LAUTERBACH A

General Commands Reference
Guide S

General Commands Reference Guide S

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
(=T =T o TR0 1T 1P T T

General Commands Reference GUIdE Siccceeiiiiiieieeiiiiimesmsiisrsssssssssrssssss s sssnsssssssssasnnsnnns

AN

L 1= (o 14
8T Il I N 15
SELFTEST Execute selftest operation 15
£ 0 16
SETUP Setup commands 16
SETUP.ALIST Default analyzer display 17
SETUP.ALIST.RESet Reset analyzer display 17
SETUP.ALIST.set Default analyzer display 17
SETUP.BreakPointTableWalk Set up MMU translation for breakpoints 17
SETUP.BreakTransfer Breakpoint synchronization 18
SETUP.COLORCORE Enable coloring for core-specific info in SMP systems 18
SETUP.DIS Disassembler configuration 19
SETUP.DUMP Defaults for hex-dumps 20
SETUP.EMUPATH Emulation softkeys configuration 21
SETUP.GoOnPaused Route go to paused core 21
SETUP.IMASKASM Mask interrupts during assembler step 22
SETUP.IMASKHLL Mask interrupts during HLL step 22
SETUP.LISTCLICK Double-click source line symbol to run this action 23
SETUP.PROCESS Processing percentage in statistics window 24
SETUP.SIMULINK Deprecated command 24
SETUP.StepAliCores Force single stepping on all cores 25
SETUP.StepAtBreakPoint Single step to skip breakpoint 26
SETUP.StepAutoAsm HLL steps stops at assembler code 26
SETUP.StepBeforeGo Single step before go 27
SETUP.StepByStep Single step HLL lines 27
SETUP.StepNoBreak Stepping HLL lines with disabled breakpoints 27
SETUP.StepOnPaused Route step to selected core 28
SETUP.StepTrace Show stepping trail in list window 28
SETUP.StepWithinBreakpoints Multi-core step on SMP systems 28
SETUP.StepWithinTask Task selective stepping 29
SETUP.sYmbol Length of symbols 29
©1989-2024 Lauterbach General Commands Reference Guide S 2

SETUP.TIMEOUT Define emulation monitor time-out 30
SETUP.Var Defaults for the Var commands 31
SETUP.VarCall Define call dummy routine 35
SETUP.VarPtr Limit pointer access 36
SETUP.VerifyBreakSet Additional verification for software breakpoints 36
SIM e e rrrr e e ee e e s e e e re s seerresssneeeeessmeeeeessaneeeesseameeeeesssneeeessasneeeeessesneeeeesesnseeesseannes 37
SIM TRACES32 Instruction Set Simulators 37
SIM.AREA Selects area for simulation output 37
SIM.CACHE Cache/MMU simulation and more 38
SIM.CACHE.Allocation Define the cache allocation technique 39
SIM.CACHE.Mode Define memory coherency strategy 40
SIM.CACHE.MPURegions Specify MPU regions 40
SIM.CACHE.OFF Disable cache and MMU simulation 41
SIM.CACHE.ON Enable cache and MMU simulation 41
SIM.CACHE.Replacement Define the replacement strategy 41
SIM.CACHE.SETS Define the number of cache/TLB sets 43
SIM.CACHE .state Display cache and MMU settings 44
SIM.CACHE.Tags Define address mode for cache lines 45
SIM.CACHE.TRACE Select simulator trace method 45
SIM.CACHE.View Analysis of memory accesses for cache simulation 46
SIM.CACHE.ViewTLB Analysis of TLB accesses for MMU simulation 46
SIM.CACHE.WAYS Define number of cache ways 47
SIM.CACHE.Width Define width of cache line 47
SIM.command Issue command to simulation model 48
SIM.INTerrupt Trigger interrupt 48
SIM.List List loaded simulator models 49
SIM.LOAD Load simulator module 49
SIM.RESet Reset TRACES32 Instruction Set Simulator 49
SIM.UNLOAD Unload simulator module 50
LS I I - V- S 51
SLTrace Trace sink for SYStem.LOG events 51
SLTrace.state Display configuration window 52

£ 111010] T 53
SNOOPer Sample-based trace 53
SNOOPer-specific Trace COMMANASccceiiiiiiiiiiiisiissesemneerr e s ssssssssssssmmsess s e s s sesssssssssnnnnes 54
SNOOPer.<specific_cmds> Overview of SNOOPer-specific commands 54
SNOOPer.CORE Select cores for PC snooping 54
SNOOPer.ERRORSTOP Set behavior on sampling errors 55
SNOOPer.Mode Set operation mode of SNOOPer trace 56
SNOOPer.PC Enable PC snooping 60
SNOOPer.Rate Select sampling rate 61
SNOOPer.SELect Define address for monitoring 61
©1989-2024 Lauterbach General Commands Reference Guide S 3

SNOOPer.SIZE Define trace buffer size 63
SNOOPer.TDelay Define trigger delay 63
SNOOPer.TOut Define the trigger destination 64
SNOOPer.TValue Define data value for trigger 65
Generic SNOOPer Trace COMMANASccceviiriccrrrirsmcerrrss e s s esssmme s e e s ssmme s e s s ssmmms e sesssmmnneeas 66
SNOOPer.ACCESS Define access path to program code for trace decoding 66
SNOOPer.Arm Arm the trace 66
SNOOPer.AutoArm Arm automatically 66
SNOOPer.Autolnit Automatic initialization 66
SNOOPer.BookMark Set a bookmark in trace listing 66
SNOOPer.BookMarkToggle Toggles a single trace bookmark 66
SNOOPer.Chart Display trace contents graphically 67
SNOOPer.Chart.DistriB Distribution display graphically 67
SNOOPer.Chart.sYmbol Symbol analysis 67
SNOOPer.Chart.VarState Variable activity chart 67
SNOOPer.ComPare Compare trace contents 67
SNOOPer.DISable Disable the trace 67
SNOOPer.DRAW Plot trace data against time 67
SNOOPer.DRAW.channel Plot no-data values against time 68
SNOOPer.DRAW.Var Plot variable values against time 68
SNOOPer.EXPORT Export trace data for processing in other applications 68
SNOOPer.FILE Load a file into the file trace buffer 68
SNOOPer.Find Find specified entry in trace 68
SNOOPer.FindAll Find all specified entries in trace 68
SNOOPer.FindChange Search for changes in trace flow 68
SNOOPer.Get Display input level 69
SNOOPer.GOTO Move cursor to specified trace record 69
SNOOPer.Init Initialize trace 69
SNOOPer.List List trace contents 69
SNOOPer.ListVar List variable recorded to trace 69
SNOOPer.LOAD Load trace file for offline processing 69
SNOOPer.OFF Switch off 69
SNOOPer.PROfileChart Profile charts 69
SNOOPer.PROfileChart. COUNTER Display a profile chart 70
SNOOPer.PROfileSTATistic Statistical analysis in a table versus time 70
SNOOPer.PROTOcol Protocol analysis 70
SNOOPer.PROTOcol.Chart Graphic display for user-defined protocol 70
SNOOPer.PROTOcol.Draw Graphic display for user-defined protocol 70
SNOOPer.PROTOcol. EXPORT Export trace buffer for user-defined protocol 70
SNOOPer.PROTOcol.Find Find in trace buffer for user-defined protocol 70
SNOOPer.PROTOcol.list Display trace buffer for user-defined protocol 71
SNOOPer.PROTOcol.PROfileChart Profile chart for user-defined protocol 71
SNOOPer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 71
©1989-2024 Lauterbach General Commands Reference Guide S 4

SNOOPer.PROTOcol.STATistic Display statistics for user-defined protocol 71
SNOOPer.REF Set reference point for time measurement 71
SNOOPer.RESet Reset command 71
SNOOPer.SAVE Save trace for postprocessing in TRACE32 71
SNOOPer.SelfArm Automatic restart of trace recording 72
SNOOPer.SnapShot Restart trace capturing once 72
SNOOPer.state Display trace configuration window 72
SNOOPer.STATistic Statistic analysis 72
SNOOPer.STATistic.DistriB Distribution analysis 72
SNOOPer.Timing Waveform of trace buffer 72
SNOOPer.TRACK Set tracking record 72
SNOOPer.View Display single record 73
SNOOPer.ZERO Align timestamps of trace and timing analyzers 73

£ o 74
SPE Signal Processing eXtension (SPE) 74
SPE.Init Initialize SPE registers 74
SPE.Set Modify SPE registers 74
SPE.view Display SPE register window 75
SO E i irirrrrrrrrerrrers e e e s nereesssnereeessaeereesseneeeesssameereessaaneeeessssnereessasmeeresseseereessesneereessannes 76
SSE SSE registers (Streaming SIMD Extension) 76
SSE.Init Initialize SSE registers 76
SSE.Set Modify SSE registers 76
SSE.view Display SSE registers 77

5 -1 {0 o 78
StatCol Statistics collector 78
L5 (=T o 79
Step Single-step 79
Step.Asm Assembler single-step 79
Step.Back Step backwards 79
Step.BackChange Step back until expression changes 80
Step.BackOver Step back over call 80
Step.BackTill Step back until expression true 80
Step.Change Step until expression changes 81
Step.Diverge Step to next unreached line 82
Step.HIl Step in HLL-mode 84
Step.Mix Step in mixed-mode 84
Step.Over Step over call 85
Step.single Single-step 85
Step.Till Step until expression true 86

£ N 87
STM System trace configuration 87
©1989-2024 Lauterbach General Commands Reference Guide S 5

50 10 T - 88
STOre Store settings as PRACTICE script 88
SV E it rrrrr e ne e s ne e eessmeeeeessaneeeesssameereessaameeEesssseereessesmeeresssaeereessesneeeeessannes 92
SVE Access the scalable vector extension SVE 92
SVE.Init Initialize SVE registers 92
SVE.RESet Reset SVE settings 92
SVE.Set Modify SVE registers 92
SVE.view Display SVE registers 93
L= 11 o T 94
sYmbol Debug symbols 94
Overview sYmbol 94
sYmbol.AddInfo Provide additional symbolic information 96
sYmbol.AddInfo.Address Add symbol information to fixed address 98
sYmbol.AddInfo.Delete Delete information 99
sYmbol.AddInfo.LINK Define information for 'sYmbol.AddInfo' commands 100
sYmbol.AddInfo.List List additional information 101
sYmbol.AddInfo.LOADASAP2 Load scaling information from ASAP2 file 101
sYmbol.AddInfo.Member Add information to member of struct 102
sYmbol.AddInfo.RESet Remove all additional information 104
sYmbol.AddInfo.Type Add information to a data type 104
sYmbol.AddInfo.Var Add information to a variable 105
sYmbol.AutoLOAD Automated loading of symbols 106
sYmbol.AutoLOAD.CHECK Update autoloader table 107
sYmbol.AutoLOAD.CHECKCoMmanD Configure dynamic autoloader 108
sYmbol.AutoLOAD.CHECKDLL Configure automatic DLL file loader 109
sYmbol.AutoLOAD.CHECKEPOC Dynamic autoloader for Symbian 110
sYmbol.AutoLOAD.CHECKLINUX Configure autoloader for Linux debugging 110
sYmbol.AutoLOAD.CHECKQNX Configure autoloader for QNX debugging 111
sYmbol.AutoLOAD.CHECKUEFI Configure autoloader for UEFI debugging 111
sYmbol.AutoLOAD.CHECKWIN Configure autoloader 112
sYmbol.AutoLOAD.CHECKWINCE Configure autoloader 112
sYmbol.AutoLOAD.CLEAR Remove symbol information 113
sYmbol.AutoLOAD.config Configure symbol autoloader 113
sYmbol.AutoLOAD.Create Create entry for autoloader table 114
sYmbol.AutoLOAD.Delete Delete autoloader entries 114
sYmbol.AutoLOAD.List List autoloader table 115
sYmbol.AutoLOAD.LOADEPOC Definition for static autoloader for Symbian 116
sYmbol.AutoLOAD.RESet Reset autoloader 117
sYmbol.AutoLOAD.SET Mark symbol information manually as loaded 117
sYmbol.AutoLOAD.TOUCH Initiate automatic loading by command 118
sYmbol.Browse Browse symbols 119
sYmbol.Browse.Class Browse classes 119
sYmbol.Browse.Enum Browse enumeration types 119
©1989-2024 Lauterbach General Commands Reference GuideS | 6

sYmbol.Browse.Function Browse functions 120
sYmbol.Browse.Module Browse modules 121
sYmbol.Browse.MVar Browse module variables 122
sYmbol.Browse.name Browse symbols (flat) 122
sYmbol.Browse.SFunction Browse functions 123
sYmbol.Browse.SModule Browse modules 125
sYmbol.Browse.SOURCE Browse source 126
sYmbol.Browse.Struct Browse containers for different variable types 127
sYmbol.Browse.sYmbol Browse symbols 128
sYmbol.Browse.Type Browse HLL types 129
sYmbol.Browse.TypeDef Browse type definitions 130
sYmbol.Browse.Union Browse unions 130
sYmbol.Browse.Var Browse variables 131
sYmbol.CASE Set symbol search mode 132
sYmbol.CHECK Check database 132
sYmbol.Class View class hierarchy 133
sYmbol.CLEANUP Workarounds for redundant symbol information 134
sYmbol. CLEANUP.DOUBLES Make ambiguous symbols unique 135
sYmbol.ColorCode Enable color coding 135
sYmbol.ColorDef Specify keyword colors 136
sYmbol.CREATE Create and modify user-defined symbols 136
sYmbol.CREATE.ATTRibute Create user-defined attribute 137
sYmbol.CREATE.Done Finish symbol creation 137
sYmbol.CREATE.Function Create user-defined function 138
sYmbol.CREATE.Label Create user-defined symbol 139
sYmbol.CREATE.LocalVar Create user-defined local variable 139
sYmbol. CREATE.MACRO Create user-defined macro 140
sYmbol.CREATE.Module Create user-defined module 140
sYmbol.CREATE.RESet Erase all user-defined symbols 141
sYmbol.CREATE.Var Create user-defined variable 141
sYmbol. CUTLINE Limit size of text blocks 142
sYmbol.Delete Delete symbols of one program 142
sYmbol.DeleteMACRO Delete macro information 143
sYmbol.DeletePATtern Delete labels from symbol database using wildcards 143
sYmbol.DEMangle C++ demangler 143
sYmbol. DEOBFUSCATE Deobfuscate global and static symbol 144
sYmbol.DONE Finish load of symbols 144
sYmbol.ECA ECA file management 145
sYmbol.ECA.BINary Static preprocessing for code coverage 146
sYmbol.ECA.BINary.CollapseAll Collapse all trees 146
sYmbol.ECA.BINary.ControlFlowMode.INSTR Consider instrumentation 146
sYmbol.ECA.BINary.ControlFlowMode.Trace Consider trace events 147
sYmbol.ECA.BINary.EditDecision Modify start address of decision 147
©1989-2024 Lauterbach General Commands Reference GuideS | 7

sYmbol.ECA.BINary.ExpandAll Expand all trees 148
sYmbol.ECA.BINary.EXPORT.AdJoinGAPS Split up observability gaps 149
sYmbol.ECA.BINary.EXPORT.Decisions Export decision details as CSV 149
sYmbol.ECA.BINary.EXPORT.GAPS Export observability gaps to JSON 149
sYmbol.ECA.BINary.FilterMapped Filter display by the mapping state 150
sYmbol.ECA.BINary.FilterType Filter display by decision type 151
sYmbol.ECA.BINary.PROCESS Static preprocessing for code coverage 151
sYmbol.ECA.BINary.SetCONDitionOffset Set condition offset 153
sYmbol.ECA.BINary.SetDecisionState Disable/Enable decision evaluation 154
sYmbol.ECA.BINary.view Result of static preprocessing for code coverage 155
sYmbol.ECA.Delete Delete loaded ECA data 157
sYmbol.ECA.Init Clear gathered ECA data 157
sYmbol.ECA.List List ECA file overview 157

sYmbol.ECA.LOAD

sYmbol. ECA.LOADALL
sYmbol.FILTER.ADD.SOURCE
sYmbol.FILTER.ADD.sYmbol
sYmbol.FILTER.Delete
sYmbol.ForEach

Load a single ECA file 160
Load all ECA files 161

Add source files to filter 162
Add symbols to filter 162
Delete filter 163

Symbol wildcard command 164

sYmbol.INFO Display detailed information about debug symbol 165
sYmbol.LANGUAGE Select language 168
sYmbol.List Display list of all symbols 169

sYmbol.List. ATTRibute
sYmbol.List. BUILTIN
sYmbol.List.ColorDef
sYmbol.List.Enum
sYmbol.List. FRAME
sYmbol.List.Function
sYmbol.List.IMPORT
sYmbol.List.InlineBlock
sYmbol.List.InlineFunction
sYmbol.List.LINE
sYmbol.List.Local
sYmbol.List. MACRO
sYmbol.List. MAP
sYmbol.List.Module
sYmbol.List.PATCH
sYmbol.List.Program
sYmbol.List. REFerence
sYmbol.List.SECtion
sYmbol.List. SOURCE
sYmbol.List.SourceFunction
sYmbol.List. SOURCETREE

Display memory attributes 169

List built-in data types 169

List the keyword color definitions 170
List of enumeration constants 171
Display frames 172

Display functions 173

List imported symbols 173

List inlined code blocks 174

List inlined functions 174

Display source lines 175

Display local symbols 176

List all C macros 176

Display memory load map 177
Display modules 177

Display STF-symbol information 178
Display programs 178

Display reference information 179
Display physical sections 180
Display source file names 181
Display source to function relations 183
Display source files hierarchy 184

©1989-2024 Lauterbach General Commands Reference GuideS | 8

sYmbol.List. STACK Display virtual stack 184
sYmbol.List.Static Display static symbols 185
sYmbol.List. TREE Display symbols in tree form 185
sYmbol.List. Type Display data types 186
sYmbol.LSTLOAD Load assembler source file 187
sYmbol.LSTLOAD.GHILLS Load GHILLS assembler source file 187
sYmbol.LSTLOAD.HPASM Load HP assembler source file 187
sYmbol.LSTLOAD.IAR Load IAR assembler source file 189
sYmbol.LSTLOAD.INT68K Load Intermetrics assembler source file 190
sYmbol.LSTLOAD.INTEL Load INTEL assembler source file 190
sYmbol.LSTLOAD.INTEL2 Load INTEL assembler source file 191
sYmbol.LSTLOAD.KEIL Load Keil assembler source file 191
sYmbol.LSTLOAD.MicroWare Load MICROWARE assembler source file 191
sYmbol.LSTLOAD.MRI68K Load MICROTEC assembler source file 193
sYmbol.LSTLOAD.OAK Load OAK assembler source file 193
sYmbol. MARKER Fine-tune the nested function run-time analysis 194
sYmbol.MARKER.Create Marker for nesting function run-time analysis 195
KBEGIN/KEND Marker
sYmbol.MARKER.Delete Delete a marker 199
sYmbol.MARKER.List Displays the marker list 199
sYmbol. MARKER.RESet Erase all markers 199
sYmbol. MARKER.TOUCH Marker post-processing 200
sYmbol.MATCH Symbol search mode 200
sYmbol.MEMory Display memory usage 201
sYmbol.Modify Modify symbols 202
sYmbol.Modify.Access Modify access of symbols 202
sYmbol.Modify.ADDRess Modify address of symbols 203
sYmbol.Modify.AddressToRange Modify address of symbols 203
sYmbol.Modify.AlienFunction Disable frame info for a function 204
sYmbol.Modify. ATTRibute Modify memory attribute 204
sYmbol.Modify.CutFunction Reduce function address information 204
sYmbol.Modify.NAME Rename symbol 205
sYmbol.Modify.NAMES Rename symbols 205
sYmbol.Modify.RangeToAddress Modify address of symbols 206
sYmbol.Modify.RangeToFunction Modify address range into function 206
sYmbol.Modify. SOURCE Define source file 206
sYmbol.Modify.SplitFunction Split function 207
sYmbol.Modify.StaticCOPY Create static copy of local stack variables 207
sYmbol.Modify.StaticToStack Change static variables 208
sYmbol.Modify. TYPE Modify type of symbols 208
sYmbol.name Display symbols 209
sYmbol.NAMESPACES Search symbol in C++ namespace 211
sYmbol.NEW Create new symbol 212
©1989-2024 Lauterbach General Commands Reference GuideS | 9

sYmbol. NEW.ATTRibute Create user-defined memory attribute 212
sYmbol.NEW.Function Create user-defined function 214
sYmbol.NEW.Label Create user-defined symbol 215
sYmbol.NEW.LocalVar Create user-defined local variable 216
sYmbol. NEW.MACRO Create user-defined macro 216
sYmbol.NEW.Module Create user-defined module 216
sYmbol.NEW.Var Create user-defined variable 217
sYmbol. OVERLAY Code overlay 218
sYmbol.OVERLAY.AutolD Automatically determine overlay IDs 218
sYmbol.OVERLAY .Create Declare code overlay section 220
sYmbol. OVERLAY.DETECT Detect the current overlay status 224
sYmbol. OVERLAY.FRIEND Declare a friend overlay segment 224
sYmbol.OVERLAY .List Show declared code overlay sections 226
sYmbol. OVERLAY.RESet Reset overlay declarations 226
sYmbol.PATCH STF-symbol information 227
sYmbol.PATCH.DISable Disable instrumentation code 227
sYmbol.PATCH.ENable Enable instrumentation code 227
sYmbol.PATCH.List Display STF-symbol information 228
sYmbol.POINTER Define special register 230
sYmbol.POSTFIX Set symbol postfix 230
sYmbol.PREFIX Set symbol prefix 230
sYmbol.RELOCate Relocate symbols 231
sYmbol.RELOCate.Auto Control automatic relocation 231
sYmbol.RELOCate.Base Define base address 232
sYmbol.RELOCate.List List relocation info 232
sYmbol.RELOCate.Magic Define program magic number 232
sYmbol.RELOCate.Passive Define passive base address 233
sYmbol.RELOCate.shift Relocate symbols 233
sYmbol.RESet Clear symbol table 234
sYmbol.SourceBeautify Beautify HLL lines on loading 235
sYmbol.SourceCONVert Conversion for Japanese font 236
sYmbol.SourceLOAD Initiate the loading of an HLL source file 237
sYmbol.SourcePATH Source search path 238
sYmbol.SourcePATH.Delete Delete path from search list 238
sYmbol.SourcePATH.DOWN Make directory last in search order 239
sYmbol.SourcePATH.List List source search paths 239
sYmbol.SourcePATH.RESet Reset search path configuration 241
sYmbol.SourcePATH.Set Define search path 242
sYmbol.SourcePATH.SetBaseDir Define directory as base for relative paths 243
sYmbol.SourcePATH.SetCache Internal use only 244
sYmbol.SourcePATH.SetCachedDir Cache direct search path directory 244
sYmbol.SourcePATH.SetCachedDirCache Internal use only 245
sYmbol.SourcePATH.SetCachedDirlgnoreCache Cache direct search path 245
©1989-2024 Lauterbach General Commands Reference Guide S | 10

SYStem

sYmbol.SourcePATH.SetDir
sYmbol.SourcePATH.SetDynamicDir
sYmbol.SourcePATH.SetMasterDir
sYmbol.SourcePATH.SetRecurseDir
sYmbol.SourcePATH.SetRecurseDirCache
sYmbol.SourcePATH.SetRecurseDirlgnoreCase
sYmbol.SourcePATH.Translate
sYmbol.SourcePATH.TranslateSUBpath
sYmbol.SourcePATH.UP
sYmbol.SourcePATH.Verbose
sYmbol.SourceRELOAD
sYmbol.STATE

sYmbol.STRIP

sYmbol. TYPEINFO

sYmbol.View

SYnch

Overview SYnch
SYnch.Connect
SYnch.MasterBreak
SYnch.MasterGo
SYnch.MasterStep
SYnch.MasterSystemMode
SYnch.OFF

SYnch.ON

SYnch.RESet
SYnch.SlaveBreak
SYnch.SlaveGo
SYnch.SlaveStep
SYnch.SlaveSystemMode
SYnch.state

SYnch.XTrack

SYStem

SYStem.BdmClock
SYStem.BREAKTIMEOUT
SYStem.CADICommand
SYStem.CADIconfig
SYStem.CADIconfig.ExecSwOnly
SYStem.CADIconfig.RemoteServer
SYStem.CADIconfig.SpecRegDefine
SYStem.CADIconfig.SpecRegsOnly
SYStem.CADIconfig.Traceconfig

Synchronization mechanisms between different TRACE32 systems

Define directory as direct search path
Adjust search order at hit

Store cached files only relative
Define recursive direct search path
Internal use only

Recursive search path

Replace part of the source path
Replace sub-path

Move path up in the search order

Display search details in message AREA

Reload source files
Display statistic
Set max. symbol length

Display information about a specific data type

Show symbol info

Connect to other TRACES32 PowerView instances
Invite other TRACE32 to stop synchronously
Invite other TRACES32 to start synchronously

Invite other TRACES2 to Asm step synchronously

Invite other TRACE32 to follow mode change

Disable connection mechanism
Enable connection mechanism
Reset SYnch mechanism

Synchronize with stop in connected TRACE32
Synchronize with start in connected TRACE32
Synchronize with asm step in connected TRACE32
Synch. with mode changes in other TRACE32

Display current SYnch settings

Establish time synchronization to another TRACES32 instance

System configuration

Select BDM clock

Define the used timeout for break
Send a command to target
CADI-specific setups

Filter on executing software capability
Define connection to CADI server
Define special register set

Use only special defined register set
Define network settings to CADI trace

246
247
248
249
249
250
250
252
252
253
254
254
255
255
256

257
257
257
258
260
261
261
262
262
262
263
263
264
264
265
265
266

268
268
268
269
270
271
271
271
273
273
274

©1989-2024 Lauterbach

General Commands Reference Guide S

I 11

SYStem.CADIconfig.TraceCore Define core for CADI trace 274
SYStem.CONFIG Configure debugger according to target topology 275
SYStem.CONFIG.CORE Assign core to TRACE32 instance 276
SYStem.CONFIG.CoreNumber Set up number of hardware threads 282
SYStem.CONFIG.DEBUGPORT Specify debugport 283
SYStem.CONFIG.DEBUGTIMESCALE Extend debug driver timeouts 286
SYStem.CONFIG.ELA Configure Embedded Logic Analyzer (ELA) 287
SYStem.CONFIG.ListCORE Display the cores of a virtual target 287
SYStem.CONFIG.ListSIMulation Display the simulations of a virtual target 288
SYStem.CONFIG.MULTITAP Select type of JTAG multi-TAP network 289
SYStem.CONFIG.MULTITAP.JtagSEQuence JTAG seq. on SYStem.Up 290
SYStem.CONFIG.state Display target configuration 292
SYStem.CONFIG.TRACEPORT Declare trace source and trace port type 293
SYStem.CONFIG. TRANSACTORPIPENAME Set up pipe name 294
SYStem.CONFIG.USB USB configuration 294
SYStem.CONFIG.XCP XCP specific settings 294
SYStem.CPU Select CPU 296
SYStem.CpuAccess Run-time memory access (intrusive) 297
SYStem.CpuBreak Master control to deny stopping the target (long stop) 298
SYStem.CpuSpot Master control to deny spotting the target (short stop) 299
SYStem.DCl DCI configuration 299
SYStem.DETECT Detect target system resources 300
The System Detection Wizard 302
Daisy-Chain Detection via the TRACE32 AREA Window 304
SYStem.DLLCommand Custom DLL connection to target 304
SYStem.InfineonDAS Configure the InfineonDAS debug port 305
SYStem.IRISconfig IRIS-specific setups 306
SYStem.IRISconfig.RemoteServer Define connection to IRIS server 306
SYStem.JtagClock Define JTAG frequency 307
SYStem.LOG Log read and write accesses to the target 308
SYStem.LOG.CLEAR Clear the ‘SYStem.LOG.List’ window 309
SYStem.LOG.CLOSE Close the system log file 310
SYStem.LOG.Init Clear the 'SYStem.LOG.List' window 310
SYStem.LOG.List Log the accesses made by TRACE32 311
SYStem.LOG.Mode Set logging mode 312
SYStem.LOG.OFF Pause logging 313
SYStem.LOG.ON Resume logging 313
SYStem.LOG.OPEN Open a system log file 314
SYStem.LOG.RESet Reset configuration of system log to defaults 314
SYStem.LOG.Set Select the TRACES32 accesses to be logged 315
SYStem.LOG.SIZE Define number of lines in the ‘SYStem.LOG.List’ window 316
SYStem.LOG.state Open configuration window of system log 317
SYStem.LOG.StopOnError Stop logging on error 318
©1989-2024 Lauterbach General Commands Reference Guide S | 12

SYStem.MCDCommand Send command to MCD server 318
SYStem.MCDconfig Send configuration to MCD server 319
SYStem.MemAccess Select run-time memory access method 320
SYStem.Mode Select mode 321
SYStem.Option Special setup 321
SYStem.Option.IMASKASM Disable interrupts while single stepping 322
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 322
SYStem.Option.MACHINESPACES Address extension for guest OSes 322
SYStem.Option. MMUSPACES Separate address spaces by space IDs 323
SYStem.Option.ZoneSPACES Enable symbol management for zones 324
SYStem.PAUSE Pause the execution of operations 325
SYStem.POLLING Polling mode of CPU 326
SYStem.PORT Configure external communication interface 327
SYStem.RESet Reset configuration 328
SYStem.RESetOut Reset peripherals 328
SYStem.RESetTarget Release target reset 328
SYStem.state Display SYStem.state window 329
SYStem. TARGET Set target IP name or address 330
SYStem.VirtualTiming Modify timing constraints 331
SYStem.VirtualTiming.HardwareTimeout Disable/enable hardware timeout 332
SYStem.VirtualTiming.Hardware TimeoutScale Multiply hardware timeout 332
SYStem.VirtualTiming.InternalClock Base for artificial time calculation 333
SYStem.VirtualTiming.MaxPause Limit pause 334
SYStem.VirtualTiming.MaxTimeout Override time-outs 334
SYStem.VirtualTiming.OperationPause Insert a pause after each operation 335
SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base 335
SYStem.VirtualTiming.PauseScale Multiply pause with a factor 336
SYStem.VirtualTiming.PollingPause Advance emulation time when polling 336
SYStem.VirtualTiming.TimeinTargetTime Set up general time-base 337
SYStem.VirtualTiming.TimeScale Multiply time-base with a factor 338
LT T 0 I T - 339
SystemTrace MIPI STP and CoreSight ITM 339
SystemTrace.state Open system-trace configuration window 341
©1989-2024 Lauterbach General Commands Reference Guide S | 13

General Commands Reference Guide S

History

Version 06-Jun-2024

26-Mar-2024
19-Feb-2024
24-Oct-2023
16-Oct-2023

16-Oct-2023

23-Aug-2023

19-May-2023

26-Apr-2023
12-Aug-2022
28-Jul-2022

13-Apr-2022

24-Jan-2022

Dec-2021

Dec-2021

New command sYmbol.ECA.BINary.EXPORT.AdJoinGAPS.
Description for sYmbol.AutoLOAD.List updated.

Description for SYStem.CONFIG.DEBUGPORT updated.
Description for sYmbol. ECA.BINary.PROCESS updated.

New command sYmbol.ECA.BINary.ControlFlowMode.INSTR,

sYmbol.ECA.BINary.ControlFlowMode.Trace and sYmbol.ECA.BINary.EXPORT.GAPS.

New command sYmbol.List.Enum.

Updated the window sYmbol.ECA.List by introducing a new checkbox LENient and
replacing the column Time with signature.

Renamed sYmbol.ECA.BINary.EXPORT to sYmbol. ECA.BINary.EXPORT.Decisions.
New option /WinTOP for the command STOre.

Updated description of sYmbol. MATCH Best.

New command sYmbol. DEOBFUSCATE.

New command sYmbol.ECA.BINary.PROCESS.

Added description for the command sYmbol.ECA.Init.

Added description for the command sYmbol. CLEANUP.AlignmentPaddings.

©1989-2024 Lauterbach General Commands Reference Guide S

14

SELFTEST

SELFTEST Execute selftest operation

Format: SELFTEST

Executes the SELFTEST operation. Error results are shown in the selected AREA window.

©1989-2024 Lauterbach General Commands Reference Guide S | 15

SETUP

SETUP

Setup commands

Using the SETUP command group, many parameters of the debugger or window system can be changed.

For additional SETUP commands, refer to the SETUP commands in “PowerView Command Reference”
(ide_ref.pdf).

See also
B SETUPALIST B SETUP.BreakPointTableWalk
B SETUP.BreakTransfer B SETUP.COLORCORE
B SETUPDIS B SETUPDUMP
B SETUPEMUPATH B SETUP.GoOnPaused
B SETUPIMASKASM B SETUPIMASKHLL
B SETUPLISTCLICK B SETUPPROCESS
B SETUP.SIMULINK B SETUP.StepAliCores
B SETUP.StepAtBreakPoint B SETUP.StepAutoAsm
B SETUP.StepBeforeGo B SETUP.StepByStep
B SETUP.StepNoBreak B SETUP.StepOnPaused
B SETUPStepTrace B SETUP.StepWithinBreakpoints
B SETUP.StepWithinTask B SETUP.sYmbol
W SETURPTIMEOUT B SETUP.Var
B SETUP.VarCall B SETUP.VarPtr
B SETUP VerifyBreakSet
A 'SETUP’ in’PowerView Command Reference’
©1989-2024 Lauterbach General Commands Reference Guide S | 16

SETUP.ALIST Default analyzer display

The SETUP.ALIST commands allow to set up the default display of the Analyzer.List command.

See also
B SETUP
SETUP.ALIST.RESet Reset analyzer display
Format: SETUP.ALIST.RESet

Resets analyzer display to the default settings.

SETUP.ALIST.set Default analyzer display

Format: SETUP.ALIST.set <items> ... [/BT | /[FT]

The syntax of the command is the same as the channel selection for the command Analyzer.List. The
option defines if the Flowtrace or the Bustrace analyzer should be used as default by all analyzer display

commands.
Example:
SETUP.ALIST Address CPU TIme.REF ; display external trace, cpu and
time
SETUP.BreakPointTableWalk Set up MMU translation for breakpoints
Format: SETUP.BreakPointTableWalk [ON | OFF]

When set to ON, this command enables MMU translation for breakpoint tag delete.

See also
W SETUP

©1989-2024 Lauterbach General Commands Reference Guide S | 17

SETUP.BreakTransfer Breakpoint synchronization

Format: SETUP.BreakTransfer [ON | OFF] (deprecated)

This command is deprecated because the TRACE32 TCF integration provides a synchronization between
TRACE32 PowerView and Eclipse. For example, setting a breakpoint or executing a single step at the
TRACE32 side will be reported to Eclipse and vice versa.

For more information, see “TRACE32 as TCF Agent” (app_tcf_setup.pdf).

See also
B SETUP

SETUP.COLORCORE Enable coloring for core-specific info in SMP systems

Format: SETUP.COLORCORE [ON | OFF]
ON Core-specific information is displayed against a colored window
(default) background (SMP debugging and tracing only).
OFF Coloring of core-specific information is disabled.
See also
B SETUP

A ’PowerView - Screen Display’ in ’PowerView User’s Guide’

©1989-2024 Lauterbach General Commands Reference Guide S | 18

SETUP.DIS Disassembler configuration

Format: SETUP.DIS [<fields> [<bar>]] [<constants>]

<fields>: [<code>] [<label>] [<mnemonic>] [<comment>]

<bar>: [<head>] [<bottom>]

<constants>: [Hex | Decimal] [Signed | Unsigned] [Absolut | sYmbol]

The command sets default values for configuring the disassembler output of newly created windows (e.g.
Data.List). The command does not affect existing windows containing disassembler output.

Among other things the size of columns and the format of for constants (signed, unsigned, ...) can be
configured.

The first four parameters for this command configure the size of the columns in disassembler output:

<code> Number of displayed code bytes. Set to zero is possible.
<label> Size of the label field.

<mnemonic> Size of the mnemonic field.

<comment> Size of the comment field.

The next two arguments limit the movement of the PC bar within the window:

<head> Size of reserved area on the top of the window (in percent).

<bottom> Size of reserved area in bottom of window.

With these arguments, you can configure the display of constants and symbols:

Hex In the mnemonic field the constants are displayed in hex.
Decimal In the mnemonic field the constants are displayed in decimal.
Signed The constants are displayed as signed numbers.

Unsigned The constants are displayed as unsigned numbers.

©1989-2024 Lauterbach General Commands Reference Guide S | 19

Absolut In the mnemonic field the constants are displayed absolute, with the

comment field they are displayed symbolically.

sYmbol The constants are displayed symbolically within the mnemonic field.

There might be more architecture specific keywords. E.g.: For the 68K family there is an additional
parameter <traparg> to specify the number of bytes to be used as argument after trap commands (for OS-
9). For PowerPC you can use Simple (default) or Generic to chose between simple or generic mnemonics.
Please see the related Processor Architecture Manual for architecture specific keywords.

Example:
SETUP.DIS Unsigned ; display constants as unsigned values

SETUP.DIS sYmbol ; Switch to symbolic display of constants

See also
B SETUP W List W List.auto
SETUP.DUMP Defaults for hex-dumps
Format: SETUP.DUMP [/<option> ...]
<option> For a description of the options, see Data.dump.
Example:

SETUP.DUMP /Byte ; display width is now byte by default

See also

B SETUP B Data.dump W Var.DUMP

©1989-2024 Lauterbach General Commands Reference Guide S | 20

SETUP.EMUPATH Emulation softkeys configuration

Format: SETUP.EMUPATH "<command>" ...

The most left softkey selects emulation softkeys. These softkeys will be defined by this command.

SETUP.EMUPATH "s." "g.n" "r." "fpu." "d.s 0x0ff000 0x0" "r.res"

gives the following softkeys:

[Cemtt= | J[[tmee][Data |[wvar [List][PERF J[other |[previous
|
‘B: :
=| Is1 J[fenl [el |[Dewd |[[ds]][[rres] |I pravious
See also
W SETUP
SETUP.GoOnPaused Route go to paused core
Virtual targets only: MCD
Format: SETUP.GoOnPaused [ON | OFF]
Default: OFF.
ON Go command will be sent to a core even if it is in “paused” state.
OFF If selected core is “paused” state, Go command will be sent to the next

core which is in “stopped” state.

See also
B SETUP

©1989-2024 Lauterbach General Commands Reference Guide S | 21

SETUP.IMASKASM Mask interrupts during assembler step

Format: SETUP.IMASKASM [ON | OFF]

If enabled, the interrupt enable bit of the microcontroller will be disabled during single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt enable bit is
restored to the value before the step. This command is not implemented within all emulation probes.

NOTE: On some processors this modification is also seen by the user program. So this
option can affect the flow of the target program. Accesses to the interrupt-enable bit
can see the wrong values. Operations to modify the interrupt enable bit may not
work as expected.

See also
B SETUP B Step.single
A ’'Release Information’ in’Legacy Release History’

SETUP.IMASKHLL Mask interrupts during HLL step

Format: SETUP.IMASKHLL [ON | OFF]

If enabled, the interrupt enable bit of the microcontroller will be disabled during HLL single-step operation.
The interrupt routine is not executed during single-step operations. After single step the interrupt enable bit is
restored to the value before the step. This command is not implemented within all emulation probes.

NOTE: By changing the register through target software, this option can affect the flow of
the target program. Accesses to the interrupt-enable bit will see the wrong values.
Operations to modify the interrupt enable bit will not work as expected. When the
HLL line enables the interrupts (e.g. in an RTOS function call) then pending
interrupts will be executed.

See also
B SETUP B Step.single
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 22

SETUP.LISTCLICK Double-click source line symbol to run this action

Format: SETUP.LISTCLICK "<command>"

Executes the defined <command> when you double-click a variable or function in HLL-source (with the left
mouse key). The name of the variable/function is appended to the command. The characters '?' or ™' can be
used to mark the position of the variable/function name in the command. Lines with ™' will be executed
without further input query.

Example 1: Default action when you double-click a function in a TRACE32 window, e.g. in the List.Mix
window:

; display a listing for the double-clicked function in a new List
; window that is superimposed on the previous List window
SETUP.LISTCLICK "WinOverlay.List “* "

Example 2: Default action when you double-click a variable in a TRACE32 window, e.g. in the List.Mix
window:

SETUP.LISTCLICK "Var ?" ; lets you modify the variable in
the
; TRACE32 command line

Example 3: A user-defined action:

SETUP.LISTCLICK "Var.View %$Multiline *" ; openatemporarywindowwith
variable
See also
B SETUP B List B Listauto B WinOverlay

©1989-2024 Lauterbach General Commands Reference Guide S | 23

SETUP.PROCESS Processing percentage in statistics window

Format: SETUP.PROCESS [ON | OFF]
Default: OFF.
OFF While trace is processing, the string “PROCESING” is displayed on the

top left corner of <trace>.STATistic windows.

ON While trace is processing, the processing percentage is displayed on the
top left corner of <trace>.STATistic windows.

= | B::Trace.STATistic.Func EI@
| facorin |litrmne lan ~ovsq [Goto... | | Detailed || Nesting | & Chart
I I
| range [total min max avr count intern¥® [1% i
(root) 0.000us - - - 0. 0.000% A~
main 0.000us - - - 0. 0.000%
func_sin| 215.905ms | 215.905ms | 215.905ms | 215.905ms 1. 1.255% |mem
func? | 528.830ms 19.500us 22.300us 22.241us 23777. 2.128% |s—
funcl | 381.653ms 2.300us 2.300us 2.300us 165936. 2.219% |e—
< >
See also
B SETUP
SETUP.SIMULINK Deprecated command
Format: SETUP.SIMULINK ON [/<option>] | OFF (deprecated)
<option>: <release> | IntegrationDir <init_dir> | ToModelAlways | <debug>
<release>: R2010A | R2010B | R2011A | R2011B | R2012A | R2012B | R2010A |
R2013A | R2013B | R2014A | R2014B
<debug>: Verbose | NoExchange

This command is no longer needed in the new integration. For information about the new TRACE32
Simulink integration, refer to “Integration for Simulink” (int_simulink.pdf).

See also
M SETUP

©1989-2024 Lauterbach General Commands Reference Guide S | 24

SETUP.StepAllCores Force single stepping on all cores

Format: SETUP.StepAliCores [ON | OFF]

Default: OFF.
Forces assembler single stepping on all cores of an SMP system.

If you debug a multicore system in SMP configuration a single step on HLL code affects all cores while single
stepping on ASM code does affect only the active core.
By switching SETUP.StepAlICores to ON also single steps on assembler level will affect all cores.

Lauterbach recommends to keep SETUP.StepAllCores OFF

Support of this feature depends on your CPU.

Setting SETUP.StepAliCores to ON might have no effect.

The setting is supported for MPC5xxx PowerPCs. It is not yet supported for ARM or TriCore.
Please contact Lauterbach, if you need this feature for your target architecture.

By just typing the command and appending a blank, you can view the current setting in the TRACE32
message line.
By executing the command without arguments, SETUP.StepAllCores toggles the current setting.

See also
W SETUP

©1989-2024 Lauterbach General Commands Reference Guide S | 25

SETUP.StepAtBreakPoint Single step to skip breakpoint

Format: SETUP.StepAtBreakPoint [ON | OFF | DEFault]
SETUP.StepBreak [ON | OFF] (deprecated)

When interrupts are pending and the emulation is started on a breakpoint, it is possible that the target
executes the interrupt routine and returns to the same breakpoint location after. The debugging ‘hangs' on
the breakpoints. To avoid this, this option will first execute a single step when the program would start on a
breakpoint. On some processors with internal interrupt sources, the SETUP.IMASKASM option must also
be turned ON. This option is usually the default for ICD.

DEFault Selects the architecture’s default behavior.
OFF Performs an ASM single step before continuing program execution after a
Go.

ON Immediately continues program execution after a Go.

See also

W SETUP

SETUP.StepAutoAsm HLL steps stops at assembler code

Format: SETUP.AutoAsm [ON | OFF]

When a single step is performed in HLL debug mode and the target address of the step is code without HLL
information (e.g. a module compiled without HLL debug symbols), the debugger will per default continue
single stepping in the background until the next HLL line is reached (i.e. step from HLL line to HLL line). If the
setting it turned ON, the debugger will stop at the address without debug symbols. Use this setting to debug
modules without HLL debug information or compiler generated code sections.

See also
W SETUP

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 26

SETUP.StepBeforeGo Single step before go

Format: SETUP.StepBeforeGo [ON | OFF]

Perform an ASM single step before each Go. In contrast to the SETUP.StepAtBreakPoint command, this
option steps always regardless the emulation is started on a breakpoint or not.

OFF gerforms an ASM single step before continuing program execution after a
o.
ON Immediately continues program execution after a Go.
See also
B SETUP
SETUP.StepByStep Single step HLL lines
Format: SETUP.StepByStep [ON | OFF]

Single steps HLL when executing an HLL step. On some processors with internal interrupt sources, the
SETUP.IMASKASM option must also be turned on to avoid stepping through the interrupt program.

See also
B SETUP
SETUP.StepNoBreak Stepping HLL lines with disabled breakpoints

Format: SETUP.StepNoBreak [ON | OFF]
OFF User-defined breakpoints are active while single stepping in HLL.
ON User-defined breakpoints are not active while single stepping in HLL.

See also

B SETUP

©1989-2024 Lauterbach General Commands Reference Guide S | 27

SETUP.StepOnPaused Route step to selected core

Virtual targets only: MCD

Format: SETUP.StepOnPaused [ON | OFF]

Default: OFF.
ON The MCD step command is also sent to a core in “paused” state.
OFF The MCD step command is sent to the next core which is in “stopped”

state and not in “paused stated.

See also
W SETUP

SETUP.StepTrace Show stepping trail in list window

Format: SETUP.StepTrace [ON | OFF]

If this option is enabled, list windows will show stepping trails.

See also
B SETUP
SETUP.StepWithinBreakpoints Multi-core step on SMP systems
Format: SETUP.StepWithinBreakpoints [ON | OFF]

Enables/disables multi-core step on SMP systems.

See also
M SETUP

©1989-2024 Lauterbach General Commands Reference Guide S | 28

SETUP.StepWithinTask

Task selective stepping

Format: SETUP.StepWithinTask [ON | OFF]

When enabled all HLL stepping and temporary breakpoints will be task selective (on the currently active
task). This allows to step and debug shared code without stopping in another task.

See also
W SETUP
SETUP.sYmbol Length of symbols
Format: SETUP.sYmbol <path_len> <name_len> <type_len>[ON | OFF]

Configures the width of the columns for the symbol display commands. The SETUP.sYmbol command only

affects the display of symbols,

not the number of significant characters during symbol entry.

<path_len> Sets the default display width for columns which hold a complete symbol
path, including program and module names.
An example is the width of the path\symbol column in the sYmbol.List
window.
<name_len> Sets the default display width for single symbol names.
An example is the width of the symbol column in the sYmbol.Browse
window.
<type_len> Sets the default display width for columns holding information on the
symbol type.
An example is the width of the type column in the sYmbol.Browse
window.
ON, OFF Displays or hides the program name in symbol paths. An example is the
path in the path\symbol column of the sYmbol.List window.
See also
B SETUP W List B List.auto B sYmbol.Browse

©1989-2024 Lauterbach

General Commands Reference Guide S |

29

SETUP.TIMEOUT Define emulation monitor time-out

Format: SETUP.TIMEOUT <factor>

Values larger than 1 stretch the time-out delay within the emulation monitor. This value determines, how long
a window waits for becoming inactive. Short values will result in a fast screen update, but may result in
flickering windows when a spot point or the OS Awareness is active. Large values will cause a slower update
on the screen when real-time emulation is running.

See also

B SETUP B Data.dump B Data.Test W List
B List.auto

©1989-2024 Lauterbach General Commands Reference Guide S | 30

SETUP.Var

Defaults for the Var commands

[Buttons] [Examples]

Format:

SETUP.Var [Y%<format> ...]

Defines the default formatting of variables in Var windows.

. Without <format> parameters, the SETUP.Var command opens the SETUP.Var dialog window.
(Same as choosing Var menu > Format from the TRACE32 menu bar.)

. With one or more parameters: The settings can be changed via the TRACE32 command line or a
PRACTICE script (*.cmm) while the dialog window remains closed.

Your settings are used during a TRACE32 session, or until you change the settings again during the same

session.

<format>

For a description of the <formats>, see section “Display Formats” of the Var
command group.

©1989-2024 Lauterbach

General Commands Reference Guide S | 31

& BiSETUP.Var

radix format

[] Decimal [#] Compact

[Hex [Fixed

[#] BIMary [TREE

[Ascii [#] sSHOW

[CJDump Open

[#] SCALED OFF ~

display

[Jindex [MEtheds

[Type IMherited

[Location [INheritedMame

[Name [StaticMembers

[Hidden [] ConstMembers
Apply Apply to Windo

(=N HoR >
pointer
[string
[]WideString
[s¥mbol
[IpDUMP
Recursive

OFF v

other
[]5Paces
[runtimE
SpotLight

STanDard

Apply as Default

Cancel

A Global format settings.

=% Change Variable Format
——

radix format

[] Decimal [#] Compact

[Hex [Fixed

[IEIMary [TREE

[Ascii [#] sSHOW

[CJDump Open

[#] SCALED OFF ~

display

[Jindex [MEtheds

[Type IMherited

[Location [INheritedMame

[Name [StaticMembers

[Hidden [] ConstMembers
Apply Apply to Window

O

pointer
[string

*

[]WideString

[s¥mbol

[IpDUMP

Recursive

OFF

other
[]5Paces

[runtimE

SpotLight

STanDard

Apply as Default

Cancel

Use the command SETUP.Var, or choose Var menu > Format to open the SETUP.Var dialog

window.

In this dialog window, you can make format settings that apply to all Var.* windows you open
afterwards. Your changes have no effect on Var.* windows that are already open.
For a description of the buttons in the SETUP.Var dialog window, see table [A] below.

B Local format settings.

Right-click any variable in a Var.* window, and then select Format from the popup menu to open the

Change Variable Format dialog window.

Use this dialog window to format just a particular variable or all variables in a particular Var.*

window.

For a description of the buttons in the Change Variable Format dialog window, see table [B] below.

[A] - Description of Buttons in the SETUP.Var Window

STanDard Selects only the check boxes that belong to the built-in standard settings. All
other check boxes are cleared.

Apply as Default

Applies your settings without closing the dialog window.

OK Applies your settings and closes the dialog window.

©1989-2024 Lauterbach

General Commands Reference Guide S

32

[B] - Description of Buttons in the Change Variable Format Dialog Window

STanDard Selects only the check boxes that belong to the built-in standard settings. All
other check boxes are cleared.

Apply Applies the settings only to a particular variable you have selected in a
particular Var.* window.
The formatting of the other variables remains unchanged.

Apply to Window Applies the settings to all variables displayed in a particular Var.* window.

To apply new format settings to a particular Var.* window only:

1. Right-click any variable in the desired Var.* window, and then
select Format from the popup menu.
The Change Variable Format dialog window opens.

2. Make your new settings.
3. Click Apply to Window.

The new settings are applied as local format settings to this
particular Var.* window only.

NOTE: All the other Var.* windows continue to use the global format
settings as configured in the SETUP.Var dialog window.

Apply as Default

The local format settings of a particular Var.* window become the new

global format settings.
You can view the new configuration in the SETUP.Var dialog window.

OK

Applies your settings and closes the dialog window.

©1989-2024 Lauterbach

General Commands Reference Guide S |

33

Examples

Example 1: Three <format> settings are switched on while the SETUP.Var dialog window remains closed.
Then the Var.Watch window is opened, displaying the variable ast in the new format:

SETUP.Var %Decimal.on $%$Hex.on %BINary.on ; see above screenshot [A]

Var .Watch flags ast

&% BuVarWatch ast EI@
- (&) m m (%]
ast = (word = Ox0, count = 12346 = Ox303A = 000000, 00000000, 00110000, 00111
2 - L
A Decimal.on B Hex.on C BlINary.on

Example 2: The built-in <format> standard is restored.

SETUP.Var $%$STanDard ; restores the built-in
; standard
See also
B SETUP B Var

A 'Var in’General Commands Reference Guide V’
A ’Format Variable’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide S | 34

SETUP.VarCall Define call dummy routine

Format: SETUP.VarCall [<address>]

If a function is called from the Var commands, a dummy routine is placed in memory to catch the processor
after the called function has terminated. Under normal circumstances this code is never reached, as the HLL
debugger breaks, when the end of the function is reached. If the command Var.Call is used, a Go command
may start the function without any breakpoints set to the return point. In this cases, the processor will loop
endless in the 'dummy' routine. Processors with linear addressing usually require no fixed address, the
routine is kept on the stack. Processors with special addressing, like 8051 cannot keep a function on the
stack. For this processors the command SETUP.VarCall can define a free location in code memory to hold
the endless loop of the dummy function. The required space is usually two bytes.

Example:
SETUP.VarCall P:0x00£fff0 ; place the dummy routine at P:0x00fff0
Var .NEWLOCAL \x ; create virtual variable for result
Var.Call \x=func5(4,8,17) ; call a function of the target program

See also

B SETUP

©1989-2024 Lauterbach General Commands Reference Guide S | 35

SETUP.VarPtr

Limit pointer access

Format: SETUP.VarPtr [<address_range>]

Defines the address ranges for valid memory pointers. This range is checked whenever an automatic
access to the contents of a pointer is made. Pointer referenced by an HLL expression are not checked

against this range.

SETUP.VarPtr 0x0--0x0ffff
Var vpchar = 0x123456

Var *vpchar

displays: *vpchar = 0

Var %Recursive vpchar
displays: vpchar = 0x123456 ->
INVALID

SETUP.VarPtr O0x0--OxOffffff

Var %Recursive vpchar
displays: vpchar = 0x123456 -> 0x0

7

7

set pointer to character to
123456

manual access to pointer, not
checked

automatic pointer access is
checked

enlarge the address space for
pointers

automatic pointer access is
checked

SETUP.VarPtr 0x0--0x1ffff||0x800000--0x80f£fff

See also
B SETUP
SETUP.VerifyBreakSet Additional verification for software breakpoints
Format: SETUP.VerifyBreakSet [ON | OFF]
Default: OFF

Setting SETUP.VerifyBreakSet to ON forces the debugger to perform an additional verification whenever a

software breakpoint become active or inactive.

See also

B SETUP

©1989-2024 Lauterbach

General Commands Reference Guide S |

36

SIM

SIM TRACES32 Instruction Set Simulators

The SIM command group covers the following features for the TRACES32 Instruction Set Simulators:

. Cache/MMU/MPU simulation: configuration, enabling and basic analysis

Cache simulation is currently only fully implemented for the ARM architecture. It can be
implemented for other architectures on request.

Please be aware that enabling the cache/MMU simulation slows down the simulator

performance.
. Trace generation: configuration
. Peripheral Simulation Models: load and unload

For more information on the PSM refer to “API for TRACE32 Instruction Set Simulator”
(simulator_api.pdf) and “Library for Peripheral Simulation” (simulator_api_lib.pdf).

See also
H SIM.AREA B SIM.CACHE B SIM.command B SIM.INTerrupt
W SIM.List W SIM.LOAD W SIM.RESet W SIM.UNLOAD
SIM.AREA Selects area for simulation output
Format: SIM.AREA <name>

Specify output AREA for API function SIMUL_Printf(simulProcessor processor, const char *format, ...).

Example:
AREA.Create SimulOut ; Create a new AREA
AREA.view SimulOut ; display created AREA
SIM.AREA SimulOut ; assign AREA to SIMUL_Printf
; function
See also
H SIM B SIM.command

©1989-2024 Lauterbach General Commands Reference Guide S | 37

SIM.CACHE

Cache/MMU simulation and more

Command group for cache/MMU simulation, simulation of tightly-coupled memory, simulator trace

generation and more.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the SIM.CACHE.state

window.
2 B::SIM.CACHE state =n| Wl <
cache/mmu TRACE results
©) OFF @ CoreTrace
@ 0N () BusTrace
cache SETS WAYS Width Mode Allocation Tags Replacement
iC 64, 2. 64. MMU ¥ | | Readalloc VIPT ¥ | |Random ~
DC 32, 4. 64. MMU ¥ | | Readalloc PIPT ¥ | |Random ~
L2 0. 0. 0. CopyBack v | | Readélloc PIPT v | |Cydlic h
L3 0. 0. 0. CopyBack v | | Readélloc PIPT v | |Cydlic h
ITLB 512. MMU w7
DTLB 512. MMU w7
TLBO 0. 0. Cyclic h
TLB1 0. 0. Cyclic A
tem SIZE BaseAddress
ITCM 0x0 0x0
DTCM 0x0 0x0
See also
B SIM.CACHE.Allocation B SIM.CACHE.Mode B SIM.CACHE.MPURegions B SIM.CACHE.OFF
B SIM.CACHE.ON B SIM.CACHE.Replacement B SIM.CACHE.SETS B SIM.CACHE.state
B SIM.CACHE.Tags B SIM.CACHE.TRACE B SIM.CACHE.View B SIM.CACHE.ViewTLB
B SIM.CACHE.WAYS B SIM.CACHE.Width H SIM B SIM.command

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide S

38

SIM.CACHE.Allocation Define the cache allocation technique

Format: SIM.CACHE.Allocation <cache_type> ReadAlloc | WriteAlloc
<cache_ DCIL2IL3]...
type>:

Describes how the CPU deals with a cache miss on a data store/write access.

