEPORT.MsgBIEndian Change bit-order within each byte
For serial trace ports (AURORA) only
Format: TRACEPORT.MsgBItEndian [<option>]
<option>: AUTO | LittleEndian | BigEndian

Allows you to change the bit order of the payload data if the bit order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

AUTO TRACE32 defines the value.
LittleEndian Bit order is normal ([31-24],[23-16],[15-8],[7-0]).
BigEndian Bit order is reversed ([24-31],[16-23],[8-15],[0-7]).
See also
B TRACEPORT B TRACEPORT.state

©1989-2024 Lauterbach General Commands Reference Guide T | 510

TRACEPORT.MsgBYteEndian Change byte-order within each word

For serial trace ports (AURORA) only

Format: TRACEPORT.MsgBYteEndian [<option>]

<option>: AUTO | LittleEndian | BigEndian

Allows you to change the byte order of the payload data if the byte order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

AUTO TRACE32 defines the value.
LittleEndian Byte order is normal ([31-24],[23-16],[15-8],[7-0]).
BigEndian Byte order is reversed ([23-16],[31-24],[7-0],[15-8]).
See also
B TRACEPORT B TRACEPORT state
TRACEPORT.MsgLONngEnNdian Change dword-order within each qword
For serial trace ports (AURORA) only
Format: TRACEPORT.MsgLONngEnNdian [<option>]
<option>: AUTO | LittleEndian | BigEndian

Allows you to change the byte order of the payload data if the byte order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

AUTO TRACE32 defines the value.
LittleEndian Double-word order is normal ([63-32],[31-0]).
BigEndian Double-word order is reversed ([31-0],[63-32]).
See also
B TRACEPORT B TRACEPORT state

©1989-2024 Lauterbach General Commands Reference Guide T | 511

TRACEPORT.MsgWOrdEndian Change word-order within each dword

For serial trace ports (AURORA) only

Format: TRACEPORT.MsgWOrdEndian [<option>]

<option>: AUTO | LittleEndian | BigEndian

Allows you to change the byte order of the payload data if the byte order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

AUTO TRACE32 defines the value.
LittleEndian Word order is normal ([31-16],[15-0]).
BigEndian Word order is reversed ([15-0],[31-16]).
See also
B TRACEPORT B TRACEPORT state
TRACEPORT.OSCFrequency Set OSC clock frequency
For serial trace ports (AURORA) only
Format: TRACEPORT.OSCFrequency <value>
<value>: AUTO | <frequency in kHz>

Allows you to set the OSC clock frequency. To become active it is required to select reference clock source
OSC. Please refer to TRACEPORT.RefCLocK.

See also
B TRACEPORT B TRACEPORT.state

©1989-2024 Lauterbach General Commands Reference Guide T | 512

TRACEPORT.P

inReMap Adapt the lane order of the trace port

For serial trace ports (AURORA) only

Format:

<source_
lane>:

<destination_
lane>:

<option>:

TRACEPORT.PinReMap <source_lane> <destination_lane> | <option>

ol1l...1<n>

AUTO |0 [11[...1<n>

RESET

Adapts the lane order of the trace port to the lane order of your target. You need the
TRACEPORT.PinReMap command only in rare cases where the lane orders of trace port and target
actually differ from each other.

AUTO TRACES32 defines the values.
RESET Sets all values to AUTO again.
<source_lane> Number of the target lane which needs to be remapped.
<destination_lane> Number of the TRACE32 tool lane which will get the new <source_lane>.
Number <n>is TRACES32 tool dependent; e.g. for PowerTrace Serial <n>
can be 5 or 7 depending on the used tool connector.
Example:
TRACEPORT.state /PinReMap ;optionally, open the TRACEPORT.state window
TRACEPORT.LaneCount 6Lane ;the number of used lanes for the trace port
TRACEPORT.PinReMap 4. 5. ;map source lane 4. to destination lane 5.
TRACEPORT.PinReMap 5. 4. ;map source lane 5. to destination lane 4.

Trace | |6Lane

¢ B:TRACEPORT state /PinReMap =n| Wl <
commands configuration PinReMap state
| RESet | LaneCount src dest Type: AURORA
- ATl Source: TPIU

[st || - LaneSpeed

ATDIL) Destination: Analyzer

[auTo

(1500Mbps) | AT {2)

L EN ENENENE

Bl o RO

ATDI3)
A =
¥ advanced 5
A pin mapping 4
See also

B TRACEPORT

Bl TRACEPORT.state

©1989-2024 Lauterbach General Commands Reference Guide T | 513

TRACEPORT.RefCLocK Set up reference clock for trace port

For serial trace ports (AURORA) only

Format: TRACEPORT.RefCLocK [<option>]

<option>: AUTO |OFF [OSC | 1/111/211/1012/2511/2011/25|1/3011/34 | 1/40 | 1/50

Defines the reference clock frequency the serial trace hardware outputs to the target. The availability of
parameters and the default values depend on the architecture:

. PowerPC: not configurable
. TriCore: not configurable

. RH850: not configurable

. ARM: configurable

AUTO (default) TRACE32 defines the value.
OFF TRACE32 does not send any reference clock to the target.
0OSsC An asynchronous oscillator will be enabled. Its frequency is

programmable. Refer to TRACEPORT.OSCFrequency.

1/<x> A synchronous clock source will be enabled. Its dividers generate a
reference clock as a fraction of the bit clock (lane speed), e.g.
100MHz at 5Gbps with divider 1/50. Once a divider is selected, the
reference clock will automatically change with the lane speed.

See also
H TRACEPORT B TRACEPORT.state
TRACEPORT.RESet Reset trace port configuration
Format: TRACEPORT.RESet

Resets the trace port configuration to its default values (AUTO).

See also
B TRACEPORT B TRACEPORT.state

©1989-2024 Lauterbach General Commands Reference Guide T | 514

TRACEPORT.StartsKiP Define number of bytes skipped at the start of frame

Format: TRACEPORT.StartsKiP [<option>]

<option>: AUTO |01

Allows to cut off leading bytes of each data packet or data frame. Only a few targets requires this due to
protocol irregularities.

AUTO (default) TRACE32 defines the value.

0 No data byte will be cut off.

1 The first data byte of each data frame will be cut off.
See also
B TRACEPORT B TRACEPORT.state

©1989-2024 Lauterbach General Commands Reference Guide T | 515

TRACEPORT.state

Display trace port configuration window

Format:

<gui_option>:

TRACEPORT.state [/<gui_option>]

ADVanced

PinReMap

Displays the TRACEPORT.state window, where you can configure the communication between the target
trace port and the TRACES32 PowerTrace tool.

commands

[Reset)

&% B:TRACEPORT state

configuration
LaneCount

(AUTO (1Lane)

d |

&Tmce |

i List

m

pin mapping

&«

&«

LaneSpeed

[AUTO (1500Mbps)

d |

[F=5 Eol 5
state
Type: AURORA
Source: TPIU
Destination: Analyzer

A For descriptions of the commands in the TRACEPORT.state window, please refer to the
TRACEPORT.* commands in this chapter.
Example: For information about the RESet button, see TRACEPORT.RESet.

B Click advanced and pin mapping to display more configuration options in the window.

ADVanced Extends the list of options in the configuration section.
PinReMap Displays the PinReMap section. For an example, see
TRACEPORT.PinReMap.
See also

B TRACEPORT

B TRACEPORT.LaneCount
B TRACEPORT.LaneSpeed
B TRACEPORT.MsgBYteEndian
B TRACEPORT.MsgWOrdEndian
B TRACEPORT.PinReMap

B TRACEPORT.RESet

B TRACEPORT.EndsKiP

B TRACEPORT.LanePolarity

B TRACEPORT.MsgBItEndian
B TRACEPORT.MsgLOngEndian
B TRACEPORT.OSCFrequency
B TRACEPORT.RefCLocK

B TRACEPORT.StartsKiP

©1989-2024 Lauterbach

General Commands Reference Guide T

516

TRANSIation

TRANSIation Debugger address translation
See also
B TRANSIation.AutoEnable B TRANSIation.AutoSCAN B TRANSIation.CacheFlush HW TRANSIation.CLEANUP
Bl TRANSIation.COMMON B TRANSIation.Create B TRANSIation.CreatelD B TRANSIation.CreateTab
B TRANSIation.Delete B TRANSIation.DeletelD B TRANSIation.List B TRANSIation.ListID
B TRANSIation.NoProtect B TRANSIation.OFF B TRANSIation.ON B TRANSIation.PAGER
B TRANSIation.Protect B TRANSIation.RESet B TRANSIation.SCANall B TRANSIation.ScanlD
B TRANSIation.SHADOW B TRANSIation.state B TRANSIation.TableWalk B TRANSIation.TIbAutoScan
B TRANSIation. TRANSparent B MMU B MMU.FORMAT 1J TRANS.ENABLE()
1 TRANS.INTERMEDIATE() 1 TRANS.INTERMEDIATEEX() @ TRANS.LINEAR() 1 TRANS.LINEAREX()
1 TRANS.LOGICAL() 1J TRANS.PHYSICAL() 1 TRANS.PHYSICALEX() 1 TRANS.TABLEWALK()
A 'TRANS Functions (Debugger Address Translation)’ in ’General Function Reference’
A ’Release Information’ in’Legacy Release History’
Overview TRANSIation
NOTE: Formerly, the MMU command group was used for address translation inside the

hardware MMUs.

debugger. With the wide-spread adoption of hardware MMUs, it was necessary
to rename this command group to TRANSIation to avoid confusion with

What is the difference between the command groups...?

TRANSIation

MMU

Configures and controls the TRACE32 internal
debugger address translation.

This feature is used to mimic the translations
within the real hardware MMU so that the
debugger can access code and data of any OS
process at any time.

Lets you access and view the real hardware
MMU.

The TRANSIation commands are used for the following purposes:

J To debug an OS that runs several processes at the same logical addresses (e.g. Linux, PikeOS,
etc.).

. To allow a transparent display of hardware translation tables and OS-based translation tables.

. To provide the user with unrestricted access to the target memory using either logical or physical
addresses.

©1989-2024 Lauterbach

General Commands Reference Guide T | 517

MMU Tables

To apply the MMU commands properly, it is important to differentiate between the following MMU table
types:

1. The hardware MMU table

The hardware MMU usually consists of registers and/or dedicated memory areas and is held in the
CPU. It holds the translation tables that are used by the CPU to translate the logical addresses used
by the CPU into the physical addresses required for memory accesses.

In OSs like Linux, PikeOS, etc. each process has its own address space. Usually all processes start
at the logical address 0x0. The result is that, while a process is running, the process has only access
to its own address space and to the address space of the kernel.

The hardware MMU is programmed by the scheduler for this view. If, for example, process 2 is
running, the hardware MMU provides only translation tables for process 2 and the kernel.

