
MANUAL

General Commands Reference
Guide S

General Commands Reference Guide S

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide S .. 1

 History .. 14

 SELFTEST .. 15

 SELFTEST Execute selftest operation 15

 SETUP .. 16

 SETUP Setup commands 16

 SETUP.ALIST Default analyzer display 17

 SETUP.ALIST.RESet Reset analyzer display 17

 SETUP.ALIST.set Default analyzer display 17

 SETUP.BreakPointTableWalk Set up MMU translation for breakpoints 17

 SETUP.BreakTransfer Breakpoint synchronization 18

 SETUP.COLORCORE Enable coloring for core-specific info in SMP systems 18

 SETUP.DIS Disassembler configuration 19

 SETUP.DUMP Defaults for hex-dumps 20

 SETUP.EMUPATH Emulation softkeys configuration 21

 SETUP.GoOnPaused Route go to paused core 21

 SETUP.IMASKASM Mask interrupts during assembler step 22

 SETUP.IMASKHLL Mask interrupts during HLL step 22

 SETUP.LISTCLICK Double-click source line symbol to run this action 23

 SETUP.PROCESS Processing percentage in statistics window 24

 SETUP.SIMULINK Deprecated command 24

 SETUP.StepAllCores Force single stepping on all cores 25

 SETUP.StepAtBreakPoint Single step to skip breakpoint 26

 SETUP.StepAutoAsm HLL steps stops at assembler code 26

 SETUP.StepBeforeGo Single step before go 27

 SETUP.StepByStep Single step HLL lines 27

 SETUP.StepNoBreak Stepping HLL lines with disabled breakpoints 27

 SETUP.StepOnPaused Route step to selected core 28

 SETUP.StepTrace Show stepping trail in list window 28

 SETUP.StepWithinBreakpoints Multi-core step on SMP systems 28

 SETUP.StepWithinTask Task selective stepping 29

 SETUP.sYmbol Length of symbols 29
General Commands Reference Guide S | 2©1989-2024 Lauterbach