In the SIM.CACHE.state window, the Allocation field shows the cache properties of the selected CPU. If
these properties do not fit, they should be changed before a SYStem.Up.

ReadAlloc The data from a memory address is only loaded to the cache on
read/load accesses.

WriteAlloc The data from a memory address is loaded to the cache on a store/write
access and the new data is written in the cache line. If it is also
stored/written to memory depends on the cache mode (write-through or
copy-back).

The allocation technique is taken from the MMU if SIM.CACHE.Mode is set to MMU.

SIM.CACHE.Allocation IC ReadAlloc ; the instruction cache is a
; read allocate cache

See also
W SIM.CACHE B SIM.CACHE .state

©1989-2024 Lauterbach General Commands Reference Guide S | 39

SIM.CACHE.Mode Define memory coherency strategy

Format: SIM.CACHE.Mode ITCM | DTCM <mode>
<mode>: CopyBack

WriteThrough

MMU

Defines the strategy used for the memory coherency. It is recommended to perform this setup before
SYStem.Up.

CopyBack Copy back strategy guarantees memory coherency.
When a cache hit occurred for a data store/write, the cache contents is
updated and the corresponding cache line is marked as dirty. The data
value is copied back to memory when the contents of the cache line is
evicted.

WriteThrough Write Through strategy guarantees memory coherency.
When a cache hit occurs for a data store/write, the cache contents is
updated and the data is also stored/written to memory.

MMU The strategy for memory coherency is taken from the MMU.
See also
B SIM.CACHE B SIM.CACHE state
SIM.CACHE.MPURegions Specify MPU regions
Format: SIM.CACHE.MPURegions <region>

Defines the number of MPU regions implemented on your Cortex-R4 core.

See also
W SIM.CACHE B SIM.CACHE.state

©1989-2024 Lauterbach General Commands Reference Guide S | 40

SIM.CACHE.OFF

Disable cache and MMU simulation

Format:

SIM.CACHE.OFF

Disables cache and MMU simulation.

See also
H SIM.CACHE W SIM.CACHE .state
SIM.CACHE.ON Enable cache and MMU simulation
Format: SIM.CACHE.ON

Enables cache and MMU simulation.

See also
B SIM.CACHE B SIM.CACHE state
SIM.CACHE.Replacement Define the replacement strategy
Format: SIM.CACHE.Replacement <cache> <replace>
<cache>: ITLB | DTLB | TLBO | TLB1
<replace>: NONE
Random
FreeRandom
LRU
MMU

Defines the replacement strategy for each cache.

©1989-2024 Lauterbach

General Commands Reference Guide S | 41

In the SIM.CACHE.state window, the Replacement field shows the cache properties of the selected CPU. If
these properties do not fit, they should be changed before a SYStem.Up.

Cyclic Cyclic (round-robin) replacement strategy is used. One round robin
counter for each cache set.

Random Random replacement strategy is used.
LRU Last recently used replacement strategy is used.
MMU The replacement strategy is defined by the CPU.

Please use SIM.CACHE.Replacement MMU if your CPU uses a not listed
replacement strategy.

See also
W SIM.CACHE B SIM.CACHE .state

©1989-2024 Lauterbach General Commands Reference Guide S | 42

SIM.CACHE.SETS Define the number of cache/TLB sets

Format: SIM.CACHE.SETS <cache> <number>

<cache>: TLBO | TLB1

Defines the number of cache/TLB sets.
In the SIM.CACHE.state window, the SETS field shows the cache properties of the selected CPU. If these
properties do not fit, they should be changed before a SYStem.Up.

See also
B SIM.CACHE B SIM.CACHE .state

©1989-2024 Lauterbach General Commands Reference Guide S | 43

SIM.CACHE.state

Display cache and MMU settings

Format:

SIM.CACHE.state

Displays the simulator settings for cache and MMU.

cache/mmu
©) OFF

@ 0N

cache
iC
DC
L2
L3
ITLB
DTLB
TLBO
TLB1

ITCM
DTCM

SETS

32.

SIZE
0x0
0x0

2% B::SIM.CACHE state

TRACE
@ CoreTrace
(©) BusTrace

WAYS
2.

4.

0.

0.
512.
512.
0.

0.

BaseAddress
0x0
0x0

results
£ ViewTLB

Width
64.
64.
0.

0.

[E=H =R 553
Mode Allocation Tags Replacement
MMU Readélloc VIPT ¥ | |Random ~
MMU Readélloc PIPT ¥ | |Random ~
QopvBack Readélloc PIPT v | |Cydlic h
QopyvBack Readalloc PIPT v | |Cydlic h

MMU h
MMU h
Cyclic -
Cyclic -

A For descriptions of the commands in the SIM.CACHE.state window, please refer to the
SIM.CACHE.* commands in this chapter.

Example: For information about ON, see SIM.CACHE.ON.

See also

B SIM.CACHE

B SIM.CACHE.OFF
B SIM.CACHE.Tags

B SIM.CACHE.WAYS

B SIM.CACHE.Allocation

B SIM.CACHE.ON
B SIM.CACHE.TRACE
B SIM.CACHE.Width

B SIM.CACHE.Mode
B SIM.CACHE.Replacement
B SIM.CACHE.View

B SIM.CACHE.MPURegions

B SIM.CACHE.SETS
B SIM.CACHE.ViewTLB

©1989-2024 Lauterbach

General Commands Reference Guide S

44

SIM.CACHE.Tags Define address mode for cache lines

Format: SIM.CACHE.Tags <cache> <tag>
<tag>: VIVT

PIPT

VIPT

AVIVT

Defines the address mode for cache lines. The address mode for the cache lines is taken from the MMU if
SIM.CACHE.Mode is set to MMU. It is recommended to perform this setup before SYStem.Up.

VIVT Virtual Index, Virtual Tag
The logical address is used as tag for a cache line.
PIPT Physical Index, Physical Tag
The physical address is used as tag for a cache line.
VIPT Virtual Index, Physical Tag
AVIVT Address Space ID + Virtual Index, Virtual Tag
See also
B SIM.CACHE B SIM.CACHE.state
SIM.CACHE.TRACE Select simulator trace method
Format: SIM.CACHE.TRACE BusTrace | CoreTrace
BusTrace Trace information is generated for all bus transfers.

E.g. if the cache is simulated trace information is generated for the burst
cycles that filled the cache lines.

CoreTrace Trace information is generated for all executed instructions and
(default) performed load/store operations. Cache accesses are included.
See also
B SIM.CACHE B SIM.CACHE.state

©1989-2024 Lauterbach General Commands Reference Guide S | 45

SIM.CACHE.View

Analysis of memory accesses for cache simulation

Format:

SIM.CACHE.View

Displays an analysis of the simulated memory accesses if cache simulation is used. Analysis results can be

displayed while program execution is running.

For detailed information on the interpretation of the results, refer to the CTS.CACHE.View command.

1| B:SIM.CACHE View =0 EcR<|
cache |[cached hits misses victims Flushes copybacks writethrus |nawrites reads |writes |
IC| 14281013, 14279285, 28, 1227. 0 0. 0. 40778, 0
99.715% 99.987% 0.012% 0.008% 0.284%
DC 3674832, 3278482. 396350. 35501. 0. 33910. 0. 360336. 872. 4988.
90.938% 89.214% 10.785% 0.966% 0.839% §.916% 0.021% 0.123%
2 398078. 5589. 392489. 30500. 0 29191. 0 357893. 0. 0.
52.657% 1.403% 98. 596% 7.661% 3.861% 47.342%
L3
)
See also
B SIM.CACHE B SIM.CACHE .state
SIM.CACHE.ViewTLB Analysis of TLB accesses for MMU simulation
Format: SIM.CACHE.ViewTLB

Displays an analysis of the simulated TLB accesses if MMU simulation is used. Analysis results can be

displayed while program execution is running.

1] B:SIM.CACHE ViewTLE = =R
t1lb |cached hits misses victims flushes faults i
ITLB 14281084 14281070. 14. 128.
99.999% <0.001% <0.001%
DTLB 3678773. 3678751. 22. 9. 128.
99.999% <0.001% 0.003%
TLEO
TLEL
4 }
See also
B SIM.CACHE B SIM.CACHE.state

©1989-2024 Lauterbach

General Commands Reference Guide S

46

SIM.CACHE.WAYS Define number of cache ways

Format: SIM.CACHE.WAYS <cache> <ways>

<cache>: ICIDCIL2IL3I|ITLB|DTLB | TLBO | TLB1

Defines the number of cache ways (blocks) for each cache.

In the SIM.CACHE.state window, the WAYS field shows the cache properties of the selected CPU. If these
properties do not fit, they should be changed before a SYStem.Up.

Example:
SIM.CACHE.WAYS IC 4. ; The instruction CACHE has 4 blocks
See also
B SIM.CACHE B SIM.CACHE.state
SIM.CACHE.Width Define width of cache line
Format: SIM.CACHE.Width IC | DC | L2 | L3 <width>

Defines the width of a single cache line in bytes.

In the SIM.CACHE.state window, the Width field shows the cache properties of the selected CPU. If these
properties do not fit, they should be changed before a SYStem.Up.

Example:
SIM.CACHE.Width IC 32. ; A cache line for the instruction cache
; 1s 32. byte
See also
B SIM.CACHE B SIM.CACHE.state

©1989-2024 Lauterbach General Commands Reference Guide S | 47

SIM.command Issue command to simulation model

Format: SIM.command <cmd> [<string>] [<address>] [<time>] [<value>]

Issues a command to all loaded simulation models. The parameters are interpreted by the loaded models.

See also
m SIM B SIM.AREA B SIM.CACHE B SIM.INTerrupt
B SIM.List B SIM.LOAD B SIM.RESet B SIM.UNLOAD
SIM.INTerrupt Trigger interrupt
Format: SIM.INTerrupt </evel> <vector>

Triggers the specified interrupt.
Not all arguments are supported or required by all architectures.

Example for MPC55xx:

SIM.INTerrupt , 0x20 ; no priority required that is

; why "," is used

; interrupt vector 0x0 is triggered

Example for TriCore:

SIM.INTerrupt 15. ; the interrupt is triggered by its
; corresponding level

; <vector> is not supported,
; instead the vector is calculated
; from the BIV register value

See also
H SIM B SIM.command

©1989-2024 Lauterbach General Commands Reference Guide S | 48

SIM.List List loaded simulator models

Format: SIM.List
£ BuSIM.List |-]
tile mode | i
C:\T3Z2_MPC'demopowerpcisimuTiintc5554 Tntc. dl] Feb 10 2010 MPC5554 Interrupt Ctrl] o~
See also
H SIM B SIM.command
SIM.LOAD Load simulator module
Format: SIM.LOAD <file> [<parameter> ...]

Loads simulator DLL. The parameters are specific for the loaded DLL.

Example:

SIM.RESet ; reset simulator

SIM.LOAD demoport.dll 20000 O ; loads DLL with your parameters
See also
H SIM B SIM.command

A ’'Release Information’ in’Legacy Release History’

SIM.RESet Reset TRACE32 Instruction Set Simulator

Format: SIM.RESet

Unloads all loaded DLL and resets all time base.

See also
H SIM B SIM.command

©1989-2024 Lauterbach General Commands Reference Guide S | 49

SIM.UNLOAD Unload simulator module

Format: SIM.UNLOAD |[<file>]

Unloads a simulator DLL.

Example:
SIM.UNLOAD demoport.dll ; unload specified DLL
SIM.UNLOAD ; unload all DLLs

See also

H SIM B SIM.command

©1989-2024 Lauterbach General Commands Reference Guide S | 50

SLTrace

SLTrace Trace sink for SYStem.LOG events
Format: SLTrace.<trace_windows>
<trace_ List | Chart.Distrib | ProfileChart.DistriB | STATistic.DistriB
windows>:

The SLTrace command group allows to trace and analyze the SYStem.LOG events, i.e. the read and write
accesses TRACES32 performs to the target hardware.

This is useful for analyzing critical timing of accesses done by the debugger. It may help to improve the
speed of remote API calls.

<trace_windows>

You can view the system-log trace in chart, profile chart, trace listing or trace
statistic windows. For your convenience, the <trace_windows> are directly
accessible from the SYStem.LOG.state window, as shown below [B].

For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of SLTrace.List refer to <trace>.List

@ B::5YStem. LOG.state

log Set
OFF Poling
@ ON V| MemoryRead
V| Memory\Write
commands RegisterRead
RegisterWrite

@ Init

ComponentRead
fri ComponentWrite

| Chart VMaccess

B PROfileChart TRANSIation
= | STATistic TRACE
— REMOTEAPI
CLOSE 05
V| ERROR

[F=5 Eol 5
OPEN
C:\T32\sys.log @
Maode SIZE
Compact 64.
Source
NoTime | StopOnError

P BB R BaR OIe0000

[£ sep... (A Goto....|| #4Find... [0 In |[»0¢ 0ut|[E2

-600.000ms -500.000m
class k| | |

(other) & |
cycle=REG-W &
cycle= i
cycle=REG-R R
cycle=05 an|
cycle=wWRITE ¥
cycle=G0
cycle=POLL i
cycle=BREAK R

cyc1e=STOPPRERY

©1989-2024 Lauterbach

General Commands Reference Guide S | 51

A Set the SYStem.LOG to OFF so that the recorded system-log trace can be displayed in a

<trace_window> or an existing <trace_window> can be refreshed with the latest the system-log trace.

To open a <trace_windows>, click the button you want in the SYStem.LOG.state window [B].

C Diagonal lines in a <trace_window> indicate that a system-log trace is being recorded and that the

window has not yet been updated, i.e. SYStem.LOG is still ON.

See also

B SYStem.LOG

SLTrace.state

B SYStem.LOG.state

Display configuration window

Format:

SLTrace.state

@ B::5LTrace.state
log
OoFF
®on

commands
@ Init
List
i List
| Chart
BE PROfileChart
= | STATIstic
g Store...
RESet
CLOSE

Set

[Palling

[MemoryRead

[Memarywrite
[JRegisterRead
[JRegisterwrite
[J componentRead
[J companentwrite
[Jvmaccess
[CJTRANSIation
[JTRACE
[JREMOTEAPI
Oos

I ERROR

=N ™=
OFEN
| | [@
Mode SIZE
[J compact
[source
[OnoTime [¥] StopOnError

Displays the SLTrace.state window, where you can configure the SLTrace.

©1989-2024 Lauterbach

General Commands Reference Guide S

52

SNOOPer

SNOOPer Sample-based trace

The SNOOPer trace is one of the TRACE32 trace methods which allows to gain runtime information with
just a debugger. In order to get the runtime information the debugger periodically reads out information such
as memory/variable contents, the program counter, or other system information while the program execution
is running.

Ideally, the debugger can read this information non-intrusively. The readout period is in the microsecond
range in this case. If this is not possible, the program execution has to be stopped periodically to read the
desired information. The readout periods then tend to be in the millisecond range.

To achieve high SNOOPer frequencies, the sampling is performed by the software running on the TRACE32
debug hardware where the collected samples are times-stamped and stored to a temporary buffer. The
buffer contents is read by TRACE32 PowerView after the recording stopped or is streamed to the host
during recording if the temporary buffer within the debug hardware is smaller than the trace buffer size
requested by the user.

If a TRACES32 software-only tool is used, the readout periods can be larger depending on the
communication link in use. Since the sampling software runs on the host computer, it is more likely that the
SNOOPer is suspended by other programs running there.

The “Application Note for the SNOOPer Trace” (app_snooper.pdf) introduces standard use cases and
contains important information about the technical conditions of the SNOOPer trace.

The trace features of the SNOOPer can be configured and controlled with the command group SNOOPer.

The chapter “SNOOPer-specific Trace Commands”, page 54 describes the SNOOPer-specific
configuration commands. While the chapter “Generic SNOOPer Trace Commands”, page 66 lists the
SNOOPer trace analysis and display commands, which are generic for all TRACE32 trace methods.

See also
B Trace. METHOD

A ’Introduction’ in ’Application Note for the SNOOPer Trace’

A 'Generic SNOOPer Trace Commands’ in ’‘General Commands Reference Guide S’
A "SNOOPer-specific Trace Commands’ in 'General Commands Reference Guide S’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 53

SNOOPer-specific Trace Commands

SNOOPer.<specific_cmds> Overview of SNOOPer-specific commands
See also
B SNOOPer.SELect B SNOOPer.SIZE B SNOOPer.CORE B SNOOPer.Mode
B SNOOPer.PC B SNOOPer.Rate B SNOOPer.TDelay B SNOOPer. TOut

B SNOOPer.TValue
A 'SNOOPer in’General Commands Reference Guide S’

SNOOPer.CORE Select cores for PC snooping

Format: SNOOPer.CORE [<number>...]

Selects all or specified cores for PC snooping.

<number> If no argument is specified, then the command selects all cores.

Example: In this script, the cores 0. and 3. of an SMP system are selected for PC snooping with the
command SNOOPer.CORE. The result is then displayed in the SNOOPer.List window.

Prerequisite: The cores to be snooped have been assigned to the TRACE32 PowerView GUI with the
command CORE.ASSIGN.

SNOOPer.state ;optional step: open the SNOOPer.state window

SNOOPer .Mode PC ;set the operation mode of the SNOOPer trace
;to PC snooping

SNOOPer .CORE 0. 3. ;select cores for PC snooping
Go ;start SNOOPer trace recording
WAIT 2.s

Break ;stop recording

SNOOPer .List ;display the result

©1989-2024 Lauterbach General Commands Reference Guide S | 54

5 SNOOPer. List =n| Wl <
& seup... | ‘Pmzto...|| F1Find... [v Chart |[g/ Draw || B Profile |
recor(f|run |address cycle |data symbol t1.back |
-000000001: 4 O R:000022F0 snoop armlaia_li_ait\sieve+Ox48 218.48Bms
-000000001:4) = R:0000107C snoop 218.493ms _
-000000001: 4| O R:000022D8 snoop YWharmlaha_li_aifisieve+0x30 218.408ms (=
-00000000124) = R:0000107C snoop 218.426ms -
-000000001()| O R:0000230C snoop YWharmlaha_li_aifisieve+Ox64 218.437ms o
-0000 3 R:00000960 snoop 218.462ms
-0000 A 0 R:000022E0 snoop Yharmlaha_li_aifisieve+0x38 218.336ms
-0000 3 R:000010B4 snoop YharmlahGloball__main+0x34 218.343ms
-0000000D0DH | O R:00002304 snoop Yharmlaha_li_aifisieve+Ox5C 218.418ms
-0000000004)| 3 R:000010B4 snoop YharmlahGloball__main+0x34 218.3%4ms | _
-000000000«4| O R:000022C8 snoop Yharmlaha_li_aifisieve+0x20 218.248ms |=
-000000000: 4| 3 R:000010BE0 snoop YharmlahGlobally__main+0x30 218.233ms
-000000000:4| O R:00002324 snoop Yharmlaha_li_aifisieve+tOx7C 218.468ms
-000000000:4| 3 R:000010AC snoop YharmlahGloball__main+0x2C 218.506ms ~
— I3

A 0 in the run column stands for core 0.

3 stands for core 3.

See also

B SNOOPer.<specific_cmds>

A ’'Release Information’ in’Legacy Release History’

SNOOPer.ERRORSTOP

Set behavior on sampling errors

Format:

SNOOPer.ERRORSTOP [ON | OFF]

Default: ON.

Set SNOOPer behavior when on sampling error. When this command is set to OFF, the SNOOPer continues

sampling after a sampling error occurs.

©1989-2024 Lauterbach

General Commands Reference Guide S

55

SNOOPer.Mode

Set operation mode of SNOOPer trace

[Example]

Format:

<mode>:

SNOOPer.Mode <mode>

Memory
PC
PC+MMU
BMC
DCC
ETM
ETM32
SFT

Fifo
Stack

Changes [ON | OFF]
SLAVE [ON | OFF]
StopAndGo [ON | OFF]
AddressTrace [ON | OFF]
FAST [ON | OFF]
ContextID [ON | OFF]
JITTER [ON | OFF]

Selects the operation mode of the SNOOPer trace. This command can be used to configure the sampling
object, the trace recording mode, and various further operation modes.

Sampling objects:

Memory

Samples the contents of up to 16 memory addresses/scalar variables.

PC

Samples the program counter (PC).
This operation mode of the SNOOPer trace is referred to as PC snooping.

©1989-2024 Lauterbach

General Commands Reference Guide S |

56

PC+MMU

Samples the program counter (PC) and the space ID.
This operation mode of the SNOOPer trace is referred to as PC snooping.

If the target processor has a memory management unit (MMU) and a
target operating system (e.g. Linux) is used, several processes/tasks can
run at the same logical addresses. In this scenario, the logical address
sampled by the SNOOPer trace is not sufficient to assign the sampled
PC to a program location. For a clear assignment, the information about
the current task is also required.

The PC+MMU mode can be used for this purpose: With every sample,
the SNOOPer trace will read the actual program counter and the memory
address containing the information about the current task. However, this
mode is always intrusive, since the current task and the program counter
have to be read exactly at the same time, which can only be achieved by
stopping the program execution.

For details, refer to your OS Awareness Manual.

BMC Samples all active benchmark counters.
DCC Samples data via Debug Communication Channel.
(This command is locked if your processor architecture does not provide
a Debug Communication Channel.)
ETM Samples the ETM counter (16-bit).
(This command is locked/unknown if your core has no ETM.)
ETM32 Samples the ETM counter (32-bit).
(This command is locked/unknown if your core has no ETM.)
SFT SFT software trace via LPD4 debug mode for RH850 processors. For

details refer to “RH850 Debugger and Trace” (debugger_rh850.pdf).

Recording modes:

Fifo If the SNOOPer trace is full, new records will overwrite older records. The
trace always records the last cycles before the program execution is
stopped.

Stack If the SNOOPer trace is full, recording will be stopped. The trace always
records the first cycles after starting the program execution.

©1989-2024 Lauterbach

General Commands Reference Guide S | 57

Further operation modes:

Changes

Samples only data changes.

SLAVE

ON: Ties the trace to the execution of the program, i.e. trace and the
trigger work only during user program execution.

OFF: Separates the trace from the program execution, i.e. trace is
recording even when the program execution is stopped.

(This command is only required in exceptional cases).

StopAndGo

Stops the target processor periodically to collect the data of interest.
TRACE32 sets this automatically, if no runtime access of the configured
sampling object is possible.

AddressTrace

The sampled data values are handled as addresses.

FAST

On certain ARM based derivatives from Texas Instruments (e.g.
OMAP3xxx) this mode increases the maximum sampling rate of the
snooper. This mode may not be used in multi-core debug sessions or if
the core will be powered down.

ContextID

Samples the ARM Context ID register. This option is only available for
some ARM cores.

JITTER

When enabled, this option applies a random jitter to sampling time.

©1989-2024 Lauterbach

General Commands Reference Guide S |

58

Example for AddressTrace Mode: Sample the content of a function pointer.

SNOOPer .Mode Memory

SNOOPer.SELect Var.RANGE (funcptr)

&of BuVarView %sYmbol funcptr EI@

® funcptr = 0x40000310 2 func3

A [| +

4 B:SNOOP List =0 =R
[& Setup...][1 Goto...][$#3Find...][! Chart][45| Draw][B Profile]
record run |address cycle |data symbol ti.back i
-0000000004 SD:400040D04 snoop 40000310 diabchGlobal\funcptr 69.784us .
-0000000003 SD:400040D04 snoop 40000520 “Adiabch\Global\funcptr 69.904us [z
-0000000002 SD:400040D04 snoop 40000780 “Adiabch\Global\funcptr 69.816us _
-0000000001 SD:400040D04 snoop 40000310 ‘Wdiabch\Globalfuncptr 8.890ms
4 3

SNOOPer .Mode AddressTrace ON

;data value as address

;advise TRACE32 to display the

B:SNOOP List =0 =)
[& Setup...][1 Goto...][$#3Find...][! Chart][5| Draw][B Profile]

record run |address cycle |data symbol ti.back i
-0000000004 P:40000310 snoop diabchdiabchFunc3 69.784us .
-0000000003 P:40000520 snoop “diabc\diabc\funcd 69.904us [z
-0000000002 P:40000780 snoop “diabc\diabc\func4 69.816us _

-0000000001 P:40000310 snoop “Mdiabchdiabchfunc3 8.890ms

4 3

See also

B SNOOPer.<specific_cmds> M <trace>.Mode

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide S

59

SNOOPer.PC Enable PC snooping

Format: SNOOPer.PC [ON | OFF]

Reads the PC without stopping the target (PC-snooping).

SNoop.PC Prints the current PC in the state line (only once).

SNoop.PC ON | OFF Enables or disables permanent updates of the PC in the state line.

See also
B SNOOPer.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide S | 60

SNOOPer.Rate Select sampling rate

Format: SNOOPer.Rate <value> | <time>

Selects the sampling rate. The rate can be specified as time interval or as number of samples/s. The defined
rate is not guaranteed. The actual frequency used by the SNOOPer may be lower depending on the target
CPU and the sampling object.

Example:

SNOOPer .Rate 1000000. ; set to 1 MHz sample rate

SNOOPer .Rate 1.us ; same operation, 1 MHz sample rate
See also

B SNOOPer.<specific_cmds>

SNOOPer.SELect Define address for monitoring

[Examples]

Format: SNOOPer.SELect [[%<format>] <address> | <range>] [[Y%<format>]
<address> | <range>...] [I<option>]

<format>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
CORE <core_number>

<option>: DIALOG

Defines the sampling addresses for the SNOOPer trace Memory mode. Up to 16 sampling addresses can
be specified using the SNOOPer.SELect command. The parameter can be an address or an address
range. If the parameter is a single address, the access site is per default one byte. This is also true if a
symbolic address is used (e.g. HLL variable).

©1989-2024 Lauterbach General Commands Reference Guide S | 61

When executed without arguments, the SNOOPer.SELect command clears all previously set sampling
addresses.

Byte (default), Access size
Word, TByte, Long, o Byte
PByte, HByte, SByte | TByte

8-bit accesses) Word (16-bit accesses)
24-bit accesses) Long (32-bit accesses)

—~ o~~~

J PByte (40-bit accesses) HByte (48-bit accesses)
o SByte (56-bit accesses) Quad (64-bit accesses)
CORE Performs the sampling on the specified core.
<core_number>
DIALOG If the SNOOPer.SELect command is entered with the DIALOG option, a

dialog is displayed.

Examples

Example 1:

SNOOPer .SELect /DIALOG

% B:SNOOPer SELect /DIALOG =N R <"
SElect
v [&]#lHe
[Ok] | Add Cancel
Example 2:
SNOOPer .SELect 0x10000000 ; sample one byte from address 0x1000
SNOOPer .SELect mcount ; sample one byte from integer variable
; Imcount

Example 3: If more than one byte have to be sampled, the access size has to be specified using the
<format> option, e.g. $Word or $Long.

SNOOPer .SELect %$Word 0x1000 ; sample two bytes from address 0x1000

SNOOPer .SELect %Long mcount ; sample four bytes from integer
; variable mcount

©1989-2024 Lauterbach General Commands Reference Guide S | 62

Example 4: If the parameter is an address range, the access size is automatically set to the size of the

range.
SNOOPer .SELect 0x1000--0x1001 ; sample two bytes from address 0x1000
SNOOPer .SELect Var.RANGE (mcount) ; sample the address range of the
; variable mcount
Var.RANGE(<hll_expression>) Returns the address range occupied by the

specified HLL expression

Example 5: If more that one address should be sampled, the addresses have to be specified using one
single SNOOPer.SELect command. The access size has to be specified for each sampling address.

SNOOPer .SELect %Long mcount %$Word plotl 0x1000--0x1001

See also
B SNOOPer.<specific_cmds>

SNOOPer.SIZE Define trace buffer size

Format: SNOOPer.SIZE <records>

Sets the size of the SNOOPer trace memory. The size is specified in number of records (samples).
TRACE32 PowerView allocates memory on the host for the requested size. The SNOOPer trace buffer size
is thus only limited by the resources of the host.

See also
B SNOOPer.<specific_cmds>

SNOOPer.TDelay Define trigger delay

Format: SNOOPer.TDelay <records> | <percent>%

Selects the delay between the trigger point and the execution of the trigger action defined with
SNOOPer.TOut. The delay can be specified in number of records or as percentage of the SNOOPer trace

depth.

©1989-2024 Lauterbach General Commands Reference Guide S | 63

Example:

SNOOPer .TDelay 1000. ; sample 1000. records after the ;trigger
; point then execute the trigger action.

SNOOPer .TDelay 40% ; continue with the sampling after the
; trigger point until 40% of the trace
; buffer are filled then execute the
; trigger action.

See also
B SNOOPer.<specific_cmds>

SNOOPer.TOut Define the trigger destination
Format: SNOOPer.TOut <trigger_action>
<trigger_ Trace | Program | PULSE | BUSA
action>:

Defines the <trigger_action> that should be executed when the value defined with the SNOOPer.TValue
command is sampled. This command is used in conjunction with the SNOOPer Memory and PC modes.

Trace Stop the SNOOPer trace recording.
Program Stop program execution.
PULSE Trigger pulse generator.
BUSA Trigger bus line A.
See also

B SNOOPer.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide S | 64

SNOOPer.TValue Define data value for trigger

Format: SNOOPer.TValue <value> | <range> | <bitmask>

Defines the data value, data value range or bit mask that should trigger the action defined with the
SNOOPer.TOut command. This command is used in conjunction with the SNOOPer Memory and PC

modes.
Example:
SNOOPer .TValue 0x1 ; trigger the TOut action when the wvalue
; Ox1 is sampled
SNOOPer .TValue 0xA00--0xAFF ; trigger the TOut action when a value
; within the data range 0xA00--0xAFF is
; sampled
SNOOPer .TValue !0 ; trigger the TOut action when a value
; different from 0 is sampled
See also

B SNOOPer.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide S | 65

Generic SNOOPer Trace Commands

SNOOPer.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

SNOOPer.Arm Arm the trace

See command <trace>.Arm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 134).

SNOOPer.AutoArm Arm automatically

See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

SNOOPer.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

SNOOPer.BookMark Set a bookmark in trace listing
See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

SNOOPer.BookMarkToggle Toggles a single trace bookmark

See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).

©1989-2024 Lauterbach General Commands Reference Guide S | 66

SNOOPer.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

SNOOPer.Chart.DistriB Distribution display graphically

See command <trace>.Chart.DistriB in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
159).

SNOOPer.Chart.sYmbol Symbol analysis
See command <trace>.Chart.sYmbol in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 173).

SNOOPer.Chart.VarState Variable activity chart

See command <trace>.Chart.VarState in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 189).

SNOOPer.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

SNOOPer.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

SNOOPer.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

©1989-2024 Lauterbach General Commands Reference Guide S | 67

SNOOPer.DRAW.channel Plot no-data values against time

See command <trace>.DRAW.channel in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 204).

SNOOPer.DRAW.Var Plot variable values against time

See command <trace>.DRAW.Var in 'General Commands Reference Guide T' (general_ref_t.pdf, page
210).

SNOOPer.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

SNOOPer.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

SNOOPer.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

SNOOPer.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

SNOOPer.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

©1989-2024 Lauterbach General Commands Reference Guide S | 68

SNOOPer.Get Display input level

See command <trace>.Get in 'General Commands Reference Guide T' (general_ref_t.pdf, page 242).

SNOOPer.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

SNOOPer.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

SNOOPer.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

SNOOPer.ListVar List variable recorded to trace

See command <trace>.ListVar in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 266).

SNOOPer.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

SNOOPer.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

SNOOPer.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).

©1989-2024 Lauterbach General Commands Reference Guide S | 69

SNOOPer.PROfileChart. COUNTER Display a profile chart

See command <trace>.PROfileChart. COUNTER in 'General Commands Reference Guide T
(general_ref_t.pdf, page 293).

SNOOPer.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

SNOOPer.PROTOcol Protocol analysis

See command <trace>.PROTOcol in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
339).

SNOOPer.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

SNOOPer.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in ‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

SNOOPer.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

SNOOPer.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

©1989-2024 Lauterbach General Commands Reference Guide S | 70

SNOOPer.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

SNOOPer.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

SNOOPer.PROTOcol.PROfileSTATistic Profile chart for user-defined
protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

SNOOPer.PROTOcoIl.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T
(general_ref_t.pdf, page 350).

SNOOPer.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

SNOOPer.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

SNOOPer.SAVE Save trace for postprocessing in TRACES32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

©1989-2024 Lauterbach General Commands Reference Guide S | 71

SNOOPer.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page

362).

SNOOPer.SnapShot Restart trace capturing once
See command <trace>.SnapShot in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
373).

SNOOPer.state Display trace configuration window

See command <trace>.state in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 376).

SNOOPer.STATistic Statistic analysis
See command <trace>.STATistic in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
378).

SNOOPer.STATistic.DistriB Distribution analysis
See command <trace>.STATistic.DistriB in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 401).

SNOOPer.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

SNOOPer.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

©1989-2024 Lauterbach General Commands Reference Guide S | 72

SNOOPer.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

SNOOPer.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide S | 73

SPE

SPE Signal Processing eXtension (SPE)

PowerPC 55xx/85xx only

The SPE command group is used to display and modify the SPE (Signal Processing eXtension) registers for
PowerPC.

See also
B SPE.Init B SPE.Set B SPE.view a SPE()

A 'SPE Function’ in’General Function Reference’

SPE.Init Initialize SPE registers

PowerPC 55xx/85xx only

Format: SPE.Init
SPE.RESet (deprecated)

Initializes all SPE registers to zero.

See also
B SPE B SPE.view
SPE.Set Modify SPE registers
PowerPC 55xx/85xx only
Format: SPE.Set <register> <value> [[<option>]
<register>: R0..R31 | ACC | SPEFSCR

Writes the given value to the specified SPE register.

<option> For a description of the options, see Register.view.

R0..R31 and ACC Are 64-bit values that are entered as 16-digits hex values. See example.

©1989-2024 Lauterbach General Commands Reference Guide S | 74

Example:

SPE.Set R15 0x123456789ABCDEFO0
SPE.Set ACC OxFFFFFFFFFFFFFFFF

See also
W SPE B SPE.view
SPE.view Display SPE register window
PowerPC 55xx/85xx only
Format: SPE.view [/<option>]

Opens a window displaying the SPE vector registers R0..R31, ACC and SPEFSCR.
[} B:SPEview =n| Wl <

0000000000000000 ~
0000000000000000
0000000000000000
0000000000000000
1234567 89ABCDEFD
0000000000000000
0000000000000000

4 [m

FFFFFFFFFFFFFFFF
SCR [}

For a description of the options, see Register.view.

<option>
See also
B SPE B SPE.Init B SPE.Set Q SPE()
General Commands Reference Guide S | 75

©1989-2024 Lauterbach

SSE

SSE SSE registers (Streaming SIMD Extension)

Intel® x86

The SSE command group is used to display and modify the SSE (Streaming SIMD Extensions) registers for
Intel® x86.

See also
B SSE.Init B SSE.Set B SSE.view 1 SSE()

A "Command Groups for Special Registers’ in ’Intel® x86/x64 Debugger
A 'SSE Function’ in 'General Function Reference’

SSE.Init Initialize SSE registers

Intel® x86

Format: SSE.Init

Sets the SSE registers to their default values.

See also
B SSE

SSE.Set Modify SSE registers

Intel® x86

Format: SSE.Set <register> <value> ... [[<option>]

Modifies the SSE registers.

<option> For a description of the options, see Register.view.

See also
W SSE

©1989-2024 Lauterbach General Commands Reference Guide S | 76

SSE.view Display SSE registers

Intel® x86

Format: SSE.view [/<option>]

Displays the SSE registers.

<option> For a description of the options, see Register.view.

See also
W SSE

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 77

StatCol

StatCol Statistics collector

For a description of the StatCol commands, see “System Trace User’s Guide” (trace_stm.pdf).

©1989-2024 Lauterbach General Commands Reference Guide S | 78

Step

Step Single-step

Using the Step command group, you can step through the program in a controlled way, executing an
assembly opcode, a source line or a function at a time.

See also

B Step.Asm B Step.Back B Step.BackChange B Step.BackOver
B Step.BackTill B Step.Change B Step.Diverge W Step.HIl

B Step.Mix W Step.Over B Step.single W Step.Till

B Go W List

A ’'Release Information’ in’Legacy Release History’

Step.Asm Assembler single-step

Format: Step.Asm [<count>]

Switches to assembler mode before performing the required single steps via the Step command. The
performed steps are assembly steps.

See also
B Step B Step.single
Step.Back Step backwards
Format: Step.Back

This command can only be used together with the Context Tracking System (CTS). The command steps
back one assembler instruction or one HLL line. Under certain conditions, the command automatically
activates CTS when it is turned off.

See also

W Step B Step.single

©1989-2024 Lauterbach General Commands Reference Guide S | 79

Step.BackChange Step back until expression changes

Format: Step.BackChange

Steps back till the expression changes. The command will stop also, if the expression cannot be evaluated.

Example:
Step.BackChange Register (A7) ; steps till register A7 changes
Step.BackChange ; steps till the longword at
Data.Long (sd:0x100) location
; 100 changes
See also
B Step B Step.single

A ’'Release Information’ in’Legacy Release History’

Step.BackOver Step back over call

Format: Step.BackOver

This command can only be used together with the Context Tracking System (CTS). The command steps
back one assembler instruction or one HLL line.

Under certain conditions, the command automatically activates CTS when it is turned off.

See also

W Step B Step.single

A ’Release Information’ in’Legacy Release History’

Step.BackTill Step back until expression true

Format: Step.BackTill [<boolean_expression>]

Steps back till the boolean expression becomes true. The command will stop also, if the expression cannot
be evaluated.

©1989-2024 Lauterbach General Commands Reference Guide S | 80

Example:

Step.BackTill Register (A7)>0x1000

Step.BackTill
Data.Long (sd:0x100)==0x0

steps till register A7 is larger
than 1000

steps till the longword at
location 100 gets the value 0

See also
W Step B Step.single
Step.Change Step until expression changes
Format: Step.Change [<expression>]

Steps till the expression changes. The command will stop also, if the expression cannot be evaluated.

Example:

Step.Change Register (A7)

Step.Change Data.Long(SD:0x100)

See also

steps till register A7 changes

steps till the long word at
location 100 changes

W Step B Step.single

©1989-2024 Lauterbach

General Commands Reference Guide S | 81

Step.Diverge

Step to next unreached line

Format:

Step.Diverge

The Step.Diverge command can be used to exit loops or to fast forward to not yet reached HLL lines. It
performs Step.Over repeatedly until an HLL line is reached which has not been reached in the previous

steps.

TRACE32 maintains a list of all HLL lines which were already reached. These reached lines are marked with
a slim grey line in the List window (see picture below).

In ASM/MIX mode, Step.Diverge applies to assembler code lines instead of HLL lines.

= [BxList]

[E=N Noh/T<

[Mistep |[M over |IéDiverge [# Return ||

b Go || Il Break |IﬁMode | Find: sieve.c

addr/Tine |source

751 ({

755
757

+ i Diverge

Ir/Tine |so

int sieve(void)

register int
int

count = 0;
for (i

for (i =0; i <= SIZE; i++) {
if (Flags[i1) {

; 1 <= SIZE ; flags[i++] = TRUE) ;

-

/* sieve of erathostenes #*/

i, prime, k;
count;

prime = 1 + 1 + 3; -
n 3

751 (1

755
757
/59

760
761

|«

The reached lines listis cleared when you use the Go.direct command without address or the Break
command while the program execution is stopped.

The reached lines listis not cleared at the following commands:

J Step.single, Step.Over, Step.Change <expression>, Step.Till <condition>
o Var.Step.Change <hll_expression>, Var.Step.Till <hll_condition>

J Go.Return, Go.Up, Go.direct <address>

. Var.Go.direct <hll_expression>

©1989-2024 Lauterbach

General Commands Reference Guide S | 82

£ [BaList]
| Mstep || Mover | MAbDiverge] & Return | @up || »Go || M Break | I¥mo
addr/1ine |source
static char® encode{ char str[])
599 |{
int 1;
602 for (1 = 0; str[1]; 1++){
ar..c.=.strlil:
604 T (A <= c & C<— 7)1
605 (B s e i
606 ¢ = subst{c);
. 607| c=c - a-"&87;
The debugger did } else {
not reach the 609 c = subst(c);
else branch yet 611| strli] = c;
613 return str;
614 |}
JER 1
=1 Blist
| Mstep || M over | AdDiverge| ¢ Return | eup || »Go | M Break || Mme
addr /1ine |source | |
599 [{
int 1;
602 for (1 = 0; strli]l; 1++){
603 char ¢ = str[i];
604 (A = 8B ="
605 [EEEe s e s
606 c = subst(c);
607 (R wie T et i
1 else {
M C.=.substic);
611 strli] = c;
613 return str;
614 |}
jE []
See also
W Step B Step.single
A ’'Release Information’ in ’Legacy Release History’
©1989-2024 Lauterbach General Commands Reference Guide S | 83

Step.HIl Step in HLL-mode

Format: Step.HIl [<count>]

Similar to the Step.single command, except that simultaneous switching into high-level language mode
occurs.

See also
B Step B Step.Mix B Step.single

A ’'Release Information’ in’Legacy Release History’

Step.Mix Step in mixed-mode

Format: Step.Mix [<count>]

Similar to the Step.single command, except that simultaneous switching into mixed mode takes place.

See also
B Step B Step.Hll B Step.single

©1989-2024 Lauterbach General Commands Reference Guide S | 84

Step.Over Step over call

Format: Step.Over

Steps within a function and runs called functions in real-time.

The method for this command is depends, whether the operation-mode is HLL or assembler (ASM/MIX).

ASM In assembler mode the debugger reads the instruction at the current PC.
On a CALL instruction a Go.Next command is executed. All other
instructions will cause a regular single-step command.

HLL In HLL mode the system first executes an HLL single-step. After this step
it checks, whether the PC is still in the same function. If the PC has left
the function it will check the value addressed by the SP. With that value
being within the original function, the program is continued to that point. If
this address contains no HLL breakpoint the above procedure will be
repeated (HLL step ...).

See also

B Step B Step.single
A ’'Release Information’ in’Legacy Release History’

Step.single Single-step

Format: Step.single [<count>]

Executes one program step until the next assembler instruction or HLL line, depending on the current debug
mode, is reached. <count> is the number of command executions (default is 1).

Examples:
Step.single ; single step
Step.single 10. ; 10 steps
See also
W Step B Step.Asm B Step.Back B Step.BackChange
B Step.BackOver B Step.BackTill B Step.Change W Step.Diverge
W Step.Hll B Step.Mix B Step.Over B Step.Till
B SETUPIMASKASM B SETUPIMASKHLL W Var.Step

©1989-2024 Lauterbach General Commands Reference Guide S | 85

Step.Till Step until expression true

Format: Step.Till [<boolean_expression>]

Steps till the boolean expression becomes true. The command will stop also if the expression cannot be

evaluated.
Examples:
Step.Till Register (A7)>0x1000 ; steps till register A7 is larger
; than 1000
Step.Till Data.Long (SD:0x100)==0x0 ; steps till the long word at
; location 100 gets the value 0
See also
B Step B Step.single

©1989-2024 Lauterbach General Commands Reference Guide S | 86

STM

STM System trace configuration
STM by ARM, STM and STDI by Texas Instruments

A system trace is a hardware module on a SoC which enables the developer to output predefined hardware
or software messages without affecting the run-time behavior of the system.

For a description of the STM commands, see “System Trace User’s Guide” (trace_stm.pdf).

©1989-2024 Lauterbach General Commands Reference Guide S | 87

STOre

STOre Store settings as PRACTICE script
Format: STOre <file> [[Yo<format>]<item> ...] [[<option>]
<format>: sYmbol | NosYmbol
<item>: default | ALL | Win | WIinPAGE | WinTOP | SYStem ...
<option>: NoDate

Stores settings in the format of a PRACTICE script (*.cmm). The script can be executed by using the DO

command.

<format> Description

sYmbol Addresses (e.g. for the commands Break or GROUP) are stored as
symbols. With this option, breakpoints can be stored and recalled for a
newer version of the program with different addresses. The keyword must
be entered before the item which shall be stored. The default can be set
with SETUP.STOre.SYMBOLIC.

NosYmbol Addresses (e.g. for the commands Break or GROUP) are stored as scalar
values (plain hex). With this option, stored breakpoints can be recalled
when no debug symbols are available. The keyword must be entered
before the item which shall be stored.

<item> Description

no item specified

If no item is specified, then the default setting is used; see default below.

AREA Store the current AREA settings.
ALL Store all settings.
Analyzer See Analyzer command.

AnalyzerFocus

Save the current AUTOFOCUS configuration to a file.

ART See ART command.
BookMark Store the settings of trace bookmarks and address bookmarks - see
BookMark command.
To export bookmarks as an XML file, see BookMark.EXPORT.
Break Store breakpoints - see Break command.
BSDL Store the boundary scan settings. See BSDL command.

©1989-2024 Lauterbach

General Commands Reference Guide S | 88

<item> Description

CAnalyzer See CAnalyzer command.

CAnalyzerFocus Store the electrical settings for the CAnalyzer. See
CAnalyzer.ShowFocus.

ClIProbe See CIProbe command.

Count See Count command.

default Some settings are stored by default, except for the window setting.

EDITOR Store the auto-indentation settings, etc. for all TRACE32 editors. See
SETUP.EDITOR.

FDX See FDX command.

FLASH (For diagnostic purposes only.) Store the FLASH declaration displayed in
the FLASH.List window and the settings made with the FLASH.TARGET
command.

GLOBAL Stores global PRACTICE macros with the current values - see GLOBAL
command.

GROUP See GROUP command.

HELP Stores help settings and bookmarks - see HELP command

HISTory See HISTory command.

LA Logic Analyzer - see LA command.

LOGGER See LOGGER command.

MAP See MAP command.

MARKER See sYmbol.MARKER.

NAME See NAME command.

NoDate Omit the date at the beginning of the generated script. Use the option

(deprecated) /NoDate instead.

This item is deprecated since Sep/2023.

On-chip See Onchip command.

PBREAK Stores the breakpoints created for PRACTICE scripts (*.cmm). See
PBREAK command group.

PERF Performance Analyzer - see PERF command.

POD See POD command.

Register, RegSet See Register command.

SNOOP See SNOOP command.

SPATH Source search path - see sYmbol.SPATH command.

SPATHCACHE Stores cached directories from the sYmbol.SPATH command.

©1989-2024 Lauterbach

General Commands Reference Guide S | 89

<item> Description

Symbolic | HEX Addresses are stored as symbols or scalar values (plain hex). Use the

(deprecated) format parameter %sYmbol or %NosYmbol instead.

SYnch See SYnch command.

SYStem See SYS command.

TRANSIation Store all static address TRANSIations as well as all common, transparent
and protected address ranges as displayed by command
TRANSIation.List.

TrOnchip Trigger Onchip - see TrOnchip command.

TrPOD Trigger Probe - see TP command.

VCO See VCO command.

Win Store entire window configuration.

WinPAGE Store the current window page. See WinPAGE command.

WinTOP Store the active window. See WinTOP command.

<option> Description

NoDate Omit the comment containing the current date at the beginning of the
generated PRACTICE script file (*.cmm).

Example: executing the following STOre command in TRACE32 PowerView for ARM64 connected to Zyng-
Ultrascale+ processor

STOre ~~~\test.cmm SYStem

©1989-2024 Lauterbach General Commands Reference Guide S | 90

produces the following file:

IBER

SYStem
SYStem
SYStem
SYStem

.RESet

.CPU ZYNQ-ULTRASCALE+-APU
.CONFIG CoreNumber 4.
.CONFIG CORE 1. 1.

CORE.ASSIGN 1. 2. 3. 4.

SYStem.
SYStem.
SYStem.

SYStem

SYStem.
SYStem.

SYStem

SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.

ENDDO

See also

MemAccess DAP
CpuBreak Enable
CpuSpot Enable
.JtagClock 10.MHz
Option.MMUPLM OFF
Option.ENRESET OFF
.Option.TRST OFF
CONFIG.DAPIRPRE O.
CONFIG.DAPDRPRE O.
CONFIG.DAPIRPOST 12.
CONFIG.DAPDRPOST 1.
CONFIG.SLAVE OFF
CONFIG.TAPState SELectDRscan
Mode Up

B AutoSTOre

B BookMark.List

B SETUP.STOre

Ml ClipSTOre B SETUPQUITDO

©1989-2024 Lauterbach

General Commands Reference Guide S

91

SVE

SVE Access the scalable vector extension SVE

This command group allows to access the scalable vector extension (SVE). They are available for the
processor architecture ARMv8.2 and newer.

SVE.Init Initialize SVE registers

Format: SVE.Init

Sets the SVE registers to their default values.

SVE.RESet Reset SVE settings

Format: SVE.RESet

Resets debugger SVE settings.

SVE.Set Modify SVE registers

Format: SVE.Set

Allows to modify SVE registers. Predicate registers and the FFR cannot be modified.

Registers can be modified with either floating-point values, or hexadecimal values.

©1989-2024 Lauterbach General Commands Reference Guide S | 92

SVE.view

Display SVE registers

Format:

SVE.view

All accessible SVE registers are displayed in a window. The contents of this window depend on the
implemented vector size.

The FFR register cannot be displayed. Predicate registers are read only.

{Ii¥ B::SVE.view

(o] 8)

z0
71
72
73
74
Z5
6
7
Z8
9

710
711
712
713
714
715
716
717
718

192
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

16 0
BE20 BEOO
BE21 BEOL
BE22 BEO2
BE23 BEO3
BE24 BED4
BE25 BEOS
BE26 BEOG
BE27 BEO7
BE28 BEOS
BE29 BEO9
BEZA BEOA
BEZB BEOB
BE2C BEOC
BE2D BEOD
BEZE BEOE
BE2F BEOF

AC20 ACOO

128
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

64
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

©1989-2024 Lauterbach

General Commands Reference Guide S | 93

sYmbol

sYmbol Debug symbols
See also
B sYmbol.AddInfo B sYmbol.AutoLOAD B sYmbol.Browse B sYmbol.CASE
B sYmbol.CHECK B sYmbol.Class B sYmbol.CLEANUP B sYmbol.ColorCode
B sYmbol.ColorDef B sYmbol.CREATE B sYmbol. CUTLINE B sYmbol.Delete
B sYmbol.DeleteMACRO B sYmbol.DeletePATtern B sYmbol.DEMangle B sYmbol. DEOBFUSCATE
B sYmbol. DONE H sYmbol.ECA B sYmbol.ForEach B sYmbol.INFO
B sYmbol. LANGUAGE B sYmbol.List B sYmbol.LSTLOAD B sYmbol. MARKER
B sYmbol. MATCH Bl sYmbol.MEMory B sYmbol.Modify B sYmbol.name
B sYmbol.NAMESPACES Bl sYmbol.NEW B sYmbol. OVERLAY B sYmbol.PATCH
B sYmbol.POINTER B sYmbol.POSTFIX B sYmbol.PREFIX B sYmbol. RELOCate
B sYmbol.RESet B sYmbol.SourceBeautify B sYmbol.SourceCONVert B sYmbol.SourceLOAD
B sYmbol.SourcePATH M sYmbol.SourceRELOAD B sYmbol.STATE B sYmbol.STRIP
B sYmbol. TYPEINFO B sYmbol.View
A ’sYmbol Functions’ in ‘General Function Reference’

A ’Release Information’ in’Legacy Release History’

Overview sYmbol

Using the sYmbol command group, you can list, browse, or modify existing symbols and create new

symbols.

Symbolic information is stored in several tables combined with one another. For details about the syntax of
symbols, search paths and C++ support, refer to the description of the Var command group.

Statics

Functions

Locals

Modules

Types

Sources

SPATH

Contains all static symbols, i.e. symbols with a fixed address. The symbol
may be local related to a function, a module or a program.

Contains all function blocks and additional information about functions,
i.e. virtual frame pointers, register usage, stack frame layout.

All local symbols of a function. The ranges of validity are also contained
in this table.

A module is one separately compiled program unit, i.e. one source file.

High level language types and the physical description. Only named
types are included in this table.

Contains a list of all HLL source files and the path names to the sources.

List of directories of the source search path.

©1989-2024 Lauterbach

General Commands Reference Guide S | 94

Lines High level language source lines, respectively blocks. On one address
can be one high level language block only.

Sections Logical and physical program address ranges. According to the compiler
a differentiation between 'CODE!', 'DATA', 'BSS', 'ROMABLE' etc. is made.
For each section special access rights are valid.

Programs Usually only one program is loaded. If more than one has been loaded,
the option NoClear must be used together with the Data.LOAD
command.

Stacks Contains information about the stack frame. Usually this is the offset

between a register in the processor and a “virtual frame pointer”. This
information is needed when there is no real frame pointer register used
by highly optimizing compilers.

Attributes This table is target dependent. It may contain information about different
processor executing environments (e.g. ARM/Thumb) or special code
constructs (e.g. jump tables or literal data in code).

Macros Contains the contents of preprocessor macros. This information is not
available for all compilers. However it may be generated manually with
the sYmbol.CREATE.MACRO command.

Map Holds a log of all memory operations during download. Only maintained
when the option MAP was set with the load command.

Compilers This listing contains compiler specific information. It cannot be displayed
and is determined on internal use by the HLL debugger

PRACTICE Functions

Refer to “sYmbol Functions” in General Function Reference, page 304 (general_func.pdf).

©1989-2024 Lauterbach General Commands Reference Guide S | 95

sYmbol.AddInfo Provide additional symbolic information

Format: sYmbol.AddInfo

The command can provide additional information about structures, pointers or variables. The information
can scale the display, make typecasts or provide application specific interpretation of information (e.g. C++
descriptor displays).

Here is a list of additional symbolic information types that can be set (not all symbolic information types are
available depending on what the information is assigned to):

Scaled <muiltiplier> Scales the value of the element:
[<offset> trueValue = (srcValue * multiplier) + offset.
<explanation>]]

RScaled <multiplier> Scales the value of the element:
[<offset> trueValue = (multiplier / srcValue) + offset
[<explanation>]]

<explanation> Any user-defined text, such as class name, meaning, type, unit of
measurement, etc. (See example)

JSTRING Handles the element as pointer pointing to a string stored in the Java
jstring representation. (See example)

NSTRING <bitmask> Handles the element as pointer pointing to a structure, where the first
element is the string length and the next element is the string. (See
example)

ZSTRING Handles the element as pointer pointing to a C-like string (string
terminated by zero). (See example)

MaskedPointer Modifies the pointer target address:
<mask> [<offset>] truePointer = (srcPointer & mask) | offset
(See example)

MostDerived Forces data referenced by a pointer to be displayed as data of the
<struct/class_name> declared struct or class (See example)

DESCRIPTOR Forces data references by a pointer to be displayed according to a
descriptor.
ENUM Adds a name for a value inside a variable.

<item_value>
<item_name>

Hex Marks the element to be displayed in hexadecimal.

Decimal Marks the element to be displayed in decimal.

©1989-2024 Lauterbach General Commands Reference Guide S | 96

Ascii

Marks the element to be displayed as ASCII.

sYmbol Marks the element to be displayed as a pointer to a symbol.
HIDE Hides the element from watch windows.

BigEndian Forces access to element in BigEndian byte order.
LittleEndian Forces access to element in LittleEndian byte order.

LINK <link_name>

Format an element as defined by the sYmbol.AddInfo.LINK command.