Logical addresses Physical addresses

Kernel Kernel
Process 3
Process 1

| Process 3

Process 2
Process 2
Process 1

- If the OS uses demand paging, the hardware MMU table is extended at each page fault.

- At each process switch the hardware MMU is reprogrammed so that the logical address
space of the current process can be translated to the physical address area.

2. The software/OS MMU table

If an OS like Linux, PikeOS etc. is used, the OS maintains the translation tables for all processes,
because the OS is responsible for the reprogramming of the hardware MMU on a process switch.

The hardware MMU is usually only a subset of the OS MMU tables.
3. The debugger MMU table

If an OS that runs several processes at the same logical addresses (e.g. Linux) is used, the hardware
MMU in the CPU only holds translation tables that allow the debugger memory accesses to the
code/data of the kernel and the currently running process.

©1989-2024 Lauterbach General Commands Reference Guide T | 518

The debugger can access code/data from a not currently running process only with the help of the
OS MMU tables. Based on the information held in the translation tables of the OS MMU, the
debugger can translate any logical address to a physical address and that way perform a memory
access without changing the hardware MMU. If demand paging is used, the OS MMU table contains
the translation from the logical to the physical address only if the page was loaded before.

Reading the OS MMU tables on every memory access in quite time consuming. Therefore the
debugger can scan the OS MMU tables once and re-use the scan for all following accesses.

The OS MMU table is scanned into the so-called debugger MMU. The debugger MMU provides also
the flexibility to add user-defined entries.

Please be aware that as soon as the debugger MMU is active, all
memory accesses performed by the debugger use only the information of
the debugger MMU.

Please be aware that the OS MMU tables have to be scanned again if the
OS has added or removed entries from these tables while running.

©1989-2024 Lauterbach General Commands Reference Guide T | 519

TRANSIation.AutoEnable Auto-enable debugger MMU translation

Format: TRANSIation.AutoEnable

Auto-enable the debugger address translation if the CPU’s hardware MMU is enabled. When the hardware
MMU is on, the debugger also performs translations. When the hardware MMU is off, the debugger performs
no translation and treats all logical addresses as physical addresses. The state of the hardware MMU is read
from the CPU-specific MMU-enable bit in a system control register. This command is only available for
certain CPUs.

See also
B TRANSIation B TRANSIation.List B TRANSIation.OFF B TRANSIation.ON
TRANSIation.AutoSCAN Autoscan feature for debugger MMU
Format: TRANSIation.AutoSCAN ON | OFF

If the operating system adds or removes entries from its page table while running those changes are not
performed within the debugger MMU. Trying to access those newly created logical addresses with the
debugger may cause an error. If TRANSIation.AutoSCAN is set to ON the translation tables hold by the
operating system are automatically scanned into the debugger MMU, if the debugger fails to access a logical

address.
TRANSIation.AutoSCAN scans only pages that are already present.
Depending on the JTAG speed of the processor and on the number of
processes in the system scanning the translation tables can take some
9, time. In this cases autoscanning may be more disturbing than helping.
See also
B TRANSIation B TRANSIation.List

©1989-2024 Lauterbach General Commands Reference Guide T | 520

TRANSIation.CacheFlush Flush TRACE32 address translation cache

Format: TRANSIation.CacheFlush [ALL]

Successful MMU address translations are cached internally by TRACES32. This speeds up recurring
accesses to a logical address in debug mode - mostly when the OS Awareness is enabled. Caching is most
beneficial for translations done via an MMU table walk as this generates many memory accesses while
parsing the OS page table.

TRANSIation.CacheFlush flushes the TRACES32 internal address translation caches, so a new readout of
the OS page table is enforced for the next memory access. This can be useful when modifying page table
content or debugging MMU table walks.

ALL Additionally invalidates the complete register set cached by the
debugger, including all cached MMU registers. Upon the next MMU page
table walk, the registers will be re-read from the target.

See also
B TRANSIation B TRANSIation.List B TRANSIation.TableWalk
TRANSIation.CLEANUP Clean up MMU table
Format: TRANSIation.CLEANUP

MMU.CLEANUP (deprecated)

Removes multiple translations for one physical address, directly joining translations and double translations.

See also
Bl TRANSIation B TRANSIation.List

©1989-2024 Lauterbach General Commands Reference Guide T | 521

TRANSIation.COMMON Common address ranges for kernel and tasks

[Example]

Format: TRANSIation.COMMON <logical_range> [{<logical_range>}]
MMU.COMMON (deprecated)

Defines one or more mappings of logical address ranges that are shared by the kernel and the tasks.

When the address of a memory access falls into a common address range, TRACES32 uses the kernel
address translation (and not the task page table of the current process). Internally, TRACES32 always uses
space ID 0x0000 to find the translation of a common address.

This allows to apply the kernel address translation to modules or libraries that are called by a user process in
the context of the currently running task.

. & BuTRANSlation.List ___________ =n| Wl <
| Togical | physical || type |
C: 0000 :00000000--"= “\:00010000--0001FFFF -
C:0042: 00000000——0000FFFF A:00102000--00111FFF

C:0123:00000000--0000FFFF A:00101000--00110FFF

C:80004020--800041FF
C:80004700--800049FF

‘ | 1 b

A Space ID of the kernel = 0x0000

@

B Space IDs of the tasks = 0x0000
TRACERS2 assigns space IDs if SYStem.Option.MMUSPACES is set to ON

C Common logical address ranges are flagged as “COMMON” in the TRANSIation.List window, which
displays the mappings between logical and physical address ranges.

<logical_range> You can specify up to 10 common ranges in one line. For an example with two
common address ranges, see below.

Overlapping common address ranges are merged automatically.

NOTE: Executing the TRANSIation.COMMON command again discards all previously
existing common address ranges.
Use TRANSIation.COMMON.ADD to add further common address ranges
without discarding existing common address ranges.

©1989-2024 Lauterbach General Commands Reference Guide T | 522

Example:

;Enable the space IDs to display them in the TRANSlation.List window
SYStem.Option.MMUSPACES ON

TRANSlation.List ;Open the Translation.List window

;Create some translation entries for a particular debug session
TRANSlation.Create 0x0:0x00000000++0xffff 0x10000
TRANSlation.Create 0x123:0x00000000++0xffff 0x101000
TRANSlation.Create 0x042:0x00000000++0xffff 0x102000

;Define two common logical address ranges:
; <logical_range_1> <logical_range_2>
TRANSlation.COMMON 0x80004020--0x800041ff 0x80004700--0x800049f¢f

;Alternatively, you can define the common ranges as follows:
; TRANSlation.COMMON 0x80004020--0x800041ff ;define the first range
; TRANSlation.COMMON.ADD 0x80004700--0x800049ff ;add the second range

See also
B TRANSIation.COMMON.ADD B TRANSIation. COMMON.CLEAR
B TRANSIation B TRANSIation.List

B MMU.FORMAT

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 523

TRANSIation.COMMON.ADD Add another common address range

Format: TRANSIation.COMMON.ADD <l/ogical_range>

Adds another mapping for a common logical address range that is shared by the kernel and the tasks.

NOTE: Use TRANSIation.COMMON.ADD to add further common address ranges without
discarding existing common address ranges.
Executing TRANSIation.COMMON again discards all previously existing common

address ranges.

Example:

;Define the first common logical address range
TRANSlation.COMMON 0x80000200--0x800007f£

;Add two additional ranges
TRANSlation.COMMON.ADD 0x80004020--0x800041ff
TRANSlation.COMMON.ADD 0x80004700--0x800049ff

See also
B TRANSIation.COMMON B TRANSIation.COMMON.CLEAR

TRANSIation.COMMON.CLEAR Clear all common logical address ranges

Format: TRANSIation.COMMON.CLEAR

Clears only those logical address ranges that are flagged as “COMMON” in the TRANSIation.List window.

See also
B TRANSIation.COMMON B TRANSIation.COMMON.ADD

©1989-2024 Lauterbach General Commands Reference Guide T | 524

TRANSIation.Create

Create translation

Format:

<option>:

TRANSIation.Create <logical_range> [<physical_range>] [[<option>]

MMU.

More

Create (deprecated)

Logical
Physical

The defined translation can either be function code specific or generic for all function codes (except I/O). The
physical address or range is not allowed on probes with fixed MMU translation (e.g. 80186,2180).

More

Logical
Physical

The More option suppresses the generation of the MMU tables. This speeds
up the entry of large translation tables with PRACTICE scripts (*.cmm). The
last translation command should not have a More option, otherwise the
translations are not accessible.

The Logical and Physical options create translations that work only in one
direction. This allows to create multiple logical addresses that map to the
same physical address and still having a well-defined logical address for the
reverse translation.

Example: Translation for 68030 TRANSIation

TRANSlation.Create 0x1000--0x1fff a:0x20000--0x20fff /More
TRANSlation.Create sd:0x2000--0x2fff asd:0x0--0x0fff /More
TRANSlation.Create ud:0x2000--0x2fff aud:0x1000--0x1fff /More
TRANSlation.Create sp:0x2000--0x2fff asp:0x2000--0x2fff /More
TRANSlation.Create up:0x2000--0x2fff aup:0x3000--0x3fff

See also

Bl TRANSIation B TRANSIation.List B TRANSIation.TIbAutoScan H MMU.FORMAT

B MMU.SCAN

A ’Arm Specific Implementations’ in ’Arm Debugger’
A ’Arm Specific Implementations’ in’Armv8 and Armv9 Debugger’

©1989-2024 Lauterbach

General Commands Reference Guide T | 525

TRANSIation.CreatelD Add entry to MMU space ID table

Format: TRANSIation.CreatelD <space_id>:0x0 <base_address>

<space_id> Space ID to be added.

<base_address> Physical base address of task page table associated with <space_id>.
See also
B TRANSIation B TRANSIation.DeletelD B TRANSIation.List B TRANSIation.ListID

B TRANSIation.ScanlD

TRANSIation.CreateTab Create multiple translations

Format: TRANSIation.CreateTab </ogical _range> <increment> <logical_range>
[<physical_range>] [/<option>]
MMU.CreateTab (deprecated)

<option>: More
Logical
Physical

Same as TRANSIation.Create, but creates multiple translations with one command. The first range defines
the logical range for the created translations. The increment parameter is the offset added to the logical
address to generate the next address. The other parameters are interpreted like the TRANSIation.Create

command.
Example:

; Translation for COMMON area from 0x08000--0xOffff
TRANSlation.CreateTab 0x0--0xO0fffff 0x10000 0x08000--0xO0ffff 0x08000--

OxOffff

; Translation for 16 BANKS
TRANSlation.CreateTab 0x0--0x0fffff 0x10000 O0x0--0x7fff

See also
B TRANSIation B TRANSIation.List

©1989-2024 Lauterbach General Commands Reference Guide T | 526

TRANSIation.Delete Delete translation

Format: TRANSIation.Delete </ogical_range>
MMU.Delete (deprecated)

The defined translation is removed from the list; see TRANSIation.List. Use TRANSIation.Delete without
parameter to clear the whole static translation list and the command TRANSIation.RESet to reset all
TRANSIation and MMU settings.