 SETUP.TIMEOUT Define emulation monitor time-out 30

 SETUP.Var Defaults for the Var commands 31

 SETUP.VarCall Define call dummy routine 35

 SETUP.VarPtr Limit pointer access 36

 SETUP.VerifyBreakSet Additional verification for software breakpoints 36

 SIM .. 37

 SIM TRACE32 Instruction Set Simulators 37

 SIM.AREA Selects area for simulation output 37

 SIM.CACHE Cache/MMU simulation and more 38

 SIM.CACHE.Allocation Define the cache allocation technique 39

 SIM.CACHE.Mode Define memory coherency strategy 40

 SIM.CACHE.MPURegions Specify MPU regions 40

 SIM.CACHE.OFF Disable cache and MMU simulation 41

 SIM.CACHE.ON Enable cache and MMU simulation 41

 SIM.CACHE.Replacement Define the replacement strategy 41

 SIM.CACHE.SETS Define the number of cache/TLB sets 43

 SIM.CACHE.state Display cache and MMU settings 44

 SIM.CACHE.Tags Define address mode for cache lines 45

 SIM.CACHE.TRACE Select simulator trace method 45

 SIM.CACHE.View Analysis of memory accesses for cache simulation 46

 SIM.CACHE.ViewTLB Analysis of TLB accesses for MMU simulation 46

 SIM.CACHE.WAYS Define number of cache ways 47

 SIM.CACHE.Width Define width of cache line 47

 SIM.command Issue command to simulation model 48

 SIM.INTerrupt Trigger interrupt 48

 SIM.List List loaded simulator models 49

 SIM.LOAD Load simulator module 49

 SIM.RESet Reset TRACE32 Instruction Set Simulator 49

 SIM.UNLOAD Unload simulator module 50

 SLTrace .. 51

 SLTrace Trace sink for SYStem.LOG events 51

 SLTrace.state Display configuration window 52

 SNOOPer .. 53

 SNOOPer Sample-based trace 53

 SNOOPer-specific Trace Commands .. 54

 SNOOPer.<specific_cmds> Overview of SNOOPer-specific commands 54

 SNOOPer.CORE Select cores for PC snooping 54

 SNOOPer.ERRORSTOP Set behavior on sampling errors 55

 SNOOPer.Mode Set operation mode of SNOOPer trace 56

 SNOOPer.PC Enable PC snooping 60

 SNOOPer.Rate Select sampling rate 61

 SNOOPer.SELect Define address for monitoring 61
General Commands Reference Guide S | 3©1989-2024 Lauterbach

 SNOOPer.SIZE Define trace buffer size 63

 SNOOPer.TDelay Define trigger delay 63

 SNOOPer.TOut Define the trigger destination 64

 SNOOPer.TValue Define data value for trigger 65

 Generic SNOOPer Trace Commands .. 66

 SNOOPer.ACCESS Define access path to program code for trace decoding 66

 SNOOPer.Arm Arm the trace 66

 SNOOPer.AutoArm Arm automatically 66

 SNOOPer.AutoInit Automatic initialization 66

 SNOOPer.BookMark Set a bookmark in trace listing 66

 SNOOPer.BookMarkToggle Toggles a single trace bookmark 66

 SNOOPer.Chart Display trace contents graphically 67

 SNOOPer.Chart.DistriB Distribution display graphically 67

 SNOOPer.Chart.sYmbol Symbol analysis 67

 SNOOPer.Chart.VarState Variable activity chart 67

 SNOOPer.ComPare Compare trace contents 67

 SNOOPer.DISable Disable the trace 67

 SNOOPer.DRAW Plot trace data against time 67

 SNOOPer.DRAW.channel Plot no-data values against time 68

 SNOOPer.DRAW.Var Plot variable values against time 68

 SNOOPer.EXPORT Export trace data for processing in other applications 68

 SNOOPer.FILE Load a file into the file trace buffer 68

 SNOOPer.Find Find specified entry in trace 68

 SNOOPer.FindAll Find all specified entries in trace 68

 SNOOPer.FindChange Search for changes in trace flow 68

 SNOOPer.Get Display input level 69

 SNOOPer.GOTO Move cursor to specified trace record 69

 SNOOPer.Init Initialize trace 69

 SNOOPer.List List trace contents 69

 SNOOPer.ListVar List variable recorded to trace 69

 SNOOPer.LOAD Load trace file for offline processing 69

 SNOOPer.OFF Switch off 69

 SNOOPer.PROfileChart Profile charts 69

 SNOOPer.PROfileChart.COUNTER Display a profile chart 70

 SNOOPer.PROfileSTATistic Statistical analysis in a table versus time 70

 SNOOPer.PROTOcol Protocol analysis 70

 SNOOPer.PROTOcol.Chart Graphic display for user-defined protocol 70

 SNOOPer.PROTOcol.Draw Graphic display for user-defined protocol 70

 SNOOPer.PROTOcol.EXPORT Export trace buffer for user-defined protocol 70

 SNOOPer.PROTOcol.Find Find in trace buffer for user-defined protocol 70

 SNOOPer.PROTOcol.list Display trace buffer for user-defined protocol 71

 SNOOPer.PROTOcol.PROfileChart Profile chart for user-defined protocol 71

 SNOOPer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 71
General Commands Reference Guide S | 4©1989-2024 Lauterbach