See also

B sYmbol.AddInfo.Address

B sYmbol.AddInfo.LINK

B sYmbol.AddInfo.LOADASAP2
B sYmbol.AddInfo.RESet

B sYmbol.AddInfo.Var

sYmbol.AddInfo.Delete
sYmbol.AddInfo.List
sYmbol.AddInfo.Member
sYmbol.AddInfo.Type
sYmbol

©1989-2024 Lauterbach

General Commands Reference Guide S |

97

sYmbol.AddInfo.Address Add symbol information to fixed address

Format: sYmbol.AddInfo.Address <range> | <address> <info> [<parameters>]

<info>: Scaled <multiplier> [<offset> [<explanation>]]
RScaled <multiplier> [<offset> [<explanation>]]

Adds scaling information to an address or an address range. All symbolic information types are described in
sYmbol.AddInfo.

Example 1:

; multiply each HLL variable that is located in the address range
; 0xA1080000++0xff by 1.34 and add 10. Use mVolt as unit

sYmbol .AddInfo.Address O0xA1080000++0xff Scaled 1.34 +10. " mVolt"
&of BuVar.View flags[3] EI@
= tlags[3] = 4 2 15.4 mVolt
Example 2:

; multiply the reciprocal contents of each HLL variable that is located
; in the address range 0xA1080000++0xff by 20. and add +3.3. Use mA as
; unit

sYmbol .AddInfo.Address 0xA1080000++0xff RScaled 20. +3.3 " mA"

&of BuVar.View flags[3] EI@

« Tlags[3] =4 £ 8.3 mA

See also
B sYmbol.AddInfo

©1989-2024 Lauterbach General Commands Reference Guide S | 98

sYmbol.AddInfo.Delete Delete information

Format: sYmbol.AddInfo.Delete <name>

Deletes existing information from the given variable or type name.
Example:

sYmbol .AddInfo.Var cstrl ZSTRING

sYmbol .AddInfo.Delete "cstrl"

See also
H sYmbol.AddInfo H sYmbol.AddInfo.RESet

©1989-2024 Lauterbach General Commands Reference Guide S | 99

sYmbol.Addinfo.LINK Define information for "sYmbol.AddInfo" commands
Format: sYmbol.AddInfo.LINK <link_name> <info> [<parameters>]
<info>: NSTRING <bitmask>
JSTRING
ZSTRING
MostDerived <struct| class>
DESCRIPTOR <bitmask> <struct | class>

Defines information for other sYmbol.AddInfo commands. All symbolic information types are described in

sYmbol.AddInfo.
Example:

sYmbol .AddInfo.List

;1. create description group
description to each numerical value

;2. link meaningful
sYmbol .AddInfo.LINK
sYmbol .AddInfo.LINK
sYmbol .AddInfo.LINK
sYmbol .AddInfo.LINK

seasons
seasons
seasons
seasons

; equivalent to C statement

"enum seasons {spring,

'seasons'

enum 0 "spring"
enum 1 "summer"
enum 2 "autumn"
enum 3 "winter"
symbols for

summer, autumn, winter};"

;1link the integer variables to the description group 'seasons'
sYmbol .AddInfo.Var mcount
sYmbol .AddInfo.Var mstaticl LINK seasons

Var .Watch
Var .AddWatch mcount

Var .AddWatch mstaticl

Var.set mcount=0
Var.set mstaticl=1

LINK seasons

% BusYmbol.AddInfo.List

(=[O el

name,/address member info

LINK =seasons
LINK =seasons

ENUM Ox00000000
ENUM Ox00000001
ENUM Ox00000002
ENUM 0x00000003 = winter

spring
summer
autumn

3

-

&% BuVar.Watch EI@
~ [&]] (g watch| [6o View 3

= mstaticl =
= mcount = 0

£ summer
spring

11 H

See also

H sYmbol.AddInfo

©1989-2024 Lauterbach

General Commands Reference Guide S | 100

sYmbol.AddInfo.List List additional information

Format: sYmbol.AddInfo.List

Shows all available additional information which has been declared by sYmbol.AddInfo commands.

% BusYmbol.Addinfo.List =n| Wl <
name/address member info
TDesCle type DESCRIPTOR OnyD00L 0000000000 oo = TPErcle

TPtrC38 NSTRING Oryr 0000000 33000 HHH

cstrl ZSTRING

nesta Scaled *6.3

neste Scaled *3.4

nextx (type) MostDerived = TreeMFPtr

=trtypel right MazkedPointer &= Ox1FFFF |= 0x22200000
tdef2 (] ZSTRING

Scaled AC-1)%20.0 +3.3 " mA"
Scaled *1.34 +10.0 " mvolt™

C:A1080000--A10800FF
C:A1080000--A10800FF |(a

4 1 b

See also
H sYmbol.AddInfo

sYmbol.AddIinfo.LOADASAP2 Load scaling information from ASAP2 file

Format: sYmbol.AddInfo.LOADASAP2 <file>

Loads the scaling and physical unit information from an ASAP2 file.

See also
B sYmbol.AddInfo M Data.LOAD.ASAP2

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 101

sYmbol.AddInfo.Member Add information to member of struct

Format: sYmbol.AddInfo.Member <type> <member> <info> [<parameters>]
<info>: Scaled <multiplier> [<offset> [<explanation>]]

RScaled <multiplier> [<offset> [<explanation>]]

ZSTRING

MaskedPointer <mask> <offset>
MostDerived <struct/class_name>

Add information to specific member of a specific struct or class. All symbolic information types are
described in sYmbol.AddlInfo.

<type> Name of struct or class.
<member> Name of struct or class element.
Example 1

sYmbol .AddInfo.Member neste ¢ Scaled 3.4

sYmbol .AddInfo.Member nesta a Scaled 6.3

éf Buvar.view nestevar EI@

B nestevar
- nesta::
- nesta::
- nesta::
- nesta::
- nestb::
- nestb::
- nestb::
- nestb::
- nestc::
- nestc::
- C 7
- d
- e

[k
w
=
b

JTohon TN ol
L | | | | I Y O B [A
WoOWVEoOoOoONOOWw

I n
133
%]

L
L.

©1989-2024 Lauterbach General Commands Reference Guide S | 102

Example 2

A masked pointer is a pointer where only a part of the “pointer value” is stored. In the following example, the
element ast->right is a value, whose lower 17 bits are the part of an address. The target address is
calculated using the lower 17 bits and adding 0x22200000 as base address. The pointer in this example is

declared using the command:

sYmbol .AddInfo.Member strtypel right MaskedPointer 0x0001FFFF 0x22200000

HJWM&mM———————————————————————EI@G‘AﬁﬂN&LJ

= ast =

M Step W Over 4 MNewt || & Retun ¢ Up 1l Bre 4 = 0w
addr/Tine |source | ﬁg{mt_:E i
typedef struct structl 1 A 1eft = 0x0
?h:‘" * "2‘_“’1; | =right = oxPregTTEE o
HELh G @word = 0x1234,
struct structl * left; . count = 0
struct structl * right; = 0wh
; h Teft = 0x0,
int fieldl:2; : %
. : o @ right = 0x0,
unsigned fieldZ:3; . fieldl = 0
} striypel ; - fieldz = 0,
striypel ast; : TF::II:H; : ga
typedef struct structl structarray[10]; %
i ‘ B [b:Data.dump v.address{ YasLright) DIALOG 8EH
3 List =30 || :0s2z207789 }jFlnd Modlfy waod v [JE [Track
name s al ber |[1nfo | address 0) C
striypel [right [MaskedPointer &= Ox1FFFF | = Ox22200000 SD:22207780 | 0000 DDDU UDDD UUUD+DUUU 1234 0000 0000 ~
5D:22207730 | 0000 OO00 0000 0000 0000 0000 000D 0000 v
@ I 3
—
Example 3
C Code:

struct example{ uint32 mode

enum values { on =

2; } instance;

0, off, flicker };

PRACTICE script:
; <class_name> <member> ENUM <item_ value> <item_name>
sYmbol .AddInfo.Member example mode ENUM O "on"
sYmbol .AddInfo.Member example mode ENUM 1 "off"
sYmbol .AddInfo.Member example mode ENUM 2 "flicker"
sYmbol .CREATE.MACRO on 0
sYmbol .CREATE.MACRO off 1
sYmbol .CREATE.MACRO flicker 2
sYmbol .CREATE.Done

Var.Set instance.mode=flicker

See also

H sYmbol.AddInfo

©1989-2024 Lauterbach

General Commands Reference Guide S

103

sYmbol.AddIinfo.RESet Remove all additional information

Format: sYmbol.AddInfo.RESet

Removes all additional information.

See also
B sYmbol.AddInfo B sYmbol.AddInfo.Delete
sYmbol.AddInfo.Type Add information to a data type
Format: sYmbol.AddInfo.Type <type> <info> [<parameters>]
<info>: NSTRING <bitmask>
JSTRING
ZSTRING

MostDerived <struct | class>
DESCRIPTOR <bitmask> <struct | class>

Add information to a specific data type. All symbolic information types are described in sYmbol.AddInfo.

sYmbol .AddInfo.Type tdef2 ZSTRING ; the data type tdef2 is a zero-
; terminated string

™ B::Var.View videf2
(static tdefZ) vtdefZ = “zero-terminated.string"

< >

The following shows examples to display Symbian OS descriptors and strings correctly in the debugger
window.

sYmbol .AddInfo.Type "TDesCl6" DESCRIPTOR 0Oxlxxxxxxx "TPtrCl6"
sYmbol .AddInfo.Type "TPtrC8" NSTRING 0x0XXXXXXX

sYmbol .AddInfo.Type nextx MostDerived "TreeMFPtr"

See also
H sYmbol.AddInfo

©1989-2024 Lauterbach General Commands Reference Guide S | 104

sYmbol.AddInfo.Var Add information to a variable

Format: sYmbol.AddInfo.Var <var> <info> [<parameters>]

<info>: Scaled <multiplier> [<offset> [<explanation>]]
RScaled <multiplier> [<offset> [<explanation>]]
ZSTRING

MaskedPointer <mask> <offset>
MostDerived <string>

Adds type information to a variable. All symbolic information types are described in sYmbol.AddInfo.

Example:
sYmbol .AddInfo.Var cstrl ZSTRING ;The contents of cstrl is a zero-
; terminated string
sYmbol .AddInfo.List ;Display definition list
5 BusYmbol.Addinfo.List =n| Wl < Bofl B:VarView cstrl =n| Wl <
name/address member into | + cstrl = "Constant.Stringl”
cstrl [CvariabTe) [Z5TRING)i
4 10 3 4 10 3
See also

H sYmbol.AddInfo

©1989-2024 Lauterbach General Commands Reference Guide S | 105

sYmbol.AutoLOAD Automated loading of symbols

Format: sYmbol.AutoLOAD.<sub_cmad>

The command sYmbol.AutoLOAD allows to automate the loading of symbol files. This is helpful if a boot
loader or an RTOS downloads code to the target. To debug this downloaded code loading of the appropriate
symbol information is required.

The sYmbol.AutoLOAD command maintains a list for automatic loading of symbol information. This list

contains:
J A list of address ranges
. For each address range a component name and an appropriate load command

Whenever the user wants to display an address within a specified address range, and TRACES32 also needs
symbol information for the display, the appropriate load command is automatically started.

See also

B sYmbol. AutoLOAD.CHECK B sYmbol.AutoLOAD.CHECKCoMmanD
B sYmbol. AutoLOAD.CHECKDLL B sYmbol. AutoLOAD.CHECKEPOC
B sYmbol. AutoLOAD.CHECKLINUX B sYmbol. AutoLOAD.CHECKQNX
B sYmbol. AutoLOAD.CHECKUEFI H sYmbol. AutoLOAD.CHECKWIN
B sYmbol. AutoLOAD.CHECKWINCE B sYmbol. AutoLOAD.CLEAR

B sYmbol.AutoLOAD.config B sYmbol.AutoLOAD.Create

B sYmbol. AutoLOAD.Delete B sYmbol. AutoLOAD.List

B sYmbol. AutoLOAD.LOADEPOC B sYmbol. AutoLOAD.RESet

B sYmbol. AutoLOAD.SET B sYmbol.AutoLOAD.TOUCH

H sYmbol

©1989-2024 Lauterbach General Commands Reference GuideS | 106

sYmbol.AutoLOAD.CHECK Update autoloader table

Format: sYmbol.AutoLOAD.CHECK [now [/<option>] | ON | OFF | ONGO]

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

A single sYmbol.AutoLOAD.CHECK command triggers the refresh of the Autoloader table
(sYmbol.AutoLOAD.List).

now Update the Autoloader table now.

ON If set to ON, TRACE32 updates the autoloader table after every single step
and whenever the program execution is stopped. This significantly slows
down the speed of TRACE32.

OFF If set to OFF, no automatic update of the autoloader table is done.

ONGO TRACES2 updates the autoloader table whenever the program execution is
stopped.

MACHINE Updates the autoloader table only for the specified machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

See also
B sYmbol.AutoLOAD B sYmbol.AutoLOAD.config

©1989-2024 Lauterbach General Commands Reference Guide S | 107

sYmbol.AutoLOAD.CHECKCoMmanD Configure dynamic autoloader

Format: sYmbol.AutoLOAD.CHECKCoMmanD <load_command> [/<option>]

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

The dynamic autoloader reads the target’s component table and fills the autoloader list with the components
found on the target. All necessary information, such as load addresses and space IDs, are retrieved from
kernel-internal information. The dynamic autoloader is activated by the command
sYmbol.AutoLOAD.CHECK.

<load_command> If an address is accessed that is covered by the autoloader list, the
autoloader calls <load_command> and appends parameters e.g. addresses
and space ID of the component to the action. Usually, <load_command> is
a call to a PRACTICE script (*.cmm) that handles the parameters and loads
the symbols. Please see the example scripts in the ~~/demo directory.

MACHINE Allows to specify different autoloader scripts for different machines.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

Example:

sYmbol . AutoLOAD.CHECKCoMmanD "DO autoload"
sYmbol . AutoLOAD.CHECK

sYmbol .AutoLOAD.List

This command needs an OS Awareness configured for the OS running on the target. Please see the OS
Awareness Manuals (rtos_<os>.pdf) for further information.

NOTE: The dynamic autoloader covers only components that are already started.
Components that are not in the current process/library table are not covered.

See also

B sYmbol.AutoLOAD B sYmbol.AutoLOAD.config
1 sYmbol. AutoLOAD.CHECKCMD()

©1989-2024 Lauterbach General Commands Reference Guide S | 108

sYmbol.AutoLOAD.CHECKDLL Configure automatic DLL file loader

Format: sYmbol.AutoLOAD.CHECKDLL [<address>] [<load_command>]

This command can only be used with Texas Instruments DSPs.

If the symbol __DLModules is not available, please specify the <address> for the automatic DLL file loader.
If no <load_command> is specified DO autoload is used. The automatic DLL file loader is activated by the
command sYmbol.AutoLOAD.CHECK.

Please refer also to the examples in ~~/demo/c5000/etc/dlIl/

See also
B sYmbol.AutoLOAD B sYmbol.AutoLOAD.config

©1989-2024 Lauterbach General Commands Reference Guide S | 109

sYmbol.AutoLOAD.CHECKEPOC Dynamic autoloader for Symbian

Format: sYmbol.AutoLOAD.CHECKEPOC </oad_command>

The dynamic autoloader reads the target’s process table and fills the autoloader list with the modules found
on the target. All necessary information, such as load addresses and space IDs, are retrieved from kernel-
internal information. The dynamic autoloader also covers dynamically loaded modules. The dynamic
autoloader is activated by the command sYmbol.AutoLOAD.CHECK.

If an address is accessed that is covered by the autoloader list, the autoloader calls <load_command> and
appends the load addresses and the space ID of the module to the action. Usually, <load_command>is a
call to a PRACTICE script (*.cmm) that handles the parameters and loads the symbols. Please see the
example scripts in the ~~/demo directory.

Example:

sYmbol .AutoLOAD.CHECKEPOC "DO autoload.cmm"

NOTE: . The dynamic autoloader covers only modules that are already started.
Modules that are not in the current process/library table are not covered.
. If a process symbol file is loaded, the dynamic autoloader adds the space

ID, which may be used to load the symbols to the appropriate space.

See also
B sYmbol.AutoLOAD B sYmbol.AutoLOAD.config

sYmbol.AutoLOAD.CHECKLINUX Configure autoloader for Linux debugging

Format: sYmbol.AutoLOAD.CHECKLINUX <action> (deprecated)

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also
B sYmbol.AutoLOAD B sYmbol.AutoLOAD.config

©1989-2024 Lauterbach General Commands Reference GuideS | 110

sYmbol.AutoLOAD.CHECKQNX Configure autoloader for QNX debugging

Format: sYmbol.AutoLOAD.CHECKQNX <action> (deprecated)

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also
B sYmbol.AutoLOAD

sYmbol.AutoLOAD.CHECKUEFI Configure autoloader for UEFI debugging

Format: sYmbol.AutoLOAD.CHECKUEFI </oad_command>

The UEFI code is provided by the boot FLASH, but debugging becomes more comfortable when debug
symbols are available. TRACE32 uses the so-called Autoloader to realize the automatic loading of debug
symbols whenever they are required.

The command sYmbol.AutoLOAD.CHECKUEFI specifies the command that is automatically used by the
Autoloader to load the symbol information. Usually a script called autoload.cmm provided by Lauterbach
is used.

The command sYmbol.AutoLOAD.CHECKUEFI implicitly also defines the parameters that TRACE32 uses
internally for the Autoloader (see screenshot below).

When the Autoloader is configured, the command sYmbol.AutoLOAD.CHECK can be used to scan the
UEFI module table and to activate the Autoloader. The command sYmbol.AutoLOAD.List allows to inspect
the scanned module information.

©1989-2024 Lauterbach General Commands Reference Guide S | 111

Since the UEFI module table is updated by UEFI, a re-scan might be necessary.

% BisYmbol.AutoLoad.List [E=N Ech ===
K Delete Al @ Check | (2 Config...
address name dyn_load [cmd

N:FFFD0120--FFFD60BF [PeiCore ' v |do ~~/demo/x64/bootToader/uefi/bldk/autoload "PeiCore” OxFFFDOOEB 0x1 OxFFFD0120 0x0
N:FFFD63A0--FFFD87BF (CpuPeim v do ~~/demo/x64/bootloader/uefi/bldk/autoload "CpuPeim" OxFFFD6368 Ox1 OxFFFD63A0 0x0
N:FFFD8AAQO--FFFDICFF [FaultTolerantwritePei V do ~~/demo/x64/boot]loader/uefi/bldk/autoload "FaultTolerantwritePei” OXxFFFD8A68 Ox1 OXFFFD8AAO 0x0
N:FFFDA020--FFFDBCFF [PeivariableAuth v do ~~/demo/x64/boot]loader/uefi/bldk/autoload "PeivariableAuth” OxFFFD9FE8 Ox1 OxFFFDA020 0x0
N:FFFDC020--FFFDEBSF P1atfurmPewm ' du ~~/demo/x64/bootloader/uefi/bldk/autoload "PlatformPeim" OxFFFDBFE8 Ox1 OxFFFDC020 Ox0
N: FFFDEEAQ--FFFEQ69F [SeCUm v do ~~/demo/x64/boot]oader/uefi/bldk/autoload "SeCUma" OXFFFDEEG8 Ox1 OxFFFDEEAO 0x0
N:FFFEQ9AQ--FFFE419F PchEar"IyIm tPeim V' do ~~/demo/x64/boot]loader/uefi/bldk/autoload "PchEar"IyIm tPeim” OxFFFE0968 Ox1 OxFFFE09A0 0x0
N:FFFE44A0--FFFF287F [MemoryInit s du ~~/demo/x64/boot]oader/uefi/bldk/autoload "Memarylm t" OXFFFE4468 0x1 OxFFFE44A0 0x0
N:FFFF2C60--FFFF573F [PcdPeim v do ~~/demo/x64/boot]loader/uefi/bldk/autoload "Pchm m" OXFFFF2B68 Ox1 OxFFFF2C60 0x0
N:FFFFEAB8--FFFFFCF7 [SecCore ' i

v |do ~~/demo/x64/boot1oader/uefi/bldk/autoload l "secCore" OxFFFFEA98 Ox1 OxFFFFEAB8 Ox0 |

AutoLoader parameter list

sYmbol .AutoLOAD.CHECKUEFI \
"DO ~~/demo/x86/bootloader/uefi/h2o/autoload.cmm"

sYmbol . AutoLOAD.CHECK

sYmbol .AutoLOAD.List

See also
B sYmbol.AutoLOAD B sYmbol.AutoLOAD.config

sYmbol.AutoLOAD.CHECKWIN Configure autoloader

Format: sYmbol.AutoLOAD.CHECKWIN <action> (deprecated)

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also
B sYmbol. AutoLOAD

sYmbol.AutoLOAD.CHECKWINCE Configure autoloader

Format: sYmbol.AutoLOAD.CHECKWINCE <action> (deprecated)

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also
H sYmbol. AutoLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 112

sYmbol.AutoLOAD.CLEAR Remove symbol information

Format: sYmbol.AutoLOAD.CLEAR <address> | <component_name> [[<option>]

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

Removes symbol information for the specified <address> or <component_name>.

MACHINE Removes symbol information only for the specified machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

Examples:

sYmbol .AutoLOAD.CLEAR C:0x5009B420

sYmbol .AutoLOAD.CLEAR "*trkengine*"

See also
B sYmbol.AutoLOAD

sYmbol.AutoLOAD.config Configure symbol autoloader

Format: sYmbol.AutoLOAD.config

Opens a configuration dialog for the symbol autoloader.

See also

B sYmbol.AutoLOAD B sYmbol. AutoLOAD.CHECK

B sYmbol.AutoLOAD.CHECKCoMmanD B sYmbol.AutoLOAD.CHECKDLL
B sYmbol. AutoLOAD.CHECKEPOC B sYmbol. AutoLOAD.CHECKLINUX
B sYmbol. AutoLOAD.CHECKUEFI B sYmbol. AutoLOAD.List

[sYmbol. AutoLOAD.CONFIG()

©1989-2024 Lauterbach General Commands Reference Guide S | 113

sYmbol.AutoLOAD.Create Create entry for autoloader table

Format: sYmbol.AutoLOAD.Create <range> <component_name> <load_command>

Specify an entry for the Autoloader table. The complete Autoloader table can be displayed with the
sYmbol.AutoLOAD.List command.

<component_name> Is the TRACES32 internal name for the symbol file. Please use the command
sYmbol.List.Program to get this name.

<load_command> Can be either a command of the Data.LOAD command group or a
PRACTICE script (*.cmm).

Example:

sYmbol .AutoLOAD.Create 0x1000--0x2fff "thumble" \
"Data.LOAD.E1lf thumble.axf /NoClear /NoCODE"

sYmbol .AutoLOAD.Create 0x10000--0x1ffff "can" "DO Load_ CAN"

See also
B sYmbol.AutoLOAD

sYmbol.AutoLOAD.Delete Delete autoloader entries

Format: sYmbol.AutoLOAD.Delete [<name> | <address>]

Deletes entries from the autoloader table. Without parameters, this commands clears the entire autoloader
table.

Example:

sYmbol .AutoLOAD.Delete "init"

See also
B sYmbol. AutoLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 114

sYmbol.AutoLOAD.List List autoloader table

Format: sYmbol.AutoLOAD.List

Lists the Autoloader table with the related information for each entry.

i BusVmbol.Autol OAD.List [s

3% Delete Alll @ Check | /& Config...| 4% Components

dyn [load [cmd |
DO Load_CAN
s¥Ymbol.AutoLOAD. EmBeDdedDO “ACTION=LOAD MAME=""init"" TYPE=0x1 CODEADDRESS=0x400000

4 |s¥Ymbol.AutoLOAD. EmBeDdedDO "ACTION=LOAD NAME=""sh"" TYPE=0x1 CODEADDRESS=0x400000 DA

address name
NSX 10000 : : 00010000--0001FFFF [can

N:0001: :00400000--004DBEEB |init

N:0527: :00400000--004DBEEE |sh

v
v

Column description
dyn If selected, indicates that the autoloader entry is dynamic, e.g. created by an OS

Awareness. Otherwise, if the field is not selected, it means that the autoloader
entry is static, i.e. it was created manually using sYmbol.AutoLOAD.Create.

load Selected once one of the sYmbol.AutoLOAD.SET or sYmbol.AutoLOAD.TOUCH
commands has been executed for the autoloader entry.

cmd Shows the <load_command>.

If an address is accessed that is covered by the autoloader list, the autoloader calls
<load_command> and appends parameters e.g. addresses and space ID of the
component to the action. Usually, <load_command> is a call to a PRACTICE script
(*.cmm) that handles the parameters and loads the symbols. Please see the
example scripts in the ~~ /demo directory.

Right-clicking a line shows additional submenu:
J Touch: same as executing sYmbol.AutoLOAD.TOUCH for the specified autoloader entry.
. Set: same as executing sYmbol.AutoLOAD.SET for the specified autoloader entry.

. Clear: same as executing sYmbol.AutoLOAD.CLEAR for the specified autoloader entry.

See also
B sYmbol.AutoLOAD B sYmbol.AutoLOAD.config

©1989-2024 Lauterbach General Commands Reference Guide S | 115

sYmbol.AutoLOAD.LOADEPOC Definition for static autoloader for Symbian

Format: sYmbol.AutoLOAD.LOADEPOC <log_file> <load_command> [/<option>]

<option>: StripPATH | CutPATH | LowerPATH
StripPART <number> | <string>

When generating a Symbian OS ROM image (e.g. with “buildrom”), the builder generates a log file as well
(usually “rombuild.log”). This log file contains the section addresses of all modules included in the image.
The static autoloader reads this log file and fills the autoloader list with the modules found in the log file with
it's appropriate load addresses.

If an address is accessed that is covered by the autoloader list, the autoloader calls <load_command> and
appends the load addresses of the module to the action. Usually, <load_command> is a call to a PRACTICE
script that handles the parameters and loads the symbols. Please see the example scripts in the ~~/demo

directory.
NOTE: . The static autoloader addresses only modules that are linked into the
ROM image. Modules loaded to the target dynamically are not covered.
] The log file does not include the process ID that a process will get when
started. Thus, the static autoloader loads the symbols of a process to
space ID zero.
Example:

sYmbol .AutoLOAD.LOADEPOC "la_001.techview.log" "DO autoload.cmm"

',;. B::s¥mbol.Autoload.List

address to dyn_|load cind
C:50811F9C—5BA5CFAY [ekern .exe D0 autoload"\bin\TechViewsepoc3zZirelease\MCOTwdeb\ekern .exe"” Bx5@A12000 BxSAR5CAD8 BxBAPBA
C :59050819—-5PA9B383 |euser.d11 y D0 autoload"\bin\TechVieu\epoc32irelease \ARM] \udebeuser.d11" Bx5A850874 BxB Bx100080

C :58@9B420——5809CD73 |halla.dl1 DO autoload\bin\TechView\epoc32iwrelease\MCOT \udebvhalla.d11" Bx50098484 Ox@ Bx40000A

C :58@9CDEA——5BA9CFSF |gdbseal-full.d11 DO autoload\bin\TechViewsepoc32iywrelease\THUMB udeb\gdbseal-full.d11" Bx5009CE44 Bx@ Bx4000

C :58@9CF DA—580N6563 |gdbseng .d11 DO autoload\bin\TechView\epoc32irelease\THUMB\udebygdbseng .d11" Bx50090034 Bx0 Bx400000

C :588A65D8--580NBF53 |gdbstub .exe DO autoload\bin\TechViewsepoc32iyrelease\THUMB udeb\gdbstub .exe" Bx500N6634 Bx5PPABFIA Bx48

C :588A8F CA—500NFB4B |trkengine.d11 DO autoload\bin\TechViewsepoc32wrelease\THUMB udeb trkengine .d11" Bx500N9024 Bx8 Bx100000

C :588AF BBA——5B0NFBCY [netrotrk .exe DO autoload\bin\TechViewsepoc32wrelease\THUMB\udebnetrotrk .exe" BxSO0AF114 BxSPPAFC1A Bxd ~
>

See also
B sYmbol. AutoLOAD

©1989-2024 Lauterbach General Commands Reference GuideS | 116

sYmbol.AutoLOAD.RESet Reset autoloader

Format: sYmbol.AutoLOAD.RESet

Clears the autoloader table.

See also
B sYmbol.AutoLOAD

sYmbol.AutoLOAD.SET Mark symbol information manually as loaded

Format: sYmbol.AutoLOAD.SET <name> | <address> | <addressrange>

The command sYmbol.AutoLOAD.Set allows to manually mark symbol information as loaded. This is
helpful to suppress an error message when no symbol information was generated for a specified address or
component range.

Example:

sYmbol .AutoLOAD.SET 0x5015E030

sYmbol .AutoLOAD.SET "*efsrv*"

See also
B sYmbol.AutoLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 117

sYmbol.AutoLOAD.TOUCH Initiate automatic loading by command

Format: sYmbol.AutoLOAD.TOUCH <component_name> | <addressrange> |
<address> [[<option>]

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

Initiates the loading of symbol information as defined by the sYmbol.AutoLOAD.CHECKCoMmanD.

<component_name> Wildcards possible.
<address> Any address within the address range used by a component.
<addressrange> Touches all components mapped within the given address, e.g.

librairies of a single process.

MACHINE Touches only the component of the specified machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

Examples:

sYmbol .AutoLOAD.TOUCH "*efsrv*"

sYmbol .AutoLOAD.TOUCH 0x50011f9c

See also
B sYmbol.AutoLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 118

sYmbol.Browse

Browse symbols

See also

sYmbol.Browse.Enum
sYmbol.Browse.name
sYmbol.Browse.Struct

B sYmbol.Browse.Class

B sYmbol.Browse.MVar

B sYmbol.Browse.SOURCE
B sYmbol.Browse.TypeDef sYmbol.Browse.Union
B SETUP.sYmbol sYmbol. MATCHES()

A ’Release Information’ in’Legacy Release History’

(]

sYmbol.Browse.Class

B sYmbol.Browse.Function
B sYmbol.Browse.SFunction
B sYmbol.Browse.sYmbol
B sYmbol.Browse.Var

H sYmbol.Browse.Module
B sYmbol.Browse.SModule
B sYmbol.Browse.Type

H sYmbol

Browse classes

Format: sYmbol.Browse.Class [<name>]

Lets you browse through the list of classes that have been loaded to the internal TRACE32 symbol database

with Data.LOAD.

See also
Bl sYmbol.Browse Bl sYmbol.Browse.name
sYmbol.Browse.Enum Browse enumeration types
Format: sYmbol.Browse.Enum [<name>]

Lets you browse through the list of enumeration types that have been loaded to the internal TRACE32

symbol database with Data.LOAD.

See also

H sYmbol.Browse H sYmbol.Browse.name

©1989-2024 Lauterbach

General Commands Reference Guide S | 119

sYmbol.Browse.Function Browse functions

Format: sYmbol.Browse.Function [<name_pattern> [<type_pattern>]] [/<option>]
<option>: Click <cmd>
Delete

Lets you browse through the list of functions that have been loaded to the internal TRACE32 symbol
database with Data.LOAD.

& Bus¥mbol Browse.Function func® int* /Click "List HLL" EI@
W =\func* (t.) (73] Type: int* Furctiors_»| [] Source

path [symbol type address |

.armlesarmy, [funch int () 0000104C--00001053 L

Yharmlelarm', [funclo (int 000017 84--00001C7F
Yharmleharm', [funcll (3 00001C30--00001CFB =
Viarmlelarmy, [Ffuncl3 00001CFC--00001D4B
Viarmlelarmy, [funcld 00001D4C--00001D63

00001064 --00001D7F
00001D80--00001D393
00001094 --00001DE7 i

Yharmleharm', [funcls
YWharmlelarm',

Yharmleharm',

funcle
funcl?

ABDBDBDAB DA D

Alternatively, you can browse through the function list by selecting Functions from the drop-down list in the
sYmbol.Browse.sYmbol window.

For a description of the command line arguments, see sYmbol.Browse.sYmbol.

In addition, the browser command is automatically executed when:

. A symbol is entered that ends with a wildcard or
. The symbol is not unique and the sYmbol.MATCH command is set to Choose.
Example:
List.auto func* ;First, the symbol browser opens, where you can select

;the desired function with a double-click.

;Then the selected function is displayed in the
;List.auto window.

See also

H sYmbol.Browse H sYmbol.Browse.name

©1989-2024 Lauterbach General Commands Reference Guide S | 120

sYmbol.Browse.Module Browse modules

Format: sYmbol.Browse.Module [<name_pattern> [<type_pattern>]] [[<option>]
<option>: Click <cmad>
Delete

Lets you browse through the list of modules that have been loaded to the internal TRACE32 symbol
database with Data.LOAD.

& Bus¥mbol BrowseModule EI@

WA= ILI Iil Type: Modules ~ Source
path [symbol type address |
As1eve' [crtl MODULE P:00000400--0000045E6 -
YWhsieve', |Global MODULE none
YWsievel [isr MODULE P :0000045C--000004A6
Yhsievel, |monitor MODULE P:000015F8--00002003
YWisievel, |sieve MODULE P:000004B0--000015F3
I3

Alternatively, you can browse through the module list by selecting Modules from the drop-down list in the
sYmbol.Browse.sYmbol window.

<name_pattern>, For a description of the command line arguments, see
etc. sYmbol.Browse.sYmbol.

See also

H sYmbol.Browse B sYmbol.Browse.name

©1989-2024 Lauterbach General Commands Reference Guide S | 121

sYmbol.Browse.MVar Browse module variables

Format: sYmbol.Browse.MVar [<name_pattern> [<type_pattern>]] [/<option>]
<option>: Click <cmad>
Delete

Lets you browse through the list of module variables that have been loaded to the internal TRACE32 symbol
database with Data.LOAD. Functions and local variables are not displayed in the sYmbol.Browse.MVar

window.
? Bus¥Ymbol.BrowseMVar EI@
|*** t. | |"F | Type: symbols ~ | [JSource
lsymbol address |
ast D:00006850--00006863 ,
aun D:00006A68--00006A7F
cstrl D:00006350--00006360
datas D:000068CC--000068CF
def D:00006818--0000681F
defaultstring D:00006720--00006724
enumvar D:00007E94--00007E94
Tlags D:00007E98--00007EAA
funcptr D:00006AED--00006AES
ITM_BASE D:00006434--00008437 ¥
<name_pattern>, For a description of the command line arguments, see
etc. sYmbol.Browse.sYmbol.
See also
B sYmbol.Browse H sYmbol.Browse.name
sYmbol.Browse.name Browse symbols (flat)
Format: sYmbol.Browse.name [<name_pattern> [<type_pattern>] [[<option>]
<option>: Click <cmd>
Delete

Display symbols sorted alphabetically. This command is an alias for sYmbol.name.

? Bus¥mbol.Browse.name * int EI@
|* | Type: |int [OFuncs Cvars [Ostatics []Globals
path [symbaol type address i

sleveysieveyfuncl3y [a (int) (CFA-001C)--(CFA-0019) A~
\\sieve'sieve\func5 |a (int) (CFA-000C) --(CFA-0009)

‘Asieve\sieve\test_cond_instr', |argl (CFA-0014)--(CFA-0011)

Ysieve\sieve\test_cond_instr', |arg2 (CFA-0018)--(CFA-0015)
\\sieve'sieve'funcd |autol (CFA-0014)--(CFA-0011)
\\sieve'sieve'funcd |auto2 () (CFA-0018)--(CFA-0015)
\\sieve'sieve\func2' |autovar (int) (CFA-0014)--(CFA-0011) v

©1989-2024 Lauterbach General Commands Reference Guide S | 122

Lower and upper case characters are not distinguished. For mangled C++ symbols the search order is
based on the function signatures. A complex search function is implemented to find symbol name very fast,
if the complete name will be not known. The search patterns are:

1%1

Matches any string, empty strings too.

' Matches any character, but not an empty character.

i %1

Can be used to input special characters like ™' or '?'

Click Defines a command, that can be executed by a short click with the left
mouse button. The characters ™' or '?' can be used as placeholder for the
complete name of the symbol. Using the ™ will force the command to be
executed without further interaction and without leaving the window. The
character '?" will cause the cursor to leave the window and build a command
line, that can be modified before entering.

Delete Deletes the window after the selection has been made.

Refer to sYmbol.name for more information.

See also

H sYmbol.Browse B sYmbol.Browse.Class H sYmbol.Browse.Enum B sYmbol.Browse.Function
B sYmbol.Browse.Module B sYmbol.Browse.MVar B sYmbol.Browse.SFunction B sYmbol.Browse.SModule
B sYmbol.Browse.SOURCE B sYmbol.Browse.Struct B sYmbol.Browse.sYmbol B sYmbol.Browse.Type

B sYmbol.Browse.TypeDef B sYmbol.Browse.Union B sYmbol.Browse.Var B sYmbol.INFO

A 'The Symbol Database’ in "Training Source Level Debugging’

sYmbol.Browse.SFunction Browse functions
Format: sYmbol.Browse.SFunction [<name_pattern> [<type_pattern>]] [/<option>]
<option>: Click <cmd>
Delete

Lets you browse through the list of functions that have been loaded to the internal TRACE32 symbol
database with the Data.LOAD command.

©1989-2024 Lauterbach General Commands Reference Guide S | 123

The S in SFunction selects the Source check box. With the Source check box selected, the names of the
source files are displayed instead of the module names.

& Bus¥mbol Browse SFunction EI@
WA (] [3] Type: Fndtions ¥ ISource I
path [symbol type |
hsievey ./ /src/sieve. C, |background Cint () :000015B0--000015F3 .
YWislevel". Ssro/monitor. ™ |DCC_ReceiveStatus |(static unsigned 1 :00001648--00001673
YWistevel". Ssrc/monitor. ™ |DCC_ReceivewWord (=tatic unsigned 1 100001674 --00001696
YWistevel". Ssrc/monitor. ™ |DCC_SendStatus (static unsigned 1 :000015F8--00001623
YWisievel". /src/monitor. ™ [DCC_Sendword ic voi 100001624 --00001647
YWisievel". /sro/sieve. ¢ [encode i :000010F8--00001196
Wistevel ", Ssrofisr. o |exc_isr :0000045C--00000483
YWistevel". Ssrcfisr. o |exc_snoop :00000484--000004AE ~
4 I3

Alternatively, you can browse through the function list by selecting Functions from the drop-down list in the
sYmbol.Browse.sYmbol window.

<name_pattern>, For a description of the command line arguments, see
etc. sYmbol.Browse.sYmbol.

See also

Bl sYmbol.Browse Bl sYmbol.Browse.name

©1989-2024 Lauterbach General Commands Reference Guide S | 124

sYmbol.Browse.SModule Browse modules

Format: sYmbol.Browse.SModule [<name_pattern> [<type_pattern>]] [[<option>]
<option>: Click <cmd>
Delete

Lets you browse through the modules that have been loaded to the internal TRACE32 symbol database with
Data.LOAD.

The S in SModule selects the Source check box. With the Source check box selected, the names of the
source files are displayed instead of the module names.

& Bus¥mbol Browse.SModule === @
W t.) ["3 | Type: Modules ~ I V] Source I
path [symbol type address |
stevey [T sro/ort0l sy, MODULE P:00000400--00000456 .
YWisievel |". fsrofisr.c” MODULE P :0000045C--000004AB
YWisievel |". /sro/monitor. c” MODULE P:000015F8--00002003
YWisievel |". /sro/sieve.c” MODULE P:000004B0--000015F3

Alternatively, you can browse through the module list by selecting Modules from the drop-down list in the
sYmbol.Browse.sYmbol window.

<name_pattern>, For a description of the command line arguments, see
etc. sYmbol.Browse.sYmbol.

See also

B sYmbol.Browse B sYmbol.Browse.name

©1989-2024 Lauterbach General Commands Reference Guide S | 125

sYmbol.Browse.SOURCE Browse source

Format: sYmbol.Browse.SOURCE [<name_pattern> [<type_pattern>]] [[<option>]
<option>: Click <cmd>
Delete

Lets you browse through the list of source files that have been loaded to the internal TRACE32 symbol
database with the Data.LOAD command.

% BusYmbol Browse SOURCE =n| Wl <
W=y (%.] [3] Type: Functors + | [¥] Source
path [symbol _ type address |

wsieven [,
YWisievel .
YWisievel .
YWisievel |". /s

<name_pattern>, For a description of the command line arguments, see
etc. sYmbol.Browse.sYmbol.

See also

Bl sYmbol.Browse Bl sYmbol.Browse.name

©1989-2024 Lauterbach General Commands Reference Guide S | 126

sYmbol.Browse.Struct

Browse containers for different variable types

Format:

sYmbol.Browse.Struct [<name>]

Lets you browse through the containers for different variable types that have been loaded to the internal

TRACE32 symbol database with the Data.LOAD command.

[& Bus¥mbol BrowseStruct

(=[O el

vpe info

Structs =

striypel
struct abc
struct bfield
struct structl
struct structz
struct structd
struct structs
struct structé
4 n

struct(20 bytes, unsigned char *
struct(8 bytes, int x, int ¥)

struct(1l6 bytes,
struct(20 bytes,
struct(20 bytes,
struct(1l6 bytes,
struct(1l6 bytes,
struct(16 bytes,

word, int count, struct s .

int a:l, int b:2, int c:3, int d:7, int e|_

unsigned char * word, int count, struct s|=

unsigned char * word, int count, unsigned

struct structS * pstruct5, struct structs

struct structd * pstructd, struct structd

int x, struct struct? vstruct?, int v) -
2

A You can use the wildcards ‘*’ and ‘?’ to filter the <name> list.

See also

B sYmbol.Browse

H sYmbol.Browse.name

©1989-2024 Lauterbach

General Commands Reference Guide S

127

sYmbol.Browse.sYmbol Browse symbols

Format: sYmbol.Browse.sYmbol [<name_pattern> [<type_pattern>]] [[<option>]
<option>: Click <cmd>
Delete

Lets you browse through the symbol and debug information that has been loaded to the internal TRACE32
symbol database with the Data.LOAD command.

Entering an ASCII string searches for symbols beginning with this string. The Up and Down buttons can be
used to navigate up and down in the symbol tree.

Double-clicking a symbol in a sYmbol.Browse.sYmbol window opens the symbol in its default window.
Alternatively, you can customize TRACES32’s response to the double-click by using the Click <cmd> option.
An example is shown in the screenshots below.

£ BusYmbol Browse.sYmbol \armle\arm*funcl™ *int* I /Click "List.HIl" I =N Eoh(i£] BuListHIl funcll
\\armie\arm*funcl® L. "% | Type: *int* Symbols ¥ Source [Mstep || B Over ||QDN9FQE'|| + Return |L
path [symbaol type address | addr/Tine |source
Larmleyarm — (it ()) R:00001784--00001C7F ~
Yharml e\\ar‘ml [Func11 I R.:00001C80--00001CFE . .
Wharml e arm Se— I e T O int funcll(x)
Wharmleharm', [funcld R:00001D4C--00001D63 = int x;
Viarmlelarmy, [Funcls R : 00001064 --00001D7F 439 [{ . .
Wharmle\arm', [funcle R:00001D80--00001D93 440 switch (x)
Yharmleharm, [funcl? R:00001D94--00001DB7 {
Wharmleharm', [funcls R:00001DEE--000010D3 i case 1:
- - 443 X o= Wt+l;
444 H o= WF2;
445 return x*x;

4 T

<name_pattern> Path and symbol name, or just the symbol name.

<type_pattern> HLL types.

The patterns support the wildcards * and ? for filtering the display in the sYmbol.Browse.*

windows.

Click <cmd> Command <cmd> will be executed after you double-click a symbol entry.
Without the Click option, the double-clicked symbol opens in its default
window.

Delete Dialog will be closed after you double-click a symbol entry.

See also
B sYmbol.Browse B sYmbol.Browse.name B sYmbol.STATE

A 'The Symbol Database’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide S | 128

sYmbol.Browse.Type Browse HLL types

Format: sYmbol.Browse.Type [<name>]

Lets you browse through the list of HLL types that have been loaded to the internal TRACES32 symbol
database with the Data.LOAD command.

[& Bus¥mbol Browse Type EI@
T
ines hd
hype info
enum enumtyp enum(8 bits, signed, enuml = 0, enumz = 1, enumd = 4, enum ,
=trtypel struct({20 bytes, unsigned char * word, int count, struct s
=truct abc struct(8 bytes, int x, int ¥) =

=truct bfield struct(l6 bytes, int a:l, int b:2, int c:3, int d:7, int e
=truct structl struct(20 bytes, unsigned char * word, int count, struct s
=truct struct2 struct(20 bytes, unsigned char * word, int count, unsigned
struct structd struct(1l6 bytes, struct struct5 * pstruct5, struct structs
struct structh struct(l6 bytes, struct struct4 * pstructd4, struct structd =
Fl nm 3

A You can use the wildcards * and ? to filter the list. See also <name> below.

<name> Name of an HLL type. HLL types include int, char, unsigned int, int*, struct
<name>, enum <name>, etc.

See also

H sYmbol.Browse H sYmbol.Browse.name

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 129

sYmbol.Browse.TypeDef

Browse type definitions

Format:

sYmbol.Browse.TypeDef [<name>]

Lets you browse through the list of type definitions that have been loaded to the internal TRACES32 symbol
database with Data.LOAD.

% Bus¥Ymbol Browse.TypeDef EI@
| | [structs [unions [Oclasses [JEnums M Typedefs

type info i
[_uintle_t typedef (short unsigned int)

|_uint32_t typedef (long unsigned int)

striypel typedef (struct structl)

structarray typedef (struct structl [10])

tarray typedef (int [10])

tdefl typedef (int

tdef2 typedef (short int [10])

uintlé_t typedef (__uintl6_t)

uint32_t typedef (__uint32_t)

undefarray typedef (char [0])

undefptr typedef (undefarray *)
See also

B sYmbol.Browse

H sYmbol.Browse.name

sYmbol.Browse.Union

Browse unions

Format:

sYmbol.Browse.Union [<name>]

Lets you browse through the list of unions that have been loaded to the internal TRACE32 symbol database

with Data.LOAD.

% BusYmbol Browse.Union

(o8)

| [structs [unions [classes

type

[CJEnums

[Typedefs

union tunion

info
["unton (8 bytes, int z1, short int zZ, char z3, struct abc z4)

See also

H sYmbol.Browse

H sYmbol.Browse.name

©1989-2024 Lauterbach

General Commands Reference Guide S

130

sYmbol.Browse.Var Browse variables

Format: sYmbol.Browse.Var[<name_pattern> [<type_pattern>]] [/[<option>]
<option>: Click <cmd>
Delete

Lets you browse through the list of variables that have been loaded to the internal TRACE32 symbol
database. Alternatively, you can browse through the variables list by selecting Variables from the drop-down
list in the sYmbol.Browse.sYmbol window.

Double-clicking a symbol in a sYmbol.Browse.sYmbol window opens the symbol in its default window.
Alternatively, you can customize TRACES32’s response to the double-click by using the Click <cmd> option.
An example is shown in the figure below.

% BusVmbol BrowseVar = * | /Click "Data.View %Var VarADDRESS(")" | =n| Wl <

e (2] [3] Type: * Variables ~ Source
path [symbol type address |
.armle G'Ioba'l ast E =1) D:0000583C--0000584F

“harmle\Globaly, [aun :00005AA8--00005ABF

D
\\ar‘m'le\ar‘r ind
\\arm]e\G]oba ‘ (17 D:00005500--00005510
\\arm]e\G]Dba D:00005624--00005626
\\ar'm'Ie\G'Ioba'I\ enumvar D:00005634--00005634
\\armle\Global\, ﬂags [191] D:00006EA4--00006ER6
\\armlelarmy, [Func =
}

»Q B::Data.View %Var VarADDRESS(cstr1) =N Eoh(

DOUble-ClICkIng address | data value symbo | |

. 5D:00005500 | 43 cstril0] = &7 arT ; "

d|splays the selected 5D:00005501 | 6F estrif1] = 111 1 0%

able i 5D:00005502 | 6E cstrifz] = 110
5D:00005503 | 73 cstrif3] = 115

varia e In a_ 5D:00005504 | 74 cstrif4] = 116 E
5D:00005505 | 61 cstrifs] = 97
Data.View window. 5D:00005506 | 6E cstrif6] = 110
5D:00005507 | 74 cstri{7] = 116

5D:00005508 | 20 cstrifa] = 32 : al\cstri+0x8 -

4 m 3

For a description of the command line arguments and another example for the Click <cmd> option, see
sYmbol.Browse.sYmbol.

In addition, the browser command is automatically executed when:

. A symbol that ends with a wildcard is entered at the TRACE32 command line or
. The symbol is not unique and the sYmbol.MATCH command is set to Choose.
Var .Watch vdx* ;First, the symbol browser opens, where you can select

;the desired variable with a double-click.

;Then the selected variable is displayed in the
;Var .Watch window.

See also

B sYmbol.Browse B sYmbol.Browse.name

©1989-2024 Lauterbach General Commands Reference Guide S | 131

sYmbol.CASE Set symbol search mode

Format: sYmbol.CASE [ON | OFF]

If the option will be set (default), there is a differentiation between small and capital letters.

See also
H sYmbol M Var
sYmbol.CHECK Check database
Format: sYmbol.CHECK

Checks the internal symbol database for errors. Can be used when the compiler output format is
questionable.

See also
Hl sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 132

sYmbol.Class View class hierarchy

Format: sYmbol.Class <class> [/Nested]

Displays the base classes inherited by the class as a tree. As a default the inherited classes for C++ are
displayed. With the Nested option regular included structures and pointers to structures are displayed also.

This allows the usage of this command for non C++ applications.

% BusYmbol.Class C EI@
2
B

View the hierarchy of a specific class.
? Bus¥mbol.Class C /Nested EI@

A
B
B

See also
Hl sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 133

sYmbol.CLEANUP Workarounds for redundant symbol information

Format: sYmbol.CLEANUP.<sub_cmad>

<sub_cmad>: sYmbols | CodelLiterals | AsmFrames | MidIinstLines [/<option>] |
FunctionRanges | DatalnCode | LineRanges | DOUBLES |
AlignmentPaddings

<option>: VM | Forward | Backward | AlignToSymbols

sYmbols Removes all double symbols, all double type information, empty type
information and redundant symbols for the common bank address range.

Codeliterals Architecture specific. Tries to fix debug information about literals that
really contain executable code.

AsmFrames Removes frame information for assembler frames.

MidinstLines Ignores HLL line information which points to odd addresses
plus terminates the disassembly of code lines. For option descriptions,
see below.

FunctionRanges Fixes overlapping function end addresses.

DatalnCode Identifies and marks data inside code areas (PowerPC only).

LineRanges Tries to fix bad address range information of source lines.

DOUBLES For a command description, see sYmbol.CLEANUP.DOUBLES.

Alignement- Detects memory address ranges at the end of functions that were

Paddings inserted due to memory alignment and removes them from the function
address ranges.

Options only for command sYmbol.CLEANUP.MidInstLines

VM Fixes code in VM (VM access class).

Forward, Backward Moves questionable lines forward/backward.

AlignToSymbols Keeps alignment of lines to symbols in code block.
See also
B sYmbol. CLEANUPDOUBLES B sYmbol

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 134

sYmbol.CLEANUP.DOUBLES Make ambiguous symbols unique

Format: sYmbol.CLEANUP.DOUBLES

Makes symbols loaded to the TRACE32 symbol database unique by appending two underscores and a
serial number to ambiguous symbols: <ambiguous_symbol>__<serial_number>

Ambiguous symbols Unique symbols after using
sYmbol.CLEANUP.DOUBLES
L SIS/ 0 =) £ Bis¥mbolBowsesimbel 5 B
W \gs™ (] [3] Type: Symboks_~ W \gs™ (] [3] Type: Symboks_~
lsymbol type address | lsymbol type address |
55104 D:00005054 7 55104 D:00005054 7
e D:00005144 e D:00005144
$520 I D:00005010 $520__1 I D:00005010
5520 D:0000549C 5520__2 D:0000549C
= D:00005180 — D:00005180
554 D:0000527C 554 D:0000527C
BT D:00005024 BT D:00005024
$552 I D:000050BC $552_ 1 I D:000050BC
5552 D:000050F0 - 55522 D:000050F0 -
J e } J e }
See also

B sYmbol. CLEANUP

sYmbol.ColorCode Enable color coding

Format: sYmbol.ColorCode [ON | OFF]

Enables the source text color coding. Source color coding improves the readability of source files by using
multiple colors. Enabled by default.

See also
H sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 135

sYmbol.ColorDef Specify keyword colors

Format: sYmbol.ColorDef <keyword> <value>

Specify a color used for the display of keywords in your HLL code.

<value> All color definitions can be listed with the command sYmbol.List.ColorDef.
Example:

sYmbol .ColorDef "printf" 2 ; display all printf in green
See also
H sYmbol B sYmbol.List.ColorDef B SETUP.COLOR

A ’PowerView - Screen Display’ in ’PowerView User’s Guide’

sYmbol.CREATE Create and modify user-defined symbols

The sYmbol.CREATE command group allows to create new symbols or modify existing used-defined
symbols. The created symbols will be made available to the debugger with the command
sYmbol.CREATE.DONE.

See also

B sYmbol.CREATE.ATTRibute M sYmbol. CREATE.Done B sYmbol. CREATE.Function B sYmbol. CREATE.Label
B sYmbol.CREATE.LocalVar M sYmbol. CREATE.MACRO B sYmbol. CREATE.Module B sYmbol. CREATE.RESet
B sYmbol. CREATE.Var Bl sYmbol B sYmbol.Delete B sYmbol.NEW

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 136

sYmbol.CREATE.ATTRibute Create user-defined attribute

Format: sYmbol.CREATE.ATTRibute <attribute> <address>l<range>

Creates a new user-defined attribute. The new attribute only becomes visible (e.g. in the
sYmbol.List. ATTRibute window) after calling sYmbol.CREATE.Done.

Example:
sYmbol .CREATE.ATTRibute DATA 0x1000--0x1fff

sYmbol .CREATE.Done

See also
B sYmbol.CREATE
A ’'Release Information’ in’Legacy Release History’

sYmbol.CREATE.Done Finish symbol creation

Format: sYmbol.CREATE.Done

Finishes the creation of new symbols and makes them available to the debugger. This command is only
required for sYmbol.CREATE commands. sYmbol.NEW commands already contain this functionality, but
will execute slower.

Example:

sYmbol .CREATE.Label mylabl 0x1000 ; creates “mylabl” at 1000

sYmbol .CREATE.Label mylab2 0x1010 ; creates “mylab2” at 1010

sYmbol .CREATE.Done ; make labels available to program
See also

B sYmbol.CREATE

©1989-2024 Lauterbach General Commands Reference Guide S | 137

sYmbol.CREATE.Function Create user-defined function

Format: sYmbol.CREATE.Function <name> <addressrange>

Creates symbol information for a new function. The function has no parameters or local variables. It can only
be used to define a range for a piece of code (e.g. for performance analysis).

Note that functions created with sYmbol.CREATE.Function will only become visible (e.g. in the
sYmbol.List window) after calling sYmbol.CREATE.Done.

; function ends before mylabel2
sYmbol .CREATE.Function myfunc mylabell-- (mylabel2-1)
sYmbol .CREATE.Done

This is not required for sYmbol.NEW.Function which immediately commits all changes to the symbol
table and thus executes slower.

; function ends before mylabel2
sYmbol .NEW.Function myfunc mylabell-- (mylabel2-1)

See also
B sYmbol. CREATE B sYmbol.NEW.Function

©1989-2024 Lauterbach General Commands Reference Guide S | 138

sYmbol.CREATE.Label Create user-defined symbol

Format: sYmbol.CREATE.Label <name> <address>

Creates a new label. A label is a symbol without type information that refers to a single memory location.

Example 1:
sYmbol .CREATE.Label mylabl 0x1000 ; creates “mylabl” at 1000
sYmbol .CREATE.Label mylab2 0x1010 ; creates “mylab2” at 1010
sYmbol .CREATE.Done ; make labels available to program
Example 2:
sYmbol .NEW. Label mylab3 0x1020 ; "mylab3” is available immediately
See also
B sYmbol.CREATE B sYmbol.NEW.Label
sYmbol.CREATE.LocalVar Create user-defined local variable
Format: sYmbol.CREATE.LocalVar <function> <var> <address>|<range> <type>

Creates a new local variable in a user-defined function created with sYmbol.CREATE.Function or
sYmbol.NEW.Function.

Note that local variables created with sYmbol.CREATE.LocalVar will only become visible (e.g. in the
sYmbol.List window) after calling sYmbol.CREATE.Done. This is not required for sYmbol.NEW.LocalVar
which immediately commits all changes to the symbol table and thus executes slower.