Example:

TRANSlation.Delete 0x1000--0x1fff

See also
B TRANSIation B TRANSIation.List
TRANSIation.DeletelD Remove entry from MMU space ID table
Format: TRANSIation.DeletelD <space_id>:0x0
<space_id> Space ID to be removed.
See also
B TRANSIation B TRANSIation.CreatelD B TRANSIation.List B TRANSIation.ListID

B TRANSIation.ScanlD

©1989-2024 Lauterbach General Commands Reference Guide T | 527

TRANSIation.List List MMU translation table

Format: TRANSIation.List [/Logical | /Physical]
MMU.List (deprecated)

Displays the list of static address translations created with the commands TRANSIation.Create or
MMU.SCAN

The static MMU translation table of TRACE32 contains relations between logical address spaces and
physical address spaces. This table is consulted when the debugger address translation is enabled with
TRANSIation.ON and a logical address must be converted into a physical address. In some cases this table
is also used for reverse translating a physical address into its logical counterpart.

4 B:TRANSation.List
i'log'l cal | physical i H
C:CO000000 - - Semmm—— =.:10000000--2FFFFFFF ALl
C: 0000 : 00000000--0000FFFF A:00010000--0001FFFF
C:0042 :00000000--0000FFFF A:00102000--00111FFF

C:0123:00000000--0000FFFF A:00101000--00110FFF =

’ C:C0000000--EFFFFFFF COMMON =
R ' 6.

A Space ID of the kernel = 0x0000

B Space IDs of the tasks = 0x0000
TRACERS2 assigns space IDs if SYStem.Option.MMUSPACES is set to ON

C The default logical-to-physical address translation, which is used for fast memory accesses into the
kernel address range.
The default address translation is specified with the command MMU.FORMAT.

D Common address ranges are created with the commands TRANSIation.COMMON or

TRANSIation.COMMON.ADD

Logical Sorts logical addresses in ascending order.

Physical Sorts physical addresses in ascending order.
See also
B TRANSIation.ListID B TRANSIation B TRANSIation.AutoEnable B TRANSIation.AutoSCAN
B TRANSIation.CacheFlush B TRANSIation.CLEANUP B TRANSIation.COMMON B TRANSIation.Create
B TRANSIation.CreatelD B TRANSIation.CreateTab Bl TRANSIation.Delete B TRANSIation.DeletelD
B TRANSIation.NoProtect B TRANSIation.OFF B TRANSIation.ON B TRANSIation.PAGER
B TRANSIation.Protect B TRANSIation.RESet B TRANSIation.SCANall B TRANSIation.ScanID
B TRANSIation.SHADOW B TRANSIation.state B TRANSIation.TableWalk B TRANSIation.TIbAutoScan
B TRANSIlation. TRANSparent B MMU.FORMAT H MMU.SCAN 1 MMU.DEFAULTPT()
d MMU.FORMAT()
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 528

TRANSIation.ListiD List MMU space ID table

Format: TRANSIation.ListID

The table is used to translate MMU root pointer contents into a memory space ID. Memory space IDs may
also be obtained from the OS Awareness without the use of this table.

See also
B TRANSIation.List B TRANSIation B TRANSIation.CreatelD B TRANSIation.DeletelD
TRANSIation.NoProtect Unprotect memory
Format: TRANSIation.NoProtect <logical_range>

MMU.NoProtect (deprecated)

Removes the protection for the specified logical address range. As a result, the debugger can access this
range. See TRANSIation.Protect.ADD.

Example:
TRANSlation.Protect.ADD 0x100000--0x1fffff ;no access here
TRANSlation.Protect.ADD 0x280000--0x0£££000 ;no access here
TRANSlation.Protect.ADD 0x1000000--OxOffffffff ;no access here

TRANSlation.ON
TRANSlation.List ;display overview of protected memory ranges

;your code
;remove this logical address range from the list of protected memory

; ranges
TRANSlation.NoProtect 0x1000000--OxQffffffff

8 B:TRANSIation.List

| logical | physical
00100000——001FFFFFJ

$& B:TRANSIation List =] ==

Togical | physical e :
00100000——001FFFF5J t

00280000--00FFFO00
01000000~ -FFFFFFFF

I 00280000--00FFFO00D

See also
Bl TRANSIation B TRANSIation.List B TRANSIation.Protect B TRANSIation.Protect. ADD

©1989-2024 Lauterbach General Commands Reference Guide T | 529

TRANSIation.OFF Deactivate debugger address translation

Format: TRANSIation.OFF
MMU.OFF (deprecated)

Deactivates the TRACE32 internal debugger address translation.

Logical addresses used by the debugger are directly sent to the target CPU without translation. Also, the
protection of address ranges which have been declared as protected is disabled.

See also
Bl TRANSIation.ON MW TRANSIation B TRANSIation.AutoEnable B TRANSIation.List
TRANSIation.ON Activate debugger address translation
Format: TRANSIation.ON

MMU.ON (deprecated)

Activates the TRACES32 internal debugger address translation. For Intel® architecture debuggers, the
address translation is enabled by default. For all other architectures, the default is TRANSIation.OFF.

With TRANSIation.ON, the following features are enabled:

J Logical addresses are translated to physical addresses. The address translation is based on the
following translation tables:

- The static address translation list (see TRANSIation.List)

- Intel® architectures only: the segment translation for boot mode, real mode and protected
mode (see MMU.view, MMU.DUMP.GDT, MMU.DUMP.LDT and
SYStem.Option.MEMoryMODEL)

- MIPS architectures only: the EVA or fixed mapping KSEGO0/1 translations are done.

- OS page tables if the TRACES32 table walk is enabled (see TRANSIation.TableWalk and
MMU.FORMAT).

- For some architectures, TLBs can be evaluated. This feature is also enabled with
TRANSIation.TableWalk and MMU.FORMAT.

J Address ranges declared as protected are no longer accessible to the debugger (see
TRANSIation.Protect).

©1989-2024 Lauterbach General Commands Reference Guide T | 530

For an overview of the state of the debugger address translation, see TRANSIation.state.

See also

B TRANSIation.OFF B TRANSIation B TRANSIation.AutoEnable B TRANSIation.List
0 TRANS.ENABLE()

TRANSIation.PAGER Allow paged breakpoints for Linux

Format: TRANSIation.PAGER ON <address> | OFF
MMU.Protect (deprecated)

The TRACE32 software and a suitable Linux patch enable a software breakpoint to be set for program code
that has not yet been loaded.

Details on the Linux patch can be found in the directory ~~/demo/arm/kernel/linux/etc/t32pager

See also
Bl TRANSIation B TRANSIation.List

©1989-2024 Lauterbach General Commands Reference Guide T | 531

TRANSIation.Protect

Protect memory

Using the TRANSIation.Protect command group, you can protect the entire logical address range or
individual logical address ranges from debugger access. This can be useful if an access would otherwise

cause a fatal hardware error or cause the debugger to go down.

What is the difference between...?

TRANSIation.Protect.ON

TRANSIation.Protect. ADD

. Protects the entire logical address range
from debugger access.
. However, you can allow debugger access

to individual logical address ranges by
specifying them with TRANSIation.Create

<logical_range>.

Protects individuallogical address ranges

from debugger access.
TRANSIation.Protect must not be set to

ON.

See also
B TRANSIation.Protect. ADD B TRANSIation.Protect. OFF
B TRANSIation.List B TRANSIation.NoProtect

TRANSIation.Protect.ADD

B TRANSIation.Protect.ON B TRANSIation

Add range to protected memory ranges

[Example]
Format: TRANSIation.Protect.ADD <logical_range>
Protects the specified logical address range from debugger access.
NOTE: Use MAP.DenyAccess to protect physical address ranges from debugger

access.

debugger access.

Use TRANSIation.Protect.ADD to protect logical address ranges from

©1989-2024 Lauterbach

General Commands Reference Guide T |

532

Example:

; [A] allow debugger access to the logical address ranges 0x0--0x103F
and 0x1070--0xFFFFFFFF, i1.e. almost the entire logical range,

’

; [B] ...but protect this logical address range from debugger access
TRANSlation.Protect.ADD 0x1040--0x106F

TRANSlation.ON

;display overview of protected memory range(s)
TRANSlation.List

;let’s open this window for demo purposes to visualize the result
Data.dump 0x1020 /NoAscii

41! B:Data.dump 0x1020 /NoAscii =N Eoh(€4 B:TRANSIation.List =N =R

logical | physical type |
00001040--0000106F PROTECTED =

address

00001020 [+00000000 00000000 00000000 00000000
00001030 | 00000000 00000000 00000000 00000000

1| »

00001060 | 777 77
00001070 | 00000000 00000000 00000000 00000000
00001080 | 00000000 00000000 Q0000000 00000000

-

[}

i S S

See also
B TRANSIation.Protect B TRANSIation.NoProtect B MAPDenyAccess

TRANSIation.Protect.OFF Switch protection of target memory off

Format: TRANSIation.Protect.OFF

Re-allows debugger access to the entire logical address range. See TRANSIation.Protect.ON.

See also
B TRANSIation.Protect

©1989-2024 Lauterbach General Commands Reference Guide T | 533

TRANSIation.Protect.ON Protect entire target memory

Format: TRANSIation.Protect.ON

Protects the entire logical address range from debugger access, provided the address translation is enabled
with TRANSIation.ON.

Example:

TRANSlation.ON

;protect entire logical address range from debugger access (see red [A])

TRANSlation.Protect.ON

;but allow debugger access to this logical address range (see green [B]

TRANSlation.Create 0x1040--0x106F

;display overview of static translations
TRANSlation.List

;let’s open this window for demo purposes to visualize the result
Data.dump 0x1020 /NoAscii

41! B:Data.dump 0x1020 /NoAscii =N Eoh(€4 B:TRANSIation.List =N =R

| addreszs 0 4 | C | logical | physical type |

[00001020 77 e A DO001040--00001 OGFJ A:00001040--0000106F | -
= I3

00001040 | 0000559C 000057A0 00006FO8 E3ADQ000
E 00001050 | ELAOFOOE E5901000 E2511001 ES801000
00001060 | E1IAOFOOE ESZD4008 E5S9F0094 ESS902040 i

See also
B TRANSIation.Protect

©1989-2024 Lauterbach General Commands Reference Guide T | 534

TRANSIation.RESet Reset MMU configuration

Format: TRANSIation.RESet
MMU.RESet (deprecated)

The translation table is cleared and all setups are set to the defaults.