Example:

sYmbol .CREATE.Function myfunc 0x1000--0x10ff
sYmbol .CREATE.LocalVar myfunc loc_var 0x2000 int
sYmbol .CREATE.Done

See also
B sYmbol.CREATE

©1989-2024 Lauterbach General Commands Reference Guide S | 139

sYmbol.CREATE.MACRO Create user-defined macro

Format: sYmbol.CREATE.MACRO <name> <contents>

Creates a new macro. The macro can be used like a C-preprocessor macro. Parameters can be supplied in

the same way.

Example:

creation and usage of macro MY_ NEXT (<arg>)
((p) ->next)

7

sYmbol .CREATE.MACRO MY_NEXT (p)

sYmbol .CREATE.Done
Var.View MY_NEXT (myvar)

See also
B sYmbol.CREATE
A ’Release Information’ in’Legacy Release History’

B sYmbol. NEW.MACRO

sYmbol.CREATE.Module Create user-defined module

Format: sYmbol.CREATE.Module <name> <range>

Creates a user-defined module.

Example:

sYmbol .CREATE.Module test 50000--5ffff

sYmbol .CREATE.Done
sYmbol .Browse.Module

See also
B sYmbol. CREATE

B sYmbol.NEW.Module

General Commands Reference Guide S | 140

©1989-2024 Lauterbach

sYmbol.CREATE.RESet Erase all user-defined symbols

Format: sYmbol.CREATE.RESet

Removes all symbols defined by sYmbol.CREATE or sYmbol.NEW commands.

See also
Bl sYmbol.CREATE W sYmbol.NEW
sYmbol.CREATE.Var Create user-defined variable
Format: sYmbol.CREATE.Var <variable_name> <address>|<range> <type>

Creates a user-defined variable.

Examples:
sYmbol .List.Type /Unnamed ; list all types
sYmbol .CREATE.Var my_char 0x1000 char ; create variable
sYmbol .CREATE.Done ; finish creation
sYmbol .INFO my_ char ; display all information

; about the created variable

sYmbol .List.Type /Unnamed

sYmbol .CREATE.Var my_abc D:0xa000 struct abc
sYmbol .CREATE.Done

sYmbol . INFO my_abc

See also
B sYmbol. CREATE B sYmbol.NEW.Var

©1989-2024 Lauterbach General Commands Reference Guide S | 141

sYmbol.CUTLINE Limit size of text blocks

Format: sYmbol.CUTLINE [</ength>]

The number of source lines, displayed for one high-level line is limited. This prevents the display of large
parts of source text in analyzer or data windows, if the source contains many definitions. The last lines are
always displayed. Without arguments function is turned off, i.e. all lines are displayed again.

Example:

sYmbol .CUTLINE 3. ; display max. 3 lines for each HLL line

See also
Hl sYmbol

sYmbol.Delete Delete symbols of one program

Format: sYmbol.Delete [<program>]

Deletes all symbols of one program.

Example:

sYmbol .Delete \\mccp ; delete only symbols of program "mccp"
See also
H sYmbol H sYmbol.CREATE B sYmbol.NEW

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 142

sYmbol.DeleteMACRO Delete macro information

Format: sYmbol.DeleteMACRO <macro>

Deletes certain macro information.

See also
B sYmbol
A ’'Release Information’ in’Legacy Release History’

sYmbol.DeletePATtern Delete labels from symbol database using wildcards

Format: sYmbol.DeletePATtern <symbol_pattern>

Delete all labels from the symbol database that match the specified <symbol_pattern>. Allowed
wildcards are * and ?.

Example:

sYmbol .DeletePATtern _d_*

See also
Hl sYmbol

sYmbol.DEMangle C++ demangler

Format: sYmbol.DEMangle [ON | OFF] [ON | OFF]

The first argument activates the demangler, the second enables the demangling of function arguments.

©1989-2024 Lauterbach General Commands Reference Guide S | 143

Example:

sYmbol . DEMangle OFF ; get_branches_ 6ForestFP4Tree (ANSI)
; @Forest@get_branchesSgp4Tree (TURBO-C++)
sYmbol .DEMangle ON OFF ; Forest::get_branches
sYmbol . DEMangle ON ; Forest::get_branches (Tree *)
See also
H sYmbol
sYmbol.DEOBFUSCATE Deobfuscate global and static symbol

[build 145539 - DVD 09/2022]

Format: sYmbol.DEOBFUSCATE <file> [<module>]

This command allows to deobfuscate global and static symbols for the defined module on user request.
The input <file> contains a list of real symbol name and obfuscated symbol name separated by a blank.

All symbols that match an obfuscated name are replaced with the real symbol name.

See also
H sYmbol B sYmbol.Modify.NAMES
sYmbol.DONE Finish load of symbols
[build 133356 - DVD 09/2021]
Format: sYmbol.DONE

Finishes load of symbols when using Data.LOAD MORE.

See also
H sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 144

sYmbol.ECA ECA file management

The TRACE32 debugger receives all the necessary information about the source code via the debug
information generated by the compiler. However, some commands require more details. Lauterbach
provides the command line tool t32cast (see “Application Note for t32cast” (app_t32cast.pdf)) to generate
these details.

t32cast analyzes the individual source code files and generates a .eca file per source code file, which is
stored in the same directory. ECA stands for Extended Code Analysis.

The sYmbol.ECA command group allows to manage the .eca files.

ECA files are currently used by the code coverage system.

See also
B sYmbol.ECA.BINary B sYmbol.ECA.Delete B sYmbol.ECA.Init B sYmbol.ECA List
B sYmbol.ECA.LOAD B sYmbol. ECA.LOADALL H sYmbol B sYmbol.List. SOURCE

©1989-2024 Lauterbach General Commands Reference Guide S | 145

sYmbol.ECA.BINary Static preprocessing for code coverage

See also
B sYmbol.ECA
sYmbol.ECA.BINary.CollapseAll Collapse all trees
[build 134348 - DVD 09/2021]
Format: sYmbol.ECA.BINary.CollapseAll

Command to collapse all trees in an open sYmbol.ECA.BINary.view window.

See also
B sYmbol.ECA.BINary.ExpandAll B sYmbol.ECA.BINary.view

sYmbol.ECA.BINary.ControlFlowMode.INSTR Consider instrumentation

[build 157096 - DVD 2023/02]

Format: sYmbol.ECA.BINary.ControlFlowMode.INSTR [ON | OFF]

This command is used to configure the sYmbol.ECA.BINary.PROCESS command.

ON Consider source code instrumentation sites as source for monitoring
decisions/conditions for code coverage.

OFF (default) Ignore source code instrumentation sites as source for monitoring
decisions/conditions for code coverage.

See also
B sYmbol.ECA.BINary.ControlFlowMode.Trace B sYmbol.ECA.BINary.PROCESS

A ’Steps in Preparation for Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide S | 146

sYmbol.ECA.BINary.ControlFlowMode.Trace Consider trace events
[build 157096 - DVD 2023/02]

Format: sYmbol.ECA.BINary.ControlFlowMode.Trace [ON | OFF]

This command is used to configure the sYmbol.ECA.BINary.PROCESS command.

ON (default) Consider trace event of conditional branches/instructions as source
for monitoring decisions/conditions for code coverage.

OFF Ignore trace events of conditional branches/instructions as source
for monitoring decisions/conditions for code coverage.

See also
B sYmbol.ECA.BINary.ControlFlowMode.INSTR B sYmbol.ECA.BINary.PROCESS

A ’Build Process’ in ’Application Note for Trace-Based Code Coverage’

sYmbol.ECA.BINary.EditDecision Modify start address of decision

[build 134102 - DVD 09/2021]

Format: sYmbol.ECA.BINary.EditDecision <source> [<index>] <address>
sYmbol.ECA.EditDecision (deprecated)

Allows editing the start address of a decision as loaded from an ECA file. This is an expert command that
should only be used under the guidance of Lauterbach support.

©1989-2024 Lauterbach General Commands Reference Guide S | 147

This command can also be accessed via the Decision pull-down in sYmbol.ECA.BINary.view window.

N TRACE32 PowerView for TriCore £1 - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov TC27xT Window Help
(M A3 e |2 D RS @ L

% [BusYmbol.ECA.BINary.view /ExpandAll] = =R
FilterMapped FilterType tree control
ALL ~ ALL ~ Expand/Collapse All
[tree type address

I
P:0x90000514--0x90000543 «
|P: 0x9000051E

D_BRANCH

Decision _DIRECT +0xc
O Disable D_BRANCH_DIRECT | —# +0x12
D_BRANCH_DIRECT | '+ +0xlc

L+ +0xa
P:0x90000520

L+ +0x0
P:0x900004DA--0x90000513
P:0x900004E4

L+ +0x0 v

c > -23
Identity(d) 5 Enable
.\coverage.c \'I'lne 92--9z
0 num_cyc ? > 2 Change.
= ComplexDowhile

=] \covera e.c \'I'lne 117--117

= hum _CyC es >

D_BRANCH
HEN
D_BRANCH_DIRECT

DIRECT

IFTHEN
COND_BRANCH_DIRECT

B::Y.ECA.BIN.EDITDECISION \"..\coverage.c"\90 P:0x9000051E

[ok] previous

stopped at breakpoint [HLL |UP

Example:

; modify start address of the decision in source code line 90
sYmbol.ECA.BINary.EditDecision \"..\coverage.c"\90 P:0x9000051E

sYmbol.ECA.BINary.ExpandAll Expand all trees

[build 134348 - DVD 09/2021]

Format: sYmbol.ECA.BINary.ExpandAll

Command to expand all trees in an open sYmbol.ECA.BINary.view window. It expands all trees.

See also
B sYmbol.ECA.BINary.CollapseAll B sYmbol.ECA.BINary.view

©1989-2024 Lauterbach General Commands Reference Guide S | 148

sYmbol.ECA.BINary.EXPORT.AdJoinGAPS Split up observability gaps

[build 166686 - DVD2024/09]

Format: sYmbol.ECA.BINary.EXPORT.GAPS [/<option>]

<option>: CLOBber

Splits up the observability gaps per source file and place each gap file in the same directory as the
corresponding ECA file. Existing gap files are preserved if no more recent data is available.

CLOBber Allows existing files to be overwritten.

sYmbol.ECA.BINary.EXPORT.Decisions Export decision details as CSV

[build 135075 - DVD 09/2021]

Format: sYmbol.ECA.BINary.EXPORT.Decisions <file> [/<option>]

<option>: FilterMapped | FilterType | StripPATH

Export decision details as displayed in the sYmbol.ECA.BINary.view window to a CSV file. For
documentation of the command options refer to sYmbol.ECA.BINary.view.

sYmbol.ECA.BINary.EXPORT.GAPS Export observability gaps to JSON

[build 159689 - DVD2023/09]

Format: sYmbol.ECA.BINary.EXPORT.GAPS <file>

Export the observability gaps detected with the sYmbol.ECA.BINary.PROCESS command to a JSON file.
The JSON file is used as input for the t32cast command line tool to control the targeted instrumentation, see
“Application Note for t32cast” (app_t32cast.pdf).

See also
B sYmbol.ECA.BINary.PROCESS B sYmbol.ECA.BINary.view

A ’Build Process’ in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide S | 149

sYmbol.ECA.BINary.FilterMapped Filter display by the mapping state

[build 134348 - DVD 09/2021]

Format: sYmbol.ECA.BINary.FilterMapped <display>

<type>: ALL | MAPPED | UNMAPPED | NOTINBINARY]

Command to filter the display by the mapping states in an open sYmbol.ECA.BINary.view window.

tree

% BusYmbol ECABINary.view /FilterMapped UNMAPPED /ExpandAll [ro|-E-]
FilterMapped FilterType tree control
UNIMAPPED A Expand/Collapse Al

=3
]
o
=]
]
o
=]
S
o

type address

m
la]

[W\coverage_tcZ\cstart
— ‘\\coverage_tc2\cinit
— \\coverage_tc2\trapass
— ‘\\coverage_tc2\trapbus
— ‘\\coverage_tc2\trapcont
— \\coverage_tc2\trapinst
— ‘\\coverage_tc2\trapmmu
— ‘\\coverage_tc2\trapnmi
— \\coverage_tc2\trapprot
— \\coverage_tc2\trapsys
—E \\coverage_tc2"\covera

12 = . . \co
L— un

= MultiLine

14 B8 .. \co

compound-
compound->h

e
L—ElC:\T32,Tr1‘Core\demogt32cast\eca\coverage.c.eca
S TestFunctionLikeMacro
B8 . .\coverage.c ‘\line 57--5

UNMAPPED — +0x0
P : 0x9000067C--0x900006AD
SWITCH
UNMAPPED — +0x0
P : 0x90000584--0x900005D5
-258 TFTHEN
UNMAPPED — +0x0
UNMAPPED — +0x0 v

P:0x70100000--0x70100003
:0x300000B4--0x30000251
:0x900003BA--0x900003CD
:0x900003CE--0x900003E1
:0x300003E2--0x900003F5
:0x900003F6--0x90000409
:0x90000404--0x90000418
:0x3000041C--0x9000042F
:0x90000430--0x90000443
:0x90000444--0x9000044F
:0x30000450--0x30000AC7

R REREEERER]
2>

Kl

: 0x900008D4--0x9000090F
DOWHILE

DDDDDDDDDDDDDDDDDDDDDD@
ooooooooooooooooooooool:
]

e e T EEEE R)
[

COFRHORHORHRONHNOO000000 0 oo |

<display>

ALL Display the mapping result of all decisions (default).

MAPPED Display only the mapped decisions.
The source code lines for mapped decisions are displayed in blue.

UNMAPPED Display only the unmapped decisions.
The source code lines for unmapped decisions are displayed in
orange.

NOTINBINARXY No mapping is possible because there is no object code for this
decisions. The compiler has optimized this location.

See also

B sYmbol.ECA.BINary.view

©1989-2024 Lauterbach

General Commands Reference Guide S | 150

sYmbol.ECA.BINary.FilterType Filter display by decision type

[build 134348 - DVD 09/2021]

Format: sYmbol.ECA.BINary.FilterType <type>

<type>: ALL | IFTHEN | FOR | DOWHILE | WHILE | SWITCH
ASSIGN | NESTEDASSIGN | TERNARY | ARGUMENT

Command to filter by decision types in an open sYmbol.ECA.BINary.view window.

See also
B sYmbol.ECA.BINary.view

sYmbol.ECA.BINary.PROCESS Static preprocessing for code coverage

[build 142398 - DVD 02/2022]

Format: sYmbol.ECA.BINary.PROCESS
COVerage.StaticInfo (deprecated)

The sYmbol.ECA.BINary.PROCESS command performs static analysis required for MC/DC, condition,
and decision coverage.

. It preprocesses the object code to improve code coverage results for instruction set specialties
such as IT blocks (Arm Thumb).

. It determines the best monitoring strategy for decisions/conditions.

In the first two steps, the analysis performs the following:

1. The number and the places of all conditional branches/instructions in the object code of the
application is detected.

2. The result of the first step is matched with the decision/conditions details located in the .eca files.

The outcome is a mapping of all conditions/decisions to the object code. This is sufficient for the build
process.

Build Process

The analysis outcome can be used to close observability gaps through targeted instrumentation. For the
analysis, the sYmbol.ECA.BINary.ControlFlowMode.Trace command must be set ON.
Decisions/conditions that cannot be monitored by conditional branches/statements are detected by the
analysis and marked as unmapped. In this way, the observability gaps are identified. The gaps can be
exported to a JSON file using the sYmbol.ECA.BINary.EXPORT.GAPS command. This file forms the input
for the targeted source code instrumentation by the command line tool t32cast, see “Application Note for
t32cast” (app_t32cast.pdf).

©1989-2024 Lauterbach General Commands Reference Guide S | 151

To detect the observabiltiy gaps, TRACE32 must have access to the full context of the application for which
the code coverage analysis will be performed later. What is meant in this context is the memory layout and

the symbol information. If the application context can be fully setup in a TRACE32 Instruction Set Simulator,
the ISS can be used in the build process.

Code Coverage Analysis

For the code coverage analysis it must be configured which information should be considered for a complete

result:

J the conditional branches/instructions in the trace recording of the program flow based on the
mapping of all conditions/decisions to the object code performed in the first two steps of the static
analysis (command sYmbol.ECA.BINary.ControlFlowMode.Trace ON).

. the source code instrumentation sites detected by further analysis steps
(command sYmbol.ECA.BINary.ControlFlowMode.INSTR ON).

. the breakpoints.

The sYmbol.ECA.BINary.view command displays the result of monitoring.

Here is a sample command sequence for the build process.

; target setup

; load the application
Data.LOAD.El1lf my demo

; load the 0S Awareness
TASK.CONFIG ~~/demo/arm/kernel/freertos/freertos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges.

sYmbol .CLEANUP.AlignmentPaddings

; consider conditional branches/instructions in the object code for the
; static analysis
sYmbol.ECA.BINary.ControlFlowMode.Trace ON

; perform the static analysis for condition, decision and MC/DC coverage
sYmbol .ECA.BINary.PROCESS

; display the observabiltiy gaps
sYmbol.ECA.BINary.view /FilterMapped UNMAPPED /ExpandAll

; export the observabiltiy gap details
sY¥mbol.ECA.BINary.EXPORT.GAPS mygaps.json

©1989-2024 Lauterbach General Commands Reference Guide S | 152

Here is a sample command sequence for the code coverage analysis.

; target setup

; load the application
Data.LOAD.El1lf my demo

; load the 0S Awareness
TASK.CONFIG ~~/demo/arm/kernel/freertos/freertos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges.

sYmbol .CLEANUP.AlignmentPaddings

; consider conditional branches/instructions in the object code for the
; static analysis
sY¥mbol .ECA.BINary.ControlFlowMode.Trace ON

; consider source code instrumentation probe points for the
; static analysis
sY¥mbol .ECA.BINary.ControlFlowMode.INSTR ON

; perform the static analysis for condition, decision and MC/DC coverage
sYmbol .ECA.BINary.PROCESS

; start code coverage analysis

See also
B sYmbol.ECA.BINary.ControlFlowMode.INSTR B sYmbol.ECA.BINary.ControlFlowMode.Trace
B sYmbol.ECA.BINary.EXPORT.GAPS B sYmbol.ECA.BINary.view

O sYmbol.ECA.BINary.GAPNUMBER()

A ’Build Process’ in ’Application Note for Trace-Based Code Coverage’
A ’Build Process’ in 'Application Note for Trace-Based Code Coverage’

sYmbol.ECA.BINary.SetCONDitionOffset Set condition offset

[build 134102 - DVD 09/2021]

Format: sYmbol.ECA.BINary.SetCONDitionOffset <source> [<dec_index>] <index>
<address>
sYmbol.ECA.SetConditionOffset (deprecated)

Sets the address offset of a condition in relation to its decision. This is an expert command that should only
be used under the guidance of Lauterbach support.

This command can also be accessed via the Condition pull-down in sYmbol.ECA.BINary.view window.

©1989-2024 Lauterbach General Commands Reference Guide S | 153

Example:

; set offset of condition 0 of decision in line 171 to 0x8
sYmbol .ECA.BINary.SetConditionOffset \"..\coverage.c"\171 0. 0x8

set offset of condition 0 of second decision in line 327 to 0x4C
0. 0x4cC

’

sYmbol .ECA.BINary.SetConditionOffset \"..\coverage.c"\327 1.

sYmbol.ECA.BINary.SetDecisionState Disable/Enable decision evaluation
[build 134102 - DVD 09/2021]

sYmbol.ECA.BINary.SetDecisionState <source> [<dec_index>] <address>

ON | OFF
sYmbol.ECA.SetDecisionState (deprecated)

Format:

Disable or enable a decision for evaluation during code coverage. When a decision is disabled it is ignored
when measuring code coverage with the following metrics: Decision, Condition, MCDC.

The current status of all decisions can be viewed with sYmbol.ECA.BINary.view.

Example:

; Disable decision in line 171
sYmbol .ECA.BINary.SetDecisionState \"..\coverage.c"\171 OFF

; Enable second decision in line 327

sYmbol .ECA.BINary.SetDecisionState \"..\coverage.c"\327 1. ON

©1989-2024 Lauterbach General Commands Reference Guide S | 154

sYmbol.ECA.BINary.view

Result of static preprocessing for code coverage

[build 134102 - TRACE32 Release 09/2021]

Format:

<option>:

sYmbol.ECA.BINary.view [/<option>]
sYmbol.ECA.ViewDecisions (deprecated)

FilterMapped | FilterType | ExpandAll | StripPATH

This command allows to display the results of the static analysis performed by the command
sYmbol.ECA.BINary.PROCESS.

2 [BzsYmbol ECA BINary.view /ExpandAll | [E=x E=RE==)
FilterMapped FilterType tree control
ALL ~ ALL ~ Expand/Collapse All
[tree type address mapped dec mapped |cond |
— \\coverage_tcZ\trapsys P:0x90000444--0x9000044F [0 0 0 0 A
—= \\coverage_tc2\coverage P:0x90000450--0x90000AC7 (24 32 49 62
‘—BC:\T}Z,Tr'iCore\demo%t32cast\eca\coverage.c.eca 24 32 49 62
{—E TestFunctionLikeMacro P:0x900008D4--0x9000090F |2 3 3 4
0 = . .\coverage.c \line 57--57 TERNARY P:0x900008DA 1 1 2 2
|: array[(D)] != 255U ICOND_BRANCH_DIRECT | “— +0x6 0 0 1 1
array[(0) + 1u] != 255U (COND_BRANCH_DIRECT | “— +Oxe 0 0 1 1
0 = ..\coverage.c Y1ine 57--57 TERNARY P:0x900008DA 1 1 1 1
L— (0) == (result) ICOND_BRANCH_DIRECT | “— +0x12 0 0 1 1
|l | 0. \coverage.c \line 5757 DOWHILE o1 0 []
1] UNMAPPED +0x0 0 0 0 1
—E ComplexBooleanParameter P:0x900004A6--0x900004D9 |2 2 5 5
3 -2 ..\coverage.c ‘line 66--66 IARGUMENT P:0x900004A8 1 1 4 4
a \ICOND_BRANCH_DIRECT Ly +0x2 0 0 1 1
b > -36 ICOND_BRANCH_DIRECT | “ +0x8 0 0 1 1
Identity(c) ICOND_BRANCH_DIRECT Ly +0x12 0 0 1 1
Identity(d) > 2 \(COND_BRANCH_DTIRECT L4 +0Oxla 0 0 1 1
3 - ,.\coverage.c ‘\line 66--66 IFTHEN P:0x900004A8 1 1 1 1
L— _&& (!Identity(c) && !(Identity(d) > 2))) |COND_BRANCH_DIRECT Ly +0x26 0 0 1 1
—= ComplexFor P:0x90000514--0x90000543 |2 2 5 5
5 -5 ..\coverage.c \1ine 90--90 P:0x9000051E 1 1 4 4
a ICOND_BRANCH_DIRECT +0xc 0 0 1 1
b \ICOND_BRANCH_DIRECT L3 +0x12 0 0 1 1
c > -23 ICOND_BRANCH_DIRECT L +0xlc 0 0 1 1
Identity(d) < 5 ICOND_BRANCH_DIRECT Ly +0xa 0 0 1 1
['—= . .\coverage.c \1line 92--92 TFTHEN P:0x90000520 1 1 1 1 v
< >
Columns

Decision ID (TRACE32 numbers the decisions).

tree

TRACES32 internal tree:
- module name
- eca file with full path

- function name

- source code line including decision
- atomic conditions of the decision

©1989-2024 Lauterbach

General Commands Reference Guide S

155

If a List /Track window is open, the source code line selected in the sYmbol.ECA.BINary.view window is
referenced there. The exact type of the decision can be inspected.

% [BisVmbol ECA BINary.view /ExpandAll [E=NEER (==
FilterMapped FilterType tree control
ALL v ALL ~ Expand/Collapse All
|[tree type address mapped |dec mapped |cond |
— num_cycles = 1U [COND_BRANCH_DIRECT | T +0x0 0 1 1 "
= ComplexIf P : 0x90000544--0x90000568B 1 1 4 4
.. |P:0x90000544 1 4 4
a ICOND_BRANCH_DIRECT +0x0 1] 1] 1 1
b -100 \ICOND_BRANCH_DIRECT L3 +0xe 0 0 1 1
c = 42 ICOND_BRANCH_DIRECT L+ +0x8 0 0 1 1
Identity(d) < 36 ICOND_BRANCH_DIRECT L3 +0xla 0 0 1 1 v
54 Belist fTrack [= o e
M Step B Over | A Diverge & Retumn ¢ Up » Go 11 Break ¥ Mode | 65 t. Find: coverage.c
addr/line |source |
~
unsigned outcome = FALSE;
if (a && !(b > -100 || !(c > 42)) &R Tdentity(d) < 36) {
outcome = TRUE;
172 1
else {
outcome = FALSE;
175 3
return outcome; k4

Columns

mapped dec Number of mapped decisions.

dec Overall number of decisions.

mapped cond Mapped conditions.

cond Overall number of conditions.

Options

FilterMapped Filter display by the mapping state, see command
sYmbol.ECA.BINary.FilterMapped.

FilterType Filter display by types, see command sYmbol.ECA.BINary.FilterType.
ExpandAll Open window with all trees expanded. See also command
sYmbol.ECA.BINary.ExpandAll.

StripPATH Overall number of conditions.
See also

|
|
A

sYmbol.ECA.BINary.CollapseAll
sYmbol.ECA.BINary.EXPORT.GAPS
sYmbol.ECA.BINary.FilterType

"Build Process’ in ’Application Note for Trace-Based Code Coverage’

B sYmbol.ECA.BINary.ExpandAll
B sYmbol.ECA.BINary.FilterMapped
B sYmbol.ECA.BINary.PROCESS

©1989-2024 Lauterbach

General Commands Reference Guide S | 156

sYmbol.ECA.Delete Delete loaded ECA data

Format: sYmbol.ECA.Delete

Deletes all loaded ECA data and clears the sYmbol.ECA.List window.

See also
B sYmbol.ECA
sYmbol.ECA.Init Clear gathered ECA data
[build 142398 - DVD 02/2022]
Format: sYmbol.ECA.Init

Clears data gathered by sYmbol.ECA commands.

See also
B sYmbol.ECA
sYmbol.ECA List List ECA file overview
[Columns] [Toolbar] [Example]
Format: sYmbol.ECA List /[ERRORS]

Lists details about the loaded .eca files.

The option /ERRORS advises TRACE32 PowerView to only display the .eca files that were loaded with an
error.

©1989-2024 Lauterbach General Commands Reference Guide S | 157

Description of Columns in the sYmbol.ECA.List Window

2 BusVmbol ECA.List = =R
2 Clear @ Load all 2 Search Path ECA Files... 2 Errors... [LEMient
rogram eca source directory size signature |state
coverage. c.eca coverage. C .wDocumentsi\T32Z\demo\t32castieca 3991 | FAABFDYE

LLCoverage
'\ coverage
'\ coverage

main. c
crtl.sx

Toaded ‘

source List of all source files from the TRACE32 symbol database.
The source file names are part of the debug information loaded with the
program.
program Name of the program that includes the object code generated for the
source file.
eca Name of the loaded .eca file.
directory Directory containing the source file and the loaded .eca file.
size Size of the loaded .eca file in bytes.
signature Checksum signature of the loaded .eca file as a hex number.
state The state loaded indicates that the ECA file was loaded successfully.
The state error indicates one of the following:
. .eca file not found.
. .eca file contains invalid data.
The state n/a indicates that TRACE32 does not support .eca files
for the file type. E.g. no .eca data are supported for .asm files.

'\ coverage

2 BusVmbol ECA.List = =R
2 Clear @ Load all 2 Search Path ECA Files... 2 Errors... [LEMient C

rogram eca source directory size signature |state =

LLCOvVerage coverage.c.eca coverage. c .wDocumentsi\T32Z\demo\t32castieca 3991 [FAAGFD7E [Toaded /\

'\ coverage main.c |

crtl.sx

__

A state column => loaded: Double-clicking the row opens the ECA file in the TRACES32 EDIT window.
The ECA file opens in an external editor if you have configured one with the SETUP.EDITEXT

command.

B state column => (empty): Double-clicking a row loads the ECA file, if available.

C Check box allows to set the LENient option for loading operations.

©1989-2024 Lauterbach

General Commands Reference Guide S |

158

Description of Toolbar Buttons in the sYmbol.ECA.List Window

Clear Deletes all previously loaded ECA data and clears the sYmbol.ECA.List
window.
Touch all Loads the .eca file for all source files.

(command sYmbol.ECA.LOADALL /SkipErrors)

Search Path Lists the search paths specified for the source files
(command sYmbol.SourcePATH.List). TRACES32 expects the .eca files in
the same directory as their source files.

ECA Files... Displays full sYmbol.ECA.List window. The button is only active in the
sYmbol.ECA.List/[ERRORS window.

Errors... Opens the sYmbol.ECA.List [ERRORS window, displaying only .eca files
tagged with error.

Example: This script loads the .eca data for the module \ coverage.

;defines directory as base for relative source paths
sYmbol.SourcePATH.SetBaseDir "J:/userl/projects/sources"
; load program

Data.LOAD.Elf "coverage.elf" /RelPath

;load ECA file for the module \coverage

sYmbol .ECA.LOAD \coverage

sYmbol.ECA.List

See also
B sYmbol.ECA

©1989-2024 Lauterbach General Commands Reference Guide S | 159

sYmbol.ECA.LOAD Load a single ECA file
Format: sYmbol.ECA.LOAD <module> [[<option>]
<option>: SkipErrors | LENient | SetBaseDir

Loads the ECA data pertaining to the specified <module>.

SkipErrors Ensures that warnings are issued instead of error messages. For scripts,
error messages cause the script to stop. Warnings keep the script running.

LENient Allows loading of ECA files with minor errors as invalid file version or
checksum mismatch.

SetBaseDir Forces the search of matching ECA files relative to the specified base
directory.

;load ECA file for the module \coverage
sY¥mbol.ECA.LOAD \coverage

The sYmbol.List.Module command lists all modules from the TRACE32 symbol database.

% BusVmbollist Module =] [-E | S
address module source Tanguage [producer size i
P:90000420--90000433 [\\coverage_tc2\trapprot ELF-C TASKING VX-toolset for TriCore: C compiler 200 &
P:90000434--9000043F [\\\coverage_tc2\trapsys ELF-C TASKING VX-toolset for TriCore: C compiler 12.
P:90000440--900009BD [\\\coverage_tc2\coverage ..\coverage. c ELF-C TASKING VX-toolset for TriCore: C compiler 1406.
P:900009BE--900009¢CE |\'\coverage_tc2\main L\main. ¢ ELF-C TASKING VX-toolset for TriCore: C compiler 14.
none "\ \\coverage_tc2\Global DEFAULT v

The column source shows the name of the corresponding source file.

After the source file is loaded, the column file in the sYmbol.List. SOURCE window shows the full source
path.

£ BusVmbol List SOURCE [(]

K cClear | @ Touchall | £ Search Path Sources. % Errors...

rogram source file size time state |
\\coverage_tc’ ..\coverage.c [C:\T32_TriCore_18_June\demo\t3Zcast’eca‘caverage.c Toaded
"\\coverage_tc2 L\main. ¢ IC:\T32_TriCore_18_June'\demo't32cast'eca‘main.c Tloaded

TRACER32 searches for the .eca file under this source path.

An error message is displayed when the .eca file is not found or contains invalid data.

See also

B sYmbol.ECA
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 160

sYmbol.ECA.LOADALL Load all ECA files

Format: sYmbol.ECA.LOADALL [/<option>]

<option>: SkipErrors | LENient | SetBaseDir

Loads the ECA files for all modules listed in the TRACE32 symbol database.

SkipErrors Ensures that warnings are issued instead of error messages. For scripts,
error messages cause the script to stop. Warnings keep the script running.

LENient Allows loading of ECA files with minor errors as invalid file version or
checksum mismatch.

SetBaseDir Forces the search of matching ECA files relative to the specified base
directory.

Example: This script shows how to load all ECA data for the program my_demo . elf.

;load the elf file
Data.LOAD.elf my demo.elf

;load ECA data for all modules
sYmbol .ECA.LOADALL /SkipErrors

See also
B sYmbol.ECA
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 161

sYmbol.FILTER.ADD.SOURCE Add source files to filter

Format: sYmbol.FILTER.ADD.SOURCE <filter_name> <list_of_sources>
<list_of_ <source0> [<source1> ...<source9>|
sources>

Several source files are combined under a filter name. The filter can then be used in commands as a
representative of these source files. The syntax of the pathname is oriented towards the source column in
the sYmbol.Browse.SOURCE window.

sYmbol .Browse.SOURCE

sYmbol .FILTER.ADD.SOURCE jd_files \

\"D: /work/demo/mpc5hxxx/mpc5646c_Jjpeg/jdapistd.c" \
\"D: /work/demo/mpchxxx/mpc5646c_jpeg/jdcolor.c" \
\"D: /work/demo/mpchxxx/mpc5646c_jpeg/jdmainct.c"

COVerage.ListFunc.preset jd_files

; Add a further source file
sYmbol .FILTER.ADD.SOURCE jd_files \
\"D: /work/demo/mpchxxx/mpc5646¢c_jpeg/jdhuff.c"

sYmbol.FILTER.ADD.sYmbol Add symbols to filter
Format: sYmbol.FILTER.ADD.sYmbol <filter_name> <list_of_symbols>
<list_of <symbol0> [<symbol1> ...<symbol9>]
symbols>

Several symbols are combined under a filter name. The filter can then be used in commands as a
representative of the symbols.

©1989-2024 Lauterbach General Commands Reference Guide S | 162

The example below combines modules to a filter.

sYmbol .Browse.Module
sYmbol .FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans
COVerage.ListFunc.preset jd_modules

sYmbol .FILTER.ADD.sYmbol jd_modules \jdsample

sYmbol.FILTER.Delete Delete filter

Format: sYmbol.FILTER.Delete <filter_name>

Delete specified filter.

©1989-2024 Lauterbach General Commands Reference Guide S | 163

sYmbol.ForEach Symbol wildcard command

Format: sYmbol.ForEach "<cmd>" [<name_pattern> [<type_pattern>]]

Executes a PRACTICE command for each symbol matching the specified name and type patterns.

<cmd> The command to be executed has to be specified with quotation marks. It
may contain the characters '*' or '?' as placeholders that are replaced by the
complete name of a matching symbol.

<name_pattern> The patterns are case-insensitive. Therefore lower and upper case
<type_pattern> characters are not distinguished. The following wildcards can be used in
pattern expressions:

! Matches any string, including empty strings.
For the <type_pattern>, only symbols with HLL type information match.

'?' Matches one (non-empty) character.

fu! Can be used to input special characters like '*' or '?'

Examples:
sYmbol .ForEach "Break.Set" *func* ; will execute the command
; Break.Set <symbol>
; for all symbols containing
; 'func'
sYmbol .ForEach ; execute the command
"Break.Set Var.END(""*"") /Charly" * * 5 Break. Set

;Var .END (<symbol>) /Charly
; which sets a “Charly

; breakpoint” to the

; last address of each HLL
; function or variable

For more examples on wildcards, see command sYmbol.name.

See also
H sYmbol 1 sYmbol. MATCHES()

©1989-2024 Lauterbach General Commands Reference Guide S | 164

sYmbol.INFO

Display detailed information about debug symbol

Format: sYmbol.INFO <symbol> | <address> [[Track]

Displays symbolic address, location, scope and layout of the specified debug <symbol>. If an
<address> is specified, the details about the debug symbol located at <address> are displayed.

The option /Track enables the address tracking. See example 2.

Example 1:

sYmbol .INFO func9

; display detailed debug information for
; the function func9

% BusYmbolINFO funcd

(2 symbols || #tipump || Slust || Quview || $&mmu |

laddress info

attr: FLE

function

Wwdiabch\diabc Func9

function info

P :40000710--40000797 modul-Tocal static

= size: 0. push: [] use: [RO,R1,RZ,R3,R4,R5,R6,R7,RE,R9,R10,R11,R12]

epilog: P :400007 80
exit: P :40000794

#pdu]e info

Diab Data, Inc:dcc Rel 4.0b:PPCG03
I:4T32DEMOYPOWERPCY, 55xx " code_0x40000020_data_0x40004000 diabc. c

(int = [J) (function returns int)

(int #) (pointer to int, 32 bits)
(int) (signed 32 bits)

©1989-2024 Lauterbach

General Commands Reference Guide S | 165

Example 2:

sYmbol .INFO , /Track 2

Data.dump 0x40004000 7

display a sYmbol.INFO window with address
tracking enabled

you have to use a ",", if you do not want
to specify the <symbol> parameter

display a hex dump starting at address
0x40004000

; address tracking works as follows:

; as soon as you select an address in the Data.dump window,

details about

; the symbol located at selected address are displayed

2 BusVmbolINFO , /Track =] e ==
[2 symbols || #tipump || Sust || Quview || $&mmu |
laddress info -
attr: FLE
42/ B:Data.dump 0:40004000 [E]]
address | 0 4 8 C 01234567 89ABCDEF
SD:40004000 [»38000000 30604000 362B7FFB 3DADA00L 840h= @) 6+L%=4Cs
SD:40004010 | 39ADCOL0 3C404001 3842AB70 38000000 9558 <GE38B3p8IYY,
SD:40004020 | 9401FFCO 480014A9 4800139C 48001031 %3FSHITAHISIHIIL =
SD:40004030 | 9421FFF8 7C0802A6 9001000C ENNERINGE & %% [3543307550%
SD:40004040 | 7C0803A6 38210008 4E800020 942TFFF0 [B5A8INENSN. IR, =
SD:40004050 | 7C0802A6 00000000 00000000 0000000 [ESANNNTHIEMINLN
< SD:40004060 | 00000000 00000000 00000000 000000 YEHHNENINHIHLTN
SD:40004070 | 00000000 00000000 00000000 000000 MWMHLNENINHEHTHTN
SD:40004080 | 00000000 00000000 00000000 000NOOD MWMHLNENINHEHLHIN
sD:40004090 | 00000000 00000000 00000000 000CQOO00 WEEEETETNININEN ~
4 P
% Bus¥YmbolINFO , /Track = Bl

[2 symbols || #ipump || Slust || Cuview |[$&mmu |

address

5D:4000403C

address info
attr: FLE

ariable

a
“hdiabc\GlobaTywdoubTe <

D:40004038--4000403F global st

type

(doubTe) (real &4 bits,ieee-doubTe)

4

©1989-2024 Lauterbach

General Commands Reference Guide S | 166

List.auto

; Analogous, if a line is selected in the
; Source Listing all the details about the
; related function are displayed

Bu:List

[I M Step || M Over]@Dwerge][d'Retum . ¢up || »Go |[nnBreak]@Mode]

addr/Tine |code

SF:400009F8 [3E500000
SF:400009FC |2C1C0003
SF:40000A00 |40500018
402
SF:40000A04 |81510008
| _SF:40000A08 |7DBCE214
SF:40000A0C |91510008
401
SF:40000A10 |389C0001
SF:40000A14 |4EFFFFES

|1abel mnemonic |comment Loy
L.L233: 1 r28,0x0 } -
.L238: cmpwi r28,0x3 2,3
bge 0x40000A18
w17 += wv2;
Twz r12,0x8(r1)

rl2,rl2,r28 ; rl2,rl2,v2
rl2,0x8(rl) 12,v17(rl
;oV2H+)

r28,r28,0x1

AL HaTalalalsl ol 22 £33

<

!
% BusYmbolINFO, /Track =R

I % symbols || t#ipump || Siust || Quview || $&mmu |

address
SF:40000A08

address info
attr: FLE

Tine
“hdiabchdiabc "402--402 C:\T3Z2_MPC\demo’powerpc'\har dwar e\mpc56xx\mpc563x
P:40000A04--40000A0F

function

>» Mwdiabc'\diabc\Ffuncll

P :400007 98--40000BEF global static

function info
= size: 0. push: [] use: [RO,R1,RZ,R3,R4,R5,R6,R7,RE,R9,R10,R11,R12]

epilog: P :40000BDC
exit: P :40000BEC
module info

anguage: ELF-C
producer: Diab Data, Inc:dcc Rel 4.0b:PPCE03
source: I:4T32DEMOYPOWERPCY, 55xx Y code_0x40000020_data_0x40004000 diabc. c

type
(int () (function returns int)

(int) (signed 32 bits)

4 1 +
See also
B sYmbol B sYmbol.Browse.name B sYmbol.STATE B Data.dump
B MMU.INFO W VarINFO

A 'The Symbol Database’ in "Training Source Level Debugging’

©1989-2024 Lauterbach

General Commands Reference Guide S |

167

sYmbol.LANGUAGE Select language

Format: sYmbol.LANGUAGE [</anguage>]

Selects the language and style, that is used for HLL expressions.
Example:

sYmbol . LANGUAGE MCC68K

See also
Hl sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 168

sYmbol.List Display list of all symbols

Format: sYmbol.List [<address>]

Displays the sYmbol.List window with a list of all symbols. The list is ordered by the symbols’ addresses
and scrolled so that <address> is shown at the top of the window.

The <address> can be entered as a literal (e.g. P: 0xFC004AB) or using a symbol path (e.g.
\\sieve\pagel\main). When using wildcards, the symbol path needs to evaluate to a single symbol.

See also
B sYmbol.List. ATTRibute B sYmbol.List.BUILTIN B sYmbol.List.ColorDef B sYmbol.List.Enum
M sYmbol.List. FRAME B sYmbol.List.Function B sYmbol.List. IMPORT B sYmbol.List.InlineBlock
B sYmbol.List.InlineFunction B sYmbol.List.LINE B sYmbol.List.Local M sYmbol.List MACRO
B sYmbol.List MAP B sYmbol.List. Module B sYmbol.List. PATCH B sYmbol.List.Program
B sYmbol.List. REFerence B sYmbol.List. SECtion B sYmbol.List SOURCE B sYmbol.List.SourceFunction
B sYmbol.List. SOURCETREE M sYmbol.List.STACK B sYmbol.List.Static M sYmbol.List. TREE
B sYmbol.List. Type B sYmbol B sYmbol.STATE
sYmbol.List. ATTRibute Display memory attributes
Format: sYmbol.List. ATTRibute [<address>]

Displays memory attributes. Memory attributes can classify the code or execution model at a specific
address. This information is highly compiler dependent.

See also
B sYmbol.List
sYmbol.List.BUILTIN List built-in data types
Format: sYmbol.List.BUILTIN

Lists all built-in data types of the used programming language.

See also
B sYmbol.List

©1989-2024 Lauterbach General Commands Reference Guide S | 169

sYmbol.List.ColorDef List the keyword color definitions

Format: sYmbol.List.ColorDef

Lists the color definition for the keywords of the HLL code displayed in the Data.List window (i f, else,
while, etc.). The class column in the sYmbol.ListColorDef window shows the currently assigned
formatting class (= style in a word processing application such as OpenOffice.Org Writer).

By default, the keywords are assigned to the formatting class 1, and its default color is blue.

By assigning keywords to class 2 or 3, you can format keywords green or purple. If you want to pick another
color for the classes 2 and 3, then click the change button in the SETUP.COLOR window.

% BusYmbol.List.ColorDef = | 2|3
keyword _flclass
- 1 -
Change keyword color. ee - I
do 1
while 1
ifor 1
break 1
: continue 1
74 B:SETUP.COLOR == |EE] | | |switch 1
r g b u=sage | case 1
36 detault change -—-— default --- L detau t i
37 default change --- default --- !Key.-cor‘ds Source Text! goto 1
38 default change --- default --- Keywords2 Source Text return d
39 default change --- default --- Keywords3 Source Text [
11 | — default change --- default --- [uNormaloAsciioTextuoouuoouuoouuoog & L

Example 1: This script shows how to change the color of the for keyword. To try this script, copy it to a
test . cmm file, and then step through it in TRACE32 (See “How to...").

sYmbol .List.ColorDef ;Display the keywords, their colors, and
;the classes to which the keywords are assigned

SETUP.COLOR ;Display the current color settings

sYmbol .ColorDef "for" 2. ;Assign the keyword 'for' to class 2 =>
; 'for' turns green

sYmbol .ColorDef "for" 3. ;Assign the keyword 'for' to class 3 =>
; 'for' turns purple

SETUP.COLOR 39. 255. 128. 0. ;Change the color of class 3 to orange
SETUP.COLOR 39. ;Restore the default color of class 3 again
sYmbol .ColorDef "for" 1. ;Apply class 1 to the 'for' keyword again

Example 2: A PRACTICE script that adds more keywords to the sYmbol.List.ColorDef window is included
in your TRACE32 installation. To access the script, run this command:

B::CD.PSTEP ~~/demo/practice/colors/syntaxcolor.cmm
See also
B sYmbol.List B sYmbol.ColorDef B SETUP.COLOR

A ’PowerView - Screen Display’ in 'PowerView User’s Guide’

©1989-2024 Lauterbach General Commands Reference GuideS | 170

sYmbol.List.Enum List of enumeration constants
[build 161826 - DVD 09/2023]

Format: sYmbol.List.Enum

Lists all enumeration constants with the related information.

% BusYmbol.List.Enum EI@
address path’symbol type scope |location [info |
none \s1eveisieve FALSE (unsigned int) moduTe [const value: 0O
none Y\sievesieve\TRUE (unsigned int) module [const value: 1
none Y\sievelsieve'enuml (int) module [const value: 0
none Y\sievelsieve'enum2 (int) module [const value: 1
none Y\sievelsieve'enumd (int) module [const value: 4
none Y\sievelsieve'enum? (int) module [const value: 7
none Y\sievelsieve'enums (int) module [const value: 8
none Y\sievelsieve'enumx (int) module [const value: -1

See also
B sYmbol.List

©1989-2024 Lauterbach General Commands Reference Guide S | 171

sYmbol.List. FRAME Display frames

Format: sYmbol.List.FRAME [<address>]

Lists the location and further related information about the frames. In the sYmbol.List. FRAME window,
each entry tells the debugger for a certain program range where the registers are saved, e.g. relative to the
current stack pointer (SP).

% BusYmbol List FRAME =n| Wl <
address rules
P:0000104C--00001053 [RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- Rry:- RB:- R9:- R10:- R11l:- R14:- ~
P:00001054--00001063 |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- Rl14:-
P:00001064--00001067 |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- Rl14:- E
P:00001068--00001103 |RET:R14 CFA:R13+0x8 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- R14:*CFA-Ox4
P:00001104--0000110F |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- R14:*CFA-Ox4
P:00001110--0000115F |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- Rl14:-
P:00001160--000011A3 |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- Ril:-
P:000011A4--000011A7 |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- Ril:-
P:000011A8--000011AE |RET:R14 CFA:R13+0x4 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- Rll:-
P:000011AC--00001276 |RET:R14 CFA:R13+0x1C RO:used Rl:used RZ2:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- Rll:
P:0000127C--0000127F |RET:R14 CFA:R13+0x4 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- Ril:-
P:00001280--00001296 |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- R14:*CFA-Ox4
P:0000129C--000012F3 |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- Rl4:-
P:000012F4--00001303 |RET:R14 CFA:R13+0x0 RO:used Rl:used RZ:used R3:used R4:- R5:- R6:- R7:- RB:- R9:- R10:- R1l:- Rl14:- ~
Description of Columns in the sYmbol.List. FRAME Window
address Address range of a single frame
rules Rules used by TRACE32 PowerView to recover the previous stack
frames.
Description of Values in the “rules” Column
RET Location of the return value, e.g. a register
RO to R14 Register names (architecture-specific)
CFA Canonical frame address
<register>:used Registers which cannot be recovered
<register>:- Registers with valid content
*CFA-<offset> Address where the register content can be recovered from,
or e.g. *CFA-0x4
*CFA+<offset>
See also
B sYmbol.List B Frame

©1989-2024 Lauterbach General Commands Reference Guide S | 172

sYmbol.List.Function

Display functions

Format:

sYmbol.List.Function [<range> | <address>]

Lists the location and further related information about the loaded functions.

e

Bu:s¥Ymbol.List.Function

address

path’symbol

scope |location [info

AMODODODODDDDHDA0R0R[0R[D0

0000104C--00001053
00001054 --00001063
00001064 --0000110F
00001110--0000115F
00001160--000011A3
000011A4--00001296
0000129C--000012F3
000012F4--00001303
00001304--00001336
0000133C--00001353
00001354 --000013C7
000013CE--00001453
00001454 --000016EF
000016F0--00001783

armlesarmyfunco

Wharmleharmifuncl

Yharmleharmifunc2

Yharmleharmyfunc2a
Yharmleharm func2b
Yharmleharmy func2e
Yharmleharmh func2d
Wharmleharmifuncs

Yharmleharmi funcd

Wharmleharmifuncs

Wharmleharmyfunce

Yharmleharmifunc?

Wharmleharmifuncs

Wharmleharm' funca

]

global [static [info: *
module [static |info:
global |static |info:
global |static |info:
global |static |info:
global |static |info:
global |static |info:
module [static |info:
7 |global |static |info:
global |static |info:
global |static |info:
global |static |info:
global |static |info: *
module [static |info: =

arm
arm
arm
arm
arm
arm
arm
arm
arm
arm
arm
arm
arm
arm

See also

B sYmbol.List

sYmbol.List.IMPORT

List imported symbols

Format:

sYmbol.List.IMPORT

Lists the symbols that are loaded by imported DLLs (required e.g. for Symbian or Windows CE).

See also

B sYmbol.List

©1989-2024 Lauterbach

General Commands Reference Guide S | 173

sYmbol.List.InlineBlock List inlined code blocks

Format: sYmbol.List.InlineBlock

When compiling with optimization the compiler may insert functions or parts of a function directly
instead of adding a call to the function. This command lists all parts of the code where function parts
have been inlined by the compiler.

2 BusVmbol List.InlineBlock = =R
address pathsymbo | type scope |locat
P:00000386--00000365 [\\sieveoptisieve\func_sin INLINE (int_sin) ~
P:0000037A--0000037D [\ sieveopt'sieve\func_sin INLINE (int_sin)
P:00000342--00000365 [\\sieveopt'sieve\func_sin INLINE (int_sin)
P:00000332--0000033D [\sieveopt'sieve\func_sin INLINE (int_sin)
P:0000032A--0000032D [\ sieveopt'sieve\func_sin INLINE (int_sin)
P :000003F8--000003FD [\\sieveopt'sieve\funcl3 INLINE (funcl3)
P :00000526--0000054E [\ sieveopt'sieve\funcl3 INLINE (funcl3)
P :00000400--00000517 [\'\sieveopt'sieve\funcl3 INLINE (funcl3) W
£ >
See also
B sYmbol.List
.
sYmbol.List.InlineFunction List inlined functions
Format: sYmbol.List.InlineFunction

Lists the location and further related information about the loaded inline functions.

% BusYmbol.List.InlineFunction EI@

address path'symbaol scope | location [info i
C: 00000001 [\\s1eveoptisieve'funcl 7 const ~
C:00000002 |\\sieveopt'sieve'subst ? const
C: 00000003 |\\sieveopt'Global‘funcZa ? const
C: 00000004 |\\\sieveopt'Global‘func2h ? const
C: 00000005 |\\\sieveopt'Global'func2d ? const
C: 00000006 |\\sieveoptisieve'\initLinkedList) ? const
C: 00000007 |\\\sieveopt'Global‘funcd structl ()) ? const
C: 00000008 |\\\sieveopt'Global'funcs) ? const v

See also
B sYmbol.List

©1989-2024 Lauterbach General Commands Reference Guide S | 174

sYmbol.List.LINE Display source lines

Format: sYmbol.List.LINE [<address>]

Displays the location and further related information about the loaded lines.

% BusYmbol List.LINE =n| Wl <
address module zource [line offset |
R:0000104C--00001053 [vharmleyarm |arm. 1--151 \ eharmTunco L
R:00001054--0000105F [\ armle'arm arm.c %152--156 2034 eharm\funcl
R:00001060--00001063 [\'\armle'arm arm.c %157--157 2118 ' armi\funcl+0x0C L
R:00001064--00001067 [\\armle\arm |arm.c [4158--160 2120 eharm\func2
R:00001068--00001073 [\\armle\arm |arm.c [4161--166 2136 lelarm\func2+0x4
R:00001074--0000107F [\'\armle'arm arm.c 4167--167 2327 varmy func2+0x10
R:00001080--00001087 [\'\armle'arm arm.c %168--169 2339 varmy func2+0x1C
R:00001088--0000108F [\'\armle\arm |arm.c [4170--171 2400 leharmi\func2+0
R:00001090--00001093 [\'\armle'arm arm.c 4172--173 2462 eharm\func2+0
R:00001094--0000109F \'\armle'arm arm.c 4172--173 2462 eharm\func2+0
R:000010A0--000010A7 [\'\armle'arm arm.c 4172--173 2462 eharm\func2+0
R:000010A8--000010C7 [\'\armle\arm |arm.c [\174--174 2506 leharm\func2+0x
R:000010C8--000010E3 [\'\armle'arm arm.c %175--176 2536 varmy func2+0x64
R:000010E4--000010F7 [\\armlelarm |arm.c [\177--178 2559 leharm\func2+0x80 i
4 I3
See also
B sYmbol.List

©1989-2024 Lauterbach General Commands Reference Guide S | 175

sYmbol.List.Local

Display local symbols

Format:

sYmbol.List.Local [<range> | <address>]

Displays all symbols local to functions and blocks.

[}

% BusYmbol.List.Local R:0x1454 =n| Wl <
address path’symbol type scope |location [info |
R:00001454--000016EF [y \armleyarmyfuncs @{OCK L
R:000016F8--00001783 [\\armle\arm\func9 BLOCK
Yharmleharmh funcdreturn [i “) [Tocal |register |alive: R:0x1780--0x1783
R:000016F8--00001777 | \armlelarm'funcd
D: 00005 644--00005647 [armle'arm'\funcd'statl local |static
R2 Yharmleharmi funcdregl local |register |alive: R:Ox16FB8--0x1777
(F-0004) --(F-0001) Yharmleyarm' funcdautol local |stack alive: R:0x16F8--0x1777
R:0000171C--00001767 | \armlelarm'funcd
D:00005648--0000564E %'\ armle'arm'\funcd'stat2 local |static
R3 Yharmleharmi funcd'reg2 local |register |alive: R:Ox171C--0x1767
(F-0008) --(F-0005) Wharmleyarm funcdautoz local |stack alive: R:0x171C--0x1767
R:0000178C--00001C7F | \armlelarm' funcld
RO Yharmleharmt funcloyreturn local |register |alive: R:Ox1C7C--0x1C7F
R:0000178C--00001C7E | \armlelarm' funclo i

See also

B sYmbol.List

sYmbol.List. MACRO

List all C macros

Format:

sYmbol.List. MACRO

List all C macros. C macros can either be loaded with Data.LOAD <file> /MACRO or they can be created
with the command sYmbol.Create.MACRO.

See also

B sYmbol.List

©1989-2024 Lauterbach

General Commands Reference Guide S

176

sYmbol.List. MAP Display memory load map

Format: sYmbol.List.MAP [<address>]

Displays address ranges where code was saved during download and the order in which the code was
saved. Can be used to find out “where the code has gone”.

Example:

; <your_code>
SYStem.Up ;connect to target
Data.LOAD.El1f sieve_flash thumb_ii_v7m.elf ;load application to target

sYmbol.List.MAP ;let's find out
; "where the code has gone"

% BusYmbol.List MAP =n| Wl <
| address load order flogical hy=1cal
SR :00000000--000003FF 1. SR :00000000--000003FF ASR:00000000--000003FF [FILL -
SR:00000440--00002008 2. SR:00000440--00002008 ASR:00000440--00002008 |[FILL -
— A — '

A The loaded *.elf file contains two section, and the code has been loaded to these two address
ranges.

See also
B sYmbol.List 0 sYmbol.List MAP.COUNT() @ sYmbol.List MAP.RANGE()
sYmbol.List.Module Display modules
Format: sYmbol.List.Module [<address>]

Displays information about the loaded models, e.g. the location or the loaded source file.

% BusYmbol.List Module =n| Wl <
address module zource |language |producer =ize |
R:0000104C--000022F7 [yharmleyarm arm. c ELF-C Norcrott . 4780
none YharmleyGlobal DEFAULT
}
See also
B sYmbol.List

©1989-2024 Lauterbach General Commands Reference Guide S | 177

sYmbol.List.PATCH

Display STF-symbol information

Format: sYmbol.List.PATCH [<address>]

Is a alias for sYmbol.PATCH.List.

See also
B sYmbol.List
sYmbol.List.Program Display programs
Format: sYmbol.List.Program

Displays the location and further related information about the loaded programs.

% Bus¥Ymbol.List.Program

address name format tile

command

P:00001000--00005596B |armle |ELF/DWARF2
4

C:4T32 demo'\arm'compi lersarmyarmle, axt [Data.LOAD.ELF ™

sourcepath
Jarmle.axt" /SPATH /LPATH|C: \TSZ%\aemo

®
m
sourcepath types statics locals modules SOUrces Tines

C:4T32 \demo'arm',compilersarm Z B6. 177. 2. 1. 410,

®
v [E=5EoR 5
Tines stacks Trames attribute imports exports |

222.

410. ‘ 73. ‘ 118.

2‘ 0.‘ 0. .

See also

B sYmbol.List d sYmbol.LISTPROGRAM()

©1989-2024 Lauterbach

General Commands Reference Guide S |

178

sYmbol.List.REFerence

Display reference information

Format: sYmbol.List.REFerence

Displays DWARF declaration info. THe ELF file ha to loaded with /REFerence option:

Data.LOAD.ELF <elf file> /REFerence

% BusVmbol List.REFerence

(o8)

See also

source Tine ret name |
.cyagdrivelc\svnidemo' demo’ arm' compi lerignui\srciisr.c 9 FUNC exc_isr ~
cygdrive' chsvn'demo' demo' arm' compilergnu'srciisr. c Y21 FUNC exc_shoop
weygdrive'chsvn'demo' demo’arm' compi lergnuisrciitm. c Y3 VAR ITM_BASE
weygdrive'chsvn'demo' demo’arm\ compi lergnuisrciitm. c %38 FUNC ItmMessage

cygdrive' chsvn'demo' demo’ arm' compi Tergnu'srcimonitor. c Y19 FUNC DCC_SendStatus
cygdrive' chsvn'demo' demo’ arm' compi Tergnu'srcimonitor. c 426 FUNC DCC_Sendword

cygdrive' chsvn'demo' demo’ arm' compi Tergnu'srcimonitor. c %31 FUNC DCC_ReceiveStatus
cygdrive' chsvn'demo' demo’ arm' compi Tergnu'srcimonitor. c Y38 FUNC DCC_ReceivewWord
cygdrive' chsvn'demo' demo’ arm' compi Tergnu'srcimonitor. c 4131 FUNC Monitor_ReadByte

' cygdrive' chsvn'demo' demo’ arm' compi Tergnu\srcimonitor. c 4143 FUNC Monitor_ReadHalf W

B sYmbol.List

©1989-2024 Lauterbach

General Commands Reference Guide S

179

sYmbol.List.SECtion Display physical sections

Format: sYmbol.List.SECtion [<address>]

Opens the sYmbol.List.SECtion window, displaying the logical address ranges, section names, and
access rights for the sections. Physical address ranges are also displayed, provided the file type contains
any.
% BusYmbol.List.SECtion =n| Wl <

|

address path\section acc |load [physical
P :00001000--000055 QBJ harmleya_li_elf.axt R-X |L-

D:0000559C--0000579F [\\armle\a_li_elf.axf |RW- [L-
D: 00005 7A0--00006F07 [\\armle\a_1i_elf.axf |RW- |--

Description of Columns in the sYmbol.List.SECtions Window

address Logical address range of a section.
path\section Section names in source files.
acc Access rights:
o R: Read access
o W: Write access
o X: Section can execute code
load . L: Section is loaded by the debugger.
. 0: Section is set to zero by the debugger.
physical Physical address range of a section - only for certain file types and
architectures.

See also

W sYmbol.List 0 sYmbol.SECADDRESS() @ sYmbol.SECEND() Q sYmbol. SECNAME()
0 sYmbol. SECPRANGE() 0 sYmbol. SECRANGE()

©1989-2024 Lauterbach General Commands Reference Guide S | 180

sYmbol.List. SOURCE Display source file names

[Example]

Format:

sYmbol.List. SOURCE [[ERRORS]

If a files with debug

information is loaded (Data.LOAD.<file_format>), this file also provides the paths for

the HLL (C/C++/JAVA etc.) source files. The command sYmbol.List. SOURCE lists the file names and
paths in the source column.

% Bus¥Ymbol.List. SOURCE

ppcee_oo_asm
ppciee_boot_asm
ppciee_context

ppctee_irg

[% clear || @Touchall || % SearchPath || % Sources... || 2 Errors...
- file
X Y Erika MPC5E74F \code.c code.c
“Erika MPC5674F \Debug'.obj'pka’\cpu’e200zx\src’ee_context_asm.c ob1'pkg'cputezl

we200zx'srciee_entry_asm.c ob
e200zx'\src'ee_irg_stack_asm.c
we200zx\src'ee_oo_asm.c

\Freesca'le mpc5E74fsrcee_boot_asm.c

:‘-\Er'1 ka_MPC56 r4F ebug Db1 ptg pkg cpudeZE
\ e

p'lug1ns WCOMEUE~4 .
“plugins \COMEUE~4 . .

eclipse’plugins \COMEUE~4 . \ pu e 200z % sr'c \ee eZDDZh_cpu c
~1%T32-demo " MPC5E7~1"ec1ipse’,plugins"COMEUE~4 . 201 ee_files'pkg'cpue20lzxsrciee_irg.c

: <
C:\T32_MPC'\demo

=N Hoh)

size [time |state |

error N
kg"cpt.l"eZDsz"src"ee _context_asm.c
cb1\pkg'cpu'e200zx'srcee_entry_asm.c -
C:'\T32_MPC'demo' powerpc kernellerika'workspace \Erika MPCSE74F \Debugiob] pka'cpu’e200zx\srcee_irg_stack_asm.c loaded |=
C:'\T32_MPC'.demo’.powerpckerne] erika'workspace \Erika MPCSE74F \Debug'ob] ' pkg'cpu’e200zx\srcee_oo_asm.c loaded
C:'\T32_MPC'.demo’.powerpckernelierika'workspace \Erika MPCSE74F \Debug'ob] pkg'meu’ \Freescale _mpc5E7afsrcee_boot_asm.c loaded
ee_files'pkag® common'srciee_context.c
ee_files'pka’ e200zx"inc'ee_cpu.
ee_files'pka’ e200zx\inclee_cpu_os.h
ee_files'pkg'cpu'e200zx)src'ee_e200zx_cpu.c
C WT32_MPCh, ﬂe'm wpowerpcikernelierikal, .-vur'kspace \Erika_MPC5674F \Debugiee_files'pka'cpute20lzx’srciee_irg.c loaded ™

Description of Toolbar Buttons in the sYmbol.List. SOURCE Window

Clear Invalidates the state column for all source files and invalidates the search
results displayed in the file column
(command sYmbol.SourceRELOAD).

Touch All By default an HLL source file is only loaded by TRACES32 when the contents

of the HLL source file is required during debugging. This button advises
TRACER32 to load all source files
(command sYmbol.SourceLOAD).

Search Path

Displays details on source search paths
(command sYmbol.SourcePATH.List).

Errors

Display only modules tagged with error in the state column.

©1989-2024 Lauterbach

General Commands Reference Guide S | 181

Description of Columns in the sYmbol.List. SOURCE Window

module Path of the compiled file as it is maintained by TRACE32.

source Source path for C/C++/JAVA source file after the completion of the
Data.LOAD.<file_format> command.

file Source path from which the C/C++/JAVA source file was actually loaded.
Required adjustments of the source path can be performed with the help
of the sYmbol.SourcePATH command group.

size Size information as provided by the loaded file.
time Time information as provided by the loaded file.
state The state loaded indicates that the C/C++/JAVA source file was loaded

successfully.
The state error indicates that the C/C++/JAVA source file could not be
loaded. Modules tagged with error are printed in red.

Example:
sYmbol .List.SOURCE /ERRORS // Advise TRACE32 PowerView to display
// only modules tagged with error.
% Bus¥mbol.List. SOURCE /ERRORS ol B |-

| % clear | @Touchall || % SearchPath || % Sources.. || % Errors.. |

module source file state |
| C:\T32+Y T32 demo’ MPCSEHF Er‘lka \urksace \Erika_MPC5674F", Cude C code. © error -
5 AlSopecairuntime, ¢ [Source\runtime. c error

Sn urce -
| [

el Resolve Path

Resolve Path in the Source context menu opens a dialog where you can choose the correct path for the
selected module/source. TRACES2 adds the result to the source search paths. The result can be inspected
via the sYmbol.SourcePATH.List command. The procedure is as follows:

. Absolute paths are fixed with the help of the command sYmbol.SourcePATH.Translate.

J Relative paths are fixed with the help of the command sYmbol.SourcePATH.SetBaseDir.

See also
B sYmbol.List H sYmbol.ECA 1 sYmbol.LIST.SOURCE()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 182

sYmbol.List.SourceFunction

Display source to function relations

Format:

sYmbol.List.SourceFunction [<range> | <address>]

Lists the location and source file information about the loaded functions.

% BusYmbol List.SourceFunction
address path’symbol type scope |location [info

P :000018F0--00001968 | 4s1eve\monitorWMonitor_WriteByte |Lvoid (J) moduTe [static Lhwsroymonitor. o167
P :0000196C--000019EF (%' sieve\monitoriMonitor_WriteHalf |(void () module |static Asrcimonitor.c:179
P :000019F0--00001A73 [\\sieve\monitoriMonitor_WriteWord |(void () module |static Asrcimonitor.c:191
P:00001A74--00001E13 (%' s1eve'monitoriMonitor_ReadCP15 (unsigned int ({J)) |[module [static Asrcimonitor.c:212
P :00001E14--00001BA7 (%' sieve\monitoriMonitor_WriteCP15 |(void () module |static LAsrcmonitor. c:240
P :00001BAB--000020D7 %'\ s1eveymonitoriMonitor_Handler (void () global |static LAsrcimonitor. c:281
P :000004E0--000004EB %'\ s1eve'sieve\funch (void () global |static srchsieve.c:143

P :000004BC--000004D7 %\ s1eve'sieve'\funcl (void () module |static Asrchsieve. c:147

P :000004D8--0000055F |4\ si1eve'sieve'\func2 (void () global |static Asrchsieve.c:152

P : 000005 60--000005B7 |%\si1eve'sieve'\func2a (void () global |static Asrchsieve.c:179

P :000005E8--000005F7 |%\s1eve'sieve'\funcZb (void () global |static LAsrchsieve.c:191

P : 000005F8--000006A7 |4\ s1eve'sieve'funcZc (void () global |static Asrchsieve.c:203

See also

B sYmbol.List

©1989-2024 Lauterbach

General Commands Reference Guide S

183

sYmbol.List. SOURCETREE Display source files hierarchy

Format: sYmbol.List. SOURCETREE

Displays the hierarchy of the source files in a tree structure.

% BusYmbol List SOURCETREE =n| Wl <
address name type scope |location [info |
= . -
Esrc
crtl. sx
=isr.c
P:00000460--00000487 exc_isr VO global |static =
P : 000004 88--000004AF exc_shoop VO global |static I3
itm.c
= monitor.c
P :00001680--000016A8 DCC_SendStatus 7)) |module |static
P :000016AC--000016CF DCC_Sendword module |static
P:0000160D0--000016FB DCC_ReceiveStatus module |static
P :000016FC--00001723 DCC_ReceivewWord) |module |static
P:00001724--0000179F Monitor_ReadByte module |static
P:000017A0--00001823 Monitor_ReadHalf module |static v
}
See also
B sYmbol.List

sYmbol.List.STACK Display virtual stack

Format: sYmbol.List.STACK [<address>]

Displays information about virtual stack pointers. This information is highly compiler dependent.

See also
B sYmbol.List

©1989-2024 Lauterbach General Commands Reference Guide S | 184

sYmbol.List.Static Display static symbols

Format: sYmbol.List.Static [<range> | <address>]

Displays all symbols with a fixed address.

Bu:s¥Ymbol.List.5tatic func?
address path’symbol type scope |location [info |

e

000013C5--00001453 [\ armlesarm\funcsy %) global [static L
00001454--000016EF [4\armlearm\funcs global |static
000016F0--00001783 [Y\armle\arm'\funcd nt = () module |static

00001784--00001C7F [Y\armlelarm' funclo
00001C80--00001CFE [\ armlelarm'funcll
00001CFC--0000104E [%\armlelarm'funcl3
00001D4C--00001D63 [4\armlelarm'funcld
00001D64--0000107F [4\armlearm'funcls
00001D80--00001093 [Y\armlelarm' funcle
00001D94--00001DE7 [%\armlelarm'\funcl?
00001DB8--00001003 [Y\armlelarm'funcls
00001DD4--000010EF [%\armleyarm'funcld
00001DF0--00001E23 [Y\armlelarm' func20 global |static
00001E24--00001E4F \harmlelarm func2l |(int () global |static i

4 [}

global |static
global |static
global |static
global |static
global |static
global |static
global |static
global |static
global |static

AMODODODODDDDHDA0R0R[0R[D0

See also
B sYmbol.List

sYmbol.List. TREE Display symbols in tree form

Format: sYmbol.List. TREE

Displays modules, symbols, and variables in a tree structure.

% BusYmbol List.TREE =n| Wl <
address name scope |location [info |
R:0000104C--000022F7 = harm Tanguage: ELF-C produ .
R:0000104C--00001053 + funch global |static
R:00001054--00001063 # funcl 7)) |module |static L
R:00001064--0000110F = funcz global |static =
R:00001068--0000110F
R:00001068--00001103
(F-0004) --(F-0001) autovar local |stack alive: R:0x1068--0x11
R2 regvar local |register |alive: R:0x1068--0x11
D:0000563C--0000563F fstatic local |static
D:00005640--00005643 fstaticz Tocal |static
R:00001110--0000115F + funcza global |static
R:00001160--00001143 + funczb global |static
R:000011A4--00001298 + func2c global |static
R:0000129C--000012F3 + funczd global |static i
4 2
See also
B sYmbol.List

©1989-2024 Lauterbach General Commands Reference Guide S | 185

sYmbol.List.Type

Display data types

Format:

sYmbol.List.Type [/Unnamed]

Displays all data types used by the compiler.

i BusYmbol.List.Type

(=[O el

|
enum (0x8 bits, unsigned, enuml = Ox0, enumZ = Ox1, enumd = Ox4, enum? = OxX7, en .

typedef (struct structl)

(0x8 bytes, int x, int ¥)

(0x10 bytes, int a:0xl, int b:0x2, int c:0x3, int d:0x7, int e:0x8, int T
(0x14 bytes, unsigned char * word, int count, struct structl = left, stru
(0x14 bytes, unsigned char * word, int count, unsigned char [10] name) L
(0x10 bytes, struct structs pstructs, struct structs = ppstructs, str|=
(0x10 bytes, struct struct4 * pstruct4, struct structd = ppstructd, str
(0x10 bytes, int x, struct struct? vstruct?, int v)

(0x8 bytes, unsigned char * word, int count)

(0x18 bytes, unsigned char * word, int count, struct structl = left, stru

typedef (struct structl [10])
typedef (int [
typedef (int) -

1 }

Displays also unnamed types, e.g. "char *".

tyvpe into
enum enumtyp
striypel
struct abc struct
struct bfield | struct
struct structl | struct
struct structz | struct
struct structd4 | struct
struct structs | struct
struct structé | struct
struct struct? | struct
struct unionl | struct
structarray
tarray
tdefl
'l
Unnamed
See also
B sYmbol.List

©1989-2024 Lauterbach

General Commands Reference Guide S | 186

sYmbol.LSTLOAD Load assembler source file

Using the sYmbol.LSTLOAD command group, you can load various formats of assembler list files for
source text debugging on assembler level.

See also
B sYmbol.LSTLOAD.GHILLS B sYmbol.LSTLOAD.HPASM
B sYmbol.LSTLOAD.IAR B sYmbol.LSTLOAD.INT68K
B sYmbol.LSTLOAD.INTEL B sYmbol.LSTLOAD.INTEL2
MW sYmbol.LSTLOAD.KEIL MW sYmbol.LSTLOAD.MicroWare
B sYmbol.LSTLOAD.MRI68K B sYmbol.LSTLOAD.OAK
Hl sYmbol
sYmbol.LSTLOAD.GHILLS Load GHILLS assembler source file
Format: sYmbol.LSTLOAD.GHILLS <module>|<program> <file> [<base_address>]

Loading of a GHILLS assembler list file for source text debugging on assembler level. If the base address of
the module doesn't fit, the base address will be given as an argument.

See also
B sYmbol.LSTLOAD

sYmbol.LSTLOAD.HPASM Load HP assembler source file
Format: sYmbol.LSTLOAD.HPASM <module>|<program> <file> [<base>]
Format: sYmbol.LSTLOAD.HPASM2 <module>|<program> <file> [<base>]

Loading of an HP assembler list file for source text debugging on assembler level. If the base address of the
module doesn't fit, the base address will be given as an argument. If a program name is given, the module
entry will be generated from the file name of the list file. The different commands load different HP assembler
list file formats.

The debugging can be controlled by the following assembler comments:

; T32-ORG

To mark lines including ORG statements.

©1989-2024 Lauterbach General Commands Reference Guide S | 187

; T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address). Include files,
which shall not be displayed, must be switched off also.

NOTE: The source line numbers will not match in this case, as the relation to the original
source is lost.

;T32-ON

Reactivation of the debugging function.

Data.LOAD.HP sps ; load the module and symbols
sYmbol .LSTLOAD.HPASM \SPS1 spsl.lst ; load the source lines for
sYmbol .LSTLOAD.HPASM \SPS2 sps2.lst ; module 1
; load the source lines for
; module 2
See also

B sYmbol.LSTLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 188

sYmbol.LSTLOAD.IAR Load IAR assembler source file

Format: sYmbol.LSTLOAD.IAR <module>l<program> <file>[<base_address>]

Loading of a IAR assembler list file for source text debugging on assembler level. If the base address of the
module doesn't fit, the base address will be given as an argument.

The first comment line of the file (beginning with *') must start in the first column of the source text! The
debugging can be controlled by the following assembler comments:

*T32-ORG
To mark lines including ORG statements.
*T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address). Include files,
which shall not be displayed, must be switched off also.

NOTE: The source line numbers will not match in this case, as the relation to the original
source is lost.

*T32-ON

Reactivation of the debugging function.

See also
B sYmbol.LSTLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 189

sYmbol.LSTLOAD.INT68K Load Intermetrics assembler source file

Format: sYmbol.LSTLOAD.INT68K <module>l<program> <file>[<base_address>]

Loading of a Intermetrics assembler list file for source text debugging on assembler level. If the base
address of the module doesn't fit, the base address will be given as an argument.

The debugging can be controlled by the following assembler comments:
*T32-ORG

To mark lines including ORG statements.

*T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address).

*T32-ON

Reactivation of the debugging function.

See also
B sYmbol.LSTLOAD

sYmbol.LSTLOAD.INTEL Load INTEL assembler source file

Format: sYmbol.LSTLOAD.INTEL <module>l<program> <file> [<base_address>]

Loading of a INTEL assembler list file for source text debugging on assembler level. If the base address of
the module doesn't fit, the base address will be given as an argument.

See also
B sYmbol.LSTLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 190

sYmbol.LSTLOAD.INTEL2 Load INTEL assembler source file

Format: sYmbol.LSTLOAD.INTEL2 <module>l<program> <file>[<base_address>]

Loading of a INTEL multi-segment assembler list file for source text debugging on assembler level. If the
base address of the module doesn't fit, the base address will be given as an argument. This

See also
B sYmbol.LSTLOAD

sYmbol.LSTLOAD.KEIL Load Keil assembler source file

Format: sYmbol.LSTLOAD.KEIL <module> <file> [<base>]

Loading of an KEIL (8051) assembler list file for source text debugging on assembler level. The base
address is optional, it is used when the address sections are unknown.

See also
B sYmbol.LSTLOAD

sYmbol.LSTLOAD.MicroWare Load MICROWARE assembler source file

Format: sYmbol.LSTLOAD.MicroWare <module>|<program> <file> [<base>]

Loading of a MICROWARE assembler list file for source text debugging on assembler level. If the base
address of the module doesn't fit, the base address will be given as an argument. If a program name is
given, the module entry will be generated from the file name of the list file.

©1989-2024 Lauterbach General Commands Reference Guide S | 191

Example:

Data.LOAD.ROF sps /MAP ; load the module and
sYmbol .LSTload.mw \\SPS spsl.lst 0x1000 ; symbols

; load the source
sYmbol .LSTload.MicroWare \\SPS sps2.lst 0x1200 ; lines for module 1

; load the source
; lines for module 2

See also
B sYmbol.LSTLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 192

sYmbol.LSTLOAD.MRI68K Load MICROTEC assembler source file

Format: sYmbol.LSTLOAD.MRI68K <module>|<program> <file> [<base_address>]

Loading of a MICROTEC assembler list file for source text debugging on assembler level. If the base
address of the module doesn't fit, the base address will be given as an argument.

The first comment line of the file (beginning with ') must start in the first column of the source text! The
debugging can be controlled by the following assembler comments:

*T32-ORG
To mark lines including ORG statements.
*T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address).

*T32-ON

Reactivation of the debugging function.

See also
B sYmbol.LSTLOAD

sYmbol.LSTLOAD.OAK Load OAK assembler source file

Format: sYmbol.LSTLOAD.OAK <module>|<program> <file> [<base>]

Loading of a OAK assembler list file for source text debugging on assembler level.

See also
B sYmbol.LSTLOAD

©1989-2024 Lauterbach General Commands Reference Guide S | 193

sYmbol.MARKER Fine-tune the nested function run-time analysis

The sYmbol.MARKER commands are intended for very advanced users only. The commands are used for
fine-tuning the nesting function run-time analysis, typically in conjunction with the Trace.STATistic.Func
command. Markers can be used to handle special cases for nested trace statistics. Please contact
Lauterbach support before using the sYmbol.MARKER commands.

The sYmbol.MARKER commands let you create markers for symbols, display them in a list window, delete
individual markers, and reset all markers. The following examples are just intended to illustrate these
actions.

Example 1:

;Display the marker list window
sYmbol .MARKER.List

;Create function entry markers for the functions funcl, main
sYmbol .MARKER.Create FENTRY funcl
sYmbol .MARKER.Create FENTRY main

;Create function exit markers
sYmbol .MARKER.Create FEXIT sYmbol.EXIT (funcl)
sYmbol .MARKER.Create FEXIT sYmbol.EXIT (main)

% BusYmbol MARKER List =n| Wl <

address |info
R:00001054 [FENTRY
R:00001060 (FEXIT
R:00001FF8 (FENTRY
R:00002208 [FEXIT

A Double-click a line to open a List.auto window, displaying the location of a marker. Note that the
marker itself is not visible in the List.auto window.

Example 2:

;Delete an individual function entry marker
sYmbol .MARKER.Delete funcl

;Delete an individual function exit marker
sYmbol .MARKER.Delete sYmbol.EXIT (main)

;Delete all markers
sYmbol .MARKER.RESet

See also

Hl sYmbol B sYmbol. MARKER.Create Bl sYmbol. MARKER.Delete B sYmbol. MARKER.List
B sYmbol. MARKER.RESet B sYmbol. MARKER.TOUCH

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 194

http://www.lauterbach.com/

sYmbol.MARKER.Create Marker for nesting function run-time analysis

Format: sYmbol.MARKER.Create <type> <instruction_address>
sYmbol.CREATE.MARKER (deprecated)
sYmbol.NEW.MARKER (deprecated)

<type>: KENTRY | KEXIT | KBACKDOOR | KBEGIN | KEND | KFROM | KTO |
KLEAVE | FENTRY | KFENTRY | IFENTRY | ILEAVE | FEXIT |
FEXITINIT | FEXITDOUBLE | FEXITCLEANUP | FBACKDOOR | KFBACK-
DOOR | CLEANUP | CLEANUP2 | IGNORE | IGNOREFROM | IGNORETO |
CALL | JUMP | BYJUMP | TASKSWITCH | CORRELATE

Nesting function run-time analysis commands likeTrace.STATistic.Func process the trace information to
reconstruct the function call hierarchy. The focus is put on the transitions between functions. The following
events are of interest:

. Function entries/exits
o Task switches
. Entries/exits of interrupt service routines

o Entries/exits of TRAP handlers

Optimization of the OS and the compiler as well as the technology used for the trace generation may disturb
the reconstruction of the call hierarchy. As a result, nesting function run-time analysis fails. Markers are a
mean to feed TRACES32 with additional information that help to pass blocking points in the analysis.

sYmbol .MARKER.Create KENTRY os_prologue ; mark the address os_prologue
; as kernel entry point

sYmbol .MARKER.Create KEXIT os_epilogue ; mark the address os_epilogue
; as kernel exit point

sYmbol .MARKER.List ; list all markers

The command sYmbol.MARKER.List provides a list of all created markers.

©1989-2024 Lauterbach General Commands Reference Guide S | 195

KENTRY/KEXIT/KBACKDOOR Marker

A detailed description of the usage of the markers is given at the command description of
Trace.STATistic. TASKKernel and Trace.STATistic.TASKFunc.

sYmbol .MARKER.Create KENTRY os_prologue ; mark the address
; os_prologue
; as kernel entry point

sYmbol .MARKER.Create KEXIT os_epilogue ; mark the address
; os_epilogue
; as kernel exit point

sYmbol .MARKER.List ; list all markers

KBEGIN/KEND Marker

Mark <address> as kernel event. These markers work the same way as KENTRY and KEXIT but are
not nested, i.e. a KEND marker closes all previously opened KBEGIN markers.

FENTRY/FEXIT/FBACKDOOR/FEXITDOUBLE/FEXITINT Marker

FENTRY <address> Mark <address> as function entry.
FEXIT <address> Mark <address> as function exit.

FBACKDOOR <address> Mark <address> as function entry. TRACES32 ignores this function
entry in the trace evaluation if a prior function entry was detected.

FEXITDOUBLE <address> Mark <address> as function exit where a function exits two
function levels.

FEXITINT <address> Mark <address> as interrupt exit/return event.

A detailed description of the usage of the markers is given at the command description of
Trace.STATistic.Func.

©1989-2024 Lauterbach General Commands Reference Guide S | 196

CORRELATE Marker

Purpose: Solve issues of trace export technology.
CORRELATE markers allows to assign read/write accesses to instructions.

If trace information is exported for all executed instructions but only for selected read/write accesses, an
exact assignment of an read/write access to the load/store operation is not possible in most cases. The
read/write access is displayed in the Trace Listing in red before the next exported instruction information
(ptrace).

This behavior may disturb the reconstruction of the call hierarchy in the following case: A task switch occurs
(write access to variable holding the task ID) and then a function is called, but in the Trace Listing the task
switch is displayed after the function call. As a result the function is hooked into the wrong call tree.

More than one CORRELATE marker is possible as long as its address is unique between two ptrace
packets.

In the example below, the write access to the task identifier (TASK.CONFIG(magic)) and all instructions are
exported via a Nexus port (MPC5646).

4 B:Trace List List. ADDRESS List. TASK DEFault (===

(& setup.... || 13 Goto... |[#3Find... || Aeichart || EProfile || EMPS | & More |[Tiess |
record run |address cycle |data sv@bo] ti.back i
-00005936 L V:400012CA ptrace m0Z_bf1x\ossch\05TaskForceDispatch+Ox8A 1.400us .
r se _|p1 r, UxU =

296 ///

pri73
sa sf st r31)

299 ////////////////J/(//////J///
203| | ///

e 1')
Z_ Fﬂr rE 0xl§_rl
205 ////////////////{///

e_lhz r30,0x1
_sth r;U.—Ux Fa0(r13)
_rlwinm r6,r30,0x0,0x18,0x1F
_rlwinm r6,r6,0x1C,0x1A,0x1F
ori r3,r6,0x80

rb M M M M L

507 7////////////Z/%/?/:f_/;;//

-—~ TASK = TASKO --—-
-00005934 D:4000590C wr-byte 09 \\imOZ_ble\G10ba1\050rtiRunnin? 1.060us
-00005933 V:40001070 ptrace “WWim02_bflx\osschy0sTaskInternalDispatch+0x28 0.640us -

[}

NEXUS.BTM ON
NEXUS.HTM ON
Break.Set TASK.CONFIG(magic) /Write /TraceData

©1989-2024 Lauterbach General Commands Reference Guide S | 197

For the reconstruction of the call hierarchy and an accurate timing the write access of the task ID has to be
assigned exactly to the corresponding instruction. For this purpose a CORRELATE marker can be used.

sYmbol .MARKER.Create CORRELATE V:4000105C

205

-00005934

505
506

507
-00005933

£ BTrace.List List ADDRESS List. TASK DEFault =n R
(& setup... [3 Goto... || F3Find... || fwichart || EProfile | EIMIPS || % More || Xless |

record run |address cvc]e data symbol ti.back i
-00005936 L V:400012CA ptrace \imDZ2_bf1ix\ossch\05TaskForceDispatch+Ox8A 1.400us =

--- TASK = TASKO ---

se ’rWi UxU =

///

sa sf rT.Ux

/////////////////1//
///

Se_rr1r rO)
e_stmw r22,0x18(r1)

//////////////ﬂ//{///

se_lhz r30,0x1
e_sth r30,-0x

(ri13)

D:4000590C wr-byte 09\ im02_bflx\Global 0s0rtiRunning 1.000us
_rlwinm r6,r30,0x0,0x18,0x1F
_rlwinm r6,r6,0x1C,0x1A,0x1F
3r1 r3,r6,0x80
40000588

15yNC
sa isync
rtp1d r3
msync

//////////////27{115/1%;///A

V:40001070 ﬁ?face YWWim02_bflx\ossch\05TaskInternalDispatch+0x28 0.700us -

rb rb rb rb

IGNORE / IGNOREFROM / IGNORETO / IGNOREALLFUNC

IGNORE <address> TRACER32 ignores all instructions with the specified
<address>, for nesting function run-time analysis.

IGNOREFROM <start_address> TRACER32 ignores all instructions between

IGNORETO <end_address> <start_address> and <end_address>, for nesting

function run-time analysis.

IGNOREALLFUNC TRACER32 ignores all function entries and all function

exits, for nesting function run-time analysis.

See also

B sYmbol. MARKER

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 198

sYmbol.MARKER.Delete Delete a marker

Format: sYmbol.MARKER.Delete <address>

Deletes the specified marker. To delete all markers, use sYmbol.MARKER.RESet.

See also
B sYmbol.MARKER

sYmbol.MARKER.List Displays the marker list

Format: sYmbol.MARKER.List [<address>]
sYmbol.List. MARKER [<address>] (deprecated)

Opens the sYmbol.MARKER.List window, displaying the list of markers created with
sYmbol.MARKER.Create.

A detailed description of the usage of the markers is given at the command description of
Trace.STATistic.TASKKernel and Trace.STATistic. TASKFunc.

See also
B sYmbol.MARKER

sYmbol.MARKER.RESet Erase all markers

Format: sYmbol.MARKER.RESet

Removes all markers created with sYmbol.MARKER.Create.

See also
Bl sYmbol. MARKER

©1989-2024 Lauterbach General Commands Reference Guide S | 199

sYmbol.MARKER.TOUCH Marker post-processing

Format: sYmbol.MARKER.TOUCH [ON | OFF]

Default: ON

Enables/disables the re-processing of the function nesting analysis results after sYmbol. MARKER.Create
commands. This command can be used in order to speed up the marker processing in TRACE32 in case a
large number of markers is created.

Example:

sYmbol .MARKER.TOUCH OFF
;<group of sYmbol.MARKER.Create commands>
sYmbol . MARKER.TOUCH ON

See also
B sYmbol.MARKER

sYmbol.MATCH Symbol search mode

Format: sYmbol.MATCH [Exact | Best | Choose]

Defines the behavior when a symbol is not unique.

Exact Refuses any symbols that are not unique. This adjustment is useful for
regression test and automatic batch scripts.

Best Open browser window to choose symbol when there is no best match.
This is the default.

Choose Opens a symbol browser to choose from one of the symbols. This is
useful for choosing between different overloaded methods in C++.

See also
B sYmbol B Data.Find

©1989-2024 Lauterbach General Commands Reference Guide S | 200

sYmbol.MEMory Display memory usage

Format: sYmbol.MEMory

Displays a summary of memory used by the different components of the symbol table. The results are
written to the AREA A000 (display with AREA command).

See also
H sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 201

sYmbol.Modify Modify symbols

Format: sYmbol.Modify

This command group allows to modify the symbol table or add additional information to existing symbols and
types. See also sYmbol.RELOCate.

See also
B sYmbol.Modify.Access B sYmbol.Modify.ADDRess
B sYmbol.Modify.AddressToRange B sYmbol.Modify.AlienFunction
B sYmbol.Modify.ATTRibute B sYmbol.Modify.CutFunction
B sYmbol.Modify. NAME B sYmbol.Modify. NAMES
B sYmbol.Modify.RangeToAddress B sYmbol.Modify.RangeToFunction
B sYmbol.Modify. SOURCE B sYmbol.Modify.SplitFunction
B sYmbol.Modify.StaticCOPY B sYmbol.Modify.StaticToStack
B sYmbol.Modify. TYPE H sYmbol
A ’Release Information’ in’Legacy Release History’
sYmbol.Modify.Access Modify access of symbols
Format: sYmbol.Modify.Access <class>: [<symbol_path>l<range>]

Modifies the memory access class of symbols. The symbol path limits the modification to special symbols of
a module or a program. If an address range is given, only the symbols in this range will be modified. The
command is useful in combination with the automatic symbol relocation feature, when constants are placed

in ROM.
Examples:
sYmbol .Modify.Access d:0x1000--0x1fff ; all symbols in the range get
; the memory access class d:
sYmbol .Modify.Access p: ; all symbols in the 'const'
sYmbol . SECRANGE (const) ; section get the memory
; access class p:
See also
B sYmbol.Modify.ADDRess B sYmbol.Modify.AddressToRange
B sYmbol.Modify.AlienFunction B sYmbol.Modify.ATTRibute
B sYmbol.Modify B sYmbol.Modify.CutFunction
B sYmbol.Modify.NAME B sYmbol.Modify. NAMES
B sYmbol.Modify.RangeToAddress B sYmbol.Modify.RangeToFunction
B sYmbol.Modify. SOURCE B sYmbol.Modify.SplitFunction
B sYmbol.Modify.StaticCOPY B sYmbol.Modify.StaticToStack
B sYmbol.Modify. TYPE

©1989-2024 Lauterbach General Commands Reference Guide S | 202

sYmbol.Modify.ADDRess Modify address of symbols

Format: sYmbol.Modify.ADDRess <symbol> <address>|<range>

Modifies the start address or address range of a symbol, module, program or function.
Example:

; assign new range to module
sYmbol .Modify.ADDRess \mymodule 0x1000--0x1fff

See also

B sYmbol.Modify.Access B sYmbol.Modify.AddressToRange
B sYmbol.Modify.AlienFunction B sYmbol.Modify.ATTRibute

B sYmbol.Modify B sYmbol.Modify.CutFunction

B sYmbol.Modify.NAME B sYmbol.Modify.NAMES

B sYmbol.Modify.RangeToAddress B sYmbol.Modify.RangeToFunction
B sYmbol.Modify. SOURCE B sYmbol.Modify.SplitFunction

B sYmbol.Modify.StaticCOPY B sYmbol.Modify.StaticToStack

B sYmbol.Modify. TYPE

sYmbol.Modify.AddressToRange Modify address of symbols

Format: sYmbol.Modify.AddressToRange <symbol> |<address>

Extends a single address label into a symbol with an address range. The address range starts at the symbol
address and ends at the address of the next symbol minus 1. This command is the opposite of
sYmbol.Modify.RangeToAddress.

Example:

sYmbol .Modify.AddressToRange mylabel

See also
B sYmbol.Modify.Access B sYmbol.Modify. ADDRess B sYmbol.Modify B sYmbol.Modify. SOURCE

©1989-2024 Lauterbach General Commands Reference Guide S | 203

sYmbol.Modify.AlienFunction Disable frame info for a function

Format: sYmbol.Modify.AlienFunction <symbol> |<range>

Disables frame information for a selected function.

See also
B sYmbol.Modify.Access B sYmbol.Modify. ADDRess B sYmbol.Modify B sYmbol.Modify. SOURCE
sYmbol.Modify.ATTRibute Modify memory attribute
Format: sYmbol.Modify.ATTRibute <attribute> <symbol>|<range>

Modifies the attribute of the given memory range
Example:

; change the memory attribute for the range 0x400--0x4FF to DATA
sYmbol .Modify.ATTRibute DATA 0x400--0x4FF

See also
B sYmbol.Modify.Access B sYmbol.Modify. ADDRess B sYmbol.Modify B sYmbol.Modify.SOURCE
sYmbol.Modify.CutFunction Reduce function address information
Format: sYmbol.Modify.CutFunction <range> | <address>

Reduces the address range information for the defined functions to a single address. This command is used
only in very special cases.

©1989-2024 Lauterbach General Commands Reference Guide S | 204

Example:
sYmbol .List.Function

sYmbol .Modify.CutFunction 0x104c++0xff

See also
B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify.ADDRess B sYmbol.Modify. SOURCE

A ’'Release Information’ in’Legacy Release History’

sYmbol.Modify.NAME Rename symbol

Format: sYmbol.Modify.NAME <symbol_name> <new_name>

Renames symbol. If multiple symbols with the given name are available, an error “ambiguous symbol” is
returned. Use in this case sYmbol.Modify.NAMES.

Example:

; renames ‘vtriplearray’ to ‘tt’
sYmbol .Modify.NAME vtripplearray tt

See also
B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify. ADDRess B sYmbol.Modify.SOURCE
sYmbol.Modify.NAMES Rename symbols
Format: sYmbol.Modify.NAMES <symbol_name> <new_name>

Renames all symbols having the name <symbol_name>, except for function locals.
If you need to rename a lot of symbols, consider using sYmbol.DEOBFUSCATE as it will be much faster.

See also

B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify. ADDRess B sYmbol.Modify. SOURCE
B sYmbol. DEOBFUSCATE

©1989-2024 Lauterbach General Commands Reference Guide S | 205

sYmbol.Modify.RangeToAddress Modify address of symbols

Format: sYmbol.Modify.AddressToRange <symbol> |<address>

Changes an symbol with an address range into a single address label. This command is the opposite of
sYmbol.Modify.AddressToRange.

See also
B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify.ADDRess B sYmbol.Modify. SOURCE
sYmbol.Modify.RangeToFunction Modify address range into function
Format: sYmbol.Modify.RangeToFunction <symbol> |<range>

Modifies address range into function.

Example: assembly functions are often represented in the debugging information by the compiler as a
single address label. As a consequence, these assembly functions won’t be included in the function run-time
analysis windows. The commands sYmbol.Modify.AddressToRange and
sYmbol.Modify.RangeToFunction can be used together to change these single address labels into
functions.

sYmbol .Modify.AddressToRange _divsi3
sYmbol .Modify.RangeToFunction _divsi3

See also
B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify. ADDRess B sYmbol.Modify.SOURCE
sYmbol.Modify.SOURCE Define source file
Format: sYmbol.Modify.SOURCE <module> <file>

Defines the source file name for a given module. The command can be used when the names or directories
of source files have been changed after compilation.

©1989-2024 Lauterbach General Commands Reference Guide S | 206

Example:

; use source file mod2.c for module 'modl’
sYmbol .Modify.SOURCE \modl ..\src\mod2.c

See also
B sYmbol.Modify.SplitFunction B sYmbol.Modify.StaticCOPY
B sYmbol.Modify.StaticToStack B sYmbol.Modify
B sYmbol.Modify.Access B sYmbol.Modify. ADDRess
B sYmbol.Modify.AddressToRange B sYmbol.Modify.AlienFunction
B sYmbol.Modify.ATTRibute B sYmbol.Modify.CutFunction
B sYmbol.Modify.NAME B sYmbol.Modify.NAMES
B sYmbol.Modify.RangeToAddress B sYmbol.Modify.RangeToFunction
B sYmbol.Modify. TYPE
sYmbol.Modify.SplitFunction Split function

Format: sYmbol.Modify.SplitFunction </abel>

Makes two functions out of one function. Takes a label inside the function as a parameter. The second
function starts at this label and has the name of the label.

See also
B sYmbol.Modify. SOURCE B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify. ADDRess
sYmbol.Modify.StaticCOPY Create static copy of local stack variables
Format: sYmbol.Modify.StaticCOPY <module> <address> <address> [<reg>]

Creates static copy of local stack variables.

See also
B sYmbol.Modify.SOURCE B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify. ADDRess

©1989-2024 Lauterbach General Commands Reference Guide S | 207

sYmbol.Modify.StaticToStack Change static variables

Format: sYmbol.Modify.StaticToStack <reg> <address> [<symbol | address range>]

Changes static variables into global stack variables.

See also
B sYmbol.Modify. SOURCE B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify. ADDRess
sYmbol.Modify.TYPE Modify type of symbols
Format: sYmbol.Modify.TYPE <symbol> <type>

Changes the symbol type.

See also
B sYmbol.Modify B sYmbol.Modify.Access B sYmbol.Modify. ADDRess B sYmbol.Modify. SOURCE

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 208

sYmbol.name Display symbols

Format: sYmbol.name [<name_pattern> [<type_pattern>] [/<option>]
<option>: Click <cmd>
Delete

Displays symbols sorted alphabetically.

H Bus¥mbel Browse.name func® (int () EI@
|func* | Type: |void (OrFuncs [vars [statics []Globals
path [symbaol address i
\s1eveysieve, [funch P:20000560--20000568B ~
\\sieve'sieve', [funcl P:2000056C--20000587
\\sieve'sieve', [funcl2 P:20000CA0--20000CB7
\\sieve'sieve', [func2 P:20000588--20000603
\\sieve'sieve', [func2a P:20000604--2000064B
\\sieve'sieve', [func2b P:2000064C--20000687
\\sieve'sieve', [func2c P:20000688--2000072B
\\sieve'sieve', [func2d P:2000072C--2000077F v

Lower and upper case characters are not distinguished. For mangled C++ symbols the search order is
based on the function signatures. A complex search function is implemented to find symbol name very fast,
if the complete name will be not known. The search patterns are:

* Matches any string, empty strings too.
' Matches any character, but not an empty character.

Can be used to input special characters like ™' or '?'

If the wildcard ™ is defined for the type_pattern, only symbols with HLL type information are extracted. The
C++ demangler for the symbols is used, if the pattern contains the characters '(' or ":'.

Examples:

sYmbol ; displays all symbols

sYmbol ** ; displays all local symbols

sYmbol ** ; displays all local symbols of global
; functions and module local symbols

sYmbol \mcc* ; displays all symbols local to module
; 'mcc!

sYmbol func9* ; displays all symbols local to
; function 'func9'

sYmbol 1 ; displays all symbols with the name 'i'

sYmbol \mcc*\i ; displays all local symbols in module

; 'mcc' with the name 'i'

©1989-2024 Lauterbach General Commands Reference Guide S | 209

sYmbol

sYmbol

sYmbol

sYmbol

sYmbol

sYmbol

sYmbol

sYmbol

sYmbol *::operator* (int)

\m*\£*\1*

* *ptr

* char *

* Char nmxon

*x Ak nmknox

ops: :operator*

operator*

7

displays all local symbols with the
symbol name beginning with 'i' in all
functions with function names
beginning with 'f' in all modules
beginning with 'm'

displays all symbols with HLL type
information

displays all symbols, which have an
HLL type
that ends with 'ptr', e.g. 'intptr'

displays all symbols, which have an

HLL type
that begins with the text 'char ',
e.g. 'char *', 'char [10]', 'char &'

displays all symbols with HLL type of
'char *'

displays all symbols with type names,
that contain a '*'

displays all operators defined for
the C++ class 'ops'

will search for all symbols,
beginning with the string 'operator'
NOTE: the demangler is not active, so
no operators of C++ classes are
listed!

display all operator of all classes,
that have only one argument of type
'int"'

The Click option can define a command, that can be executed by a short click with the left mouse button.
The characters ™' or '?' can be used as placeholder for the complete name of the symbol. Using the ™' will
force the command to be executed without further interaction and without leaving the window. The character
"?" will cause the cursor to leave the window and build a command line, that can be modified before entering.
The option Delete deletes the window after the selection has been made.

©1989-2024 Lauterbach

General Commands Reference Guide S | 210

Examples: See also sYmbol.ForEach.

sYmbol * /Click "Break.Set" ; will execute the command
; Break.Set <symbol>

sYmbol * /Click "Break.Set * ; will execute the command
/Alpha" ; Break.Set <symbol> /Alpha
sYmbol * /Click "Var.View ?" ; will build a command line

; Var.View <symbol>
; and leave the symbol window

The address based softkeys are available by pressing the left mouse button. Short clicking the left button
can execute the command defined by the option Click. The default is the command Data.List. Pressing one
of the softkeys leaves the window, and builds a command line according to the softkey and symbol.

See also
W sYmbol
sYmbol.NAMESPACES Search symbol in C++ hamespace
Format: sYmbol.NAMESPACES [<namespace>]

This command configures the debugger to search in the specified C++ namespaces for a debug symbol.

If the debug symbol cannot be found in the global namespace and the debug symbol is referred without
scope operator (e.g. inside a namespace {} section or aftera using <namespace> declaration, the
debugger will search in the namespaces specified by this command.

Example:
sYmbol .NAMESPACES std ; search debug symbols in namespace std if
; debug symbol not found in current
; context
See also
Hl sYmbol

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 211

sYmbol.NEW Create new symbol

Format: sYmbol.NEW <name> <address> | <range>

The sYmbol.NEW command group allows to create new symbols or modify existing user-defined symbols.
The command sYmbol.CREATE has the same functionality, but executes faster when multiple symbols are

created.

See also

B sYmbol. NEW.ATTRibute B sYmbol.NEW.Function H sYmbol.NEW.Label B sYmbol.NEW.LocalVar
B sYmbol.NEW.MACRO Bl sYmbol.NEW.Module B sYmbol.NEW.Var H sYmbol

B sYmbol. CREATE B sYmbol. CREATE.RESet B sYmbol.Delete

A ’'Release Information’ in’Legacy Release History’

sYmbol.NEW.ATTRibute Create user-defined memory attribute
[Example]
Format: sYmbol.NEW.ATTRibute <attribute> <start_address | addressrange>
<attribute>: DEFault
<architecture_specific_attributes>

Creates a user-defined memory attribute, e.g. for program code, data code, access width, etc.
Memory attributes tell TRACES32 how to interpret memory content. If attributes are missing in the debug
information of your symbol file, e.g. an ELF file, you can create the attributes with sYmbol.NEW.ATTRibute.

DEFault Memory content is interpreted based on the current processor state.
<architecture_ The softkeys below the TRACE32 command line display the available
specific_attributes> memory attributes.
o For a selection of memory attributes for various architectures, see
below.
. For more information about available memory attributes, refer to
the design manual of the respective architecture.

Selection of Memory Attributes for Various Architectures

Memory attributes for the ARM architecture:

ARM Code of A32, ARM 32-bit instruction set

THUMB Code of T32, Thumb/Thumb-2/ThumbEE instruction set

©1989-2024 Lauterbach General Commands Reference Guide S | 212

AARCH64 Code of A64, ARM 64-bit instruction set

DATA Data

Memory attributes for the ARC architecture:

CODE Program code
DATA.Byte 8-bit data
DATA.Word 16-bit data
DATA.Long 32-bit data

Memory attributes for the PowerPC architecture:

FLE Code of standard PowerPC instruction set
VLE Code of Variable Length Encoding
DATA Data

Memory attributes for the TI-TMS320C55x architecture:

BYTE Tells TRACE32 to interpret code in byte-pointer mode.
Corresponds to SYStem.Option.ByteMode BYTE for the specified
<address_range>.

WORD Tells TRACE32 to interpret code in word-pointer mode.

Memory attributes for the Intel® x86 architecture:

USE16 16-bit mode

USE32 32-bit mode

USE64 64-bit mode

NOTE: The Intel® Processor Trace does not include any information whether it is in 16,
32, or 64 bit mode. Using the above memory attributes, you can tell TRACE32
how to disassemble correctly.

©1989-2024 Lauterbach General Commands Reference Guide S | 213

Example:

;open window, displaying the memory attributes per address range
sYmbol .List.ATTRibute

;create an attribute for a data address range without DATA attribute
sYmbol .NEW.ATTRibute DATA D:10004138--10004193

;display all available information about an address including its attr.
sYmbol . INFO D:10004138

;this code is now interpreted as data
List.Mix D:10004138

See also
Bl sYmbol.NEW

A ’Release Information’ in’Legacy Release History’

sYmbol.NEW.Function Create user-defined function

Format: sYmbol.NEW.Function <name> <addressrange>

Creates a new function. The function has no parameters or local variables. It can only be used to define a
range for a piece of code (e.g. for performance analysis).

Example:

sYmbol .NEW. Function myfunc mylabell-- (mylabel2-1)

See also
Bl sYmbol. NEW B sYmbol. CREATE.Function

©1989-2024 Lauterbach General Commands Reference Guide S | 214

sYmbol.NEW.Label Create user-defined symbol

Format: sYmbol.NEW.Label <name> <address>

Creates a new label. A label is a symbol without type information that refers to a single memory location.

Example:
sYmbol .CREATE.Label mylabl 0x1000 ; creates “mylabl” at 1000
sYmbol .CREATE.Label mylab2 0x1010 ; creates “mylab2” at 1010
sYmbol .CREATE.Done ; make labels available to program
sYmbol .NEW. Label mylab3 0x1020 ; “mylab3” is available immediately
See also
B sYmbol.NEW B sYmbol.CREATE.Label

©1989-2024 Lauterbach General Commands Reference Guide S | 215

sYmbol.NEW.LocalVar Create user-defined local variable

Format: sYmbol.NEW.LocalVar <function> <var> <address> | <addressrange> <type>

Creates a user-defined local variable in a user-defined function.

See also
H sYmbol.NEW
sYmbol.NEW.MACRO Create user-defined macro
Format: sYmbol.NEW.MACRO <name> <contents>

Creates a new macro. The macro can be used like a C-preprocessor macro. Parameters can be supplied in
the same way.

Example:

; creation and usage of macro MY_NEXT (<arg>)
sYmbol .NEW.MACRO MY_ NEXT (p) ((p)->next)
Var.View MY_NEXT (myvar)

See also
B sYmbol.NEW B sYmbol. CREATE.MACRO

A ’'Release Information’ in’Legacy Release History’

sYmbol.NEW.Module Create user-defined module

Format: sYmbol.NEW.Module <name> <addressrange>

Defines a new module.

©1989-2024 Lauterbach General Commands Reference Guide S | 216

Example:

sYmbol .NEW.Module \\new 0x2000--0x2fff
sYmbol .Browse.Module

See also
B sYmbol.NEW B sYmbol. CREATE.Module
sYmbol.NEW.Var Create user-defined variable
Format: sYmbol.NEW.Var <variable_name> <address> | <addressrange> <type>

Creates a user-defined variable.

Examples:
sYmbol.List.Type /Unnamed ; list all types
sYmbol .NEW.Var my_char 0x1000 char ; create variable
sYmbol . INFO my_char ; display all information

; about the created variable

sYmbol .List.Type /Unnamed
sYmbol .NEW.Var my_abc D:0xa000 struct abc

sYmbol . INFO my_abc // structure my_abc of type abc

sYmbol .NEW.Var MyCharArray D:0x1200 char[50]

sYmbol . INFO MyCharArray // character array with 50 elements

sYmbol .NEW.Var MyPtrArray D:0x1400 wunsigned short *[25]

sYmbol . INFO MyPtrArray // unsigned short pointer array with 25 el.
See also
B sYmbol.NEW B sYmbol.CREATE.Var

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 217

sYmbol.OVERLAY Code overlay

Using the sYmbol.OVERLAY command group, TRACES32 can be configured to debug targets that execute
and switch between code overlays.

To enable overlay support, use SYStem.Option.OVERLAY.

Code overlays are characterized by utilizing the same address range in the target for executing different
code at different times. This requires switching between different code segments in physical memory at run-
time. As a result, multiple program symbols can refer to the same address range and may refer to program
code that currently is not present in physical memory. This requires configuration of TRACES32.

See also
B sYmbol. OVERLAY.AutolD B sYmbol. OVERLAY.Create B sYmbol.OVERLAY.DETECT M sYmbol.OVERLAY.FRIEND
B sYmbol. OVERLAY.List B sYmbol. OVERLAY.RESet H sYmbol
sYmbol.OVERLAY.AutolD Automatically determine overlay IDs
Format: sYmbol.OVERLAY.AutolD [OVS: | VM:]

Calculates a unique identifier for each overlay currently present in the system.

OVS: (default) Read the overlay code from the overlay storage area (OVS).

VM: To increase detection speed, TRACES32 can read the overlay code from
the debugger VM:. This requires that the code was loaded to the
execution area (/CODESEC) inside the segmented (/OVERLAY)
debugger virtual memory (/VM) with a command like
Data.LOAD.EIf <file> /OVERLAY /CODESEC /NosYmbol /VM

To detect which overlay is currently active (i.e. present in the execution area), the debugger uses unique
identifiers based on the overlays’ contents. The command sYmbol.OVERLAY.AutolD calculates these
identifiers for all currently declared overlay section. Therefore before using it, all code overlay sections
have to be known to TRACE32 (through debug information or by explicit declaration) and the application
code has to be present in memory.

The unique identifier is often called “magic ID” (making reference to the arbitrary value) and is comprised of
a “magic” ID value present on a corresponding /D address. It is found by comparing the contents of the
overlay sections and searching for a pair that uniquely identifies each of them. By default the algorithm reads
the overlays from the storage areas. To speed up the process, copy the program to the debugger VM: and
use the option VM: (see there for details).

©1989-2024 Lauterbach General Commands Reference Guide S | 218

There are two ways for TRACE32 to know about the target program’s overlays:

J In case of “Relocation-based Code Overlay Support”’, TRACE32 reads information about overlay
sections from the ELF file. This requires special build settings and using the option /overlay with
Data.LOAD.EIf <file> /OVERLAY

J When using “File-based Code Overlay Support”, you have to manually declare all sections and
source files (more generally: all DIWARF-modules) before loading your ELF file. The declaration
is done with the command sYmbol.OVERLAY.Create.

NOTE: To avoid problems with software breakpoints, sYmbol.OVERLAY.AutolD only
uses ID addresses that do not correspond to HLL lines in the segment.

NOTE: OVS stands for “OVerlay Storage area”. Besides being a parameter, OVS: is also a
memory class specifier for accessing the overlay sections at their so-called storage
area: the address it is stored at before being copied to an execution area (the
address at which the overlay is executed).

See also

B sYmbol. OVERLAY

©1989-2024 Lauterbach

General Commands Reference Guide S |

219

sYmbol.OVERLAY.Create Declare code overlay section

[Examples]

Format: sYmbol.OVERLAY.Create <execution_addr_range | overlay_segment_id>,
[<id_address>], [<id_value>], <elf_section_name>, [<dwarf_module>],
[<storage_address>]

Declares a code overlay section and its corresponding modules.

Typically this command is only used for “File-based Code Overlay Support” i.e. when the overlays are
contained in different executable files (e.g. ELF files). In this case you have to declare all sections and
source files (more generally: all DIVARF-modules) before loading the executable files so that the load
command (e.g. via Data.LOAD.EIf <file> /OVERLAY) can copy the object code to the corresponding OVS:
memory.

In case of “Relocation-based Code Overlay Support”, manual declaration of the sections is not required,
because they are declared automatically based on information contained in the ELF file when it is loaded
using the option /OVERLAY (Data.LOAD.EIf <file> /OVERLAY). Despite this sYmbol.OVERLAY.Create
can be useful e.g. in order to define an overlay segment ID for all code sections.

<execution_addr_ Address range where the code overlay section gets executed. You have to

range> specifies also one unique segment ID for all sections which belong to one
or overlay page (overlay pages overlap each other).

<overlay_segment_ e.g. P: 0x42:0x1000-1£fff

id> In most cases it is enough just to specify the segment ID (here 0x42),

since the debugger can normally find the execution addresses in the ELF
section table by using the <elf_section_name>.

<id_address>, The (<id_address> x <id_value>) pair specifies a “magic” ID that uniquely
<id_value> identifies the overlay section when it is present at its execution address. For
details regarding the ID see sYmbol.OVERLAY.AutolD which allows auto-
detecting the ID.

<elf_section_name> Unique name for the overlay code section as used in your ELF file. e.g.

" .pagel" The section names are normally defined in your linker script
used for building your ELF file.

In TRACE32 you can view the sections of a loaded ELF with command
sYmbol.List.SECtion.