See also
B TRANSIation B TRANSIation.List
TRANSIation.SCANall Scan MMU tables
Format: TRANSIation.SCANall [/<option>]
MMU.SCAN ALL (as an alias)
MMU.SCANALL (deprecated)
<option>: Clear

Scans all page translation tables known to the debugger into the static translation list. That is, this command
is a repeated call of the MMU.SCAN command for all known page tables of an architecture known to the

debugger.
Clear Clears the list of static translations before reading it from all page
translation tables.
See also
B TRANSlIation B TRANSIation.List W MMU.SCAN

©1989-2024 Lauterbach General Commands Reference Guide T | 535

TRANSIation.ScanID Scan MMU address space tables from kernel

Format: TRANSIation.ScanlID

Scans the translation information from the kernel into the MMU space ID table. The operation is target and
kernel dependent.

See also
B TRANSIation B TRANSIation.CreatelD B TRANSIation.DeletelD B TRANSIation.List
TRANSIation.SHADOW Enable shadow access to target memory
Format: TRANSIation.SHADOW [ON | OFF | ANY]

Use VM: for data access, if the address translation on the target failed.

The debugger first tries to resolve a logical address with the standard address translation, and then
accesses the target to read the requested data. If the translation fails (due to missing table entries, or due to
an access error), and if TRANSIation.SHADOW is ON, the debugger uses the data within VM: at the
requested address.

The debugger provides a “virtual memory” (access class VM:) that is not accessible from the CPU, but only
by the debugger (stored within the host). The idea is to have a (partial) copy of the target memory in the host
for unlimited access.

VM: usually is a “virtual physical memory”. The debugger does an address translation (logical -> physical),
then accesses VM: with the physical address. l.e. VM: maps a physical memory.

If TRANSIation.SHADOW and SYStem.Option.MMUSPACES is ON, VM: is used as several logical
addressed memory areas, separated by the space ID. No address translation is done, instead the debugger
directly accesses the memory in VM: with space ID:address. l.e. VM: maps several logical memory areas. In
complex OS target systems (e.g. Linux), you may load the code of several processes into VM: to have
access to the code, even if the target does currently not allow memory access.

See also
B TRANSIation B TRANSIation.List

©1989-2024 Lauterbach General Commands Reference Guide T | 536

TRANSIation.state

Overview of translation settings

Format: TRANSIation.state

Opens the TRANSIation.state window.

| 3 B:TRANSIation state

(=[O el

Addr‘ess transTation: ON MMU Protection: ON Table walk: ON

MU spaces: ON Zone spaces: ON Machine spaces: ON LPAE: enabled

| Zone MMU format DefauTt page table |
Hz0zzz= 5TD ~
N:l::: LINUXSWAP3 N:l:::0x0:0xFFFFFFCO00DAT OO0 —
N:2::: LINUX N:2:::0x0:0xFFFFFRCO00CADO00 E
N:3::: 5TD

‘ 4

1 }

A The header displays an overview of all settings affecting the debugger address translation:

- Address translation: ON, OFF
- MMU protection: ON, OFF

- Table walk: ON, OFF

- MMU spaces: ON, OFF
- Zone spaces: ON, OFF
- Machine spaces: ON, OFF

TRANSIation.ON or TRANSIation.OFF

TRANSIation.Protect.ON or TRANSIation.Protect. OFF
TRANSIation.TableWalk [ON | OFF]
SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.ZoneSPACES [ON | OFF]

SYStem.Option.MACHINESPACES [ON | OFF]

- Architecture-specific settings (here LPAE)

B The columns below the header list the settings configured with the MMU.FORMAT command.

Description of Columns in the TRANSIation.state Window

Zone

For information about zones, refer to the glossary.

MMU format

The MMU formats for each zone.

Default page table

The start addresses of the default page tables for all active zones.

See also

B TRANSIation

B TRANSIation.List

©1989-2024 Lauterbach

General Commands Reference Guide T

537

TRANSIation.TableWalk Automatic MMU page table walk

Format:

TRANSIation.TableWalk [ON | OFF]

Configures the debugger to perform an MMU page table walk (short: table walk). If enabled, the debugger
will try the following steps upon a logical-to-physical address translation request:

1. Look up the logical address in the debugger’s static address translation table (see TRANSIa-
tion.List and TRANSIation.Create for details about the static address translation table).

2. If the address lookup in the static address translation table fails, walk through the software/OS
MMU tables to find a valid logical-to-physical translation.

3. For Intel® architecture debuggers, the boot mode, real mode, or protected mode segment
translation is done before the page table walk is performed.

4. For MIPS architectures only: the EVA or fixed mapping KSEGO0/1 translations are done before the
page table walk is performed.

Valid address translations found are cached by TRACE32. When debug mode is left, i.e. at a Go or Step,
the cached translations are flushed because page table contents may change when the target continues

execution.

ON

Configure TRACE32 to use the automatic MMU table walk.
Only physical addresses are sent to the target.

NOTE for expert users:

For some architectures, although a valid translation is available,
TRACERS2 sends logical addresses in certain situations in order to ensure
cache coherency.

This behavior can be controlled with the architecture-specific command
SYStem.Option.MMUPhysLogMemaccess.

OFF

Configure TRACE32 to not use the automatic MMU table walk.

NOTE:

Page tables are dynamic structures and are frequently modified by the OS.

The MMU page table walk of the debugger dynamically parses the page tables
on demand for every debugger address translation. The table walk ensures that
the debugger address translations correspond to the current OS address
translations.

©1989-2024 Lauterbach

General Commands Reference Guide T | 538

If no valid translation could be found for a logical address in any available translation table, then the error
handling depends on whether TRANSIation.TableWalk is set to OFF or ON:

OFF No error will be produced by TRACE32.
The logical address will be sent to the target CPU without translation.

ON A “MMU translation failed” error will be produced by TRACES32. Scripts
will stop upon a failing translation. This mimics the behavior of the target
MMU, where a failing translation causes an exception.

See also

Bl TRANSIation B TRANSIation.CacheFlush B TRANSIation.List B MMU.FORMAT
1 TRANS.TABLEWALK()

A ’Arm Specific Implementations’ in ’Arm Debugger’
A ’Arm Specific Implementations’ in ’Armv8 and Armv9 Debugger’
A ’Release Information’ in’Legacy Release History’

TRANSIation.TIbAutoScan Allow automatic TLB scans during table walk

Format: TRANSIation.TIbAutoScan [ON | OFF] [<logical_range> [<logical_range>]]

Enable automatic scan of the TLBs for missing kernel address translations during MMU table walks. Ignore
TLB entries with logical addresses outside the specified <logical_range>.

NOTE: This command is not available for all architectures

Some OS specify logical base addresses for kernel or task page tables. The table walk algorithm must
translate them to physical addresses before the page table can be parsed. If there is no suitable user-
defined default translation (MMU.FORMAT) or debugger MMU table (TRANSIation.List) entry,
TRANSIation.TIbAutoScan will search the target MMU TLBs for a suitable translation that has been set
up and used by the OS itself. If a suitable translation is found, it is copied into the debugger MMU table.
This automatism can prevent debugger memory access failures caused by incomplete MMU setup
scripts.

NOTE: Only TLB entries in the kernel address range must be auto-extracted from TLBs. If
you specify the typical kernel address range(s) for your target’s OS in
<logical_range>, TRANSIation.TIbAutoScan will ignore dynamic TLB entries
used for user processes.

©1989-2024 Lauterbach General Commands Reference Guide T | 539

Place the TRANSIation.TIbAutoScan command into the MMU section of your PRACTICE script preparing
the debugger for OS Awareness as in this example:

PEEE I i S kR R S S S i 2 S 2 Ik Sk I S S Sk S I S 2 S I
7

example MMU setup section for Linux awareness
“TRANSlation.TlbAutoScan ON” replaces the explicit
default translation in MMU.FORMAT and fixed kernel

g address translations in TRANSlation.Create.
I.**k*k*k**k*k*k*k‘k*k*k*k‘k*k*k*k*k*k

I
I

I

PRINT "Initializing debugger MMU..."
MMU.FORMAT LINUX swapper_pg_dir
TRANSlation.COMMON 0xC0000000--0xFFFFFFFF

this translation will be auto-extracted by TlbAutoScan from the TLB
TRANSlation.Create 0xC0000000--0xCFFFFFFF 0x0

enable TlbAutoScan - TLB entries in 0x80000000--0xFFFFFFF are kernel
; addresses here and ok to be auto-extracted
TRANSlation.TlbAutoScan ON 0xC0000000--0xFFFFFFF

’

TRANSlation.TableWalk ON
TRANSlation.ON

See also
B TRANSIation B TRANSIation.Create B TRANSIation.List B MMU.DUMP
B MMU.FORMAT H MMU.SCAN

©1989-2024 Lauterbach General Commands Reference Guide T | 540

TRANSIation.TRANSparent Transparent banking area

Format: TRANSIation.TRANSparent </ogical_range>
MMU.TRANS <logical_range> (deprecated)
MMU.TRANSparent <logical_range> (deprecated)

A debugger access to a logical address within <logical_range> will not be translated to a physical address,
even if a page table translation for it is defined. Instead, this access will use the logical address.

Example

In a banked memory system, we want the debugger to see the current memory bank (selected by the CPU’s
BNK register) for memory accesses within <logical_range>. The following example shows a PRACTICE
script for such a setup for a CPU with 16-bit logical addresses:

sYmbol .RESet

TRANSlation.RESet

; define fixed translation window into bank 0
TRANSlation.Create 0x1000000--0x100ffff A:0x00000--0x0ffff
; define fixed translation window into bank 1
TRANSlation.Create 0x1010000--0x101ffff A:0x10000--0x1ffff
; define transparent address window (no translation in this range)
TRANSlation.TRANSparent 0x0--0xffff

TRANSlation.ON

; load code into current bank, somewhere in 0x0--0xffff
Data.LOAD.Ubrof example.dbg

; shift symbols to logical addresses at 1000000

sYmbol .RELOCate C:0x1000000

Any access within 0x0..0xffff is defined as transparent and will thus not be translated to a physical address
by the debugger. Instead, such an access will be carried out with the logical address, so the CPU’s “current
bank” register will decide which data is seen. That is, examining a variable pointing to a certain logical
address somewhere within 0x0..0xffff with bank 1 being active, will show the data stored in bank 1.

We want to make sure that symbols belonging to code or data loaded into a certain bank are always tied to
the correct bank. Addresses in 0x0..0xffff may show any bank, depending on the BNK register. So we first
define fixed translation windows of 0x1000000..0x100ffff to bank 0 and 0x1010000..0x101ffff to bank 1. Note
that those address windows exist only for the debugger.