From a system shell (cmd.exe / bshell) you can view the available section
names e.g. with the GNU command readelf -S <ElfFile>

When using overlay sections from different ELF files you can prefix the
section name with the ELF file name e.g. "/ /myprog/ .pagel"

NOTE: By running the sYmbol.OVERLAY.Create command with the
same arguments again except for a new <id_value>, you can assign
more than one ID to the same <elf_section_name>. See example 4.

©1989-2024 Lauterbach General Commands Reference Guide S | 220

<dwarf_module>
(source file)

Required only for “File-based Code Overlay Support” to tell the debugger
which source files belong to which overlay section (this can only be detected
from the ELF when it contains relocation information).

<dwarf_module> is usually the name of a source file (e.g. a C-/C++ file).

You can omit this parameter, if your ELF file was linked with compiler
support for code overlays e.g. “-W1, --emit-relocs” (GCC)
or “--emit-debug-overlay-section” (ARM RealView).

NOTE: By running the sYmbol.OVERLAY.Create command with the
same arguments again except for a new <dwarf_module>, you can
assign more than one module to the same <elf_section_name>.
See example 1.

<storage_address>

Specifies the start of the address range where the code section is stored
before it gets copied to its execution memory space.

You can usually omit this parameter, as the <storage_address> is
normally auto-detected when loading you ELF file.

Examples

Example 1: File-based code overlay support (single-ELF)

sYmbol .RESet

SYStem.Option.OVERLAY ON

sYmbol .OVERLAY .Create 1,,,".pagel", "task.c"
sYmbol .OVERLAY.Create 1,,,".pagel", "funcasm.c"
sYmbol .OVERLAY.Create 1,,,".pagel", "sieve.c"
sYmbol .OVERLAY.Create 2,,,".page2", "blubber.c"
sYmbol .OVERLAY.Create 2,,,".page2","inc.c"

Data.LOAD.El1f ovdemo.elf /OVERLAY /NoClear /Include /NOFRAME
sYmbol .OVERLAY.AutoID
sYmbol .OVERLAY.List /STorage /Modules

% BusYmbol.OVERLAY List /STorage /Modules

(=[O el

SR :0002 :00001000--000012C3 | SR:0000

SR : 0001 : 00001000--00001767 | SR:0000

addressrange |ID address

section |module storage

. page? bTubber. c
inc.c

.pagel [|task.c
funcasm. c

sieve.c

(4] .

ID value
s 00001000 |0x00000042

SR:0000:00000D08--00000FCE .

100001000 |0x00000041 SR : 0000 : 000005A0--00000D07

A Modules per code overlay section

©1989-2024 Lauterbach

General Commands Reference Guide S | 221

Example 2: Relocation-based code overlay support (single-ELF)

sYmbol .RESet
SYStem.Option.OVERLAY ON

Data.LOAD.El1f ovdemo.elf /OVERLAY /Include

sYmbol.OVERLAY.AutoID

sYmbol.OVERLAY.List /STorage

? B:sYmbol.OVERLAY.List /STorage

addressrange |ID address
SR:OOOS:00001000——000012C%J SR :0000: 00001000
4

SR : 0006 : 00001000--00001767 SR : 0000 : 00001000

ID value

Ox 00000042
Ox 00000041

section

wovdemo' . page2
Y ovdemo',. pagel

storage

SR : 0000 : 00000D08--00000FCE
SR : 0000 : 000005A0--00000D07

[A]

[}

A The file ovdemo.elf has two code overlay sections named .pagel and .page2

Example 3: Relocation-based multi-ELF code overlay support

sYmbol .RESet
SYStem.Option.OVERLAY ON

sYmbol .OVERLAY .Create 1,,, "\\pagel\.text"
sYmbol .OVERLAY .Create 2,,, "\\page2\.text"
/NoClear /NoRegister /OVERLAY
/NoClear /NoRegister /OVERLAY

Data.LOAD.El1f pagel.elf
Data.LOAD.El1f page2.elf
sYmbol .OVERLAY.AutoID

sYmbol.OVERLAY.List /STorage

? B:sYmbol.OVERLAY.List /STorage

SR:OOOZ:00004(00——00004EC5J
4

addressrange |ID address ID value zection =torage
SR:0000:00004C00 0x00002674 SR:0000:00002674--0000293B
SR:0001 : 00004C00--000053FF SR:0000:00004C00 |0x00001674 SR:0000:00001674--00001E73

wpageh. text
Yy pagel',. text

[}

A The code overlays in the two *.elf files (page1.elf and page2.elf) have the same section name:

.text

[A]

©1989-2024 Lauterbach

General Commands Reference Guide S

222

Example 4: Relocation-based code overlay support (single-ELF) with more than one ID per ELF section

sYmbol .RESet
SYStem.Option.OVERLAY ON
sYmbol .OVERLAY .Create 1,D:0x1000,0x10,".pagel"

;assign the ID 0x20 to the elf section named ".pagel2"
sYmbol .OVERLAY .Create 2,D:0x1000,0x20, " .page2"

;additionally assign the ID 0x22 to the same elf section ".page2"
sYmbol .OVERLAY .Create 2,D:0x1000,0x22, " .page2"

Data.LOAD.El1f ovdemo.elf /OVERLAY /Include /NoClear
sYmbol.OVERLAY.List /STorage

% BusYmbol.OVERLAY List /STorage =] ==

addressrange |ID address ID value zection =torage
SR:OOOZ:00001000——000012C%J D:0000:00001000 [0x20[0x22 . page? SR :0000:00000008--00000FCE "
4

SR : 0001 :00001000--00001767 D:0000: 00001000 0x00000010 . pagel SR : 0000 : 000005A0--00000D07

A The code overlay section .page2 has two IDs: 0x20 and 0x22.

See also
B sYmbol. OVERLAY

©1989-2024 Lauterbach General Commands Reference Guide S | 223

sYmbol.OVERLAY.DETECT Detect the current overlay status

Format: sYmbol.OVERLAY.DETECT [ON | OFF]

Default: ON

Executing sYmbol.OVERLAY.DETECT ON performs an immediate update of the status (active vs. not
active) of all registered code overlays. The detection mechanism uses the ID address and ID value shown in
sYmbol.OVERLAY.List.

The optional parameter controls the automatic update of the status of overlay pages when the target
executes code that may have changed it.

To use the command, first enable overlays via SYStem.Option.OVERLAY.

See also
B sYmbol. OVERLAY

sYmbol.OVERLAY.FRIEND Declare a friend overlay segment
[build no. 46380 - DVD 08/2013]

Format: sYmbol.OVERLAY.FRIEND <original_overlay_id> <friend_overlay_id>

NOTE: Only relevant for decoding ARM ETM trace data in the context of overlays.

The command is relevant for tracing the switches between overlays using ARM ETM.

For an original overlay segment, the command declares (or deletes) the so-called “friend” overlay segment.
The friend overlay segment (a better term would be subsequent overlay) is a segment that usually is
executed afterthe original segment. Declaring a friend overlay gives the debugger a hint which allows to
improve the accuracy of decoding trace data corresponding to the switch between the segments. See the
box “background” on the following page for more information.

For each overlay one friend overlay can be declared. For deleting the friend overlay use the command with a
friend ID of 0.

In addition to “normal” overlay segments, friend overlays can also be declared for the “common area” of all
(“permanent”) non-overlay code by using the segment id 0.

©1989-2024 Lauterbach General Commands Reference Guide S | 224

The configuration of overlays segments and their respective friend overlays is displayed by
sYmbol.OVERLAY.List /FRiend..

<original_overlay _id> ID of the original overlay segment (16-bit integer)
If segment is zero, a friend segment will be assigned for the global memory
space.

<friend_overlay_id> ID of the friend overlay segment i.e. typically the subsequent overlay
segment (16-bit integer)
If friend is zero, the friend will deleted.

NOTE: To have an effect, the command needs to be executed before activating RTS via
RTS.ON.

Background Information

If the trace decoder encounters an opcode on an address not contained in the current overlay segment this
causes a problem. Therefore - when a friend overlay is declared - the trace decoder also checks the friend
overlay for this address. If the address is found, the opcode is considered to be part of the friend overlay
otherwise as part of the “common area” and thus as not belonging to an overlay.

The previous case can occur when the target switches to a new overlay segment. Switches between
overlays are typically reported by an ownership trace message which is created by a special opcode writing
to a dedicated register (ownership register).

If additional opcodes are executed in the context of the old overlay segment (e.g. opcodes residing on an
address of the old overlay segment) the ownership message appears “too early” causing problems decoding
the trace data of subsequent opcodes (e.g. RTS return-from-subroutine). If the opcode is executed in the
context of the new overlay segment, the message is sent “too late” because the opcode was executed
before the ownership trace message was created.

The special case where the subsequent overlay does include the address in question but contains a different
opcode on the address cannot be handled correctly. It may cause a flow error which however in practice is
rather infrequent.

See also
B sYmbol. OVERLAY

©1989-2024 Lauterbach General Commands Reference Guide S | 225

sYmbol.OVERLAY.List Show declared code overlay sections

Format: sYmbol.OVERLAY.List [/[Modules | /STorage | /FRriend]

Shows the declared code overlays and the corresponding symbol information set with
sYmbol.OVERLAY.Create and/or sYmbol.OVERLAY.AutolD. The code overlays currently present in
memory (“active code overlays”) are highlighted.

Modules Shows the DWARF modules related to the overlay section.
This is only useful in case of “File-based Code Overlay Support “, since the
column is empty in case of “Relocation-based Code Overlay Support”.

STorage Shows the memory region from where the code overlays should be
loaded.
FRiend Shows the friends of each memory segment.

See sYmbol.OVERLAY.FRIEND

See also
B sYmbol. OVERLAY

sYmbol.OVERLAY.RESet Reset overlay declarations

Format: sYmbol.OVERLAY.RESet

Clears the complete table of declared overlay sections.
The table of declared overlay sections can be shown with sYmbol.OVERLAY.List. Entries can be added
with sYmbol.OVERLAY.Create.

See also
B sYmbol. OVERLAY

©1989-2024 Lauterbach General Commands Reference Guide S | 226

sYmbol.PATCH STF-symbol information

The Greenhills compiler can add extra assembler instructions to the code, e.qg. to function entries and
function exits. This instrumentation code generates SFT software trace messages during program
execution.

TRACE32 can extract the symbol information about the extra assembler instructions from the loaded
application file. Using the sYmbol.PATCH command group, you can list the extracted symbol information, as
well as enable and disable it.

For PRACTICE demo scripts (*.cmm), see ~~/demo/rh850/etc/sft_trace/

See also
M sYmbol.PATCH.DISable M sYmbol.PATCH.ENable MW sYmbol.PATCH.List W sYmbol
sYmbol.PATCH.DISable Disable instrumentation code
Format: sYmbol.PATCH.List [<address> | <range>]

Disables instrumentation code at the specified <address> or within the specified address <range>.
Executing the command without an argument disables all instrumentation codes.

The sYmbol.PATCH.List window displays an overview of all symbols in TRACE32 representing the
enabled and disabled instrumentation codes.

Example: See sYmbol.PATCH.List.

See also
B sYmbol.PATCH

sYmbol.PATCH.ENable Enable instrumentation code

Format: sYmbol.PATCH.ENable [<address> | <range>]

Enables instrumentation code at the specified <address> or within the specified address <range>. Executing
the command without an argument enables all instrumentation codes.

The sYmbol.PATCH.List window displays an overview of all symbols in TRACES32 representing the
enabled and disabled instrumentation codes.

©1989-2024 Lauterbach General Commands Reference Guide S | 227

Example: See sYmbol.PATCH.List.

See also
B sYmbol.PATCH

sYmbol.PATCH.List Display STF-symbol information

Format: sYmbol.PATCH.List [<address>]
sYmbol.List.PATCH [<address>] (alias)

Lists the extracted symbol information of the instrumentation code in the sYmbol.PATCH.List window.

% BusYmbolPATCH.List

address [type E’ enable
00000744 |[ENTRY | N

:000009DA |EXIT

:000009DE |[ENTRY \\'r.r
:00000A0A [EXIT E v
:00000A0E |[ENTRY v
10000042 [EXTT v
W
W

m|

100000446 |ENTRY

00000492 |EXIT

:00000A96 |ENTRY

:00000ABE |PRINTF TAG = O55YSTEMCOUNTER #
:00000ADD |EXIT

:00000ADE |ENTRY =
:00000AFE |EXIT eb R ’8
:00000B02 |ENTRY y 0_Deb main'func

(:

MTUTTUTTUTUTTUTUTOTUTTTT
EEEEEEEEEEEEEE

I

=1 BuList P:0xAd6 =1 [BuiList P:0xAD6]
[Ml step |[M over |[uADiverge)[J=—gun][& up [M step |[# Over |[AsDiverge|[¢ Retum| ¢ up |
addr/Tine code 1abe| B __|mnemonic addr/Tine code label mnemonic
131 |void init_ports(void) 163 [void func_lmsec(void)
P:00000446 |E init_ports: dbcp P : 00000ADE |0 func_lmsec: _nop
P : 00000448 |0 046 mov P :00000ADS |0 63FEDE mov
4 4

<]

A The enable column displays the status of the instrumentation codes. Clicking a cell in the enable
column enables or disables the instrumentation codes:

B A checkmark indicates that the original instrumentation code is active, see [B’].

No checkmark indicates that the original instrumentation code is patched, e.g. by NOP instructions,
see [C’].

D Double-clicking in the sYmbol.PATCH.List window opens a corresponding List window.

Example 1: This script deactivates function entries and exits within a specified range.

sYmbol .PATCH.List
7 e <range>----------—-——- |
sYmbol .PATCH.DISable INTOSTMO--sYmbol.END (func_lmsec)

©1989-2024 Lauterbach General Commands Reference Guide S | 228

Example 2: This script uses the sYmbol.ForEach command to enable and disable symbol groups that
match the desired name pattern.

sYmbol .PATCH.List

;1lst step: disable all functions

sYmbol .ForEach "sYmbol.PATCH.DISable sYmbol .RANGE(""*"")"

;2nd step:
sYmbol .ForEach

Result of example 2:

enable the functions that match the name pattern,
"sYmbol . PATCH.ENable sYmbol.RANGE(""*"")™"

** /Function

% BusYmbolPATCH.List

address

type

enable

000003DE
00000ADA
00000ADE
00000442
00000446
00000492
00000ASE
00000ABE
00000ADD
00000ADE
OO000AFE
00000B02
00000B36
00000B3A

=== = = = = = = = = = e/

ENTRY
EXIT
ENTRY
EXIT
ENTRY
EXIT
ENTRY

PRINTF TAG

EXIT

ENTRY

EXIT

ENTRY

EXIT

ENTRY
4

= O55YSTEMCOUNTER #

EEEEEEEE

ttimer

init_ports
init

init_fasttimer+0x34

ts+0x4C

m

L L

See also

here *sec*
sec /Function

B sYmbol.PATCH

©1989-2024 Lauterbach

General Commands Reference Guide S

229

sYmbol.POINTER Define special register

Format: sYmbol.POINTER [<framepointer>] [<staticpointer>]

Determination of frame pointer and static pointer registers. The frame pointer addresses the variables
located on the stack, the static pointer addresses the static variables with position independent data only.
During loading an HLL program the registers are automatically preset with the values according to the
compilers.

See also
H sYmbol

sYmbol.POSTFIX Set symbol postfix

Format: sYmbol.POSTFIX [<character>]

Allows to define a postfix character. If for a symbol name used in a PRACTICE command no applicable
symbol is found in the debug information, the postfix character is appended to the symbol name and the
search is repeated.

The use of a postfix makes sense when using a compiler, which appends a special sign behind every
symbol (for example MarkWilliams C).

See also
B sYmbol.PREFIX B sYmbol
sYmbol.PREFIX Set symbol prefix
Format: sYmbol.PREFIX [<character>]

A sign may be defined as a prefix. If during entry of a symbol no applicable drag-in can be found, the prefix
will be appended in front of the symbol and the search will begin once more. The use of a prefix makes
useful when using a compiler, which adds a special sign in front of every symbol (for example Microtec
Pascal/C).

See also
B sYmbol.POSTFIX H sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 230

sYmbol.RELOCate Relocate symbols

Format: sYmbol.RELOCate <class>:<offset>] [<symbol_path>I<range>]

The command group sYmbol.RELOCate is outdated (excluding the command sYmbol.RELOCate.shift)
and is nowadays only used for OS9-aware debugging (“OS Awareness Manual 0S-9” (rtos_o0s9.pdf)).

The command Data.LOAD.EIf <file> /RELOC ... provides greater flexibility when symbols need to be
relocated.

See also

B sYmbol.RELOCate.Auto B sYmbol.RELOCate.Base B sYmbol.RELOCate.List B sYmbol.RELOCate.Magic
B sYmbol.RELOCate.Passive B sYmbol.RELOCate.shift H sYmbol

A ’'Release Information’ in’Legacy Release History’

sYmbol.RELOCate.Auto Control automatic relocation

Format: sYmbol.RELOCate.Auto [ON | OFF]

The command sYmbol.RELOCate.Auto is outdated and is nowadays only used for OS9-aware debugging.
Please refer to “OS Awareness Manual 0S-9” (rtos_0s9.pdf) for more information on this command.

See also

B sYmbol.RELOCate B sYmbol.RELOCate.Base B sYmbol.RELOCate.List B sYmbol. RELOCate.Magic
B sYmbol.RELOCate.Passive M sYmbol.RELOCate.shift

©1989-2024 Lauterbach General Commands Reference Guide S | 231

sYmbol.RELOCate.Base Define base address

Format: sYmbol.RELOCate.Base <class>:<base>] [<symbol_path>l<range>]

The command sYmbol.RELOCate.Base is outdated and is nowadays only used for OS9-aware debugging.
Please refer to “OS Awareness Manual 0S-9” (rtos_o0s9.pdf) for more information on this command.

See also

B sYmbol.RELOCate B sYmbol.RELOCate.Auto B sYmbol.RELOCate.List B sYmbol. RELOCate.Magic
B sYmbol.RELOCate.Passive M sYmbol.RELOCate.shift

sYmbol.RELOCate.List List relocation info

Format: sYmbol.RELOCate.List

The command sYmbol.RELOCate.List is outdated and is nowadays only used for OS9-aware debugging.
Please refer to “OS Awareness Manual 0S-9” (rtos_o0s9.pdf) for more information on this command.

See also

B sYmbol.RELOCate B sYmbol.RELOCate.Auto B sYmbol.RELOCate.Base B sYmbol. RELOCate.Magic
B sYmbol.RELOCate.Passive M sYmbol.RELOCate.shift

sYmbol.RELOCate.Magic Define program magic number

Format: sYmbol.RELOCate.Magic <program_magic>] [<symbol_path>l<range>]

The command sYmbol.RELOCate.Magic is outdated and is nowadays only used for OS9-aware
debugging. Please refer to “OS Awareness Manual OS-9” (rtos_o0s9.pdf) for more information on this
command.

See also

B sYmbol.RELOCate B sYmbol.RELOCate.Auto B sYmbol.RELOCate.Base B sYmbol.RELOCate.List
B sYmbol.RELOCate.Passive M sYmbol. RELOCate.shift

©1989-2024 Lauterbach General Commands Reference Guide S | 232

sYmbol.RELOCate.Passive Define passive base address

Format: sYmbol.RELOCate.Passive <class>:<base>

The command sYmbol.RELOCate.Passive is outdated and nowadays only used for OS9-aware
debugging. Please refer to “OS Awareness Manual OS-9” (rtos_o0s9.pdf) for more information on this
command.

See also

B sYmbol. RELOCate B sYmbol. RELOCate.Auto B sYmbol. RELOCate.Base B sYmbol.RELOCate.List
B sYmbol.RELOCate.Magic B sYmbol.RELOCate.shift

sYmbol.RELOCate.shift Relocate symbols

Format: sYmbol.RELOCate.shift <class>:<offset> [<symbol_path>|<range>]

Manually relocates symbols. The symbol path limits the relocation to special symbols of a module or a
program. If an address range is given, only the symbols in this range will be relocated. Relocation is always
relative to the current address of the symbol. When the memory access classes of some symbols are
wrong, they can be changed by the sYmbol.Modify.Access command.

Examples:

; relocate all program symbols by 12240H
sYmbol .RELOCate.shift P:0x12240

; relocate all data symbols of module 'main'
sYmbol .RELOCate.shift D:0x1000 \main

; relocate all data symbols in the given range
sYmbol .RELOCate.shift D:0x1000 0x40000--0x4ffff

See also

B sYmbol. RELOCate B sYmbol. RELOCate.Auto B sYmbol. RELOCate.Base B sYmbol.RELOCate.List
B sYmbol.RELOCate.Magic B sYmbol.RELOCate.Passive

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 233

sYmbol.RESet Clear symbol table

Format: sYmbol.RESet

All symbols and search paths for source files are cleared.

See also
H sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 234

sYmbol.SourceBeautify Beautify HLL lines on loading

Format: sYmbol.SourceBeautify [ON | OFF]

ON Beautifies the indentations of HLL lines displayed in the List windows.
The source file itself is not touched.

OFF Displays the HLL lines as formatted in the source file.

NOTE: The command takes only effect if it is set to ON or OFF before executing the
Data.LOAD.<file_format> command.

Example:

sYmbol .SourceBeautify ON
;load ELF file plus associated source file. For demo purposes, the *.c
;file contains some malformatted HLL lines.

Data.LOAD.ELF armle.axf /StripPATH /LowerPATH

List.HLL main ;refer to [B]

B:TYPE C:A\T32\demol\arm'compiler\armiarm.c 585. /LineNumbers EI@ = [BiList.HLL main]
585. of 717. = x #IFind... Track [M step |[® Over |[iAsDiverge|[¢ Retum| ¢ up |[»
585. [main() s addr/1ine |source
586. (1 A main()
587. im\i: 586 |{ N
588. =\ THETT
389, char = p;
590 vtrijplearray[0]J[0][0] = 1; . S,
591 | [vtripplefirray[1] 0] [0] = 2; 290 vtripplearray[0][0][0] = 1;
295\verippt farrabBos on B L0 = % 352 ViribelearrayFol HITo] = 31
593. v:tr"lpp'l array[0][0][1] = 4; . 593 vtripplearray[0][01[1] = 4:
A Source file (*.c) with indentation issues. B Indentation issues fixed in TRACE32.

See also
B sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 235

sYmbol.SourceCONVert Conversion for Japanese font

Format: sYmbol.SourceCONVert <mode>

<mode>: OFF | EUC-JP

Converts the HLL source information from EUC (Extended UNIX Code) to JP for Windows.

See also
H sYmbol

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 236

sYmbol.SourceLOAD Initiate the loading of an HLL source file

Format: sYmbol.SourceLOAD [<module> [<file>]]

By default an HLL source file is only loaded by TRACE32 when the contents of the HLL source file is

required during debugging. The command sYmbol.SourceLOAD loads the HLL source file for the defined
module on user request. The HLL source line information from the absolute object file must be loaded before
using this command. If the command sYmbol.SourceLOAD is used without any parameter, all HLL source

files are loaded.

The command sYmbol.SourceLOAD allows also the specification of a new HLL source file instead of the
one listed in sYmbol.List. SOURCE. This can be useful, if the name or directory of the source file has been
changed after compilation.

Examples:

; load all source files
Data.LOAD.COFF arm.abs
sYmbol . SourceLOAD

; load the source file for the module \\thumble\arm
Data.LOAD.COFF arm.abs

sYmbol .List.SOURCE

sYmbol .SourceLOAD \\thumble\arm

; load the source file NewArm.C for the module \\thumble\arm

Data.LOAD.COFF arm.abs
sYmbol .SourcelLoad \\thumblelarm G:\ARM\etc\Test\NewArm.C

See also
H sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 237

sYmbol.SourcePATH Source search path

Format: sYmbol.SourcePATH [+ | - | -- | <directory>] ... (deprecated)

Adds or removes directories to the path used for searching the source files accessed by TRACES32. The
current search order can be displayed by the command sYmbol.SourcePATH.List. The list can be saved
with the STOre command and the SPATH item.

+ Use the '+' to add a directory to the path.

- Use the '-' sign to remove a path from the list.

-- Two minus signs -’ clear the whole list like sYmbol.RESet.

Examples:

sYmbol .SourcePATH + c:\source\proj_1 ; add search directories
sYmbol.SourcePATH + c:\mike\source\proj_1

sYmbol . SourcePATH

- c:\source\proj_1 ; remove search directory
See also
B sYmbol.SourcePATH.Delete B sYmbol.SourcePATH.DOWN
B sYmbol.SourcePATH.List B sYmbol.SourcePATH.RESet
B sYmbol.SourcePATH.Set B sYmbol.SourcePATH.SetBaseDir
B sYmbol.SourcePATH.SetCache B sYmbol.SourcePATH.SetCachedDir
B sYmbol.SourcePATH.SetCachedDirCache B sYmbol.SourcePATH.SetCachedDirlgnoreCache
B sYmbol.SourcePATH.SetDir B sYmbol.SourcePATH.SetDynamicDir
B sYmbol.SourcePATH.SetMasterDir B sYmbol.SourcePATH.SetRecurseDir
B sYmbol.SourcePATH.SetRecurseDirCache B sYmbol.SourcePATH.SetRecurseDirlgnoreCase
B sYmbol.SourcePATH.Translate B sYmbol.SourcePATH.TranslateSUBpath
B sYmbol.SourcePATH.UP B sYmbol.SourcePATH.Verbose
H sYmbol
sYmbol.SourcePATH.Delete Delete path from search list
Format: sYmbol.SourcePATH.Delete <directory>

Removes the specified directory from the search path.

See also
B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 238

sYmbol.SourcePATH.DOWN Make directory last in search order

Format: sYmbol.SourcePATH.DOWN <directory>

Internal TRACE32 command. The specified directory becomes the last in the defined search order.

See also
B sYmbol.SourcePATH

sYmbol.SourcePATH.List List source search paths

[Examples]

Format: sYmbol.SourcePATH.List
sYmbol.List.SPATH (deprecated)

Lists defined search paths and their attributes.
4 BusYmbol SPATH.List | -E =]

(& Delete All|[(Reload || Verbose || £2store... |52 cache... || S Load... || + AddDir...|

dir |base |[cach [rec |dyn |hit |directory i
[] | | [[C:\T32_ARM\demo\\s0urces

4 [b

Description of Toolbar Buttons in the sYmbol.SourcePATH.List Window

Delete All Reset all source path settings.
(command sYmbol.SourcePATH.RESet)

Reload Reload all loaded source files.
(command sYmbol.SourceRELOAD)

Verbose Enable/disable search details in the TRACE32 Message Area.
(command sYmbol.SourcePATH.Verbose ON | OFF)

Store... Save source path search setting to <file>.
(command STOre <file> SPATH)

Cache... Save source path search setting plus list of all cached files to <file>.
(Command STOre <file> SPATHCACHE)

Load... Load source path settings from <file>.
(command DO <file>)

AddDir Add directory as base directory and as direct directory to search path list.
(command sYmbol.SourcePATH <dir>)

©1989-2024 Lauterbach General Commands Reference Guide S | 239

Example for a base directory:

; Define directory as base for relative paths
sYmbol .SourcePATH.SetBaseDir C:\T32_ARM\demo\sources

3 BusYmbol.SPATH.List = | EoR5

(& Delete All|[(Reload || Verbose || £2store... |52 cache... || S Load... || + AddDir...|

dir |base |[cach [rec |dyn |hit |directory i
W | | [[C:\T32_ARM\demo\\s0urces

4 [b

Example for direct directories:

; directory is direct search path
sYmbol .SourcePATH. SetDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_drivers

; directory is direct search path, all source files found in the defined

; directory are cached by TRACE32
sYmbol .SourcePATH. SetCachedDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_net

; directory is direct search path, the directory and all its
; sub-directories are used as search path

sYmbol .SourcePATH. SetRecurseDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_ext

7
; 1n

sYmbol .SourcePATH. SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_int

i Bus¥mbol SPATH.List =0 B =)

(3 Delete all|[CxReload || Verbose |[EZstore... |[S2 cache...|| S Load... | + AddDir...|
dir |base [cach [rec |dyn |hit |directory |

I C:\T32_ARMYdemo'armhardwarel,imx53\quickstartboard'demo_drivers
W W ¥ |C:\T32_ARM\demo'arm'hardware'imx53'\guickstartboard‘demo_net
i i W ¥ |C:\T32_ARM\demo'arm'hardware'imx53'quickstartboard'demo_ext
It W C:\T32_ARM‘demo‘arm'hardware'imx53'quickstartboardidemo_int

4 mn 3

directory is a direct search path, if the source file was found in
; this directory, this directory will become the first to be searched

©1989-2024 Lauterbach General Commands Reference Guide S

240

Example for translated paths:

sYmbol .SourcePATH.Translate "Z:/Projects/own/trunk/V850/src/sieve"
"C:/T32_V850/demo/20131129trainings_demo/demo/v850/compiler/iar"

sYmbol . SourcePATH.Translate "C:/Programme/IAR Systems"
"C:/T32_V850/demo"

sYmbol .List.SourcePATH

E=N Noh/

& Bus¥mbol List.SourcePATH
(& Delete All|[0= Reload || £2 Store... |[S2 cache... || S Load... || + AddDir.. |
dir |base |cach [rec |dyn |hit |directory

"Z:/Projects/own/trunk,/V850/src/sieve"” -= "C:/T32_v850/demo,/20131129trainings_demo,/demo,/vB50/compiler /iar"
"C:/Programme/IAR Systems" - "C:/T32_V850/demo"

I

4

See also

B sYmbol.SourcePATH

A ’Release Information’ in’Legacy Release History’

sYmbol.SourcePATH.RESet

Reset search path configuration

Format: sYmbol.SourcePATH.RESet

Resets the search path configuration.

See also

B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S

241

sYmbol.SourcePATH.Set Define search path

Format: sYmbol.SourcePATH.Set <directory>

This command combines the commands:
o sYmbol.SourcePATH.SetDir
o sYmbol.SourcePATH.SetBaseDir

See also
B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 242

sYmbol.SourcePATH.SetBaseDir Define directory as base for relative paths

Format: sYmbol.SourcePATH.SetBaseDir <directory>

Defines directory as base for relative paths.

; load object file vmlinux and cut the following from the source paths:
; start of source path til end of "kernels-arm"
Data.LOAD.E1lf ~~~~/vmlinux /StripPART "kernels-arm"

sYmbol .SourcePATH. SetBaseDir J:\AND\omap\sources
sYmbol .SourcePATH.List

sYmbol .List.SOURCE

4 BusYmbol.SourcePATH.List [-E]
[$&Delete All|[CReload || Verbose || £2store... |52 cache... | ELoad... || + AddDir...|
dir |base |[cach [rec |dyn |hit |directory i
W | | [[3:\AND'omap'sources -
¥l T 3
4 BusYmbol List. SOURCE oo ==
moduTe source file size [time |state |
Vwvm T nuxnamei_vTat Jhome'amerkTe'\Daten\kernels-arm\ [1nux-3. 8.7 \F5\fat ynamei_vfat.c Tinux-3.8.7\Fs\fat\namei_vfat.c -
M\vmldnux\nfs “home\amerkle\Daten\kernels-arm\11inux-3.8. 7\fs\fat\nfs.c Tinux-3.8.7\fs\fat\nfs.c
NAvmldnux\Fent] “home\amerkle\Daten\kernels-arm\1inux-3.8.7\fs\fcnt1.c Tinux-3.8.7\fs\fent1.c
NAvmldnux\Fifo “home\amerkle\Daten\kernels-arm'1inux-3.8. 7\fs\fifo.c 1:\AND\omap'sources]inux-3.8.7\fs\fifo.c loaded
Novmlinux\fs/file “home'\amerkle\Daten\kernels-arm'linux-3.8.7\fs"\file.c 1:\AND'omap'sources]inux-3.8.7\fs\file.c loaded
Novmlinux\file_table “home"amerkle\Daten‘kernels-arm'linux-3.8.7\fs\file_table.c 1:\AND‘omap'sourcesi1inux-3.8. 7\fs\file_table.c Tloaded
Mwmlinux\Filesystems “home'amerkle'\Daten'\kernels-army1inux-3. 8. 7\fs\filesystems. c Tinux-3.8. 7 \fs\filesystems.c -
« ’
source Source path provided by executable.
file Source path as modified by the Data.LOAD command
or
source path from which the file was loaded.

See also
B sYmbol.SourcePATH

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 243

sYmbol.SourcePATH.SetCache Internal use only

Format: sYmbol.SourcePATH.SetCache <file>

Internal TRACE32 software command, not of interest for TRACE32 users.

See also
B sYmbol.SourcePATH

sYmbol.SourcePATH.SetCachedDir Cache direct search path directory

Format: sYmbol.SourcePATH.SetCachedDir {<directory>}

All source files found in the defined directory are cached by TRACES32.

Example:

sYmbol .SourcePATH. SetCachedDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_net

4 BusYmbol SPATH.List = & ==
|XDeIete All|[©oReload || verbose |[EZstore... ||§Cache...|| =2 Load... || + Add Dir...
dir |base |[cach [rec |dyn |hit |directory i
[| | [C:\T3Z_ARM\ demo’arm'har dwar e’ imx53%guickstarthoard'demo_net
4 1 3
STOre CacheCon SPATHCACHE ; generate a script for fast recaching

See also
B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 244

sYmbol.SourcePATH.SetCachedDirCache Internal use only

Format: sYmbol.SourcePATH.SetCachedDirCache <directory> ...

Internal TRACE32 software command, not of interest for TRACE32 users.

See also
B sYmbol.SourcePATH

sYmbol.SourcePATH.SetCachedDirlgnoreCache Cache direct search path

Format: sYmbol.SourcePATH.SetCachedDirlgnoreCase {<directory>}

All source files found in the defined directory are cached by TRACES32 ignoring lowercase/uppercase.

See also
B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 245

sYmbol.SourcePATH.SetDir Define directory as direct search path

Format: sYmbol.SourcePATH.SetDir <directory>

The source files are directly searched in the defined directories.

Examples:
Data.LOAD.El1f armle.axf ; load elf file
sYmbol .List.SOURCE ; display path information for
; source files
4 BasVmbol List. SOURCE =X R
imoduTe source file s1ze ‘time state i
\\demo\s7eve C - \work_space’svN'demo\demo\armhar dwar e\, Tpcd 357 s ave. ¢ |C: \work_space\SVN\demo'demo\arm\hardware\, Tpcd357\s7eve. c I Jerror
Source path provided by EIf file error indicates that

the source file was
not found under the
provided path

; define directory as direct search path
sYmbol.SourcePATH.SetDir C:\T32_ARM\demo\arm\compiler\arm

sYmbol .SourcePATH.List ; display search path defined by
; user
sYmbol .List.SOURCE ; display path information for

; source files

§ BusYmbol.SourcePATH.List ==

(& Delete All|[(2Reload || Verbose || £2store... |52 cache... || ELoad... || + AddDir...|

dir |base |[cach [rec |dyn |hit |directory i
| | | [[C:\T32_ARM\demo'arm\compi ler\arm

4 n [
% BusVmbol List SOURCE f=lre =
[moduTe source file size ‘time state |
\\demo'sieve |C:\work_space\SvN\demo\demo\armhardware\ Ipcd357\s7eve. c |C:\T32_ARM\demo\arm\compi Tar\armisieve. c I [Toaded -
i v

«

Source path from which the file
was loaded

See also
B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 246

sYmbol.SourcePATH.SetDynamicDir Adjust search order at hit

Format: sYmbol.SourcePATH.SetDynamicDir {<directory>}

The search order defined by this command is dynamically changed. The directory in which the last searched
source file was found becomes the first directory in which the debugger searches for the next source file.

Example:

sYmbol .SourcePATH. SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_net

sYmbol .SourcePATH. SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_drivers

sYmbol . SourcePATH. SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_ext

sYmbol .SourcePATH. SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_int

sYmbol .SPATH.List

§ BusYmbol SPATH.List |-]
[$&Delete All|[(Reload || Verbose || E2store... |52 cache... || ELoad... || + AddDir...|
dir |base |[cach [rec |dyn |hit |directory i
W W y [C:\T32_ARM‘\demo’arm\hardware\imx53\quickstartboard'\demo_ext
W W C:\T32_ARM\demo'arm'hardware'imx53'\quickstartboard\demo_net
W W C:\T32_ARM\demo'arm'hardware'imx53\quickstartboard\demo_drivers
W W C:\T32_ARM‘\demo'arm'hardware'imx53'\quickstartboard\demo_int
4 m [
See also

B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 247

sYmbol.SourcePATH.SetMasterDir Store cached files only relative

Format: sYmbol.SourcePATH.SetMasterDir <directory>

If the command STOre <file> SPATHCACHE is used, all file names are only saved relative to the defined
directory.

Example:

Data.LOAD G:\AND\compiler\xc\bt800ip.iee
sYmbol .SourcePATH. SetCachedDir G:\AND\compiler\xc\System
sYmbol .SourcePATH. SetMasterDir G:\AND\compiler

STOre cache.cmm SPATHCACHE

// And Thu May 27 16:40:51 2004
B2 g
sYmbol.SourcePATH. SetCachedDirCache "xc\System"

sYmbol.SourcePATH. SetCache "xc\System"
(

"ad_cond.c"

"adsubs.c"

"bt_27.c"

"bt_27.h"

"bt_28.c"

"bt_flsh.c"

ENDDO

See also
B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 248

sYmbol.SourcePATH.SetRecurseDir Define recursive direct search path

Format: sYmbol.SourcePATH.SetRecurseDir {<directory>}

Use the defined directory and all subdirectories as search path.

Example:

sYmbol .SourcePATH. SetRecurseDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard

4 BusYmbol SPATH.List o & ==
|XDeIete AII” Cx Reload || Verbose || £2store... |52 cache...|| S Load... || + Add Dir...
dir |base |[cach [rec |dyn |hit |directory i
W T] [y [C:\T32_ARM\demo“arm\hardware\imx53\quickstartboard »

4 1 3

4 BusYmbol.List SOURCE oo =
moduTe source file s1ze time state |
\\demo',demo [3:\PEG\sTevetarm3tdemo. c [C:\T32_ARM'demo"armihardware’, imx53 guickstartboard\demo_ext \demo. c [Toaded | -
i -

See also
B sYmbol.SourcePATH

sYmbol.SourcePATH.SetRecurseDirCache Internal use only

Format: sYmbol.SourcePATH.SetRecurseDirCache <directory>...

Internal TRACE32 software command, not of interest for TRACES32 users.

See also
B sYmbol.SourcePATH

| 249

©1989-2024 Lauterbach General Commands Reference Guide S

sYmbol.SourcePATH.SetRecurseDirlgnoreCase Recursive search path

Format: sYmbol.SourcePATH.SetRecurseDirlgnoreCase {<directory>}

Use the defined directory and all subdirectories as search path. Lowercase/uppercase is ignored

See also
B sYmbol.SourcePATH

sYmbol.SourcePATH.Translate Replace part of the source path

Format: sYmbol.SourcePATH.Translate <original_path> <new_path>

Replaces <original_path> in source path with <new_path>. Use case: The code was built on a remote
machine. Thus the base path must be replaced.

©1989-2024 Lauterbach General Commands Reference Guide S | 250

Example:

é Bus¥mbol.List. SOURCE
module source

.F
Wsievelsieve C:/Programme/IAR Systems/Embedded Workbench &.5/v850,/LIB/d185nn0.h[C
‘\sievelsieve Z:/Projects/own/trunk,/V850/src/sieve/sieve. c

1le
:\Programme\
Z: \gr ojectsh\o

" =0 =R
file size time state i
C:\Programme\IAR Systems‘\Embedded Workbench &.5\v850%\LIB\d185nn0.h 13 [50729A8 »
Z:\Projectshown'trunk\W850\srchsievelsieve. c 805 | 51DCODF -

Data.LOAD.E1f sieve.elf

sYmbol .List.SOURCE

sYmbol .SourcePATH.Translate "Z:/Projects/own/trunk/V850/src/sieve"
"C:/T32_V850/demo/20131129trainings_demo/demo/v850/compiler/iar"

sYmbol .SourcePATH.Translate "C:/Programme/IAR Systems"
"C:/T32_V850/demo"

sYmbol .List.SourcePATH

% Bus¥mbol List.SourcePATH = ==

(& Delete All|[0= Reload || £2 Store... |[S2 cache... || S Load... || + AddDir.. |

dir |base |cach [rec |dyn |hit |directory i

"Z:/Projects/own/trunk,/V850/src/sieve"” -= "C:/T32_v850/demo,/20131129trainings_demo,/demo,/vB50/compiler /iar"

"C:/Programme/IAR Systems" - "C:/T32_V850/demo"

£l | i r

é Bus¥mbol. List. SOURCE

module source tile

Wsievelsieve C:/Programme/IAR Systems/Embedded Workbench 6.5/v850/L1IB/d185nn0.h [C:\Programme’,

‘\sievelsieve Z:/Projects/own/trunk,/V850/src/sieve/sieve. c C:\T32_v850'd

4
4 = s
file 51z time state i

50729a8

e
‘C: \Programme’IAR Systems‘Embedded Workbench 6.5%wE50N\LIB\dT85nn0.h ‘ 13 ‘

C:4\T32_v850%demo',20131129trainings_demo'dema’ w850 compiler‘iarisieve.c 51DCODF "I oaded -

805

See also
B sYmbol.SourcePATH

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 251

sYmbol.SourcePATH.TranslateSUBpath Replace sub-path

Format: sYmbol.SourcePATH.TranslateSUBpath <original_sub_path>
<new_sub_path>

Replaces <original_sub_path> in source path with <new_sub_path>. Use case: Only a single folder is

different.

Example:
% BusYmbol List. SOURCE |-]
modu | source file size time state i
W d1abp555hdiabelidiabel. c |T:\mat'\P5eva5s5idiabel. c | | | -

sYmbol . SourcePATH.TranslateSUBpath "P5" "K8"

£ BusYmbol.SourcePATH.List ==]

(3 Delete Al || Cx Reload |52 store... |[E2 cache...|| 5 Load... || + AddDir...|
dir |base [cach Jrec |dyn |hit |directory i

"pg"t _, "KE"

4 m 3

% BusYmbol List. SOURCE |-]

’\rﬂedu'l source file size time state i

W d1abp555hdiabelidiabel. c |T:\mat' K8\ eva555idiabcl. c | | [Toaded -
4 [

See also
B sYmbol.SourcePATH

sYmbol.SourcePATH.UP Move path up in the search order

Format: sYmbol.SourcePATH.UP <directory>

Internal TRACE32 command. The defined directory becomes the first in the search path order.

See also
B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 252

sYmbol.SourcePATH.Verbose Display search details in message AREA

Format: sYmbol.SourcePATH.Verbose ON | OFF
Default: OFF.
OFF No details about the source file search are given.
ON Details about the source file search are displayed in the TRACE32
message AREA.view window, if a source file is loaded by TRACE32.
Example:
AREA.view ; open TRACE32 message AREA window

; to display source file search
; details

sYmbol . SourcePATH.Verbose ON

List

; display source listing

Verbose ON is indicated in the sYmbol.SourcePATH.List window

3 BusYmbol.SPATH.List

4

[$&Delete All|[CoReload || Verbose |[£2store... |52 cachd..|| 52 Load... || + AddDir..
dir |base |[cach [rec |dyn |hit |directory J{VERBOSE i
W C:\T32_ARM\demo\arm\hardware'\imx53\quickstartboard\demo_drivers
W C:\T32_ARM\demoarm'hardware'imx53\quickstartboard\demo_net
W W |C:\T32_ARM\ demo'\arm'hardwar e imx53'guickstartboard'demo_ext
4 1 [3
= | BuAREA [E=H =R
Sourcefile 'C:\T32_ARM\demo'\arm\hardware'imx53\quickstartboard\sievel\arm3idemo.c’ not found. o~
Sourcefile 'C:\T32_ARM\demo\arm'hardware'imx53\quickstartboard\demo.c’ not found.
Sourcefile 'C:\T32_ARM\demo\arm'hardware'imx53\quickstartboard\demo_drivers'demo.c’ not found.
Sourcefile 'C:\T32_ARM\demo\arm'hardware'imx53\quickstartboard\demo_net\demo.c' not found.
Sourcefile 'C:\T32_ARM‘\demo‘arm'hardware'imx53 quickstartboard'demo_ext'demo.c' Tloaded. -

m 3

See also

B sYmbol.SourcePATH

©1989-2024 Lauterbach General Commands Reference Guide S | 253

sYmbol.SourceRELOAD Reload source files

Format: sYmbol.SourceRELOAD

Invalidates all loaded source files and marks them for reload. This can be useful when the source search
path has been changed to reload the source modules that came from the old source path.

See also
M sYmbol
sYmbol.STATE Display statistic
Format: sYmbol.STATE
Displays the size of the symbol tables and the global settings. See also sYmbol.MEMory.
£ BusYmbolSTATE [= | & |[=23)
=tatics 286.
functions 35.
locals 177.
modules 2.
types 179.
macros 0.
sources 1.
Tines 410.
stacks 73.
frames 0.
attribute 139,
marker 0.
maps
sections 3.
locdescs 0.
programs 1
compilers 3
prefix —
postfix
case QFF
=trip
frame F
static none
[XSP-stack ENAELED
CFA-stack
TLS-base
See also
B sYmbol B sYmbol.Browse.sYmbol B sYmbol.INFO B sYmbol.List

1 sYmbol.STATE()
A 'The Symbol Database’ in 'Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide S | 254

sYmbol.STRIP Set max. symbol length

Format: sYmbol.STRIP [</ength>]

Cuts symbols to the specified length. This option is useful, when the compiler has a limited symbol length.
Example:
sYmbol.STRIP 8.

Data.List Main_Function ; will display 'Main_Fun'

See also
Hl sYmbol

sYmbol.TYPEINFO Display information about a specific data type

Format: sYmbol.TYPEINFO <data_type>

Displays information about a specific data type. Alternatively, right-click a data type in a sYmbol.List.Type
window, and then select View Details, or double-click a data type in that window.

% BusYmbol.List. TYPE =N Eoh(% B:sYmbol.TYPEINFO struct struct2 =N =R
T] =T :
E¥ESC‘t structl 12‘tguc‘t(20 bytes, unsigned char * word, AI [i Symbols][i Dump][= List][Qwew][# MMy]

type = 1

ruct structs * pstr (struct structZ) struct(20 bytes, [0] unsigned char = word,

ruct struct4 * pstr = =4] 'int_count ~
E > (8] unsigned Ichar‘ [10] name)

. View Details
View Class Hierarchy

r

(int) (signed 32 bits)
(unzigned char [10]) (array of unsigned char, 10 bytes, 0..9)

View Type Hierarchy (unsigned char *) (pointer to unsigned char, 32 bits)

Browse Symbols of this type - - . .
(unzigned char) (unsigned 8 bits)
Browse Class Symbols

Browse Class Methods

View Static Class Members

See also

B sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 255

sYmbol.View Show symbol info

Format: sYmbol.View <name> [/Track]

Same as command sYmbol.Info.

£ Bus¥Ymbol View viripplearray EI@
[15».minb][stoump || Sust [Gview [$gmmu |

s¥m
armle\GlobaT\vtrippTearray

D:00005824--00005836 global static

tyvpe
(unzigned char 2] 3] 4]) (array of unsigned char [3][4], 24 bytes, 0..1)

char 3 (array of unsigned char [4], 12 bytes, 0..2)
(unf gncd char (array of unsigned char, 4 bytes, 0..3)
(unsigned char) (uns1gned 8 bits)

] [}

See also
H sYmbol

©1989-2024 Lauterbach General Commands Reference Guide S | 256

SYnch

SYnch Synchronization mechanisms between different TRACE32 systems
See also
B SYnch.Connect B SYnch.MasterBreak B SYnch.MasterGo B SYnch.MasterStep
B SYnch.MasterSystemMode M SYnch.OFF B SYnch.ON B SYnch.RESet
B SYnch.SlaveBreak B SYnch.SlaveGo B SYnch.SlaveStep B SYnch.SlaveSystemMode
B SYnch.state B SYnch.XTrack B TargetSystem B InterCom

Overview SYnch

For AMP multicore debugging and multiprocessor debugging, two or more TRACE32 PowerView instances
need to be started. The command group SYnch allows to establish a connection between different
TRACE32 instances for the following purposes:

To establish a start/stop synchronization between the cores/processors controlled by different
TRACES32 instances.

To allow concurrent assembler single steps between the cores/processors controlled by different
TRACERS2 instances.

To allow synchronous system mode changes between the cores/processors controlled by
different TRACES32 instances.

To get a time synchronization between trace information in different TRACES32 instances. This
requires that the trace information uses a common time base, e.g. global TRACES32 timestamp or
global chip timestamps.

For configuration of the synchronization mechanisms, use the TRACE32 command line, a PRACTICE script
(*.cmm), or the SYnch.state window. See also prerequisite [A] below.

éy B::5¥nch.state EI@
synch Connect
OFF localhost:10000

@ ON localhost:10001 localhost:10002
master slave
[7] MasterGo | SlaveGo
V| MasterBreak | SlaveBreak
V| MasterStep | SlaveStep
|| MasterSystemMode | SlaveSystemMode

A Prerequisite: You have set up an InterCom system using the InterCom commands, which allows to

exchange data between different TRACE32 systems.

©1989-2024 Lauterbach General Commands Reference Guide S | 257

SYnch.Connect Connect to other TRACE32 PowerView instances

Format 1: SYnch.Connect [<instances> ...]
<instances>: <intercom_name> | ALL | OTHERS | <name_pattern> | [<host>:]<port>
Format 2: SYnch.Connect [<host>:]<port> ...

Format 1: Establishes connections via the InterCom system to other TRACE32 PowerView instances that
are connected to same PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the
config.t32 file).

Format 2: Establishes connections to other TRACE32 instances by using the InterCom system.

Format 1 and Format 2: SYnch.ON is automatically set when the command SYnch.Connect establish the
connections.

(without parameters) If the command is used without parameters, it disconnects the TRACE32
Format 1, Format 2 PowerView instances.

<intercom_name> InterCom name of a TRACE32 instance. Names can be assigned to
Format 1 TRACERS2 instances with the InterCom.NAME command.

The InterCom.execute command supports the wildcards * and ? in
InterCom names.

<name_pattern> The SYnch.Connect command supports the wildcards * and ? in
Format 1 InterCom names. For example: clusterl. *

ALL All known TRACES?2 instances.

Format 1

OTHERS ALL except SELF.

Format 1

<host>:<port> Name of the host and the port number.

Format 1, Format 2

Example 1 for Format 2: This script line connects two instances based on their host names and port
numbers.

SYnch.Connect localhost:20001 localhost:20002

Example 2 for Format 1 and Format 2: This script line disconnects the TRACES32 instances.

SYnch.Connect

©1989-2024 Lauterbach General Commands Reference Guide S | 258

Example 3 for Format 1: All instances are connected except the one where this command is executed.

SYnch.Connect OTHERS

Example 4 for Format 1: The command SYnch.Connect OTHERS is executed on all TRACE32 instances.

InterCom.execute ALL SYnch.Connect OTHERS

See also
B SYnch B SYnch.state B InterCom.ENable B InterCom.NAME

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 259

SYnch.MasterBreak Invite other TRACES32 to stop synchronously

Format: SYnch.MasterBreak [ON | OFF]

Default: OFF

SYnch.MasterBreak and SYnch.SlaveBreak can be freely programmed for the connected TRACE32
instances. But the break switch/cross trigger unit in the multicore chip might not provide resources to
program all links. TRACES32 adjust the programming of the links to the available resources in this case.

ON Invite other TRACES32 instances to stop synchronously.

Cores in a multicore chip can be stopped instruction-accurate if the chip
provides a break switch/cross trigger unit.

Otherwise software-controlled stop synchronization is used. Software-
controlled synchronization stop the cores/processors one by one with a
minimum delay of 1.ms.

OFF No invitation for a synchronous stop is broadcast to other TRACE32
instances.
See also
B SYnch B SYnch.state

©1989-2024 Lauterbach General Commands Reference Guide S | 260

SYnch.MasterGo Invite other TRACES32 to start synchronously
Format: SYnch.MasterGo [ON | OFF]
OFF No invitation for a synchronous start is broadcast to other TRACE32
(default) instances.
ON Invite other TRACES32 instances to start synchronously.
Cores in a multicore chip can start synchronously if this is supported by
the chip.
Otherwise software-controlled start synchronization is used. software-
controlled synchronization starts the cores/processors one by one with a
minimum delay of 1.ms.
See also
W SYnch B SYnch.state
SYnch.MasterStep Invite other TRACE32 to Asm step synchronously
Format: SYnch.MasterStep [ON | OFF]
OFF No invitation for concurrent assembler single stepping is broadcast to
(default) other TRACE32 instances.
ON Invite other TRACES32 instances to perform concurrent assembler single
stepping. HLL single stepping is regarded as a synchronous start.
See also
B SYnch B SYnch.state

©1989-2024 Lauterbach

General Commands Reference Guide S | 261

SYnch.MasterSystemMode Invite other TRACES32 to follow mode change

Format: SYnch.MasterSystemMode [ON | OFF]

OFF No invitation for synchronous mode changing is broadcast to other

(default) TRACE32 instances.

ON Invite other TRACES32 instances to perform system mode changes
synchronously. System mode changes are typically performed by one of
the following commands: SYStem.Up, SYStem.Mode <mode>
commands and SYStem.RESetTarget.

See also
H SYnch H SYnch.state
SYnch.OFF Disable connection mechanism
Format: SYnch.OFF

Disables the software component that allows a TRACE32 instance to connect to other instances.

See also
H SYnch MW SYnch.state
SYnch.ON Enable connection mechanism
Format: SYnch.ON

Enables the software component that allows a TRACE32 instance to connect to other instances.

See also
H SYnch B SYnch.state

©1989-2024 Lauterbach General Commands Reference Guide S | 262

SYnch.RESet Reset SYnch mechanism

Format: SYnch.RESet

Resets the SYnch mechanism to its default settings.

See also
W SYnch B SYnch.state
SYnch.SlaveBreak Synchronize with stop in connected TRACE32
Format: SYnch.SlaveBreak [ON | OFF]
OFF Don’t synchronize with the stop of the program execution in a connected
TRACE32 instance.
ON Synchronize with the stop of the program execution in a connected
TRACES2 instance.
Cores in a multicore chip can be stopped instruction-accurate if the chip
provides a break switch/cross trigger unit.
Otherwise software-controlled stop synchronization is used. Software-
controlled synchronization stop the cores/processors one by one with a
minimum delay of 1.ms.
See also
B SYnch B SYnch.state

©1989-2024 Lauterbach General Commands Reference Guide S | 263

SYnch.SlaveGo

Synchronize with start in connected TRACES32

Format: SYnch.SlaveGo [ON | OFF]
OFF Don’t synchronize with the start of the program execution in a connected
TRACES2 instance.
ON Synchronize with the start of the program execution in a connected
TRACES2 instance.
Cores in a multicore chip can start synchronously if this is supported by
the chip.
Otherwise software-controlled start synchronization is used. software-
controlled synchronization starts the cores/processors one by one with a
minimum delay of 1.ms.
See also
W SYnch B SYnch.state
SYnch.SlaveStep Synchronize with asm step in connected TRACES32
Format: SYnch.SlaveStep [ON | OFF]
OFF Don’t synchronize with assembler single steps in a connected TRACE32
instance.
ON Synchronize with assembler single steps in a connected TRACE32
instance.
See also
B SYnch B SYnch.state

©1989-2024 Lauterbach

General Commands Reference Guide S | 264

SYnch.SlaveSystemMode Synch. with mode changes in other TRACE32

Format: SYnch.SlaveSystemMode [ON | OFF]
OFF Don’t synchronize with system mode changes in connected TRACE32
instances.
ON Synchronize with system mode changes in connected TRACE32
instances.
See also
W SYnch B SYnch.state
SYnch.state Display current SYnch settings
Format: SYnch.state

Displays the current setup of the SYnch mechanism.

éy B::5¥nch.state EI@
synch Connect
OFF localhost:10000

@ 0N localhost: 10001 localhost:10002
master slave
[7] MasterGo | SlaveGo
V| MasterBreak | SlaveBreak
V| MasterStep | SlaveStep
|| MasterSystemMode | SlaveSystemMode

A For descriptions of the commands in the SYnch.state window, please refer to the SYnch.*
commands in this chapter. Example: For information about ON, see SYnch.ON.