Now we load code (assuming bank 0 being selected by register BNK) into memory. Finally, we shift the
symbols belonging to the code into the address window belonging to bank 0, i.e. we add an offset of
0x1000000 after loading. Now we have a clear assignment between the symbols and the data in bank 0,
while debugger accesses to logical addresses in 0x0..0xffff still see the data the CPU sees currently.

See also
Bl TRANSIation B TRANSIation.List

©1989-2024 Lauterbach General Commands Reference Guide T | 541

TrBus

TrBus Trigger bus
See also
B TrBus.Arm W TrBus.Connect B TrBus.Mode W TrBus.OFF
M TrBus.Out M TrBus.RESet B TrBus.Set B TrBus.state

B TrBus.Trigger

Overview TrBus

The TrBus command group allows:
. To generate a trigger pulse that can be used to trigger an external device e.g. a Logic Analyzer.

J To connect an incoming trigger signal to TRACE32-ICD.

In both cases the TRIG connector is used. The TRIG connector has the following characteristics on the

different TRACE32 tools:
TRACES32 tool Output voltage Input voltage Comment
PowerDebug X50 4.4V 3.3V Input: 5V tolerant,
10K pull-up/down’
PowerDebug E40 4.4V 3.3V Input: 5V tolerant,
10K pull-up/down”
PowerDebug PRO 4.4V 3.3V Input: 5V tolerant,
10K pull-up/down’
pTrace (MicroTrace) for 3.3V 3.3V Input: 5V tolerant,
Cortex-M 10K pull-up/down’
PowerDebug Module 4.4V 3.3V Input: 5V tolerant,
UsSB 3.0 10K pull-up/down’
PowerDebug Il Ethernet 5.0V 3.3V Input: 5V tolerant,
10K pull-up/down”
PowerDebug Module 3.3V 3.3V Input: 5V tolerant,
Ethernet/ 10K pull-up/down’
PowerTrace Ethernet

©1989-2024 Lauterbach General Commands Reference Guide T | 542

TRACES32 tool Output voltage Input voltage Comment

Power Debug Module 3.3V 3.3V Input: 5V tolerant,
USB 2.0 10K pull-up/down’
PODBUS Ethernet 3.3V 3.3V Input: 5V tolerant,
Controller 10K pull-up/down’
Power Debug Module 3.3V 3.3V Input: 5V tolerant,
USB 1.x

10K pull-up/down’

’ Pull-up/down selected automatically depending on low-active or high-active settings.

An external trigger pulse of at least 100ns can be generated when:
. The program execution is stopped.

. A trigger is generated for the trace (not available on all CPUs, depends on the implementation of
the trace trigger feature).

J The sampling to the trace buffer is stopped ((not available on all CPUs, depends on the
implementation of the trace trigger feature).

. A breakpoint with the Action BusTrigger is used (not available on all CPUs).

An incoming trigger signal can be used:
J To stop the program execution.

. To generate a trigger for the trace (not available on all CPUs, depends on the implementation of
the trace trigger feature).

The sources for the external trigger pulse and the targets for the incoming trigger signal are connected to the
trigger bus.

©1989-2024 Lauterbach General Commands Reference Guide T | 543

Trigger Bus on the PowerTrace

The following picture shows the Trigger Bus on the PowerTrace as an example.

PowerTrace

Break ATrigger

Set (from Bus) Debugger Trace Set (from Bus)
4> 47

Break ATrigger ABreak
Out (to Bus) Out (to Bus) Out (to Bus)

Connect Out v ' '
\ Y L L L a
— Trigger Bus

Connect In

Example: Generate a trigger for the trace at a falling edge of the incoming trigger signal.

TrBus.Arm ; Switch the trigger bus ON

TrBus.Connect In ; Configure the TRIGGER connector as input

TrBus.Mode.Falling ; define that the trigger target should react
; on the falling edge of the incoming trigger
; signal

TrBus.Set ATrigger ON ; generate a trigger for the trace (trigger

; target) on the falling edge of the external
; trigger signal

; a trigger for the trace can stop the

; sampling to the trace directly or it can be
; delayed by the command Analyzer.TDelay

TrBus.Set Break OFF ; switch all other sources and targets to OFF
TrBus.Out Break OFF

TrBus.Out ABreak OFF

TrBus.Out ATrigger OFF

©1989-2024 Lauterbach General Commands Reference Guide T | 544

Interaction Between Independent PODBUS Devices

If several independent PODBUS devices are plugged together, they share the same trigger bus. Example
configurations are:

. A POWER DEBUG Il and a POWER TRACE Il / POWER TRACE llI

. A POWER DEBUG INTERFACE / USB and a POWERPROBE

. A POWERTRACE / ETHERNET and a POWERINTERGRATOR

. Several POWER DEBUG INTERFACEs that form a multi-processor debugging environment.

e

PODBUS SYNC

O POWER
@ TRIG
1

POWER DEBUG Il

O SELECT

O RUNNING

asn

O LINK

O ACTIVITY

13INH3IHL —| I—

1
@ POWER
- 7-9V

LAUTERBACH

PODBUS OUT

. |

T

PODBUS IN ¥ e | POWER TRACE Il

LAUTERBACH
O POWER

O SELECT

POWER
e O RECORD

O RUNNING

Y

The common trigger bus allows a synchronization between the PODBUS devices.

©1989-2024 Lauterbach General Commands Reference Guide T | 545

Example: A soon as the POWERPROBE is stopped by a trigger, the program execution should be stopped
via the connected POWER DEBUG INTERFACE:

; PowerProbe

8 o ; definition of the trigger condition
PP:Analyzer.TOut BUSA ON ; generate a trigger for the trigger bus
; when the defined trigger event occurs

; Debugger

TrBus.Arm ; switch the trigger bus ON

TrBus.Connect Out ; Configure the TRIGGER connector as output
TrBus.Set Break ON ; allow any trigger from the trigger bus to

; stop the program execution

The trigger bus also allows to stop the processors in a multi-processor configuration synchronously.
Precondition is that the JTAG/OCDS/BDM ... connector provides:

. A signal which indicates that the program execution was stopped (stop indication).

J A signal that allows to stop the program execution immediately (stop request).

After the configuration for the synchronous start and stop by the SYnch command is done, you can
configure the stop synchronization per hardware by the TrBus commands.

Multicore chip sets provide normally internal (chip specific) trigger connections.

©1989-2024 Lauterbach General Commands Reference Guide T | 546

Example: Configure the stop synchronization per hardware for the TRICORE OCDS connector:

OCDS connector 1

/BRK_IN

(Stop request)

.

- [/BRK_OUT

OCDS connector 2

[- - |- /BRK_OUT

. (Stop indication) .. (Stop indication)

.
.

/BRK_IN
(Stop request)

Break

/ \\ \\ Trigger Bus
Break Break Break
Set (from Bus) Out (to Bus) Set (from Bus) Out (to Bus)

TrBus.Arm

TrBus.Connect Out g

TrBus.Set Break ON 3
TrBus.Out Break ON 3

TrBus.Arm

Switch the trigger bus ON
Configure the TRIGGER connector as output

Connect Break to stop request
Connect Break to stop indication

Arm the trigger bus

Format:

TrBus.Arm

Arms the trigger bus.

See also

B TrBus

M TrBus.state

©1989-2024 Lauterbach

General Commands Reference Guide T | 547

TrBus.Connect Configure TRIGGER as input or output

Format: TrBus.Connect In | Out

The TRIGGER connector should work as:
. Input for an incoming trigger signal.

. Output for the generation of an external trigger signal.

See also
B TrBus M TrBus.state

TrBus.Mode Define polarity/edge for the trigger signal

Format: TrBus.Mode Low | High | Falling | Rising

If TrBus.Connect Out is set a Low or High pulse is generated on TRIGGER (at least 100 ns) as soon as the
defined source becomes active.

If TrBus.Connect In is set, the defined target can react on a Low/High pulse or Falling/Rising edge of the
incoming trigger signal.

See also
M TrBus B TrBus.state
TrBus.OFF Switch trigger bus off
Format: TrBus.OFF

Switches the trigger bus off.

See also
B TrBus M TrBus.state

©1989-2024 Lauterbach General Commands Reference Guide T | 548

TrBus.Out Define source for the external trigger pulse

Format: TrBus.Out Break | ABreak | ATrigger [ON | OFF]

Defines the source for the external trigger pulse.

Break Generate an external trigger pulse when the program execution is
stopped.

ABreak Generate an external trigger pulse when the sampling to the trace buffer
is stopped.

ATrigger Generate an external trigger pulse when a trigger is generated for the

trace. A trigger for the trace can be used to stop the sampling to the trace
buffer after a specified delay Analyzer.TDelay.

See also
B TrBus B TrBus.state

A ’Release Information’ in’Legacy Release History’

TrBus.RESet Reset setting for trigger bus

Format: TrBus.RESet

Resets the settings for the trigger bus.

See also
B TrBus B TrBus.state

©1989-2024 Lauterbach General Commands Reference Guide T | 549

TrBus.Set Define the target for the incoming trigger

Format: TrBus.Set Break | ATrigger [ON | OFF]

Selects the target for the incoming trigger signal.

Break Stop the program execution as soon as the external trigger signal
becomes active.

ATrigger Generate a trigger for the trace as soon as the external trigger signal
becomes active. A trigger for the trace can be used to stop the sampling
to the trace buffer directly or after a specified delay Analyzer.TDelay.

See also
W TrBus W TrBus.state
TrBus.state Display settings for the trigger bus
Format: TrBus.state

TrBus.view (deprecated)

Displays all settings for the trigger bus.

See also
B TrBus M TrBus.Arm B TrBus.Connect M TrBus.Mode
B TrBus.OFF H TrBus.Out B TrBus.RESet B TrBus.Set

B TrBus.Trigger

TrBus.Trigger Stimulate a trigger on the trigger bus

Format: TrBus.Trigger

Stimulates a trigger on the trigger bus.

See also
B TrBus M TrBus.state

©1989-2024 Lauterbach General Commands Reference Guide T | 550

TrOnchip

The TrOnchip command group provides low-level access to the on-chip debug register.

TrOnchip Onchip triggers

See also

|
A
A
A
A
A
A
A
A
A

TrOnchip.RESet B TrOnchip.state

"CPU specific TrOnchip Commands’ in 'CPU32/ColdFire Debugger and Trace’
’Arm Specific TrOnchip Commands’ in ’Arm Debugger’

’Arm specific TrOnchip Commands’ in ’Armv8 and Armv9 Debugger’

"CPU specific TrOnchip Commands’ in 'RH850 Debugger and Trace’

"Nexus specific TrOnchip Commands’ in 'RH850 Debugger and Trace’

"TrOnchip’ in ’StarCore Debugger and Trace’

"CPU specific TrOnchip Commands’ in "TriCore Debugger and Trace’

"CPU specific TrOnchip Commands - Onchip Triggers’ in ’Intel® x86/x64 Debugger’
‘Release Information’ in ’Legacy Release History’

TrOnchip.RESet Reset settings to defaults

Format: TrOnchip.RESet

Set on-chip trigger system to initial state.