See also

B SYnch B SYnch.Connect B SYnch.MasterBreak B SYnch.MasterGo
B SYnch.MasterStep B SYnch.MasterSystemMode B SYnch.OFF B SYnch.ON

B SYnch.RESet B SYnch.SlaveBreak B SYnch.SlaveGo B SYnch.SlaveStep

B SYnch.SlaveSystemMode B SYnch.XTrack

©1989-2024 Lauterbach General Commands Reference Guide S | 265

SYnch.XTrack Establish time synchronization to another TRACES32 instance
Format 1: SYnch.XTrack [<instances> ...]
<trace>.XTrack <intercom_name> (deprecated)
<instances>: <intercom_name> | ALL | OTHERS | <name_pattern>
Format 2: SYnch.XTrack [<host>:]<port> ...

Establishes a time synchronization between trace information in different TRACE32 instances via the
InterCom system. This requires that the trace information uses a common time base e.g. global TRACE32
time stamps or global chip timestamps.

Format 1: Establishes a time synchronization to other TRACE32 PowerView instances that are connected
to same PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file).

Format 2: Establishes a time synchronization to other TRACES32 PowerView instances in general.

(without parameters)
Format 1, Format 2

If the command is used without parameters, it disconnects the TRACE32
PowerView instances.

<intercom_name>
Format 1

InterCom name of a TRACE32 instance. Names can be assigned to
TRACE32 instances with the InterCom.NAME command.

The InterCom.execute command supports the wildcards * and ? in
InterCom names.

<name_pattern>

The SYnch.Connect command supports of the wildcards * and ? in

Format 1 InterCom names. For example: clusterl. *
ALL All known TRACE32 instances.

Format 1

OTHERS ALL except SELF.

Format 1

<host>:<port>
Format 2

Name of the host and the port number.

Example 1 for Format 1:

; all instances are connected to each other
InterCom.execute ALL SYnch.XTrack OTHERS

; trace commands in one TRACE32 instance

Trace.List /Track

Trace.Chart.sYmbol /ZoomTrack

©1989-2024 Lauterbach

General Commands Reference Guide S | 266

Example 2 for Format 2:

; connect the instance where SYnch.XTrack is executed with the other two
; instances ‘localhost:20001’ and ‘localhost:20002°
SYnch.XTrack localhost:20001 localhost:20002

; trace commands in one TRACE32 instance

Trace.List /Track
Trace.Chart.sYmbol /ZoomTrack

See also
B SYnch B SYnch.state

©1989-2024 Lauterbach General Commands Reference Guide S | 267

SYStem

SYStem System configuration

The SYStem commands are used for setting the operating modes of the system. In addition, they are used
to define all those parameters which remain valid after stopping the emulation. The subcommands of the
SYStem command group are highly target-dependent; for details, check the Processor Architecture
Manual for your target system.

In general, the configuration commands (e.g. SYStem.Option) should be used before the emulation system
is activated with the SYStem.Mode or SYStem.Up command. Changing configuration options while the
system is up may cause unpredictable behavior.

SYStem.BdmClock Select BDM clock

Format: SYStem.BdmClock <rate> (deprecated)
Use SYStem.JtagClock instead.

<rate>: 21418116 | <fixed>

<fixed>: 1000. ... 5000000.

Either the divided CPU frequency is used as the BDM clock or a fixed clock rate. The fixed clock rate must
be used if the operation frequency is very slow or if the clock line is not available. The default is a fixed rate of
1 MHz.

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 268

SYStem.BREAKTIMEOUT Define the used timeout for break

Format: SYStem.BREAKTIMEOUT <time>

The Break.direct command performs a break request and waits for 3.s for the target to stop, otherwise an
“emulation running” error is reported. The command SYStem.BREAKTIMEOUT can be use to specify a
different timeout.

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 269

SYStem.CADICommand Send a command to target

Format: SYStem.CADICommand <command>

Sends the <command> as string to the target. <command> is accepted without ' " '. The command is send
via CADI function 'CADIXfaceBypass()'. If an answer is provided, it will be displayed in AREA.view
beginning with "Answer: ".

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 270

SYStem.CADIlconfig CADI-specific setups

Virtual targets only: CADI

The SYStem.CADIconfig command group is used to define CADI-specific setups for debugging and

tracing.
See also
B SYStem.CADIconfig.ExecSwOnly B SYStem.CADIconfig.RemoteServer
B SYStem.CADIconfig.SpecRegDefine B SYStem.CADIconfig.SpecRegsOnly
B SYStem.CADIconfig.Traceconfig B SYStem.CADIconfig.TraceCore
B SYStem.IRISconfig B SYStem.state
SYStem.CADIconfig.ExecSwOnly Filter on executing software capability
Format: SYStem.CADIconfig.ExecSwOnly ON | OFF
Default = ON.
ON TRACE32 connects just to CADI instances which can execute
software (CADI internal flag .executesSoftware is set).
OFF TRACES2 connects to any core or instance via CADI, regardless its
capability of executing software.
See also

B SYStem.CADIconfig

SYStem.CADIconfig.RemoteServer Define connection to CADI server
Virtual targets only: CADI

Format: SYStem.CADIconfig.RemoteServer [<ip> <port>]

Informs TRACE32 how to connect to the CADI server for debugging purposes. If this command is omitted
from your start-up script, then TRACE32 assumes that the virtual target (including the CADI server) and
TRACE32 are running on the same machine.

Without arguments: Resets the connection to a configuration where TRACES32 and the virtual target are
assumed to be running on the same machine (localhost).

©1989-2024 Lauterbach General Commands Reference Guide S | 271

With arguments: Defines a connection to the CADI server on a remote computer. Ensure that your CADI
server allows remote connections.

<ip> IP address or host name of the remote computer where the virtual target
is running.
<port> Parameter Type: Decimal value. TCP/IP port of the CADI server.

Figure 1 of 2: The red line illustrates the connection that is defined as a remote connection using the
SYStem.CADIconfig.RemoteServer command.

Host 1

TRACE32

Debug Connection

Host 2

t32cadi.dll |<g

via CADI

-

Virtual target
(incl. CADI server)

Optional Trace Connection via TCP/IP = = = | t32caditrace.dll

Figure 2 of 2: The red line illustrates the localhost connection that is defined using the
SYStem.CADIconfig.RemoteServer command.

localhost

TRACE32

t32cadi.dil |<ag Debug Connection

via CADI

Examples:

= = === Optional Trace Connection via TCP/IP = = = | t32caditrace.dll

SYStem.CADIconfig.RemoteServer

SYStem.CADIconfig.RemoteServer 192.168.178.2 7002.

SYStem.CADIconfig.RemoteServer RmtPC 7000.

See also

_

Virtual target
(incl. CADI server)

B SYStem.CADIconfig

d SYStem.CADIconfig.RemoteServer()

©1989-2024 Lauterbach

General Commands Reference Guide S |

272

SYStem.CADIconfig.SpecRegDefine Define special register set

Format:

SYStem.CADIconfig.SpecRegDefine {<offset> <Reg name>}

With SYStem.CADIconfig.SpecRegDefine a generic read and write access to registers which are not part
of the regular CPU architecture register sets and its peripherals can be defined. The special defined register
is searched from the complete CADI provided register list. SYStem.CADIconfig.SpecRegDefine without

any parameter deletes the complete special register definition (=default). A maximum of six registers can be

defined.

<offset>

<Reg name>

See also

Address offset in hex format to access the register named with <Reg
name>. The offset is add to the CADI base address for special
registers defines (= DBG:0C0000000). Maximum offset value is
OxOFFFFF, higher values are masked with OXOFFFFF.

Name of the special defined register as case sensitive string.
Maximum string length is 27 characters.

B SYStem.CADIconfig

SYStem.CADIconfig.SpecRegsOnly Use only special defined register set

Format: SYStem.CADIconfig.SpecRegsOnly ON | OFF
Default = OFF.
ON TRACE32 searches only for special defined registers (see
SYStem.CADIconfig.SpecRegDefine)
OFF TRACERS2 searches for regular register sets defined by SYStem.CPU selection
and for special defined registers.
See also

B SYStem.CADIconfig

©1989-2024 Lauterbach

General Commands Reference Guide S | 273

SYStem.CADIconfig.Traceconfig Define network settings to CADI trace

Virtual targets only: CADI

Format: SYStem.CADIconfig.Traceconfig [<ip> <port>]

Without arguments: Defines a connection to the trace plug-in based on the default values. The file name of
the trace plug-in is t32caditrace.dll / t32caditrace.so.

With arguments: Defines a user-defined connection to the trace plug-in.

<ip> IP address of the host machine where the virtual target is running.
(default: 127.0.0.1) IPv4 only. Host names are not allowed.

<port> Parameter Type: Decimal value. TCP/IP port of the trace plug-in.
(default: 21000.)

The red line illustrates the connection that is defined using the SYStem.CADIconfig.Traceconfig

command.
TRACE32 t32cadi.dl Debug Connection . Vlirtual target
via CADI (including CADI server)
A Tracg Connection | t32caditrace.dll

via TCP/IP

See also

B SYStem.CADIconfig (1 SYStem.CADIconfig.Traceconfig()

A ’Introduction’ in 'Virtual Targets User's Guide’

SYStem.CADIconfig.TraceCore Define core for CADI trace
Format: SYStem.CADIconfig.TraceCore <Corenumber>

Defines the core for which the CADI trace feature will be active in the case of SMP core setup. CADI trace
allows just one core to be traced.

See also
B SYStem.CADIconfig

©1989-2024 Lauterbach General Commands Reference Guide S | 274

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore (deprecated)

The commands of the SYStem.CONFIG command group describe the target configuration to the debugger.

<parameter> The supported parameters highly depend on the target processor
architecture. Please refer to the description of the SYStem.CONFIG
command in your Processor Architecture Manual for more information.

See also
B SYStem.CONFIG.STM B SYStem.state

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 275

SYStem.CONFIG.CORE Assign core to TRACE32 instance

[Examples]

Format 1: SYStem.CONFIG.CORE <core | thread> <chip>
SYStem.MultiCore.CORE (deprecated)

Format 2: SYStem.CONFIG.CORE <string> | <value>

Virtual targets only

If the target provides a joint debug interface for several cores/chips it is necessary to inform the TRACE32
instance which core/chip it controls for debugging. This means, SYStem.CONFIG.CORE tells TRACE32 to
which specified <core> and <chip> it has to connect when the SYStem.Up command is executed.

Most architectures have 1 <chip> with several <cores>. Architectures with 2 or more <chips> are relatively

rare.
Next:

. Description of Format 1 for Physical Targets including example.
J Description of Format 2 for Virtual Targets including examples.

Format 1 for Physical Targets

<core> Specify the core within the chip that is controlled by the TRACE32
instance.

The command SYStem.CONFIG.CORE <core> is mainly used, if the
cores within a chip are not daisy-chained, or daisy-chained and
interrelated. The <core> index is also used by the command
CORE.NUMber as start value to set up an SMP system.

See also Example for <core> and <chip>.

<chip> Specify which cores belong to the same chip if several chips are daisy-
chained.

This allows the debugger to coordinate chip-wide resources e.g. chip
reset, cross trigger matrix, shared trace port etc. Key for this coordination
is that TRACE32 is aware of the chip.

©1989-2024 Lauterbach General Commands Reference Guide S | 276

Format 2 for Virtual Targets

<string> Unique string identifying the core to which TRACES32 connects in a virtual

target.

The syntax rules for <string> differ for the MCD and the CADI interface:
. See MCD interface
. See CADI interface

See also example for <string> in an SMP system. This simple example
applies to the MCD and the CADI interface.

<value> Core number identifying the core to which TRACE32 connects in a virtual

target.

The same <value> is displayed in the core # column of the
SYStem.CONFIG.ListCORE window.

The example for <value> applies to the MCD and the CADI interface.

MCD Interface - Syntax Rules for <string> - Format 2 of SYStem.CONFIG.CORE

To specify unique strings identifying cores, observe the following rules for <string> and take the screenshot
below into account for a better understanding of these rules:

The <string> is case-sensitive.

The <string> starts at the first column to the left of the core # column:

&2 B::SYStem. CONFIG.ListCORE = e

system system_instance device core core #
G:htm', (VPA_HENPC1_00001dc4:0 |HARDWARE.ARMO |HARDWARE.ARMO. cpul 1 -
G:hFm', [VPA_HENPC1_00001dc4:0 |HARDWARE.ARMO |HARDWARE.ARMO. cpul

T~

G:fm', [VPA_HENPC1_00001dc4:0 |HARDWARE.ARMO |HARDWARE.ARMO.cpu2
G:hfm', [VPA_HENPC1_00001dc4:1 |HARDWARE.ARMO |HARDWARE.ARMO. cpu3 4

[leT{]e—T/]e— e

w

9 col.l col.2 col.3 col.4
SYStem.CONFIG.CORE "<core>|<device>|<system_instance>|<system>"

In the <string>, each column of the SYStem.CONFIG.ListCORE window is represented by a |
character (vertical line). To ignore one or more columns, type one | per column to be ignored:

SYStem.CONFIG.CORE "||4:1" ;ignore columns 1 and 2, and connect
;to the core having this unique
;sub-string ‘4:1’ in column 3

©1989-2024 Lauterbach General Commands Reference Guide S | 277

You can specify (a) an entire row or (b) the contents of one or more cells (cell = intersection of
column and row) or (c) just a sub-string of a cell:

; (a) entire row - the ellipsis is used for space economy
SYStem.CONFIG.CORE "HARDWARE.ARMO.cpu3 |HARDWARE.ARMO|...|...

; (b) content of one cell
SYStem.CONFIG.CORE "HARDWARE.ARMO.cpu3"

; (¢) sub-string from cell
SYStem.CONFIG.CORE "cpu3"

J Wildcards like * and ? are not supported.

. For SMP systems: To connect to two or more cores, separate their unique strings or sub-strings
with a comma:

;connect to cpul and cpu?2
SYStem.CONFIG.CORE "cpul,cpu2"

;let’s take the sub-strings ‘'4:0’ and 4:1’ from column 3 into

;account
SYStem.CONFIG.CORE "cpuO||4:0,cpu3||4:1"

©1989-2024 Lauterbach General Commands Reference Guide S | 278

CADI Interface - Syntax Rules for <string> - Format 2 of SYStem.CONFIG.CORE

To specify unique strings identifying cores, observe the following rules for <string> and take the screenshot
below into account for a better understanding of these rules:

. The <string> is case-sensitive.
J The <string> always contains the instance or a part of it, and may contain the Simulation ID:
[B pVStem COMFIG.ListCORE — I = |[a23]
pr——
Simulation ID f;imulation core instance ore # |
7000 system Generator :FVP_VE_Cortex_AlSx4 |[FVP_VE_Cortex_Al5Sx: 1 ~
7000 system Generator :FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpuld 2
7000 system Generator :FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpul 3
7000 system Generator :FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpuz 4
7000 system Generator :FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpu3 5
7000 system Generator :FVP_VE_Cortex_Al5x4 |PVCache cluster.12_cache [
7000 system Generator :FVP_VE_Cortex_Al5x4 |PVCache cluster. cpul. 11dcache 7
7000 system Generator :FVP_VE_Cortex_Al5x4 |PVCache cluster. cpul. 11icache B
7000 system Generator :FVP_VE_Cortex_Al5x4 |PVCache cluster. cpul. 11dcache 9 |-
I3

;connect to a core by just specifying the instance
SYStem.CONFIG.CORE "cluster.cpul"

;connect to a core by specifying the Simulation ID and the instance
SYStem.CONFIG.CORE "7000|cluster.cpu0"

o Information from columns other than Simulation ID and instance cannot be used to define a
connection to a core.

J Wildcards like * and ? are not supported.
. For SMP systems: To connect to two or more cores, separate their unique strings or sub-strings

with a comma:

;connect to cpul and cpu3, see instance column
SYStem.CONFIG.CORE "cpuO,cpu3"

;let’s take the Simulation ID into account
SYStem.CONFIG.CORE "7000|cpu0,7000|cpu3"

©1989-2024 Lauterbach General Commands Reference Guide S | 279

Example for <core> and <chip> - Format 1 of SYStem.CONFIG.CORE

Example for the MPC5517 (one chip with 2 cores)

TRACES32 Instance for e200z1 Core

TRACES32 Instance for 200z0 Core

HOST |_J USB Interface

CORE 1.

e200z1 Core

CORE 2.

€200z0 Core

MPC5517

Joint JTAG Interface

Start-up commands for the e200z1 core:

SYStem.RESet

SYStem.CPU MPC5517

; <core>
SYStem.CONFIG.CORE 1.

SYStem.Up

Start-up commands for the €200z0 core:

SYStem.RESet

SYStem.CPU MPC5517

i <core>
SYStem.CONFIG.CORE 2.

SYStem.Mode.Attach

<chip>
1.

<chip>
1.

TARGET

; reset all SYStem settings

select MPC5517 as target
processor

; assign the TRACE32 instance to
; core 1 (e200zl1l), chip 1

; establish the communication
; between the debugger and the
; €200zl core

; reset all SYStem settings

; select MPC5517 as target
; processor

; assign the TRACE32 instance to
; core 2 (e200z0), chip 1

; establish the communication
; between the debugger and the
; €200zl core

©1989-2024 Lauterbach

General Commands Reference Guide S | 280

Example for <string> - Format 2 of SYStem.CONFIG.CORE

This simple example applies to the MCD and the CADI interface in an SMP system. Steps that are
specific to SMP systems are flagged with ‘(SMP system)’ in the comments:

SYStem.DOWN

SYStem.CONFIG.ListCORE ;list the cores of a virtual target in
;the SYStem.CONFIG.ListCORE window.

SYStem.CPU CortexA9MPCore ;select a multicore CPU (SMP system)
SYStem.CONFIG.CoreNumber 2 ;set up the number of cores you want
CORE .NUMber 2 ; TRACE32 to connect to (SMP system)

SYStem.CONFIG.CORE "cpul,cpu2" ;connect to cpul and cpu2 (SMP system)

;NOTE: In the ‘Cores’ pull-down list,
;cpul becomes core 0 and

;cpu?2 becomes core 1.

;The ‘Cores’ pull-down list is accessible
;via the TRACE32 state line.

SYStem.Up

Example for <value> - Format 2 of SYStem.CONFIG.CORE

This example applies to the MCD and CADI Interface.

SYStem.DOWN

SYStem.CONFIG.ListCORE ;list the cores of a virtual target in the
; SYStem.CONFIG.ListCORE window

;the core <values> are displayed in the
; 'core #' column. TRACE32 connects to the core
;having the specified <value>

; <value>
SYStem.CONFIG.CORE 2.
SYStem.Up

See also

B SYStem.CONFIG.ListCORE M CORE.ASSIGN

©1989-2024 Lauterbach General Commands Reference Guide S | 281

SYStem.CONFIG.CoreNumber Set up number of hardware threads

Format: SYStem.CONFIG.CoreNumber <number>

Sets up the number of hardware threads that are available inside the chip. The access to the particular
hardware threads can be configured by architecture specific SYStem.CONFIG commands described in
your Processor Architecture Manual. The defined hardware threads can be used by the CORE
commands to set up an SMP system.

An error message is displayed below the command line if the command is used for single-core CPUs.

See also
1 CONFIGNUMBER()

©1989-2024 Lauterbach General Commands Reference Guide S | 282

SYStem.CONFIG.DEBUGPORT

Specify debugport

Format:

<dp_fi>:

<dp_emu>:

<ap_hw>:

SYStem.CONFIG.DEBUGPORT <ap_fi> I<dp_emu> I<dp_hw>

Unknown
CSWPO
IntelUSBO
SNEAKPEEKO
XCPO

GTLO | GTL1 | GTL2 | GTL3 | GTL4
InfineonDASO

VerilogTransactor0

Unknown

DebugCable0
DebugCableA | DebugCableB

Debugging via a functional interface of the host computer (<dp_fi> parameters)

Interface Protocol
Unknown (default)
CSWPO USB Arm CoreSight Wire Protocol
IntelUSBO USB Intel DCI Protocol
SNEAKPEEKO TCP/IP MIPI SneakPeek Protocol
XCPO TCP/IP ASAM MCD-1 XCP Protocol

Debugging via a functional interface is only supported for certain architectures. Please refer to the
Lauterbach home page for details.

Please refer to “TRACE32 Debug Back-Ends” (backend_overview.pdf) for setup details.

©1989-2024 Lauterbach

General Commands Reference Guide S

283

Debugging a RTL simulation or emulation (<dp_emu> parameters)

Communication via
Unknown (default)
GTL<n> Generic Transactor Library designed by Lauterbach, e.g. GTLO
InfineonDASO Infineon DAS Server
VerilogTransactor0 Verilog Transactors
for testing the low-level communication, not suitable for debugging

Debugging a RTL simulation or emulation is only supported for certain architectures. Please refer to the
Lauterbach homepage for details.

Please refer to “TRACE32 Debug Back-Ends” (backend_overview.pdf) for setup details.

Debugging via TRACE32 hardware (<dp_hw> parameter)

The command SYStem.CONFIG.DEBUGPORT <dp_hw> is only needed for a PowerDebug plus
CombiProbe configuration and that only if two Whisker cables are connected to the CombiProbe.

If two whiskers are connected to the CombiProbe, the following must essentially be observed:

You need to ensure that each whisker has a master PowerView instance. In single debug port scenarios, the
first PowerView instance started is automatically a master. In a dual debug port scenario, you must specify
the master PowerView instance yourself for the second whisker using the SYStem.CONFIG.Slave OFF
command. Details about the command can be found in your Processor Architecture Manual manual.

Please be aware that SYStem.RESet also resets the SYStem.CONFIG.DEBUGPORT and
SYStem.CONFIG.Slave settings. So if you want to use one of the Lauterbach demo scripts for the second
whisker, you probably have to adapt the script.

©1989-2024 Lauterbach General Commands Reference Guide S | 284

There are two dual-whisker setups:

1. CombiProbe with two connected MIP20T-HS whiskers for debugging via two connectors.

PC or
Workstation

Target with Two SoCs

E— CombiProbe
L PODBUS SYNC J PPOWER DEBUG E40

LAUTERBACH.

B A

UsB Ome e
Cable [

MIPI 20T / MIPI 10
Connector 1
for SoC 1

POWER DEBUG E40

[— «

MIPI 20T / MIPI 10
Connector 2
for SoC 2

- Wall Mount
Power Supply

If SoC 1 is debugged via the first debug connector (cable A whisker),

SYStem.CONFIG.DEBUGPORT DebugCableA

must be set in each TRACE32 instance that controls cores of this SoC.

Analogously, if SoC 2 is debugged via the second debug connector (cable B whisker)

SYStem.CONFIG.DEBUGPORT DebugCableB

must be set in each TRACE32 instance that controls cores of this SoC.

Debugging via two debug connectors is also possible using two MIP134 whiskers and a
CombiProbe 2. However if you are still using a CombiProbe, it is recommended to contact
Lauterbach support in advance.

2. CombiProbe with two connected AUTO26 whiskers for dsPIC33 dual core debugging.
A dual core dsPIC33 needs a CombiProbe with two AUTO26 whiskers for debugging, because each

core has its own debug connector. In the required AMP setup, the following setting must be made in
the TRACES32 instance controlling the first core (cable A whisker):

SYStem.CONFIG.DEBUGPORT DebugCableA

©1989-2024 Lauterbach General Commands Reference Guide S | 285

Analogously, the following must be set in the TRACE32 instance controlling the second core (cable B
whisker):

SYStem.CONFIG.DEBUGPORT DebugCableB

There exist ready-to-run dual-whisker scripts from Lauterbach for this core architecture.

SYStem.CONFIG.DEBUGTIMESCALE Extend debug driver timeouts

Format: SYStem.CONFIG.DEBUGTIMESCALE <multiplier>

Extends any timing behavior of the debug driver by the passed <muiltipliers.

The timing behavior should be adapted in case the debugger is connected to an emulator that runs with a
much smaller clock compared to a silicon target. The original timeout settings may cause timeouts or bus
errors in this scenario.

<muiltiplier> The <multiplier> can take only values out of the power-of-two series e.g. 1, 2,
4,8, 16 etc.

A high <multiplier> can cause the software to hang for an extended period of
time in case the debug driver waits for a certain condition.

©1989-2024 Lauterbach General Commands Reference Guide S | 286

SYStem.CONFIG.ELA Configure Embedded Logic Analyzer (ELA)

ARM
Format: SYStem.CONFIG.ELA <sub_cmd>
<sub_cmd>: Base <address> | RESET
Configures the ELA CoreSight module, which provides visibility to on-chip signals. After configuration, the
ELA command group is available.
Base <address> Informs the debugger about the start address of the register block of the
component. And this way it notifies the existence of the component.
RESET Undoes the configuration for this component. This does not cause a
physical reset for the component on the chip.
See also
B ELA
SYStem.CONFIG.ListCORE Display the cores of a virtual target

Virtual targets only

Format:

SYStem.CONFIG.ListCORE

Retrieves the list of cores from a virtual target and displays the result as a snapshot in the
SYStem.CONFIG.ListCORE window. To re-read the list from the virtual target, re-open the window.

©1989-2024 Lauterbach

General Commands Reference Guide S | 287

The following screenshot shows an example of a core list provided by a virtual target that is connected to
TRACE32 via the CADI interface:

&3 Bi:SYStem, CONFIG.ListCORE == |-]
Simulation ID [simulation core instance core #
7000 System Generator :FVP_VE_Cortex_AlSx4 |FVP_VE_Cortex_AlSx4 ~

1
7000 System Generator:FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpuld 2
7000 System Generator:FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpul 3
7000 System Generator:FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpuz 4
7000 System Generator:FVP_VE_Cortex_Al5x4 |ARM_Cortex-AlS cluster. cpu3 5
7000 System Generator:FVP_VE_Cortex_Al5x4 |PVCache cluster.12_cache [
7000 System Generator:FVP_VE_Cortex_Al5x4 |PVCache cluster. cpul. 11dcache 7
7000 System Generator:FVP_VE_Cortex_Al5x4 |PVCache cluster. cpul. 11icache B
7000 System Generator:FVP_VE_Cortex_Al5x4 |PVCache cluster. cpul. 11dcache 9 |-

The following screenshot shows an example of a core list provided by a virtual target that is connected to
TRACES2 via the MCD interface:

[2 Bu:SYStem. CONFIG.ListCORE =R |
system_instance device E
G I c4: 0 HARDWARE . ARMO . cpul -

HARDWARE . ARMO ! . .cpul

HARDWARE . ARMO ! . .cpuz
G: \‘Fm\ VPA_HENPC1_00001dc4:0 |HARDWARE.ARMO |HARDWARE.ARMO. cpu3

A Column headers in the SYStem.CONFIG.ListCORE window correspond to the column headers of the
used interface.

B The core # column displays the sequence of cores provided by the interface.

See also
B SYStem.CONFIG.ListSIMulation B SYStem.CONFIG.CORE
1 SYStem.CONFIG.ListCORE() 1 SYStem.CONFIG.ListSIM()

A ’'Connecting to Virtual Targets’ in 'Virtual Targets User's Guide’

SYStem.CONFIG.ListSIMulation Display the simulations of a virtual target

Virtual targets only: CADI

Format: SYStem.CONFIG.ListSIMulation

Retrieves the list of simulations from a virtual target and displays the result as a snapshot in the
SYStem.CONFIG.ListSIMulation window. To re-read the list from the virtual target, re-open the window.

[&2 B::SYStem.CONFIG ListSIMulation El-@
sim # [Simulation ID name CADISimulation2 [description
1 7000 System Generator :FVP_VE_Cortex_AlSx4 |yes vO pid = 5056, pwd =
2 7001 System Generator :FVP_VE_Cortex_Al5x4 |yes vO pid = 5920, pwd =
4 10 2

A The sim # column displays the sequence of simulations provided by the interface.

See also

B SYStem.CONFIG.ListCORE 0 SYStem.CONFIG.ListCORE()
0 SYStem.CONFIG.ListSIM()

©1989-2024 Lauterbach General Commands Reference Guide S | 288

A ’'Connecting to Virtual Targets’ in 'Virtual Targets User's Guide’

SYStem.CONFIG.MULTITAP Select type of JTAG multi-TAP network
Format: SYStem.CONFIG.MULTITAP <sub_cmd>
<sub_cmd>: NONE
PrimaryTAP <irlength> <irvalue> <drlength> <drenable> <drdisable>

Some SoCs with a JTAG interface need special JTAG sequences before the core can be accessed.
E.g. The JTAG-TAP of the core has to be dynamically added to the JTAG daisy chain of the SoC.

NONE Disables any special multi-TAP handling (default).

PrimaryTAP Before accessing the core via JTAG, the debugger writes <irvalue> to the
JTAG IR shift-register and then <drenable> to the JTAG DR shift-register.

After accessing the core via JTAG, the debugger writes <irvalue> to the
JTAG IR shift-register and then <drdisable> to the JTAG DR shift-register.

See also
B SYStem.CONFIG.MULTITAP.JtagSEQuence

©1989-2024 Lauterbach General Commands Reference Guide S | 289

SYStem.CONFIG.MULTITAP.JtagSEQuence JTAG seq. on SYStem.Up

[Example]

Format:

<sub_cmd>:

SYStem.CONFIG.MULTITAP.JtagSEQuence.<sub_cmd>

Attach <seq_name> | default
SELect <seq_name> | none
DeSELect <seq_name> | none

Some SoCs with a JTAG interface need special JTAG sequences before the core can be accessed. For
example, the JTAG-TAP of some ARC cores has to be dynamically added to the JTAG daisy chain of an

SoC.

With this command you can select complex JTAG sequences which should be executed by the debugger
whenever it switches between the debugged cores.

For some CPUs (selected with SYStem.CPU), TRACES32 already provides pre-defined JTAG sequences.
For others, you can create JTAG sequences for your individual needs with JTAG.SEQuence.Create.

The debugger assumes that every JTAG sequence starts and ends in the state of the JTAG state machine
which was set with SYStem.CONFIG.TAPState.

<seq_name> Name of a JTAG sequence created with JTAG.SEQuence.

Attach Choose a JTAG sequence which is executed during the attach to the core
via SYStem.Up or SYStem.Attach.
If SYStem.CONFIG SLAVE is set to OFF, the selected JTAG sequence
should reset the JTAG TAP (e.g. by going to the tests-logic-reset state).

SELect Specifies the JTAG sequence to be executed for core A when the debugger
switches from any other core to core A (in a multicore setup).
<other> core ==switch==> core A

DeSELect Specifies the JTAG sequence to be executed for core A when the debugger
switches from core A to any other core (in a multicore setup).
core A ==switch==> <other> core

default By choosing Attach default, the debugger will perform a default action,
which is: Resetting the core by going to the tests-logic-reset state (if
SYStem.CONFIG SLAVE is set to OFF) and then starting the JTAG
sequence, which has been assigned to SELect.

none No JTAG sequence will be executed.

on Enable the multitap JTAG sequences.

©1989-2024 Lauterbach

General Commands Reference Guide S | 290

Example: This script snippet illustrates the use of JTAG sequences in PRACTICE scripts (*.cmm), i.e.
where and when you should define and enable a JTAG sequence, and when it is executed
automatically.

SYStem.CPU <cpu_type>

;define a JTAG sequence
JTAG.SEQuence.Create myAttach
JTAG. SEQuence.Add myAttach <your_code>

;enable the multitap JTAG sequences
SYStem.CONFIG.MULTITAP.JtagSEQuence.on
SYStem.CONFIG.MULTITAP.JtagSEQuence.Attach myAttach

;the JTAG sequence ‘myAttach’ is executed automatically on SYStem.Up
SYStem.Up

See also
B SYStem.CONFIG.MULTITAP B JTAG.SEQuence

©1989-2024 Lauterbach General Commands Reference Guide S | 291

SYStem.CONFIG.state

Display target configuration

Format:

SYStem.CONFIG.state [/<tab>]
SYStem.MultiCore.view (deprecated)

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab>

Opens the SYStem.CONFIG.state window on the specified tab:
. DebugPort

. Jtag

d etc.

The number of tabs and commands on the tabs are CPU specific.

For architecture-specific information about the tabs, refer to the Processor
Architecture Manuals [4] listed in the See also block below.

Example:

SYStem.CONFIG.state /Jtag ;open the window on the Jtag tab

©1989-2024 Lauterbach

General Commands Reference Guide S |

292

SYStem.CONFIG.TRACEPORT Declare trace source and trace port type

Format: SYStem.CONFIG.TRACEPORT<index> <sub_cmd>

<index>: 1121...

<sub_cmd>: TraceSource <source> | Name <name> | Type <type> | RESET
<index> Index number of the trace port.

TraceSource Declares the trace <source>, e.g. TPIU, ETR, ETM.
<source> These trace <sources> are only available if:

. You have already added them as components in the
SYStem.CONFIG.state /COmponents window.
. You have programmed them with the appropriate commands, see

example below.
For more information, refer to the SYStem.CONFIG description in your
Processor Architecture Manuals.

Name <name>

Assigns a user-defined <name> to a trace port. Unique names are useful
for AMP debugging because they allow you to differentiate trace ports
with identical types across multiple TRACE32 instances.

Type <type>

Declares the trace port type, e.g. AURORA or PCIE.

RESET

Removes the trace port declaration.

Example:

; declare system trace components

SYStem.CONFIG

SYStem.CONFIG.
SYStem.CONFIG.
SYStem.CONFIG.
SYStem.CONFIG.
SYStem.CONFIG.
SYStem.CONFIG.
SYStem.CONFIG.
SYStem.CONFIG.
SYStem.CONFIG.

See also

DTMCONFIG ON

ETM.BASE APB:0x8000E000
FUNNEL1 .BASE APB:0x80004000
FUNNEL1 .ATBSOURCE ETM 0 DTM 2
ETF1.BASE APB:0x8000C000
ETF1.ATBSOURCE FUNNEL1
TPIU.BASE APB:0x80003000
TPIU.ATBSource ETF1
TRACEPORT1 . Type . AURORA
TRACEPORT1 . TraceSource TPIU

B TRACEPORT

©1989-2024 Lauterbach

General Commands Reference Guide S | 293

SYStem.CONFIG.TRANSACTORPIPENAME Set up pipe name

Format: SYStem.CONFIG.TRANSACTORPIPENAME <file>

Defines the pipe name used to communicate with the Verilog Transactor in the RTL Simulation.
Example: Enter the transactor pipe name in TRACE32 PowerView.

SYStem.CONFIG.DEBUGPORT VerilogTransactor(
SYStem.CONFIG.TRANSACTORPIPENAME "/tmp/t32verilog_actuator_user"

Linux: Define environment variable in the context of the RTL simulation and Verilog Transactor in the shell.

> export T32VERILOGTRANSACTORPIPE=/tmp/t32verilog_actuator_user

SYStem.CONFIG.USB USB configuration

Intel® x86

Using the SYStem.CONFIG.USB command group, you can configure a TRACES32 system for debugging
via the USB protocol.

For more information, see “Debugging via USB User’s Guide” (usbdebug_user.pdf).

SYStem.CONFIG.XCP XCP specific settings

The SYStem.CONFIG.XCP command group allows to set up and configure debugging over XCP.

VRHD=E Wil XCP over TCP

= (Network Cable)

o
O
=

Host Computer 3rd-Party System

The command group is available after XCPO has been selected as debug port.
;optional step: open the SYStem.CONFIG.state dialog showing the DebugPort

; tab
SYStem.CONFIG.state /DebugPort

;selecting the XCP back-end activates the SYStem.CONFIG XCP commands
SYStem.CONFIG.DEBUGPORT XCPO

©1989-2024 Lauterbach General Commands Reference Guide S | 294

For more information, see “XCP Debug Back-End” (backend_xcp.pdf).

See also
B SYStem.CONFIG

©1989-2024 Lauterbach General Commands Reference Guide S | 295

SYStem.CPU Select CPU

Format: SYStem.CPU <cpu>

Tells TRACES32 the exact CPU type used on your target. This is required to get the matching PER file and
other CPU specific settings (e.g. predefined settings for on-chip FLASH). Asterisks (*) can be used as
wildcard characters to list all CPUs of an architecture or just the ones matching the filter criterion.

Examples:

SYStem.CPU ARM940T ;select the CPU type ARM940T
8000 your code
SYStem.Up ;start the debugger

NOTE: SYStem.CPU used together with an asterisk in a PRACTICE script (*.cmm)
causes the script to stop, and the SYStem.CPU window is displayed until you
have made a selection.

SYStem.CPU * ;1list the CPUs of an architecture

SYStem.CPU *ultra* ;list the CPUs of an architecture matching the
;filter criterion

B B:5VStem.CPU * =N =R B BusYStem CPU Ul [o | 2 |25
* *ULTRA™
RM7TDMI ~ IMX6ULTRALITE
RM7TDMIS YNQ-ULTRASCALE+-RPU
RM710T o
RM720T 4 [
RM720TR4
RM740TD
RMSTDMI
RM915T 57
4 }
See also
B SYStem.state B PER.view 1 CPUFAMILY() 1 SYStem.CPU()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 296

SYStem.CpuAccess Run-time memory access (intrusive)

Format: SYStem.CpuAccess <sub_cmd> (deprecated)

<sub_cmd>: Enable (deprecated)
Use SYStem.MemAccess StopAndGo instead.

Denied (deprecated)
There is no need to use a successor command (default setting).

Nonstop (deprecated)
Use SYStem.CpuBreak Denied instead.

Default: Denied.

Configures how memory access is handled during run-time.

Enable Allow intrusive run-time memory access.

Denied Lock intrusive run-time memory access.

Nonstop Lock all features of the debugger that affect the run-time behavior.
See also

B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 297

SYStem.CpuBreak Master control to deny stopping the target (long stop)

Format: SYStem.CpuBreak [<mode>]

<mode>: Enable | Denied

Default: Enable.

Enable Allows stopping the target.

Denied Denies stopping the target. This includes manual stops and stop
breakpoints. However, short stops, such as spot breakpoints, may still be
allowed.

SYStem.CpuBreak Denied can be used to protect a target system which
does not tolerate that the program execution is stopped for an extended
period of time; for example, a motor controller which could damage the
motor if the motor control software is stopped.

For more information, see SYStem.CpuSpot, SYStem.MemAccess.

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 298

SYStem.CpuSpot Master control to deny spotting the target (short stop)

Format: SYStem.CpuSpot [<mode>]

<mode>: Enable | Denied | Target | SINGLE

Default: Enable.

Spotting is an intrusive way to transfer data periodically or on certain events from the target system to the
debugger. As a result, the program is not running in real-time anymore. For more information, see
SYStem.CpuBreak and SYStem.MemAccess.

Enable Allows spotting the target.

Denied Denies spotting the target.
Stopping the target may still be allowed.

Target Allows spotting the target controlled by the target.
This allows target-stopped FDX and TERM communication.
All other spots are denied.

SINGLE Allows single spots triggered by a command.

This includes spotting for changing the breakpoint configuration and the
SNOOPer.PC command.

This setting also allows target-stopped FDX and TERM communication.
All other spots are denied.

See also
B SYStem.state

SYStem.DCI DCI configuration

Intel® x86

The Intel® Direct Connect Interface (DCI) allows debugging and tracing of Intel® targets using the USB3 port
of the target system.

The SYStem.DCI command group allows to configure target properties as well as TRACE32 hardware
dedicated for the use with DCI.

For more information, see “Debugging via Intel® DCI User’s Guide” (dci_intel_user.pdf).

See also
B SYStem

©1989-2024 Lauterbach General Commands Reference Guide S | 299

SYStem.DETECT

Detect target system resources

[System Detection Wizard]

Format:

<type>:

SYStem.DETECT <type>

state

BASECPU

CPU
DaisyChain
CoreSightTrace
DAP

IDCode
JtagClock
PortSHaRing

state

BASECPU

CPU

DaisyChain

CoreSightTrace

DAP

SHOWChain

Opens the System Detection Wizard which allows a step-by-step
investigation of the entire JTAG chain. It displays all found devices and
suggests a CPU and the corresponding multi-core settings for each
found device. The user can choose the desired core, any valid multi-core
configuration will be applied.

Detects and selects the appropriate CPU and multi-core configuration for
the first device in the JTAG chain. CPU detection is only based on the
JTAG ID code, no further ID registers are read from the device.

Detects and selects the appropriate CPU and multi-core configuration for
the first device in the JTAG chain. The command will investigate the
entire device for an exact detection.

If supported for your architecture, you can use SYStem.CPU AUTO
instead.

Scans your JTAG chain and prints details to the AREA window.
See example.

Tries to detect the ARM CoreSight Trace topology and prints details to
the AREA window.

Identifies the types of access ports of the DAP.

In addition, the SYStem.DETECT.DAP command inspects the ROM
tables, if available, to discover any CoreSight components and their
access addresses.

The result is displayed in the form of a list in the SYStem.DETECT.DAP
window.

Scans the JTAG chain and show details in a separate window.

In this window (SYStem.DETECT SHOWChain) you can double-click on
a CPU core to set the values IRPOST, IRPRE, DRPOST and DRPRE in
window SYSTEM.CONFIG state /Jtag accordingly.

©1989-2024 Lauterbach

General Commands Reference Guide S | 300

IDCode

JtagClock

PortSHaRing

Detects the ID codes of all JTAG-TAP controllers in the JTAG chain and
stores them internally, i.e. the result is not printed to the AREA window. In
order to access the result use the following functions:

. IDCODENUMBER() returns the number of detected TAP
controllers.

. IDCODE() returns the IDCODE of the n-th TAP controller

Example: PRINT IDCODE (0) prints 0x100034B1, if the first core in the
JTAG chain is an ARC700.

Determines the maximum JTAG Frequency by polling the BYPASS register.
This only reflects the quality of the electrical connection and the speed the
BYPASS register path. The function EVAL() retrieves the result of the
command in Hertz. This command may heavily confuse all devices attached
to the JTAG chain.

Determines if the debug port is shared with a 3rd-party tool. In a PRACTICE
script, the result can be obtained by the PORTSHARING() function.

NOTE: The availability of the SYStem.DETECT types are dependent on the archi-
tecture and the debug port protocol, so they may not be available for all
architectures and configurations.

NOTE: SYStem.DETECT may apply a Power-on Reset to your system and always

switches the debug system to Down-State (see SYStem.Mode Down).

©1989-2024 Lauterbach

General Commands Reference Guide S | 301

The System Detection Wizard

The System Detection Wizard is still under construction. It currently supports only the following
architectures: ARM/Cortex, MIPS, TriCore.

Example for the ARM architecture:

SYStem.DETECT state ; open a System Detection Wizard

&5 Bi:SYStem DETECT (===

A System detection

The system detection will reset the complete system and most settings!
Please check the below debugport settings and adjust them if necessary

DEBUGPORT o CONNECTOR
[D RSP I || TriState
ebu aplel _
. [[slave
DEBUGPORTTYPE _ SWDPTARGETSEL
[C] swor
[7AG -
STM

[C] pTMCoNFIG
[nonE -

Before TRACES32 can check your target configuration it needs to know how the TRACE32 debugger is
connected to the target (here for example via JTAG).

Click Continue to confirm that the connection details are valid.

©1989-2024 Lauterbach General Commands Reference Guide S | 302

TRACES32 runs the system detection and display the results.

& Bu:SYStem DETECT ===
& Detected ITAG information

JTAG clock frequency: 20.41MHz
Scanchain lenath: 8.

Devices in chain: 2.

Device 0

Manufacturer: SGS/Thomson IDCODE: 0x07926041

Coref/Chip: ARM926E]-S IR-width: 4. IRPRE: 4. IRPOST: 0. DRPRE: 1. DRPOST: 0. Set ARMS26E]

Device 1

Manufacturer: SGS/Thomson IDCODE: 0x07926041

CorefChip: ARM926E]-S IR-width: 4. IRPRE: 0. IRPOST: 4. DRPRE: 0. DRPOST: 1. Set ARM926E]
Save configuration Close

If several cores are detected, you can choose which core should be controlled by the current TRACE32
instance by pushing the Set <core> button. Here for example “Device 1: Set ARM9EJ".

2 B::5VStem. DETECT felle =

& Detected ITAG information

JTAG clock frequency: 20.41MHz
Scanchain lenath: 8.

Devices in chain: 2.

Device 0

Manufacturer: SGS/Thomson IDCODE: 0x07926041

Coref/Chip: ARM926E]-S IR-width: 4. IRPRE: 4. IRPOST: 0. DRPRE: 1. DRPOST: 0. Set ARMS26E]

Device 1

Manufacturer: SGS/Thomson IDCODE: 0x07926041

Core/Chip: ARM926E]-S IR-width: 4. IRPRE: 0. IRPOST: 4. DRPRE: 0. DRPOST: 1. Set ARM926E]
Save configuration | for Device 1

The Save Configuration button allows you to store the chosen settings to a file.

©1989-2024 Lauterbach General Commands Reference Guide S | 303

Daisy-Chain Detection via the TRACE32 AREA Window

AREA.view ; open a TRACE32 AREA window
SYStem.DETECT.DaisyChain ; run TRACE32 daisy-chain detection
= | B:AREAview = =]
Sum of length of all IR registers : 8 :

Number of 1TAG devices (BYPASS reg1sters)

IDCODE of device 0 1is : 0x07926041 (SGS;Thomson, ARM926E]-5)

SYS.CONFIG.DRPOST 0. SYS.CONFIG.DRPRE 1. SYS.CONFIG.IRPOST 0. SYS.CONFIG.IRPRE 4. (IRWIDTH 4.) _
IDCODE of device 1 is : 0x07926041 (5GS/Thomson, ARM926E]-S) |
SYS.CONFIG. DRPOST 1. SYS. CONFIG DRPRE 0. SYS.CONFIG.IRPOST 4. SYS.CONFIG.IRPRE 0. o hd
4 | i b

The result of the daisy-chain detection is displayed in the AREA window. TRACES32 also displays the
commands that are required for a correct daisy-chain setup (see blue bar). Just copy these commands to
your script, separate them by space and you are done.

Please be aware that TRACES32 can only generate the commands for the daisy-chain setup if it knows the ID
codes for the cores on your target (see picture below).

resetting...

Detecting JTAG chain.

Sum of Tength of all R registers 30
Number of JTAG devices (BYPASS reg1ster5)
Device 0 has no ID code
SYS.CONFIG.DRPOST 0. SYS.CONFIG.DRPRE 4.
Device 1 has no ID code
SYS.CONFIG.DRPOST 1. SYS.CONFIG.DRPRE 3.
Device 2 has no ID code
SYS.CONFIG.DRPOST 2. SYS.CONMFIG.DRPRE 2.
Device 3 has no ID code
SYS.CONFIG.DRPOST 3. SYS.CONFIG.DRPRE 1.
Device 4 has no ID code

See also
B SYStem.state 1 IDCODE()
SYStem.DLLCommand Custom DLL connection to target

Debugger MIPS, V24 monitor with DLL

Format: SYStem.DLLCommand

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 304

SYStem.InfineonDAS Configure the InfineonDAS debug port

TriCore, GTM

The SYStem.InfineonDAS command group allows to configure the back-end for DAS. The command group
is available after InfineonDASO has been selected as debug port.
;optional step: open the SYStem.CONFIG.state dialog showing the DebugPort

;tab
SYStem.CONFIG.state /DebugPort

;selecting the DAS back-end activates the SYStem.InfineonDAS commands
SYStem.CONFIG.DEBUGPORT InfineonDASO

For more information, see “Debugging via Infineon DAS Server” (backend_das.pdf).

See also
B SYStem

©1989-2024 Lauterbach General Commands Reference Guide S | 305

SYStem.IRISconfig IRIS-specific setups

Virtual targets only: IRIS

The SYStem.IRISconfig command group is used to define IRIS-specific setups for debugging and tracing.

See also
B SYStem.CADIconfig B SYStem.state
SYStem.IRISconfig.RemoteServer Define connection to IRIS server

Virtual targets only: IRIS

Format: SYStem.IRISconfig.RemoteServer [<ip> <port>]

Defines connection parameters to IRIS server.

©1989-2024 Lauterbach General Commands Reference Guide S | 306

SYStem.JtagClock Define JTAG frequency

Format: SYStem.JtagClock <frequency>

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use

the default setting if possible.

See also
B SYStem.state 1 SYStem.JtagClock()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 307

SYStem.LOG Log read and write accesses to the target

[Example]

Using the SYStem.LOG command group, you can record the read and write accesses TRACE32 performs
to the target hardware. For example, the SYStem.LOG command group can be used to diagnose why
errors like “debug port fail”, “bus error”, etc. occurred. By default, logging stops after an error has occurred
(see SYStem.LOG.StopOnEtrror).

The read and write accesses can be displayed in the SYStem.LOG.List window. In addition, they can be
recorded in a system log file with an unlimited file size. The log entries are recorded in plain text format, and
the read and write accesses are converted to Data.Set commands. This way it is possible to re-run the
system log in a TRACE32 Instruction Set Simulator.

The system log records all TRACE32 debugger accesses to the target. Examples of accesses that cannot
be logged include:

i Accesses via JTAG API

. Accesses initiated by the TERM command

J Accesses initiated by the SNOOPer command

For configuring a system log, use the TRACE32 command line, a PRACTICE script (*.cmm), or the
SYStem.LOG.state window:

@ B::5YStem. LOG.state EI@
log Set OPEN
OFF Poling C:\T32\sys.log 3]
@ ON V| MemoryRead
V| Memory\Write Mode SIZE
commands RegisterRead Compact 64.
& Init RegisteriWrite Source

ComponentRead NoTime | StopOnError
ist ComponentWrite

i Chart VMaccess
B PROfileChart TRANSIation
| STATistic TRACE

RESet REMOTEAPI
CLOSE 05

¥|ERROR

©1989-2024 Lauterbach General Commands Reference Guide S | 308

Example:

SYStem.LOG.state ;optional: open the configuration window
SYStem.LOG.RESet ;use default configuration of system log
SYStem.LOG.OPEN ~~\sys.log ;open a system log file for writing
SYStem.LOG.List ;display the accesses to the target

;log the read and write accesses to the target
List.auto
Step.single

SYStem.LOG.CLOSE ;close the system log file for writing

See also

B SYStem.LOG.CLEAR B SYStem.LOG.CLOSE B SYStem.LOG.Init B SYStem.LOG.List

B SYStem.LOG.Mode B SYStem.LOG.OFF B SYStem.LOG.ON B SYStem.LOG.OPEN

B SYStem.LOG.RESet B SYStem.LOG.Set B SYStem.LOG.SIZE B SYStem.LOG.state

B SYStem.LOG.StopOnError B SYStem.state B SlLTrace B LOG

SYStem.LOG.CLEAR Clear the ‘SYStem.LOG.List’ window

Format: SYStem.LOG.CLEAR

Clears and immediately re-populates the list in the SYStem.LOG.List window with new system log entries -
same as if you are running the commands SYStem.LOG.Init and SYStem.LOG.ON in rapid succession.

SYStem.LOG.CLEAR is the command behind the Clear button in the SYStem.LOG.List window.

See also
B SYStem.LOG B SYStem.LOG.Init B SYStem.LOG.state

©1989-2024 Lauterbach General Commands Reference Guide S | 309

SYStem.LOG.CLOSE Close the system log file

Format: SYStem.LOG.CLOSE

Closes the active system log file. Any further read and write accesses are not recorded in the system log file.
You can now open the file in an EDIT or TYPE window or in another application.

Example: Using the DO command, you can also re-run the system log in a TRACES32 Instruction Set
Simulator. You do not need to rename the file extension to ecmm, the extension for PRACTICE scripts; you
can keep the file extension log.

SYStem.LOG.CLOSE ;close the system log file for writing
PEDIT ~~\sys.log ;open log file as a PRACTICE script
See also
B SYStem.LOG B SYStem.LOG.OPEN B SYStem.LOG.state
SYStem.LOG.Init Clear the "SYStem.LOG.List" window
Format: SYStem.LOG.Init

Clears the system log entries displayed in the SYStem.LOG.List window. The SYStem.LOG.Init command
has no impact on the system log file.

Since the SYStem.LOG.List window itself continues to log the target, the list in the window may be
immediately re-populated after clearing.

To prevent the list in the SYStem.LOG.List window from being re-populated, run these commands:
SYStem.LOG.OFF

SYStem.LOG.Init

See also
B SYStem.LOG B SYStem.LOG.CLEAR B SYStem.LOG.state

©1989-2024 Lauterbach General Commands Reference Guide S | 310

SYStem.LOG.List Log the accesses made by TRACES32

Format: SYStem.LOG.List
Data.LOG (deprecated)

Displays all types of target accesses made by TRACE32.

£J] B:SVStem.LOG List =n| Wl <
[Zsetup... || @on |[Ooff | & dear |
o address width data time xtime |
READ AHD:00:ADB0B080--ADB0B08F 4. |FF 04 01 EO 00 00 0O 00 . 1.281ks
AD:00:EC0010000--EQOLO04F 4, |04 01 00 OO OO OO0 OO0 00 . 1.281ks 1.000us
ANSD:00:A1100000--A110000F 4, |00 0O 00 OO 00 00 OO0 00 . 1.281ks 1.000us
ANSD:00:A1102EF0--A1102EFF 4, |00 00 00 OO 00 00 OO0 00 . 1.281ks 1.000us
AHD:00:A0802540--A0802584F 4, |03 C4 30 AD 00 00 0O 00 . 1.281ks 1.000us
AHD:00:AD0B0CE00--ADB0CE1F 4. |FF 04 10 A1 00 00 0O 00 . 1.281ks 1.000us
AD:00:A1100000--A110000F 4, |00 0O 00 OO 00 00 OO0 00 . 1.281ks 1.000us
AD:00:A1102EFO--A1102EFF 4, |00 0O 0O OO0 OO0 00 OO0 00 . 1.281ks
RANSL |NSR:0205:7BFAGIE4--TEFAGIET 4. 1.281ks MMU translation fail

Description of Toolbar Buttons in the SYStem.LOG.List Window

Setup Opens the SYStem.LOG.state window.

On Starts/resumes logging - same as SYStem.LOG.ON.

Off Pauses logging - same as SYStem.LOG.OFF.

Clear Clears and immediately re-populates the list with new system log entries -
same as if you are running the commands SYStem.LOG.Init and
SYStem.LOG.ON in rapid succession.

Description of Columns in the SYStem.LOG.List Window

op Type of target access.
address Access class and address where TRACES32 has accessed the target.
width The bus width used by TRACES32.
Example: The value 4. indicates that TRACE32 performs 32-bit read or write
accesses.
data Data written or read. Only the first 8 bytes are displayed in the
SYStem.LOG.List window.
time Absolute timestamps in relation to ZERO.
xtime Execution time.
See also
B SYStem.LOG B SYStem.LOG .state

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 311

SYStem.LOG.Mode Set logging mode

Format: SYStem.LOG.Mode <logging_mode>
<logging_ Compact ON | OFF
mode>: Source ON | OFF

NoTime ON | OFF

Sets the degree of detail with which the read and write accesses are recorded in the system log file.

Compact . OFF: Access addresses and data are included in the system log
(default: OFF) file.

. ON: Access addresses are logged, but data is not logged.
Source . OFF: The source of accesses such as ETM, HTM, etc. is not
(default: OFF) logged.

. ON: Information about which component has accessed the target

is included in the system log file.

NoTime . OFF: Timing information is included in the system log file; see time
(default: OFF) and xtime columns of the SYStem.LOG.List window.
. ON: Timing information is not logged.

NoTime ON is useful, for example, if you want to compare two
versions of a system log file.

See also
B SYStem.LOG B SYStem.LOG.state

©1989-2024 Lauterbach General Commands Reference Guide S | 312

SYStem.LOG.OFF Pause logging

Format: SYStem.LOG.OFF

Temporarily deactivates logging, i.e. the read and write accesses are no longer logged. However, the system
log file remains operational. Logging can be resumed with SYStem.LOG.ON.

Example:
SYStem.LOG.OPEN ~~\sys.log ;open a system log file for writing
8 oo ;log read and write accesses
SYStem.LOG.OFF ; temporarily deactivate logging
- ;accesses are no longer logged
SYStem.LOG.ON ;resume logging
- ;accesses are logged again
SYStem.LOG.CLOSE ;close system log file and terminate logging

See also

B SYStem.LOG.ON B SYStem.LOG B SYStem.LOG.state

SYStem.LOG.ON Resume logging

Format: SYStem.LOG.ON

Logs all read and write accesses you have selected with SYStem.LOG.Set. The SYStem.LOG.ON
command can be used after the system log has been temporarily deactivated with the command
SYStem.LOG.OFF.

See also
B SYStem.LOG.OFF B SYStem.LOG B SYStem.LOG.state

©1989-2024 Lauterbach General Commands Reference Guide S | 313

SYStem.LOG.OPEN Open a system log file

Format: SYStem.LOG.OPEN <file>

Generates a new system log file for logging read and write accesses and opens it for writing. The number of
logged read and write accesses is unlimited. If a file with the same name already exists, it will be overwritten.

<file> The default extension for <file> is *.log.

Example:
SYStem.LOG.OPEN ~~\sys.log ;open a system log file
SYStem.LOG.CLOSE ;close file and terminate logging

The path prefix ~~ expands to the TRACE32 system directory, by default C:\t32.

See also
B SYStem.LOG B SYStem.LOG.CLOSE B SYStem.LOG.state
SYStem.LOG.RESet Reset configuration of system log to defaults
Format: SYStem.LOG.RESet

Resets all commands of the SYStem.LOG command group to their defaults. You can view the result in the
SYStem.LOG.state window.

See also
B SYStem.LOG B SYStem.LOG.state

©1989-2024 Lauterbach General Commands Reference Guide S | 314

SYStem.LOG.Set

Select the TRACES2 accesses to be logged

Format:

<setting>:

SYStem.LOG.Set <setting>

Polling ON | OFF
MemoryRead ON | OFF
MemoryWrite ON | OFF
RegisterRead ON | OFF
RegisterWrite ON | OFF
ComponentRead ON | OFF
ComponentWrite ON | OFF
VMaccess ON | OFF
TRANSIation ON | OFF
TRACE ON | OFF
REMOTEAPI ON | OFF

OS ON | OFF

ERROR ON | OFF

Allows you to select the TRACE32 accesses you want to record in SYStem.LOG.List.

<setting> OFF This <setting> is omitted from the system log file.

<setting> ON This <setting> is included in the system log file.

ComponentRead Read accesses to a debug component.

ComponentWrite Write accesses.

ERROR . ON: All errors are included in the system log file.
. OFF: Logs only errors of the read and write accesses that are set

to ON.

MemoryRead Memory read accesses.

MemoryWrite Memory write accesses.

oS Accesses to the operating system (OS).

Polling Polling of the CPU. The polling mode can be set with SYStem.POLLING.

RegisterRead Register read accesses.

RegisterWrite Register write accesses.

REMOTEAPI Accesses via the TRACE32 Remote API. See also “API for Remote
Control and JTAG Access in C” (api_remote_c.pdf).

TRACE Accesses to the trace data streaming.

©1989-2024 Lauterbach

General Commands Reference Guide S | 315

TRANSIation] ON: Display valid address translations and translation failures in
the system log file. Currently only the logical address is displayed.
. OFF: Include only translation failures in the system log file.
VMaccess If the option is enabled, any read or write access to addresses with the
access class VM: or AVM: will be recorded in the SYStem.LOG.List
window.
See also
B SYStem.LOG B SYStem.LOG.state

A ’Release Information’ in’Legacy Release History’

SYStem.LOG.SIZE Define number of lines in the ‘SYStem.LOG.List’ window

Format: SYStem.LOG.SIZE <lines>

Default: 64.

Defines the number of lines displayed in the SYStem.LOG.List window. The displayed lines reflect the most
recent read and write accesses to the target hardware. The <lines> setting does not affect the file size.

See also
B SYStem.LOG B SYStem.LOG.state

©1989-2024 Lauterbach General Commands Reference Guide S | 316

SYStem.LOG.state

Open configuration window of system log

Format:

SYStem.LOG.state

Opens the SYStem.LOG.state window, where you can configure a system log for recording read and write

accesses to the target hardware.

@ B::5YStem. LOG.state

log Set
OFF Poling
@ ON V| MemoryRead
V| Memory\Write
commands RegisterRead
& Init RegisteriWrite

[, ===

i Chart
B PROfileChart
| STATistic

RESet
CLOSE

v

ComponentRead
ComponentWrite
VMaccess
TRANSation
TRACE
REMOTEAPI

0s

ERROR

OPEN
C:\T32\sys.log

R
e B]

Maode SIZE
Compact 64.
Source

NoTime | StopOnError

A Only the information of selected options is displayed in the SYStem.LOG.List window and recorded
in the system log file.
For descriptions of the individual options, see SYStem.LOG.Set.

B To open a system log file, do one of the following:
. Click the folder icon and navigate to the file you want to use.
. Type path and file name into the OPEN text box. Then press Enter.

The TRACE32 message line displays that the file is now open for recording log entries.

To close the system log file:
. Clear the content from the OPEN text box. Then press Enter.
The TRACE32 message line displays that the file is now closed.

C For descriptions of the commands in the SYStem.LOG.state window, refer to the SYStem.LOG.*

commands in this section.

Example: For information about the List button, see SYStem.LOG.List.

See also

B SYStem.LOG
B SYStem.LOG.List
B SYStem.LOG.OPEN

B SYStem.LOG.StopOnError

B SYStem.LOG.CLEAR
B SYStem.LOG.Mode

B SYStem.LOG.RESet
B SlTrace

B SYStem.LOG.CLOSE
B SYStem.LOG.OFF
B SYStem.LOG.Set

B SYStem.LOG.Init
B SYStem.LOG.ON

M SYStem.LOG.SIZE

©1989-2024 Lauterbach

General Commands Reference Guide S

317

SYStem.LOG.StopOnError Stop logging on error

Format: SYStem.LOG.StopOnError ON | OFF

Defines the logging behavior after an error has occurred.

ON TRACES2 automatically runs the command SYStem.LOG.OFF to stop
(default) logging after an error, such as a bus error, has occurred.
OFF Logging continues after an error has occurred.
NOTE: The system log file remains open for writing.
. To continue logging, click Start in the SYStem.LOG.List window or run
SYStem.LOG.ON.
. To close the system log file, run SYStem.LOG.CLOSE.

See also
H SYStem.LOG B SYStem.LOG.state
SYStem.MCDCommand Send command to MCD server

Virtual targets only: MCD

Format: SYStem.MCDCommand <command>

SYStem.MCDCommand <command> sends via the MCD API call mcd_execute_command_f() the
<command> as ASCII character string to the MCD server. It is not necessary to enclose the command with
quotation marks. All quotations marks within <command> will be sent as such to the MCD server. The
answer from the MCD server on this command can have a maximum of 100 characters and can be read out
by SYStem.MCDCommand.ResultString().

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 318

SYStem.MCDconfig Send configuration to MCD server

Virtual targets only: MCD

Format: SYStem.MCDconfig <srv.cfg>

SYStem.MCDCommand <srv.cfg> will send <srv.cfg>as ASCII character string within the parameter
config_string of med_open_server_f() towards the MCD server. It is not necessary to enclose
<srv.cfg> with quotation marks. All quotations marks in <srv.cfg> will be sent to the MCD server.

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 319

SYStem.MemAccess

Select run-time memory access method

Format: SYStem.MemAccess <mode>

<mode>: Enable | Denied | StopAndGo | <cpu_specific> | <interface_specific>

The debugger can read and write the target memory while the CPU is executing the program.

Enable
CPU (deprecated)

Denied

StopAndGo

<cpu_specific>

<interface_specific>

See also

Is used to activate the memory access while the CPU is running on the
TRACE32 Instruction Set Simulator and on debuggers which do not have
a fixed name for the memory access method.

Memory access during program execution to target is disabled.

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Depending on the target processor, there may exist means to access
processor / target memory while the processor is running. Examples are
DAP, AHB or AXI for ARM processors, NEXUS or SAP for Power
Architecture, and so on. Refer to processor architecture manuals for
details.

Depending on the debug interface in use, there may exist means to
access processor / target memory while the processor is running.
Example: XCP.

B SYStem.state

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide S | 320

SYStem.Mode Select mode

Format: SYStem.Mode [<mode>]
SYStem.<mode> (as an alternative)

<mode>: StandBy
Down
Attach
NoDebug
Go
Up
Prepare

Configures how the debugger connects to the target and how the target is handled. Please refer to the
description of this command in your Processor Architecture Manual for more information.

See also
B SYStem.state

A ’'Release Information’ in’Legacy Release History’

SYStem.Option Special setup

[SYStem.state window > Option]

Format: SYStem.Option <option>[ON | OFF]

The <options> of SYStem.Option are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.

<option> Mostly architecture specific. For descriptions of the options, refer to the
Processor Architecture Manuals.

NOTE: Some of the commands toggle between the options ON and OFF if they are
invoked without parameters.

See also

B SYStem.Option.IMASKASM B SYStem.Option.IMASKHLL
B SYStem.Option.MACHINESPACES B SYStem.Option.MMUSPACES
B SYStem.Option.ZoneSPACES B SYStem.state

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 321

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

See also
B SYStem.Option

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

See also
B SYStem.Option

SYStem.Option.MACHINESPACES Address extension for guest OSes
ARM and Intel® x86
Format: SYStem.Option.MACHINESPACES [ON | OFF]
Default: OFF

Enables the TRACES32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

©1989-2024 Lauterbach General Commands Reference Guide S | 322

If SYStem.Option.MACHINESPACES is enabled, addresses are extended with an identifier called machine
ID. The machine ID clearly specifies to which host or guest machine the address belongs.

NOTE: For architecture-specific information about the command, refer to the Processor
Architecture Manual.

See also
B SYStem.Option

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

©1989-2024 Lauterbach General Commands Reference Guide S | 323

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

See also
B SYStem.Option

SYStem.Option.ZoneSPACES Enable symbol management for zones

Format: SYStem.Option.ZoneSPACES [ON | OFF]

Default: OFF. Not supported for all core architectures.

For CPUs which have several operation modes with individual MMU translations and register sets, the
SYStem.Option ZoneSPACES command allows to load separate symbol sets for these CPU modes.
Within TRACES32, such CPU modes are referred to as zones. Addresses and symbols belonging to a certain
CPU mode are identified by their access class specifier.

OFF TRACE32 does not separate symbols by access class.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s logical address
will be translated to the physical address with the correct MMU translation table.

NOTE: For architecture-specific information about the command, refer to the Processor
Architecture Manual.

See also
B SYStem.Option

©1989-2024 Lauterbach General Commands Reference Guide S | 324

SYStem.PAUSE Pause the execution of operations

Format: SYStem.PAUSE <time> [/<option>]

<option>: Target | Host

Pauses the execution of any operation of the debugger including semihosting, status polling, and APIs. The
command cannot be interrupted or canceled. The passed option only takes effect if a back-end with virtual
connection to an RTL emulation/simulation is used, e.g. GTL.

<time> . The pause time of Host is typically measured in milliseconds, e.g.
100ms
. The pause time of Target is typically measured in microseconds,
e.g. 10us
. Without Target or Host: The used time base depends on

SYStem.VirtualTiming.PauseinTargetTime.

Host Host clock is used as time base.
Target Emulation clock is used as time base.
See also
B SYStem.state | WAIT

©1989-2024 Lauterbach General Commands Reference Guide S | 325

SYStem.POLLING Polling mode of CPU

Format: SYStem.POLLING <run_mode> <stopped_mode>

<run_mode>: CONTinuous
DEFault
FAST
OFF
SLOW

<stopped_ DEFault
mode>: OFF
SIGnals

When the CPU is running, the debug driver can poll the CPUs state in the background to speed up
operations where a fast break detection is preferred. Features that can be improved by a fast break
detection are:

. CPU break from PodBus Trigger, if the CPU has no dedicated break in line
. Any communication that is based to spot break points e.g. TERM, FDX
. Break triggered actions like Data.EPILOG, Data.TIMER

o Precision of the runtime counter if the CPU has no dedicated break in line

If the poll rate is high the system is more sensitive to disturbances.

CONTinuous Polling with maximum frequency.

FAST Polling with interval of 1 ms.

OFF No polling at all, to prevent from disturbance.

SLOW Normal polling with interval of SETUP.UpdateRATE, increase RTCK time-
out to hide short power down/sleep states of the CPU.

DEFault Polling with interval of SETUP.UpdateRATE.

NOTE: The minium polling interval for timing measurement tasks, e.g. RunTime, is

1 ms, any lower settings are ignored.

When the CPU is stopped, the debug driver can poll the CPUs state in the background to observe for
exceptional events caused by watch-dogs or other CPUs.

©1989-2024 Lauterbach General Commands Reference Guide S | 326

For transactor based solutions those polling can slow down the debug session, therefore it's possible to turn

it off.
SIGnals Polling of signals as RESET only
OFF No polling at all, to prevent from disturbance.
DEFault Polling with interval of SETUP.UpdateRATE.
See also
B SYStem.state B SETUP.UpdateRATE

A ’Release Information’ in’Legacy Release History’

SYStem.PORT Configure external communication interface
Format: SYStem.PORT <mode>
<mode>: COM<x> <settings>
<ip>:<port>

This command is used to configure an external communication interface:
. Between TRACES32 and a monitor program running on the target.

. Between TRACE32 and a debug agent running on the target.
Both serial and TCP/IP are supported.

<x> COM port number, e.g. COM1, COM2

<settings> The <settings> for the communication interfaces depend on the host
operating system.

Examples:
SYStem.PORT COM1 baud=9600 ; configure COM1 as external
; communication interface
SYStem.PORT 10.1.2.99:2345 ; configure TCP/IP as external
; communication interface
See also

B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 327

SYStem.RESet Reset configuration

Format: SYStem.RESet

Resets all debug system settings (such as SYStem.CPU, SYStem.JtagClock) to their default values. After
this switches to the SYStem.Mode Down state.

See also
B SYStem.state B RESet
A ’'Release Information’ in’Legacy Release History’

SYStem.RESetOut Reset peripherals

Format: SYStem.RESetOut

Triggers the CPU RESET command, which initializes the peripherals. This command is not available on all
probes.

Example:

SYStem.RESetOut ; Initialize peripherals

See also
B SYStem.state

A ’Release Information’ in’Legacy Release History’

SYStem.RESetTarget Release target reset

Format: SYStem.RESetTarget

A target reset is performed and then released. On most targets, SYStem.RESetTarget is similar to
SYStem.Up and Register.RESet. On virtual platforms usually activates a target platform reset.

See also
B SYStem.state

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide S | 328

SYStem.state

Display SYStem.state window

Format:

SYStem.state

Opens a SYStem.state window displaying all probe setup parameters. You can also open the
SYStem.state window by double-clicking the System field in the state line of the TRACE32 main window.

All modes can be selected and altered by clicking the appropriate buttons, options, etc. within the

SYStem.state window.

The SYStem.state window is highly target-dependent; example of a SYStem.state window:

[éy B::5Y5tem.state

Mode MemAccess Option
©) Down DAP [Clmaskasm
*) NoDebug *) TSMON3 [T MASKHLL
() Prepare () RealMON [CITurRBD
7 Go) TrkMON [T BigEndian
©) Attach) GdbMON [C]ResBreak
7 StandBy @ Denied [CmTDIS
Lp (SeandBy) CpuAccess [¥] DBGACK
@ Up) Enable [¥] showError
@ Denied [] EnReset
reset ©) Nonstop [V] TRST
PWRDWN
[T TIDBGEN
CPU JtagClock WaitReset
Rick ~ || 1.000s

Option
[pACR
[T MMUsPACES
MPU
CFLUSH
cmyv

[AmBA
[VINODATA
[CexeC
[ClspLIT
PC

0x0

(=[O sl

@ AUTO
(©) ACCESS
) ARM

) THUMB

CONFIG
DETECT

Option DisMode

A For descriptions of the architecture-specific commands in the SYStem.state window, please refer to
the SYStem.* commands in your Processor Architecture Manual.

Example: For information about Up, see SYStem.Mode Up.

See also

B SYStem.BdmClock B SYStem.BREAKTIMEOUT B SYStem.CADICommand B SYStem.CADIconfig
B SYStem.CONFIG B SYStem.CPU B SYStem.CpuAccess B SYStem.CpuBreak
B SYStem.CpuSpot B SYStem.CSWP B SYStem.DCI B SYStem.DETECT
B SYStem.DLLCommand B SYStem.GTL B SYStem.InfineonDAS B SYStem.IRISconfig
B SYStem.JtagClock B SYStem.LOG B SYStem.MCDCommand B SYStem.MCDconfig
B SYStem.MemAccess B SYStem.Mode B SYStem.Option B SYStem.PAUSE

B SYStem.POLLING B SYStem.PORT B SYStem.RESet B SYStem.RESetOut
B SYStem.RESetTarget B SYStem.SNEAKPEEK B SYStem.TARGET B SYStem.TCFconfig
B SYStem.VirtualTiming a CPUIS() 1 hardware.ICD() 1 INTERFACE.SIM()
1 SYStem.CPU() 1 SYStem.Mode() 1 SYStem.Up()

©1989-2024 Lauterbach

General Commands Reference Guide S

329

SYStem.TARGET Set target IP name or address

Format: SYStem.TARGET <target>

<target>: <ip_address> | <ip_name>

Defines the OSE target IP address or name to debug. If no target is specified, TRACE32 uses a broadcast
message to find OSE targets and uses the first target found.

See also
B SYStem.state

©1989-2024 Lauterbach General Commands Reference Guide S | 330

SYStem.VirtualTiming Modify timing constraints

Format: SYStem.VirtualTiming

The commands of the SYStem.VirtualTiming command group are used to modify time timing behavior of
the debugger when virtual debug interfaces are used, e.g. the TRACE32 Verilog Actuator or Generic
Transactor Library.

These virtual debug interfaces connect the debugger to simulations with a virtual time or extra slow
emulators. In these scenarios, PowerView commands can take a very long time to execute. Therefore, the
interaction with the target is done by PRACTICE scripts mainly, but the default timing of the debugger
software targets more a stutter-free behavior of the windows.

To modify these timings, the SYStem.VirtualTiming commands can be used. The debugger uses timeouts
to cancel polling for expected results in the debug registers of the core and for reading back hardware
acknowledge signals of the target as the RTCK signal.

The commands SYStem.VirtualTiming.TimeinTargetTime and
SYStem.VirtualTiming.PauseinTargetTime allow to couple the timing to the emulation/simulation timing.
This allows to stall the whole simulation environment without the internal timeouts expiring, but also can lead
to longer execution time of the debugger.

The command SYStem.VirtualTiming.TimeScale can be used to reduce or increase the internal timeouts
in general. In case the simulation does not respond fast enough, the timeouts need to be extended. In case
the debugger polls for an error state too long to keep the user interface responsive, the timeouts can be

reduced.

See also

B SYStem.VirtualTiming.HardwareTimeout B SYStem.VirtualTiming.HardwareTimeoutScale
B SYStem.VirtualTiming.InternalClock B SYStem.VirtualTiming.MaxPause

B SYStem.VirtualTiming.MaxTimeout B SYStem.VirtualTiming.OperationPause

B SYStem.VirtualTiming.PauseinTargetTime B SYStem.VirtualTiming.PauseScale

B SYStem.VirtualTiming.PollingPause B SYStem.VirtualTiming.TimeinTargetTime

B SYStem.VirtualTiming.TimeScale B SYStem.state

A 'Timing Adaption’ in 'Debugging via Infineon DAS Server
A 'Timing Adaption’ in ‘GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

©1989-2024 Lauterbach General Commands Reference Guide S | 331

SYStem.VirtualTiming.HardwareTimeout Disable/enable hardware timeout

Format: SYStem.VirtualTiming.HardwareTimeout ON | OFF

The debugger has a timeout that handle the maximum time to wait for an hardware signal. The timeout can
be disabled in case it doesn’t matter for the debug scenario in case error messages “no RTCK” or "subcore
communication timeout” occur. In case the hardware timeout is necessary for the debug scenario the
debugger can enter an endless loop, in that cases the hardware timeout should be extended by
SYStem.VirtualTiming.HardwareTimeoutScale or the target should respond earlier.

ON Hardware timeout is active and used to cancel hardware operations.
OFF Hardware timeout is disabled.
Example:
SYStem.VirtualTiming.PauseinTargetTime OFF ; use host time
See also

B SYStem.VirtualTiming

A ’'Timing Adaption’ in ‘Debugging via Infineon DAS Server’
A 'Timing Adaption’ in’GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout

[Example]

Format: SYStem.VirtualTiming.HardwareTimeoutScale

Scales the timeout that leads to the message “subcore communication timeout” for software-only tools. The
command is implemented for the back-end GTL.

Low-level operations can have a total communication timeout to prevent the system from hanging in case of
an error. In software-only tools, this timeout can malfunction. Either the timeout appears too late and the
system seem to hang, or the timeout appears too early and the operation fails with the message “subcore
communication timeout”.

©1989-2024 Lauterbach General Commands Reference Guide S | 332

Example:

;shrink the standard timeout by factor 10 to display the timeout earlier
SYStem.VirtualTiming.HardwareTimeoutScale 0.1

See also
B SYStem.VirtualTiming

A ’'Timing Adaption’ in ‘Debugging via Infineon DAS Server’
A 'Timing Adaption’ in’GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

SYStem.VirtualTiming.InternalClock Base for artificial time calculation

Format: SYStem.VirtualTiming.InternalClock <frequency>

Overrides the TRACES32 debug clock setting for internal timing calculation in case the interface’s debug clock
implementation is wrong in a software-only solution. A clock of OHz (default) will not override the debug clock
setting. The command is implemented for the back-end GTL.

Example:

; TRACE32 transfers 10Mhz setting to the interface
SYStem.JtagClock 10Mhz

; but use 100kHz for internal timing calculations
SYStem.VirtualTiming.InternalClock 100kHz

See also
B SYStem.VirtualTiming

A ’'Timing Adaption’ in ‘Debugging via Infineon DAS Server’
A 'Timing Adaption’ in’GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

©1989-2024 Lauterbach General Commands Reference Guide S | 333

SYStem.VirtualTiming.MaxPause Limit pause

Format: SYStem.VirtualTiming.MaxPause <time>

<time>: 10ns ... 40000ms

The debugger software contains statements to wait time, in order to give the target time to respond. The
command is used to set up the maximum time for those wait statements.

Example:

SYStem.VirtualTiming.MaxPause 1s ; set maximum to 1 second

See also

B SYStem.VirtualTiming

A 'Timing Adaption’ in ’Debugging via Infineon DAS Server
A 'Timing Adaption’ in’GTL Debug Back-End’

A 'Timing Adaption’ in 'Verilog Debug Back-End’

SYStem.VirtualTiming.MaxTimeout Override time-outs
Format: SYStem.VirtualTiming.MaxTimeout <time>
<time>: <X>NS ... <y>ms

The debugger software contains sections where a status of the target is polled for a certain time until a
conditions is met in order to finish an operation. The command is used to set up the maximum time that is
used for those sections.

Example:

SYStem.VirtualTiming.MaxTimeout 10s ; set maximum to 10 seconds

See also
B SYStem.VirtualTiming

A ’'Timing Adaption’ in ‘Debugging via Infineon DAS Server’
A 'Timing Adaption’ in’GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

©1989-2024 Lauterbach General Commands Reference Guide S | 334

SYStem.VirtualTiming.OperationPause Insert a pause after each operation

Format: SYStem.VirtualTiming.OperationPause <time>

<time>: <X>Ns ... <y>ms

The debug driver issue pause statements after each action e.g. shift or bus access to give the emulation
time to compute. Operation pauses will slow down the debugger and prevent from pre-bundling operations.

Example:

SYStem.VirtualTiming.OperationPause 100ns ; enable pause of 100ns

See also

B SYStem.VirtualTiming

A 'Timing Adaption’ in ’Debugging via Infineon DAS Server
A 'Timing Adaption’ in’GTL Debug Back-End’

A 'Timing Adaption’ in 'Verilog Debug Back-End’

SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base

Format: SYStem.VirtualTiming.PauseinTargetTime ON | OFF

The debugger software contains statements to wait time, in order to give the target time to respond. The
command specifies it the time shall elapse in virtual simulator time (ON) or real host time (OFF). When set to
ON the debugger behaves as with a real target, but become as slow as the simulation.

ON Pause time elapses in virtual simulation time.
OFF Pause time elapses in real host time.
Example:

SYStem.VirtualTiming.PauseinTargetTime OFF ; use host time

See also
B SYStem.VirtualTiming
A 'Timing Adaption’ in 'Debugging via Infineon DAS Server

A 'Timing Adaption’ in ’'GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

©1989-2024 Lauterbach General Commands Reference Guide S | 335

SYStem.VirtualTiming.PauseScale Multiply pause with a factor

Format: SYStem.VirtualTiming.PauseScale <factor>

The debugger software contains statements to wait time in order to give the target time to respond. The
command scales these time in order to wait a shorter or longer time.

Example:

SYStem.VirtualTiming.PauseScale 10. ; 10 times longer pauses

See also
B SYStem.VirtualTiming

A 'Timing Adaption’ in 'Debugging via Infineon DAS Server
A 'Timing Adaption’ in 'GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

SYStem.VirtualTiming.PollingPause = Advance emulation time when polling

Format: SYStem.VirtualTiming.PollingPause <time>

The command is used for systems that advance the simulation time only when the debugger executes
actions on it. Usually the debugger is executing JTAG shifts all the time, but this is not efficient to let the
emulation time grow. Executing a "pause" statement at the emulation is more efficient, therefore the
command inserts "pause" statements of a certain duration when the emulation time needs to be increased,
e.g. when the core is running and the debugger waits until a breakpoint has been hit.

A smaller polling pause will speed up the debugger, but slow down the execution of the target program in the
emulation. A bigger polling pause will make the debugger less responsive, but let that emulation run faster.

Example:

SYStem.VirtualTiming.PollingPause 10us ; insert 10us pauses

See also
B SYStem.VirtualTiming

©1989-2024 Lauterbach General Commands Reference Guide S | 336

SYStem.VirtualTiming.TimeinTargetTime Set up general time-base

Format: SYStem.VirtualTiming.TimeinTargetTime ON | OFF

The command specifies whether the timeout time shall elapse in virtual simulator time (ON) or real host time
(OFF). When set to ON the debugger behaves as with a real target, but become as slow as the simulation.

ON Use virtual target time to elapse time-outs
OFF Use real host time to elapse time-outs
Example:

SYStem.VirtualTiming.TimeinTargetTime ON ; time-outs elapse time-outs

See also
B SYStem.VirtualTiming

A ’'Timing Adaption’ in ‘Debugging via Infineon DAS Server’
A 'Timing Adaption’ in’GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

©1989-2024 Lauterbach General Commands Reference Guide S | 337

SYStem.VirtualTiming.TimeScale Multiply time-base with a factor

Format: SYStem.VirtualTiming.TimeScale <factor>

The command scales pauses and time-outs in general.
Example 1:

;in this example, time-outs and pauses are 10 times longer
SYStem.VirtualTiming.TimeScale 10.0

Example 2:

;in this example, time-outs and pauses are 100 times shorter
SYStem.VirtualTiming.TimeScale 0.01

;in case the error “RTCK fail” or “subcore communication timeout”
;occur, extend hardware timeouts by factor 10
SYStem.VirtualTiming.HardwareTimeoutScale 10.0

See also
B SYStem.VirtualTiming

A ’'Timing Adaption’ in ‘Debugging via Infineon DAS Server’
A 'Timing Adaption’ in’GTL Debug Back-End’
A 'Timing Adaption’ in 'Verilog Debug Back-End’

©1989-2024 Lauterbach General Commands Reference Guide S | 338

SystemTrace

SystemTrace MIPI STP and CoreSight ITM

[Examples]

Format: SystemTrace.<sub_cmad>

Using the SystemTrace command group, you can configure the trace recording as well as analyze and
display trace data emitted either by the trace source STM or ITM.

The figure illustrates that there are three ways [A to C] to handle instrumented code from the STM or ITM:

Chip

: Pmmmmmeme-a -4-s™™ ™ = fem e - . :

1 ! o e = == - L] ! 1

1 ! 1 I I 1

1 1 1 1 1 1

1 1 1 oo d 1 1
STMAnalyzer STMOnchip STMCAnalyzer ITMAnalyzer ITMOnchip ITMCAnalyzer
STMTrace ITMTrace

STMTrace.METHOD [TMTrace. METHOD

SystemTrace

SystemTrace.METHOD

A The six command groups are distinctive ways to handle STM or ITM trace data. Prior to that you need
to set the trace method with STMTrace.METHOD or ITMTrace.METHOD.

B Alternatively, the generic replacement command groups STMTrace and ITMTrace can be used to
handle STM or ITM trace data. Prior to that you need to set the trace method with STMTrace.METHOD
or ITMTrace.METHOD.

C The command group SystemTrace lets you handle STM or ITM trace data independently of the
trace protocol and trace method in the SystemTrace.List window. This requires that the trace
method has been set with the command SystemTrace.METHOD.

Examples for [A] and [B] can be found in sections “System Trace User’s Guide” (trace_stm.pdf) and
“Overview ITM<trace>" in General Commands Reference Guide |, page 87 (general_ref_i.pdf).

An example for [C] can be found below.

©1989-2024 Lauterbach General Commands Reference Guide S | 339

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of SystemTrace.List refer to <trace>.List

Example 1:

SystemTrace.state ;optional step: open the window in which the
;trace recording is configured.

SystemTrace.METHOD Onchip ;select the trace method Onchip for

;<configuration> ;recording system trace data.

STM.state ;optional step: open the window in which
;the trace source STM is configured.

STM. ON ;switch the trace source STM on.

;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

SystemTrace.List ;display the system trace data from the STM.

NOTE: The trace method selection for the SystemTrace command group corresponds to
the trace method selection for the Trace command group.
This becomes obvious when you compare the examples 1 and 2.

For background information, see “Types of Replacements for <trace>” in
General Commands Reference Guide T, page 121 (general_ref_t.pdf).

©1989-2024 Lauterbach General Commands Reference Guide S | 340

Example 2:

Trace.state ;optional step: open the window in which the
;trace recording is configured.

Trace.METHOD Analyzer ;select the trace method Analyzer for

;<configuration> ;recording instruction trace data.

ETM.state ;optional step: open the window in which

;the trace source ETM is configured.

ETM.ON ;switch the trace source ETM on.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the instruction trace data
; from the ETM.

See also
H STM HIT™ B Trace. METHOD
A ’'Release Information’ in’Legacy Release History’

SystemTrace.state Open system-trace configuration window

Format: SystemTrace.state

Opens the SystemTrace.state window, displaying all probe setup parameters.

©1989-2024 Lauterbach General Commands Reference Guide S | 341

	General Commands Reference Guide S
	History
	SELFTEST
	SELFTEST Execute selftest operation

	SETUP
	SETUP Setup commands
	SETUP.ALIST Default analyzer display
	SETUP.ALIST.RESet Reset analyzer display
	SETUP.ALIST.set Default analyzer display
	SETUP.BreakPointTableWalk Set up MMU translation for breakpoints
	SETUP.BreakTransfer Breakpoint synchronization
	SETUP.COLORCORE Enable coloring for core-specific info in SMP systems
	SETUP.DIS Disassembler configuration
	SETUP.DUMP Defaults for hex-dumps
	SETUP.EMUPATH Emulation softkeys configuration
	SETUP.GoOnPaused Route go to paused core
	SETUP.IMASKASM Mask interrupts during assembler step
	SETUP.IMASKHLL Mask interrupts during HLL step
	SETUP.LISTCLICK Double-click source line symbol to run this action
	SETUP.PROCESS Processing percentage in statistics window
	SETUP.SIMULINK Deprecated command
	SETUP.StepAllCores Force single stepping on all cores
	SETUP.StepAtBreakPoint Single step to skip breakpoint
	SETUP.StepAutoAsm HLL steps stops at assembler code
	SETUP.StepBeforeGo Single step before go
	SETUP.StepByStep Single step HLL lines
	SETUP.StepNoBreak Stepping HLL lines with disabled breakpoints
	SETUP.StepOnPaused Route step to selected core
	SETUP.StepTrace Show stepping trail in list window
	SETUP.StepWithinBreakpoints Multi-core step on SMP systems
	SETUP.StepWithinTask Task selective stepping
	SETUP.sYmbol Length of symbols
	SETUP.TIMEOUT Define emulation monitor time-out
	SETUP.Var Defaults for the Var commands
	SETUP.VarCall Define call dummy routine
	SETUP.VarPtr Limit pointer access
	SETUP.VerifyBreakSet Additional verification for software breakpoints

	SIM
	SIM TRACE32 Instruction Set Simulators
	SIM.AREA Selects area for simulation output
	SIM.CACHE Cache/MMU simulation and more
	SIM.CACHE.Allocation Define the cache allocation technique
	SIM.CACHE.Mode Define memory coherency strategy
	SIM.CACHE.MPURegions Specify MPU regions
	SIM.CACHE.OFF Disable cache and MMU simulation
	SIM.CACHE.ON Enable cache and MMU simulation
	SIM.CACHE.Replacement Define the replacement strategy
	SIM.CACHE.SETS Define the number of cache/TLB sets
	SIM.CACHE.state Display cache and MMU settings
	SIM.CACHE.Tags Define address mode for cache lines
	SIM.CACHE.TRACE Select simulator trace method
	SIM.CACHE.View Analysis of memory accesses for cache simulation
	SIM.CACHE.ViewTLB Analysis of TLB accesses for MMU simulation
	SIM.CACHE.WAYS Define number of cache ways
	SIM.CACHE.Width Define width of cache line
	SIM.command Issue command to simulation model
	SIM.INTerrupt Trigger interrupt
	SIM.List List loaded simulator models
	SIM.LOAD Load simulator module
	SIM.RESet Reset TRACE32 Instruction Set Simulator
	SIM.UNLOAD Unload simulator module

	SLTrace
	SLTrace Trace sink for SYStem.LOG events
	SLTrace.state Display configuration window

	SNOOPer
	SNOOPer Sample-based trace

	SNOOPer-specific Trace Commands
	SNOOPer.<specific_cmds> Overview of SNOOPer-specific commands
	SNOOPer.CORE Select cores for PC snooping
	SNOOPer.ERRORSTOP Set behavior on sampling errors
	SNOOPer.Mode Set operation mode of SNOOPer trace
	SNOOPer.PC Enable PC snooping
	SNOOPer.Rate Select sampling rate
	SNOOPer.SELect Define address for monitoring
	SNOOPer.SIZE Define trace buffer size
	SNOOPer.TDelay Define trigger delay
	SNOOPer.TOut Define the trigger destination
	SNOOPer.TValue Define data value for trigger

	Generic SNOOPer Trace Commands
	SNOOPer.ACCESS Define access path to program code for trace decoding
	SNOOPer.Arm Arm the trace
	SNOOPer.AutoArm Arm automatically
	SNOOPer.AutoInit Automatic initialization
	SNOOPer.BookMark Set a bookmark in trace listing
	SNOOPer.BookMarkToggle Toggles a single trace bookmark
	SNOOPer.Chart Display trace contents graphically
	SNOOPer.Chart.DistriB Distribution display graphically
	SNOOPer.Chart.sYmbol Symbol analysis
	SNOOPer.Chart.VarState Variable activity chart
	SNOOPer.ComPare Compare trace contents
	SNOOPer.DISable Disable the trace
	SNOOPer.DRAW Plot trace data against time
	SNOOPer.DRAW.channel Plot no-data values against time
	SNOOPer.DRAW.Var Plot variable values against time
	SNOOPer.EXPORT Export trace data for processing in other applications
	SNOOPer.FILE Load a file into the file trace buffer
	SNOOPer.Find Find specified entry in trace
	SNOOPer.FindAll Find all specified entries in trace
	SNOOPer.FindChange Search for changes in trace flow
	SNOOPer.Get Display input level
	SNOOPer.GOTO Move cursor to specified trace record
	SNOOPer.Init Initialize trace
	SNOOPer.List List trace contents
	SNOOPer.ListVar List variable recorded to trace
	SNOOPer.LOAD Load trace file for offline processing
	SNOOPer.OFF Switch off
	SNOOPer.PROfileChart Profile charts
	SNOOPer.PROfileChart.COUNTER Display a profile chart
	SNOOPer.PROfileSTATistic Statistical analysis in a table versus time
	SNOOPer.PROTOcol Protocol analysis
	SNOOPer.PROTOcol.Chart Graphic display for user-defined protocol
	SNOOPer.PROTOcol.Draw Graphic display for user-defined protocol
	SNOOPer.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	SNOOPer.PROTOcol.Find Find in trace buffer for user-defined protocol
	SNOOPer.PROTOcol.list Display trace buffer for user-defined protocol
	SNOOPer.PROTOcol.PROfileChart Profile chart for user-defined protocol
	SNOOPer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	SNOOPer.PROTOcol.STATistic Display statistics for user-defined protocol
	SNOOPer.REF Set reference point for time measurement
	SNOOPer.RESet Reset command
	SNOOPer.SAVE Save trace for postprocessing in TRACE32
	SNOOPer.SelfArm Automatic restart of trace recording
	SNOOPer.SnapShot Restart trace capturing once
	SNOOPer.state Display trace configuration window
	SNOOPer.STATistic Statistic analysis
	SNOOPer.STATistic.DistriB Distribution analysis
	SNOOPer.Timing Waveform of trace buffer
	SNOOPer.TRACK Set tracking record
	SNOOPer.View Display single record
	SNOOPer.ZERO Align timestamps of trace and timing analyzers

	SPE
	SPE Signal Processing eXtension (SPE)
	SPE.Init Initialize SPE registers
	SPE.Set Modify SPE registers
	SPE.view Display SPE register window

	SSE
	SSE SSE registers (Streaming SIMD Extension)
	SSE.Init Initialize SSE registers
	SSE.Set Modify SSE registers
	SSE.view Display SSE registers

	StatCol
	StatCol Statistics collector

	Step
	Step Single-step
	Step.Asm Assembler single-step
	Step.Back Step backwards
	Step.BackChange Step back until expression changes
	Step.BackOver Step back over call
	Step.BackTill Step back until expression true
	Step.Change Step until expression changes
	Step.Diverge Step to next unreached line
	Step.Hll Step in HLL-mode
	Step.Mix Step in mixed-mode
	Step.Over Step over call
	Step.single Single-step
	Step.Till Step until expression true

	STM
	STM System trace configuration

	STOre
	STOre Store settings as PRACTICE script

	SVE
	SVE Access the scalable vector extension SVE
	SVE.Init Initialize SVE registers
	SVE.RESet Reset SVE settings
	SVE.Set Modify SVE registers
	SVE.view Display SVE registers

	sYmbol
	sYmbol Debug symbols
	Overview sYmbol
	sYmbol.AddInfo Provide additional symbolic information
	sYmbol.AddInfo.Address Add symbol information to fixed address
	sYmbol.AddInfo.Delete Delete information
	sYmbol.AddInfo.LINK Define information for "sYmbol.AddInfo" commands
	sYmbol.AddInfo.List List additional information
	sYmbol.AddInfo.LOADASAP2 Load scaling information from ASAP2 file
	sYmbol.AddInfo.Member Add information to member of struct
	sYmbol.AddInfo.RESet Remove all additional information
	sYmbol.AddInfo.Type Add information to a data type
	sYmbol.AddInfo.Var Add information to a variable
	sYmbol.AutoLOAD Automated loading of symbols
	sYmbol.AutoLOAD.CHECK Update autoloader table
	sYmbol.AutoLOAD.CHECKCoMmanD Configure dynamic autoloader
	sYmbol.AutoLOAD.CHECKDLL Configure automatic DLL file loader
	sYmbol.AutoLOAD.CHECKEPOC Dynamic autoloader for Symbian
	sYmbol.AutoLOAD.CHECKLINUX Configure autoloader for Linux debugging
	sYmbol.AutoLOAD.CHECKQNX Configure autoloader for QNX debugging
	sYmbol.AutoLOAD.CHECKUEFI Configure autoloader for UEFI debugging
	sYmbol.AutoLOAD.CHECKWIN Configure autoloader
	sYmbol.AutoLOAD.CHECKWINCE Configure autoloader
	sYmbol.AutoLOAD.CLEAR Remove symbol information
	sYmbol.AutoLOAD.config Configure symbol autoloader
	sYmbol.AutoLOAD.Create Create entry for autoloader table
	sYmbol.AutoLOAD.Delete Delete autoloader entries
	sYmbol.AutoLOAD.List List autoloader table
	sYmbol.AutoLOAD.LOADEPOC Definition for static autoloader for Symbian
	sYmbol.AutoLOAD.RESet Reset autoloader
	sYmbol.AutoLOAD.SET Mark symbol information manually as loaded
	sYmbol.AutoLOAD.TOUCH Initiate automatic loading by command
	sYmbol.Browse Browse symbols
	sYmbol.Browse.Class Browse classes
	sYmbol.Browse.Enum Browse enumeration types
	sYmbol.Browse.Function Browse functions
	sYmbol.Browse.Module Browse modules
	sYmbol.Browse.MVar Browse module variables
	sYmbol.Browse.name Browse symbols (flat)
	sYmbol.Browse.SFunction Browse functions
	sYmbol.Browse.SModule Browse modules
	sYmbol.Browse.SOURCE Browse source
	sYmbol.Browse.Struct Browse containers for different variable types
	sYmbol.Browse.sYmbol Browse symbols
	sYmbol.Browse.Type Browse HLL types
	sYmbol.Browse.TypeDef Browse type definitions
	sYmbol.Browse.Union Browse unions
	sYmbol.Browse.Var Browse variables
	sYmbol.CASE Set symbol search mode
	sYmbol.CHECK Check database
	sYmbol.Class View class hierarchy
	sYmbol.CLEANUP Workarounds for redundant symbol information
	sYmbol.CLEANUP.DOUBLES Make ambiguous symbols unique
	sYmbol.ColorCode Enable color coding
	sYmbol.ColorDef Specify keyword colors
	sYmbol.CREATE Create and modify user-defined symbols
	sYmbol.CREATE.ATTRibute Create user-defined attribute
	sYmbol.CREATE.Done Finish symbol creation
	sYmbol.CREATE.Function Create user-defined function
	sYmbol.CREATE.Label Create user-defined symbol
	sYmbol.CREATE.LocalVar Create user-defined local variable
	sYmbol.CREATE.MACRO Create user-defined macro
	sYmbol.CREATE.Module Create user-defined module
	sYmbol.CREATE.RESet Erase all user-defined symbols
	sYmbol.CREATE.Var Create user-defined variable
	sYmbol.CUTLINE Limit size of text blocks
	sYmbol.Delete Delete symbols of one program
	sYmbol.DeleteMACRO Delete macro information
	sYmbol.DeletePATtern Delete labels from symbol database using wildcards
	sYmbol.DEMangle C++ demangler
	sYmbol.DEOBFUSCATE Deobfuscate global and static symbol
	sYmbol.DONE Finish load of symbols
	sYmbol.ECA ECA file management
	sYmbol.ECA.BINary Static preprocessing for code coverage
	sYmbol.ECA.BINary.CollapseAll Collapse all trees
	sYmbol.ECA.BINary.ControlFlowMode.INSTR Consider instrumentation
	sYmbol.ECA.BINary.ControlFlowMode.Trace Consider trace events
	sYmbol.ECA.BINary.EditDecision Modify start address of decision
	sYmbol.ECA.BINary.ExpandAll Expand all trees
	sYmbol.ECA.BINary.EXPORT.AdJoinGAPS Split up observability gaps
	sYmbol.ECA.BINary.EXPORT.Decisions Export decision details as CSV
	sYmbol.ECA.BINary.EXPORT.GAPS Export observability gaps to JSON
	sYmbol.ECA.BINary.FilterMapped Filter display by the mapping state
	sYmbol.ECA.BINary.FilterType Filter display by decision type
	sYmbol.ECA.BINary.PROCESS Static preprocessing for code coverage
	sYmbol.ECA.BINary.SetCONDitionOffset Set condition offset
	sYmbol.ECA.BINary.SetDecisionState Disable/Enable decision evaluation
	sYmbol.ECA.BINary.view Result of static preprocessing for code coverage
	sYmbol.ECA.Delete Delete loaded ECA data
	sYmbol.ECA.Init Clear gathered ECA data
	sYmbol.ECA.List List ECA file overview
	sYmbol.ECA.LOAD Load a single ECA file
	sYmbol.ECA.LOADALL Load all ECA files
	sYmbol.FILTER.ADD.SOURCE Add source files to filter
	sYmbol.FILTER.ADD.sYmbol Add symbols to filter
	sYmbol.FILTER.Delete Delete filter
	sYmbol.ForEach Symbol wildcard command
	sYmbol.INFO Display detailed information about debug symbol
	sYmbol.LANGUAGE Select language
	sYmbol.List Display list of all symbols
	sYmbol.List.ATTRibute Display memory attributes
	sYmbol.List.BUILTIN List built-in data types
	sYmbol.List.ColorDef List the keyword color definitions
	sYmbol.List.Enum List of enumeration constants
	sYmbol.List.FRAME Display frames
	sYmbol.List.Function Display functions
	sYmbol.List.IMPORT List imported symbols
	sYmbol.List.InlineBlock List inlined code blocks
	sYmbol.List.InlineFunction List inlined functions
	sYmbol.List.LINE Display source lines
	sYmbol.List.Local Display local symbols
	sYmbol.List.MACRO List all C macros
	sYmbol.List.MAP Display memory load map
	sYmbol.List.Module Display modules
	sYmbol.List.PATCH Display STF-symbol information
	sYmbol.List.Program Display programs
	sYmbol.List.REFerence Display reference information
	sYmbol.List.SECtion Display physical sections
	sYmbol.List.SOURCE Display source file names
	sYmbol.List.SourceFunction Display source to function relations
	sYmbol.List.SOURCETREE Display source files hierarchy
	sYmbol.List.STACK Display virtual stack
	sYmbol.List.Static Display static symbols
	sYmbol.List.TREE Display symbols in tree form
	sYmbol.List.Type Display data types
	sYmbol.LSTLOAD Load assembler source file
	sYmbol.LSTLOAD.GHILLS Load GHILLS assembler source file
	sYmbol.LSTLOAD.HPASM Load HP assembler source file
	sYmbol.LSTLOAD.IAR Load IAR assembler source file
	sYmbol.LSTLOAD.INT68K Load Intermetrics assembler source file
	sYmbol.LSTLOAD.INTEL Load INTEL assembler source file
	sYmbol.LSTLOAD.INTEL2 Load INTEL assembler source file
	sYmbol.LSTLOAD.KEIL Load Keil assembler source file
	sYmbol.LSTLOAD.MicroWare Load MICROWARE assembler source file
	sYmbol.LSTLOAD.MRI68K Load MICROTEC assembler source file
	sYmbol.LSTLOAD.OAK Load OAK assembler source file
	sYmbol.MARKER Fine-tune the nested function run-time analysis
	sYmbol.MARKER.Create Marker for nesting function run-time analysis
	KBEGIN/KEND Marker

	sYmbol.MARKER.Delete Delete a marker
	sYmbol.MARKER.List Displays the marker list
	sYmbol.MARKER.RESet Erase all markers
	sYmbol.MARKER.TOUCH Marker post-processing
	sYmbol.MATCH Symbol search mode
	sYmbol.MEMory Display memory usage
	sYmbol.Modify Modify symbols
	sYmbol.Modify.Access Modify access of symbols
	sYmbol.Modify.ADDRess Modify address of symbols
	sYmbol.Modify.AddressToRange Modify address of symbols
	sYmbol.Modify.AlienFunction Disable frame info for a function
	sYmbol.Modify.ATTRibute Modify memory attribute
	sYmbol.Modify.CutFunction Reduce function address information
	sYmbol.Modify.NAME Rename symbol
	sYmbol.Modify.NAMES Rename symbols
	sYmbol.Modify.RangeToAddress Modify address of symbols
	sYmbol.Modify.RangeToFunction Modify address range into function
	sYmbol.Modify.SOURCE Define source file
	sYmbol.Modify.SplitFunction Split function
	sYmbol.Modify.StaticCOPY Create static copy of local stack variables
	sYmbol.Modify.StaticToStack Change static variables
	sYmbol.Modify.TYPE Modify type of symbols
	sYmbol.name Display symbols
	sYmbol.NAMESPACES Search symbol in C++ namespace
	sYmbol.NEW Create new symbol
	sYmbol.NEW.ATTRibute Create user-defined memory attribute
	sYmbol.NEW.Function Create user-defined function
	sYmbol.NEW.Label Create user-defined symbol
	sYmbol.NEW.LocalVar Create user-defined local variable
	sYmbol.NEW.MACRO Create user-defined macro
	sYmbol.NEW.Module Create user-defined module
	sYmbol.NEW.Var Create user-defined variable
	sYmbol.OVERLAY Code overlay
	sYmbol.OVERLAY.AutoID Automatically determine overlay IDs
	sYmbol.OVERLAY.Create Declare code overlay section
	sYmbol.OVERLAY.DETECT Detect the current overlay status
	sYmbol.OVERLAY.FRIEND Declare a friend overlay segment
	sYmbol.OVERLAY.List Show declared code overlay sections
	sYmbol.OVERLAY.RESet Reset overlay declarations
	sYmbol.PATCH STF-symbol information
	sYmbol.PATCH.DISable Disable instrumentation code
	sYmbol.PATCH.ENable Enable instrumentation code
	sYmbol.PATCH.List Display STF-symbol information
	sYmbol.POINTER Define special register
	sYmbol.POSTFIX Set symbol postfix
	sYmbol.PREFIX Set symbol prefix
	sYmbol.RELOCate Relocate symbols
	sYmbol.RELOCate.Auto Control automatic relocation
	sYmbol.RELOCate.Base Define base address
	sYmbol.RELOCate.List List relocation info
	sYmbol.RELOCate.Magic Define program magic number
	sYmbol.RELOCate.Passive Define passive base address
	sYmbol.RELOCate.shift Relocate symbols
	sYmbol.RESet Clear symbol table
	sYmbol.SourceBeautify Beautify HLL lines on loading
	sYmbol.SourceCONVert Conversion for Japanese font
	sYmbol.SourceLOAD Initiate the loading of an HLL source file
	sYmbol.SourcePATH Source search path
	sYmbol.SourcePATH.Delete Delete path from search list
	sYmbol.SourcePATH.DOWN Make directory last in search order
	sYmbol.SourcePATH.List List source search paths
	sYmbol.SourcePATH.RESet Reset search path configuration
	sYmbol.SourcePATH.Set Define search path
	sYmbol.SourcePATH.SetBaseDir Define directory as base for relative paths
	sYmbol.SourcePATH.SetCache Internal use only
	sYmbol.SourcePATH.SetCachedDir Cache direct search path directory
	sYmbol.SourcePATH.SetCachedDirCache Internal use only
	sYmbol.SourcePATH.SetCachedDirIgnoreCache Cache direct search path
	sYmbol.SourcePATH.SetDir Define directory as direct search path
	sYmbol.SourcePATH.SetDynamicDir Adjust search order at hit
	sYmbol.SourcePATH.SetMasterDir Store cached files only relative
	sYmbol.SourcePATH.SetRecurseDir Define recursive direct search path
	sYmbol.SourcePATH.SetRecurseDirCache Internal use only
	sYmbol.SourcePATH.SetRecurseDirIgnoreCase Recursive search path
	sYmbol.SourcePATH.Translate Replace part of the source path
	sYmbol.SourcePATH.TranslateSUBpath Replace sub-path
	sYmbol.SourcePATH.UP Move path up in the search order
	sYmbol.SourcePATH.Verbose Display search details in message AREA
	sYmbol.SourceRELOAD Reload source files
	sYmbol.STATE Display statistic
	sYmbol.STRIP Set max. symbol length
	sYmbol.TYPEINFO Display information about a specific data type
	sYmbol.View Show symbol info

	SYnch
	SYnch Synchronization mechanisms between different TRACE32 systems
	Overview SYnch
	SYnch.Connect Connect to other TRACE32 PowerView instances
	SYnch.MasterBreak Invite other TRACE32 to stop synchronously
	SYnch.MasterGo Invite other TRACE32 to start synchronously
	SYnch.MasterStep Invite other TRACE32 to Asm step synchronously
	SYnch.MasterSystemMode Invite other TRACE32 to follow mode change
	SYnch.OFF Disable connection mechanism
	SYnch.ON Enable connection mechanism
	SYnch.RESet Reset SYnch mechanism
	SYnch.SlaveBreak Synchronize with stop in connected TRACE32
	SYnch.SlaveGo Synchronize with start in connected TRACE32
	SYnch.SlaveStep Synchronize with asm step in connected TRACE32
	SYnch.SlaveSystemMode Synch. with mode changes in other TRACE32
	SYnch.state Display current SYnch settings
	SYnch.XTrack Establish time synchronization to another TRACE32 instance

	SYStem
	SYStem System configuration
	SYStem.BdmClock Select BDM clock
	SYStem.BREAKTIMEOUT Define the used timeout for break
	SYStem.CADICommand Send a command to target
	SYStem.CADIconfig CADI-specific setups
	SYStem.CADIconfig.ExecSwOnly Filter on executing software capability
	SYStem.CADIconfig.RemoteServer Define connection to CADI server
	SYStem.CADIconfig.SpecRegDefine Define special register set
	SYStem.CADIconfig.SpecRegsOnly Use only special defined register set
	SYStem.CADIconfig.Traceconfig Define network settings to CADI trace
	SYStem.CADIconfig.TraceCore Define core for CADI trace
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.CoreNumber Set up number of hardware threads
	SYStem.CONFIG.DEBUGPORT Specify debugport
	SYStem.CONFIG.DEBUGTIMESCALE Extend debug driver timeouts
	SYStem.CONFIG.ELA Configure Embedded Logic Analyzer (ELA)
	SYStem.CONFIG.ListCORE Display the cores of a virtual target
	SYStem.CONFIG.ListSIMulation Display the simulations of a virtual target
	SYStem.CONFIG.MULTITAP Select type of JTAG multi-TAP network
	SYStem.CONFIG.MULTITAP.JtagSEQuence JTAG seq. on SYStem.Up
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG.TRACEPORT Declare trace source and trace port type
	SYStem.CONFIG.TRANSACTORPIPENAME Set up pipe name
	SYStem.CONFIG.USB USB configuration
	SYStem.CONFIG.XCP XCP specific settings
	SYStem.CPU Select CPU
	SYStem.CpuAccess Run-time memory access (intrusive)
	SYStem.CpuBreak Master control to deny stopping the target (long stop)
	SYStem.CpuSpot Master control to deny spotting the target (short stop)
	SYStem.DCI DCI configuration
	SYStem.DETECT Detect target system resources
	The System Detection Wizard
	Daisy-Chain Detection via the TRACE32 AREA Window

	SYStem.DLLCommand Custom DLL connection to target
	SYStem.InfineonDAS Configure the InfineonDAS debug port
	SYStem.IRISconfig IRIS-specific setups
	SYStem.IRISconfig.RemoteServer Define connection to IRIS server
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOG Log read and write accesses to the target
	SYStem.LOG.CLEAR Clear the ‘SYStem.LOG.List’ window
	SYStem.LOG.CLOSE Close the system log file
	SYStem.LOG.Init Clear the "SYStem.LOG.List" window
	SYStem.LOG.List Log the accesses made by TRACE32
	SYStem.LOG.Mode Set logging mode
	SYStem.LOG.OFF Pause logging
	SYStem.LOG.ON Resume logging
	SYStem.LOG.OPEN Open a system log file
	SYStem.LOG.RESet Reset configuration of system log to defaults
	SYStem.LOG.Set Select the TRACE32 accesses to be logged
	SYStem.LOG.SIZE Define number of lines in the ‘SYStem.LOG.List’ window
	SYStem.LOG.state Open configuration window of system log
	SYStem.LOG.StopOnError Stop logging on error
	SYStem.MCDCommand Send command to MCD server
	SYStem.MCDconfig Send configuration to MCD server
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select mode
	SYStem.Option Special setup
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.ZoneSPACES Enable symbol management for zones
	SYStem.PAUSE Pause the execution of operations
	SYStem.POLLING Polling mode of CPU
	SYStem.PORT Configure external communication interface
	SYStem.RESet Reset configuration
	SYStem.RESetOut Reset peripherals
	SYStem.RESetTarget Release target reset
	SYStem.state Display SYStem.state window
	SYStem.TARGET Set target IP name or address
	SYStem.VirtualTiming Modify timing constraints
	SYStem.VirtualTiming.HardwareTimeout Disable/enable hardware timeout
	SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout
	SYStem.VirtualTiming.InternalClock Base for artificial time calculation
	SYStem.VirtualTiming.MaxPause Limit pause
	SYStem.VirtualTiming.MaxTimeout Override time-outs
	SYStem.VirtualTiming.OperationPause Insert a pause after each operation
	SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base
	SYStem.VirtualTiming.PauseScale Multiply pause with a factor
	SYStem.VirtualTiming.PollingPause Advance emulation time when polling
	SYStem.VirtualTiming.TimeinTargetTime Set up general time-base
	SYStem.VirtualTiming.TimeScale Multiply time-base with a factor

	SystemTrace
	SystemTrace MIPI STP and CoreSight ITM
	SystemTrace.state Open system-trace configuration window