See also

A
A

TrOnchip B TrOnchip.state

"CPU specific TrOnchip Commands’ in "Xtensa Debugger and Trace’
"CPU specific TrOnchip Commands’ in 'Simulator for XTENSA’

TrOnchip.state Display onchip trigger window

Format: TrOnchip.state

Displays a window with the state of the on-chip trigger setting.

See also

TrOnchip B TrOnchip.RESet

©1989-2024 Lauterbach General Commands Reference Guide T | 551

A 'TrOnchip Commands’ in '"CEVA-Oak/Teak/TeakLite Debugger and Trace’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide T | 552

TrPOD

TrPOD

Trigger probe
NOTE: The Trigger Probe for PODBUS is out of production.
See also
W TrPOD.Clock W TrPOD.ClockPOL B TrPOD.Data W TrPOD.DataPOL
B TrPOD.Mode W TrPOD.OFF B TrPOD.ON B TrPOD.RESet
W TrPOD.state W TrPOD.Time
TrPOD.Clock Defines data mask
Format: TrPOD.Clock [<mask>]
The clock mask is defined. Every input line can be high or low or don’t care.
See also
H TrPOD W TrPOD.state
TrPOD.ClockPOL Defines data polarity
Format: TrPOD.ClockPOL [<polarity>]
<polarity>: +1-

The clock polarity can be set to true or false.

See also
W TrPOD W TrPOD.state

©1989-2024 Lauterbach General Commands Reference Guide T | 553

TrPOD.Data Defines data mask

Format: TrPOD.Data [<mask>]

The data mask is defined. Every input line can be high or low or don’t care.

See also
B TrPOD B TrPOD.state
TrPOD.DataPOL Defines data polarity
Format: TrPOD.DataPOL [<polarity>]
<polarity>: +1-

The data polarity can be set to true or false.

See also
H TrPOD B TrPOD.state

©1989-2024 Lauterbach General Commands Reference Guide T | 554

TrPOD.Mode Defines data polarity

Format: TrPOD.Mode [<mode>]

<mode>: DATA
CLOCK
SYNC
LONGER
SHORTER
GLITCH
GLITCH+
GLITCH-

The state display shows all the settings of the trigger probe and the level of the input pins.

DATA Asynchronous trigger on inputs with data comparator
CLOCK Asynchronous trigger on inputs with clock comparator
SYNC Synchronous trigger
LONGER Pulse width trigger when pulse exceeds time
SHORTER Pulse width trigger when pulse width below time limit
GLITCH Glitch trigger on both edges
GLITCH+ Glitch trigger on positive glitch
GLITCH- Glitch trigger on negative glitch

See also

B TIPOD B TiPOD.state

©1989-2024 Lauterbach General Commands Reference Guide T | 555

TrPOD.OFF Switch off

Format: TrPOD.OFF

The trigger probe is disabled.

See also
W TrPOD B TrPOD.state
TrPOD.ON Switch on
Format: TrPOD.ON

The trigger probe is enabled.

See also
W TrPOD B TrPOD.state
TrPOD.RESet Reset command
Format: TrPOD.RESet

The trigger probe is initialized to the default setup condition

See also
W TrPOD B TrPOD.state

©1989-2024 Lauterbach General Commands Reference Guide T | 556

TrPOD.state State display

Format: TrPOD.state

Using this command the operating mode of the analyzer may be selected. During operation this command
displays the current state of the analyzer.

See also

B TrPOD W TrPOD.Clock B TrPOD.ClockPOL B TrPOD.Data
B TrPOD.DataPOL B TrPOD.Mode B TrPOD.OFF H TrPOD.ON
B TrPOD.RESet B TrPOD.Time

A ’Release Information’ in’Legacy Release History’

TrPOD.Time Defines the time for the pulse width trigger

Format: TrPOD.Time [<fime>]

The time limit for the pulse width detection can be set between 20 ns and 6 ms.

See also
W TrPOD W TrPOD.state

©1989-2024 Lauterbach General Commands Reference Guide T | 557

	General Commands Reference Guide T
	History
	TargetSystem
	TargetSystem TRACE32 PowerView instances
	TargetSystem.NewInstance Start new TRACE32 PowerView instance
	TargetSystem.state Show overview of multicore system

	TASK
	TASK OS Awareness for TRACE32
	Overview TASK
	TASK.ACCESS Control memory access
	TASK.ATTACH Attach to a running process
	TASK.Break Stop the execution of a single task or thread
	TASK.CACHEFLUSH Reread task list
	TASK.CONFIG Configure OS Awareness
	TASK.COPYDOWN Copy file from host into target
	TASK.COPYUP Copy file from target into host
	TASK.Create Create task
	TASK.Create.MACHINE Define a manual machine
	TASK.Create.RUNNABLE Define an AUTOSAR runnable
	TASK.Create.SPACE Define a manual MMU space
	TASK.Create.task Define a manual task
	TASK.CreateExtraID Create a virtual task
	TASK.CreateID Create virtual task
	TASK.DELete Delete file from target
	TASK.DeleteID Delete virtual task
	TASK.DETACH Detach from task
	TASK.Go Start the execution of a single task or thread
	TASK.INSTALL Deprecated
	TASK.KILL End task
	TASK.List Information about tasks
	TASK.List.MACHINES List machines
	TASK.List.RUNNABLES List AUTOSAR runnables
	TASK.List.SPACES List MMU spaces
	TASK.List.tasks List all running tasks
	TASK.List.TREE Display tasks in a tree structure
	TASK.ListID List virtual tasks
	TASK.NAME Translation of task magic number to task name
	TASK.NAME.DELete Delete a task name table entry
	TASK.NAME.RESet Reset task name table
	TASK.NAME.Set Set a task name table entry
	TASK.NAME.view Show task name translation table
	TASK.ORTI AUTOSAR/OSEK support
	TASK.ORTI.CPU Set OSEK SMP CPU number
	TASK.ORTI.load Configure OS Awareness for OSEK/ORTI
	TASK.ORTI.NOSTACK Exclude an ORTI task from stack evaluation
	TASK.ORTI.SPLITSTACK Split stack analysis of idle ORTI task to cores
	TASK.RELOAD Reread task list
	TASK.RESet Reset OS Awareness
	TASK.RUN Load task
	TASK.select Display context of specified task
	TASK.SETDIR Set the awareness directory
	TASK.STacK Stack usage coverage
	TASK.STacK.ADD Add stack space coverage
	TASK.STacK.DIRection Define stack growth direction
	TASK.STacK.Init Initialize unused stack space
	TASK.STacK.PATtern Define stack check pattern
	TASK.STacK.PATternGAP Define check pattern gap
	TASK.STacK.ReMove Remove stack space coverage
	TASK.STacK.RESet Reset stack coverage
	TASK.STacK.view Open stack space coverage

	TCB
	TCB Trace control block
	TCB.AllBranches Broadcast all branches
	TCB.CPU Broadcast information for specified CPU only
	TCB.CycleAccurate Cycle accurate tracing
	TCB.DataTrace Broadcast specified address and data information
	TCB.EX Broadcast exception level information
	TCB.FCR Broadcast function call-return information
	TCB.IM Broadcast instruction cache miss information
	TCB.InstructionCompletionSizeBits Specify size of completion message
	TCB.KE Broadcast kernel mode information
	TCB.LSM Broadcast load store data cache information
	TCB.OFF Switch TCB off
	TCB.ON Switch TCB on
	TCB.PCTrace Broadcast program counter trace
	TCB.PortMode Specify trace clock ratio
	TCB.PortWidth Specify trace port width
	TCB.Register Display TCB control register
	TCB.RESet Reset TCB setup to default
	TCB.SourceSizeBits Specify number of bit for core information in trace
	TCB.SRC Control selective trace
	TCB.STALL Stall CPU for complete trace
	TCB.state Display TCB setup
	TCB.SV Broadcast supervisor mode information
	TCB.SyncPeriod Specify TCB sync period
	TCB.TC Broadcast information for specified HW thread
	TCB.ThreadSizeBits Specify number of bit for thread information in trace
	TCB.Type Specify TCB type
	TCB.UM Broadcast user mode information
	TCB.Version Specify trace cell version

	TERM
	TERM Terminal emulation
	Overview TERM
	Interface Routines
	Interface Routines (EPROM Simulator)
	Interface Routines (Single Character Modes)
	Interface Routines (Buffered Modes)
	Interface Routines (Serial Line Debugger)
	Interface Routines (Special Hardware, JTAG)

	Functions
	Fast Data Write
	Interface Routines

	TERM.CLEAR Clear terminal window
	TERM.CLOSE Close files
	TERM.CMDLINE Specify a command line
	TERM.GATE Terminal with virtual hosting
	TERM.HARDCOPY Print terminal window contents
	TERM.HEAPINFO Define memory heap parameters
	TERM.LocalEcho Enables/disables local echo for new terminal windows
	TERM.METHOD Select terminal protocol
	TERM.METHOD2 Select additional terminal protocol
	TERM.Mode Define terminal type
	TERM.Out Send data to virtual terminal
	TERM.OutBREAK Send serial break
	TERM.PIPE Connect terminal to named pipe
	TERM.PipeREAD Connect terminal input to named pipe
	TERM.PipeWRITE Connect terminal output to named pipe
	TERM.PULSE Enable pulse generator for transfers
	TERM.READ Get terminal input from file
	TERM.RESet Reset terminal parameters
	TERM.SCROLL Enable automatic scrolling for terminal window
	TERM.SIZE Define size of terminal window
	TERM.STDIN Get terminal input from file
	TERM.TCP Route terminal input/output to TCP port
	TERM.TELNET Open TELNET terminal window
	TERM.TRIGGER Trigger on string in terminal window
	TERM.view Terminal display
	TERM.WRITE Write terminal output to file

	TPIU
	TPIU Trace Port Interface Unit (TPIU)
	Overview TPIU
	TPIU.CLEAR Re-write the TPIU registers
	TPIU.IGNOREZEROS Workaround for a special chip
	TPIU.NOFLUSH Workaround for a chip bug affecting TPIU flush
	TPIU.PortClock Inform debugger about HSSTP trace frequency
	TPIU.PortMode Select the operation mode of the TPIU
	TPIU.PortSize Select interface type and port size of the TPIU
	TPIU.RefClock Set up reference clock for HSSTP
	TPIU.Register Display TPIU registers
	TPIU.RESet Reset TPIU settings
	TPIU.state Display TPIU configuration window
	TPIU.SWVPrescaler Set up SWV prescaler
	TPIU.SWVZEROS Workaround for a chip bug
	TPIU.SyncPeriod Set period of sync packet injection

	TPU
	TPU.BASE Base address
	TPU.Break Break TPU
	TPU.Dump Memory display
	TPU.Go Start TPU
	TPU.List View microcode
	TPU.ListEntry Table display
	TPU.Register.ALL Register operation mode
	TPU.Register.NEWSTEP New debugging mode
	TPU.Register.Set Register modification
	TPU.Register.view Register display
	TPU.RESet Disable TPU debugger
	TPU.SCAN Scannig TPU
	TPU.SELect Select TPU for debugging
	TPU.Step Single step TPU
	TPU.view View TPU channels

	Trace
	Trace Trace configuration and display
	Overview Trace
	About the Command Placeholder <trace>
	What to know about the TRACE32 default settings for Trace.METHOD
	Types of Replacements for <trace>
	Replacing <trace> with a Trace Method - Examples
	Replacing <trace> with a Trace Evaluation - Example
	Replacing <trace> with RTS for Real-time Profiling - Example
	Replacing <trace> with Trace Source and Trace Method - Examples
	How to access the trace sources in TRACE32
	List of <trace> Command Groups consisting of <trace_source><trace_method>
	Related Trace Command Groups

	<trace>.ACCESS Define access path to program code for trace decoding
	<trace>.Arm Arm the trace
	<trace>.AutoArm Arm automatically
	<trace>.AutoFocus Calibrate AUTOFOCUS preprocessor
	Preprocessor with AUTOFOCUS Technology

	<trace>.AutoInit Automatic initialization
	<trace>.AutoStart Automatic start
	<trace>.BookMark Set a bookmark in trace listing
	<trace>.BookMarkToggle Toggles a single trace bookmark
	<trace>.Chart Display trace contents graphically
	Parameters
	Options
	Drag and Drop

	<trace>.Chart.Address Time between program events as a chart
	<trace>.Chart.AddressGROUP Address group time chart
	<trace>.Chart.ChildTREE Display callee context of a function as chart
	<trace>.Chart.DatasYmbol Analyze pointer contents graphically
	<trace>.Chart.DistriB Distribution display graphically
	<trace>.Chart.Func Function activity chart
	<trace>.Chart.GROUP Group activity chart
	<trace>.Chart.INTERRUPT Display interrupt chart
	<trace>.Chart.INTERRUPTTREE Display interrupt nesting
	<trace>.Chart.Line Graphical HLL lines analysis
	<trace>.Chart.MODULE Code execution brocken down by module as chart
	<trace>.Chart.Nesting Show function nesting at cursor position
	<trace>.Chart.PAddress Which instructions accessed data address
	<trace>.Chart.PROGRAM Code execution broken down by program
	<trace>.Chart.PsYmbol Shows which functions accessed data address
	<trace>.Chart.RUNNABLE Runnable activity chart
	<trace>.Chart.sYmbol Symbol analysis
	<trace>.Chart.TASK Task activity chart
	<trace>.Chart.TASKFunc Task related function run-time analysis (legacy)
	<trace>.Chart.TASKINFO Context ID special messages
	<trace>.Chart.TASKINTR Display ISR2 time chart (ORTI)
	<trace>.Chart.TASKKernel Task run-time chart with kernel markers (flat)
	<trace>.Chart.TASKORINTERRUPT Task and interrupt activity chart
	<trace>.Chart.TASKORINTRState Task and ISR2 state analysis
	<trace>.Chart.TASKSRV Service routine run-time analysis
	<trace>.Chart.TASKState Task state analysis
	<trace>.Chart.TASKVSINTERRUPT Time chart of interrupted tasks
	<trace>.Chart.TASKVSINTR Time chart of task-related interrupts
	<trace>.Chart.TREE Display function chart as tree view
	<trace>.Chart.Var Variable chart
	<trace>.Chart.VarState Variable activity chart
	<trace>.CLOCK Clock to calculate time out of cycle count information
	<trace>.ComPare Compare trace contents
	<trace>.ComPareCODE Compare trace with memory
	<trace>.CustomTrace Custom trace
	<trace>.CustomTrace.<label>.COMMAND Send command to specific DLL
	<trace>.CustomTrace.<label>.ListString Display ASCII strings
	<trace>.CustomTrace.<label>.UNLOAD Unload a single DLL
	<trace>.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs
	<trace>.DISable Disable the trace
	<trace>.DisConfig Trace disassembler configuration
	<trace>.DisConfig.CYcle Trace disassemble setting
	<trace>.DisConfig.FlowMode Enable FlowTrace analysis
	<trace>.DisConfig.RESet Reset trace disassemble setting
	<trace>.DRAW Plot trace data against time
	Keywords for <format>
	Keywords for <width>
	General Options
	Draw Options

	<trace>.DRAW.channel Plot no-data values against time
	<trace>.DRAW.Data Plot data values against time
	<trace>.DRAW.Var Plot variable values against time
	<trace>.EXPORT Export trace data for processing in other applications
	<trace>.EXPORT.ARTI Export trace data as ARTI for CP
	<trace>.EXPORT.ARTIAP Export trace data as ARTI for AP
	<trace>.EXPORT.Ascii Export trace data as ASCII
	<trace>.EXPORT.Bin Export trace data as binary file
	<trace>.EXPORT.BRANCHFLOW Export branch events from trace data
	<trace>.EXPORT.CSVFunc Export the function nesting to a CSV file
	<trace>.EXPORT.cycles Export trace data
	<trace>.EXPORT.Func Export function nesting
	<trace>.EXPORT.MDF Export trace data as MDF
	<trace>.EXPORT.MTV Export in MCDS Trace Viewer format
	<trace>.EXPORT.TASK Export task switches
	<trace>.EXPORT.TASKEVENTS Export task event to CSV
	<trace>.EXPORT.TracePort Export trace packets as recorded at trace port
	<trace>.EXPORT.VCD Export trace data in VCD format
	<trace>.EXPORT.VERILOG Export trace data in VERILOG format
	<trace>.EXPORT.VHDL Export trace data in VHDL format
	<trace>.ExtractCODE Extract code from trace
	<trace>.FILE Load a file into the file trace buffer
	<trace>.Find Find specified entry in trace
	<trace>.FindAll Find all specified entries in trace
	<trace>.FindChange Search for changes in trace flow
	<trace>.FindProgram Advanced trace search
	<trace>.FindReProgram Activate advanced existing trace search program
	<trace>.FindViewProgram State of advanced trace search programming
	<trace>.FLOWPROCESS Process flowtrace
	<trace>.FLOWSTART Restart flowtrace processing
	<trace>.Get Display input level
	<trace>.GOTO Move cursor to specified trace record
	<trace>.Init Initialize trace
	<trace>.JOINFILE Concatenate several trace recordings
	<trace>.List List trace contents
	<trace>.ListNesting Analyze function nesting
	<trace>.ListVar List variable recorded to trace
	<trace>.LOAD Load trace file for offline processing
	<trace>.MERGEFILE Combine two trace files into one
	Trace.METHOD Select trace method
	<trace>.Mode Set the trace operation mode
	<trace>.OFF Switch off
	<trace>.PipeWRITE Connect to a named pipe to stream trace data
	<trace>.PlatformCLOCK Set clock for platform traces
	<trace>.PortFilter Specify utilization of trace memory
	<trace>.PortSize Set external port size
	<trace>.PortType Specify trace interface
	<trace>.PROfile Rolling live plots of trace data
	<trace>.PROfile.channel Display profile of signal probe channels
	<trace>.PROfile.CTU Display complex trigger unit counter profile
	<trace>.PROfileChart Profile charts
	Options

	<trace>.PROfileChart.Address Address profile chart
	<trace>.PROfileChart.AddressGROUP Address group time chart
	<trace>.PROfileChart.AddressRate Address rate profile chart
	<trace>.PROfileChart.COUNTER Display a profile chart
	<trace>.PROfileChart.DatasYmbol Analyze pointer contents graphically
	<trace>.PROfileChart.DIStance Time interval for a single event
	<trace>.PROfileChart.DistriB Distribution display in time slices
	<trace>.PROfileChart.DURation Time between two events
	<trace>.PROfileChart.GROUP Group profile chart
	<trace>.PROfileChart.INTERRUPT Display interrupt profile chart
	<trace>.PROfileChart.Line HLL-line profile chart
	<trace>.PROfileChart.MODULE Module profile chart
	<trace>.PROfileChart.PAddress Which instructions accessed data address
	<trace>.PROfileChart.PROGRAM Program profile chart
	<trace>.PROfileChart.PsYmbol Which functions accessed data address
	<trace>.PROfileChart.Rate Event frequency
	<trace>.PROfileChart.RUNNABLE Runnable profile chart
	<trace>.PROfileChart.sYmbol Dynamic program behavior graphically (flat)
	<trace>.PROfileChart.TASK Dynamic task behavior graphically (flat)
	<trace>.PROfileChart.TASKINFO Context ID special messages
	<trace>.PROfileChart.TASKINTR ISR2 profile chart (ORTI)
	<trace>.PROfileChart.TASKKernel Task profile chart with kernel markers
	<trace>.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart
	<trace>.PROfileChart.TASKSRV Profile chart of OS service routines
	<trace>.PROfileChart.TASKVSINTERRUPT Interrupted tasks
	<trace>.PROfileChart.TASKVSINTR Profile chart for task-related interrupts
	<trace>.PROfileChart.Var Variable profile chart
	<trace>.PROfileSTATistic Statistical analysis in a table versus time
	Options

	<trace>.PROfileSTATistic.Address Statistical analysis for addresses
	<trace>.PROfileSTATistic.AddressGROUP Stat. for address groups
	<trace>.PROfileSTATistic.COUNTER Statistical analysis for counter
	<trace>.PROfileSTATistic.DatasYmbol Statistic analysis for pointer content
	<trace>.PROfileSTATistic.DistriB Distribution statistical analysis
	<trace>.PROfileSTATistic.GROUP Statistical analysis for groups
	<trace>.PROfileSTATistic.INTERRUPT Statistical analysis for interrupts
	<trace>.PROfileSTATistic.Line Statistical analysis for HLL lines
	<trace>.PROfileSTATistic.MODULE Statistical analysis for modules
	<trace>.PROfileSTATistic.PAddress Which instr. accessed data address
	<trace>.PROfileSTATistic.PROGRAM Statistical analysis for programs
	<trace>.PROfileSTATistic.PsYmbol Which functions accessed data address
	<trace>.PROfileSTATistic.RUNNABLE Statistical analysis for runnables
	<trace>.PROfileSTATistic.sYmbol Statistical analysis for symbols
	<trace>.PROfileSTATistic.TASK Statistical analysis for tasks
	<trace>.PROfileSTATistic.TASKINFO Context ID special messages
	<trace>.PROfileSTATistic.TASKINTR Statistical analysis for ISR2 (ORTI)
	<trace>.PROfileSTATistic.TASKKernel Stat. analysis with kernel markers
	<trace>.PROfileSTATistic.TASKORINTERRUPT Interrupts and tasks
	<trace>.PROfileSTATistic.TASKSRV Analysis of OS service routines
	<trace>.PROfileSTATistic.TASKVSINTERRUPT Interrupted tasks
	<trace>.PROTOcol Protocol analysis
	<trace>.PROTOcol.Chart Graphic display for user-defined protocol
	<trace>.PROTOcol.Draw Graphic display for user-defined protocol
	<trace>.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	<trace>.PROTOcol.Find Find in trace buffer for user-defined protocol
	<trace>.PROTOcol.list Display trace buffer for user-defined protocol
	<trace>.PROTOcol.PROfileChart Profile chart for user-defined protocol
	<trace>.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	<trace>.PROTOcol.STATistic Display statistics for user-defined protocol
	Protocol specific Options
	Options for ASYNC
	Options for CAN
	Options for I2C
	Options for I2S
	Options for JTAG
	Options for USB

	<trace>.REF Set reference point for time measurement
	<trace>.RESet Reset command
	<trace>.SAVE Save trace for postprocessing in TRACE32
	Parameters
	Options

	<trace>.SelfArm Automatic restart of trace recording
	<trace>.ShowFocus Display data eye for AUTOFOCUS preprocessor
	<trace>.ShowFocusClockEye Display clock eye
	<trace>.ShowFocusEye Display data eye
	<trace>.SIZE Define buffer size
	<trace>.SnapShot Restart trace capturing once
	<trace>.SPY Adaptive stream and analysis
	<trace>.state Display trace configuration window
	<trace>.STATistic Statistic analysis
	Parameters
	List items
	Format

	Options

	<trace>.STATistic.Address Time between up to 8 program events
	<trace>.STATistic.AddressDIStance Time interval for single program event
	<trace>.STATistic.AddressDURation Time between two program events
	<trace>.STATistic.AddressGROUP Address group run-time analysis
	<trace>.STATistic.ChildTREE Show callee context of a function
	<trace>.STATistic.COLOR Assign colors to function for colored graphics
	<trace>.STATistic.CYcle Analyze cycle types
	<trace>.STATistic.DatasYmbol Analyze pointer contents numerically
	<trace>.STATistic.DIStance Time interval for a single event
	<trace>.STATistic.DistriB Distribution analysis
	<trace>.STATistic.DURation Time between two events
	<trace>.STATistic.FIRST Start point for statistic analysis
	<trace>.STATistic.Func Nesting function runtime analysis
	<trace>.STATistic.FuncDURation Statistic analysis of single function
	<trace>.STATistic.FuncDURationInternal Statistic analysis of single func.
	<trace>.STATistic.GROUP Group run-time analysis
	<trace>.STATistic.Ignore Ignore false records in statistic
	<trace>.STATistic.INTERRUPT Interrupt statistic
	<trace>.STATistic.InterruptIsFunction Statistics interrupt processing
	<trace>.STATistic.InterruptIsKernel Statistics interrupt processing
	<trace>.STATistic.InterruptIsKernelFunction Statistics interrupt processing
	<trace>.STATistic.InterruptIsTaskswitch Statistics interrupt processing
	<trace>.STATistic.INTERRUPTTREE Display interrupt nesting
	<trace>.STATistic.LAST End point for statistic analysis
	<trace>.STATistic.Line High-level source code line analysis
	<trace>.STATistic.LINKage Per caller statistic of function
	<trace>.STATistic.Measure Analyze the performance of a single signal
	<trace>.STATistic.MODULE Code execution broken down by module
	<trace>.STATistic.PAddress Which instructions accessed data address
	<trace>.STATistic.ParentTREE Show the call context of a function
	<trace>.STATistic.PROCESS Re-process statistics
	<trace>.STATistic.PROGRAM Code execution broken down by program
	<trace>.STATistic.PsYmbol Shows which functions accessed data address
	<trace>.STATistic.RUNNABLE Runnable runtime analysis
	<trace>.STATistic.RUNNABLEDURation Runnable duration analysis
	<trace>.STATistic.Sort Specify sorting criteria for statistic commands
	<trace>.STATistic.sYmbol Flat run-time analysis
	<trace>.STATistic.TASK Task activity statistic
	<trace>.STATistic.TASKFunc Task related function run-time analysis
	<trace>.STATistic.TASKINFO Context ID special messages
	<trace>.STATistic.TASKINTR ISR2 statistic (ORTI)
	<trace>.STATistic.TASKKernel Task analysis with kernel markers (flat)
	<trace>.STATistic.TASKLOCK Analyze lock accesses from tasks
	<trace>.STATistic.TASKORINTERRUPT Statistic of interrupts and tasks
	<trace>.STATistic.TASKORINTRState Task and ISR2 statistic analysis
	<trace>.STATistic.TASKSRV Analysis of time in OS service routines
	<trace>.STATistic.TASKState Performance analysis
	<trace>.STATistic.TASKStateDURation Task state runtime analysis
	<trace>.STATistic.TASKTREE Tree display of task specific functions
	<trace>.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
	<trace>.STATistic.TASKVSINTR ISR2 statistic (ORTI), task related
	<trace>.STATistic.TREE Tree display of nesting function run-time analysis
	<trace>.STATistic.Use Use records
	<trace>.STATistic.Var Statistic of variable accesses
	<trace>.STREAMCompression Select compression mode for streaming
	<trace>.STREAMFILE Specify temporary streaming file path
	<trace>.STREAMFileLimit Set size limit for streaming file
	<trace>.STREAMLOAD Load streaming file from disk
	<trace>.STREAMSAVE Save streaming file to disk
	<trace>.TCount Set trigger counter
	<trace>.TDelay Trigger delay
	<trace>.TERMination Use trace line termination of preprocessor
	<trace>.TestFocus Test trace port recording
	<trace>.TestFocusClockEye Scan clock eye
	<trace>.TestFocusEye Check signal integrity
	<trace>.TestUtilization Tests trace port utilization
	<trace>.THreshold Optimize threshold for trace lines
	<trace>.Timing Waveform of trace buffer
	<trace>.TMode Select trigger mode
	<trace>.TraceCONNECT Select on-chip peripheral sink
	<trace>.TRACK Set tracking record
	<trace>.TRIGGER Trigger the trace
	<trace>.TSELect Select trigger source
	<trace>.View Display single record
	<trace>.ZERO Align timestamps of trace and timing analyzers

	TRACEPORT
	TRACEPORT Configure trace hardware
	TRACEPORT.EndsKiP Define number of bytes skipped at the end of frame
	TRACEPORT.LaneCount Select port size of the trace port
	TRACEPORT.LanePolarity Set polarity for each lane of the trace port
	TRACEPORT.LaneSpeed Inform debugger about trace port rate
	TRACEPORT.MsgBItEndian Change bit-order within each byte
	TRACEPORT.MsgBYteEndian Change byte-order within each word
	TRACEPORT.MsgLOngEndian Change dword-order within each qword
	TRACEPORT.MsgWOrdEndian Change word-order within each dword
	TRACEPORT.OSCFrequency Set OSC clock frequency
	TRACEPORT.PinReMap Adapt the lane order of the trace port
	TRACEPORT.RefCLocK Set up reference clock for trace port
	TRACEPORT.RESet Reset trace port configuration
	TRACEPORT.StartsKiP Define number of bytes skipped at the start of frame
	TRACEPORT.state Display trace port configuration window

	TRANSlation
	TRANSlation Debugger address translation
	Overview TRANSlation
	TRANSlation.AutoEnable Auto-enable debugger MMU translation
	TRANSlation.AutoSCAN Autoscan feature for debugger MMU
	TRANSlation.CacheFlush Flush TRACE32 address translation cache
	TRANSlation.CLEANUP Clean up MMU table
	TRANSlation.COMMON Common address ranges for kernel and tasks
	TRANSlation.COMMON.ADD Add another common address range
	TRANSlation.COMMON.CLEAR Clear all common logical address ranges
	TRANSlation.Create Create translation
	TRANSlation.CreateID Add entry to MMU space ID table
	TRANSlation.CreateTab Create multiple translations
	TRANSlation.Delete Delete translation
	TRANSlation.DeleteID Remove entry from MMU space ID table
	TRANSlation.List List MMU translation table
	TRANSlation.ListID List MMU space ID table
	TRANSlation.NoProtect Unprotect memory
	TRANSlation.OFF Deactivate debugger address translation
	TRANSlation.ON Activate debugger address translation
	TRANSlation.PAGER Allow paged breakpoints for Linux
	TRANSlation.Protect Protect memory
	TRANSlation.Protect.ADD Add range to protected memory ranges
	TRANSlation.Protect.OFF Switch protection of target memory off
	TRANSlation.Protect.ON Protect entire target memory
	TRANSlation.RESet Reset MMU configuration
	TRANSlation.SCANall Scan MMU tables
	TRANSlation.ScanID Scan MMU address space tables from kernel
	TRANSlation.SHADOW Enable shadow access to target memory
	TRANSlation.state Overview of translation settings
	TRANSlation.TableWalk Automatic MMU page table walk
	TRANSlation.TlbAutoScan Allow automatic TLB scans during table walk
	TRANSlation.TRANSparent Transparent banking area

	TrBus
	TrBus Trigger bus
	Overview TrBus
	Trigger Bus on the PowerTrace
	Interaction Between Independent PODBUS Devices

	TrBus.Arm Arm the trigger bus
	TrBus.Connect Configure TRIGGER as input or output
	TrBus.Mode Define polarity/edge for the trigger signal
	TrBus.OFF Switch trigger bus off
	TrBus.Out Define source for the external trigger pulse
	TrBus.RESet Reset setting for trigger bus
	TrBus.Set Define the target for the incoming trigger
	TrBus.state Display settings for the trigger bus
	TrBus.Trigger Stimulate a trigger on the trigger bus

	TrOnchip
	TrOnchip Onchip triggers
	TrOnchip.RESet Reset settings to defaults
	TrOnchip.state Display onchip trigger window

	TrPOD
	TrPOD Trigger probe
	TrPOD.Clock Defines data mask
	TrPOD.ClockPOL Defines data polarity
	TrPOD.Data Defines data mask
	TrPOD.DataPOL Defines data polarity
	TrPOD.Mode Defines data polarity
	TrPOD.OFF Switch off
	TrPOD.ON Switch on
	TrPOD.RESet Reset command
	TrPOD.state State display
	TrPOD.Time Defines the time for the pulse width trigger