 SNOOPer.PROTOcol.STATistic Display statistics for user-defined protocol 71

 SNOOPer.REF Set reference point for time measurement 71

 SNOOPer.RESet Reset command 71

 SNOOPer.SAVE Save trace for postprocessing in TRACE32 71

 SNOOPer.SelfArm Automatic restart of trace recording 72

 SNOOPer.SnapShot Restart trace capturing once 72

 SNOOPer.state Display trace configuration window 72

 SNOOPer.STATistic Statistic analysis 72

 SNOOPer.STATistic.DistriB Distribution analysis 72

 SNOOPer.Timing Waveform of trace buffer 72

 SNOOPer.TRACK Set tracking record 72

 SNOOPer.View Display single record 73

 SNOOPer.ZERO Align timestamps of trace and timing analyzers 73

 SPE ... 74

 SPE Signal Processing eXtension (SPE) 74

 SPE.Init Initialize SPE registers 74

 SPE.Set Modify SPE registers 74

 SPE.view Display SPE register window 75

 SSE ... 76

 SSE SSE registers (Streaming SIMD Extension) 76

 SSE.Init Initialize SSE registers 76

 SSE.Set Modify SSE registers 76

 SSE.view Display SSE registers 77

 StatCol .. 78

 StatCol Statistics collector 78

 Step ... 79

 Step Single-step 79

 Step.Asm Assembler single-step 79

 Step.Back Step backwards 79

 Step.BackChange Step back until expression changes 80

 Step.BackOver Step back over call 80

 Step.BackTill Step back until expression true 80

 Step.Change Step until expression changes 81

 Step.Diverge Step to next unreached line 82

 Step.Hll Step in HLL-mode 84

 Step.Mix Step in mixed-mode 84

 Step.Over Step over call 85

 Step.single Single-step 85

 Step.Till Step until expression true 86

 STM ... 87

 STM System trace configuration 87
General Commands Reference Guide S | 5©1989-2024 Lauterbach

 STOre .. 88

 STOre Store settings as PRACTICE script 88

 SVE ... 92

 SVE Access the scalable vector extension SVE 92

 SVE.Init Initialize SVE registers 92

 SVE.RESet Reset SVE settings 92

 SVE.Set Modify SVE registers 92

 SVE.view Display SVE registers 93

 sYmbol ... 94

 sYmbol Debug symbols 94

 Overview sYmbol 94

 sYmbol.AddInfo Provide additional symbolic information 96

 sYmbol.AddInfo.Address Add symbol information to fixed address 98

 sYmbol.AddInfo.Delete Delete information 99

 sYmbol.AddInfo.LINK Define information for 'sYmbol.AddInfo' commands 100

 sYmbol.AddInfo.List List additional information 101

 sYmbol.AddInfo.LOADASAP2 Load scaling information from ASAP2 file 101

 sYmbol.AddInfo.Member Add information to member of struct 102

 sYmbol.AddInfo.RESet Remove all additional information 104

 sYmbol.AddInfo.Type Add information to a data type 104

 sYmbol.AddInfo.Var Add information to a variable 105

 sYmbol.AutoLOAD Automated loading of symbols 106

 sYmbol.AutoLOAD.CHECK Update autoloader table 107

 sYmbol.AutoLOAD.CHECKCoMmanD Configure dynamic autoloader 108

 sYmbol.AutoLOAD.CHECKDLL Configure automatic DLL file loader 109

 sYmbol.AutoLOAD.CHECKEPOC Dynamic autoloader for Symbian 110

 sYmbol.AutoLOAD.CHECKLINUX Configure autoloader for Linux debugging 110

 sYmbol.AutoLOAD.CHECKQNX Configure autoloader for QNX debugging 111

 sYmbol.AutoLOAD.CHECKUEFI Configure autoloader for UEFI debugging 111

 sYmbol.AutoLOAD.CHECKWIN Configure autoloader 112

 sYmbol.AutoLOAD.CHECKWINCE Configure autoloader 112

 sYmbol.AutoLOAD.CLEAR Remove symbol information 113

 sYmbol.AutoLOAD.config Configure symbol autoloader 113

 sYmbol.AutoLOAD.Create Create entry for autoloader table 114

 sYmbol.AutoLOAD.Delete Delete autoloader entries 114

 sYmbol.AutoLOAD.List List autoloader table 115

 sYmbol.AutoLOAD.LOADEPOC Definition for static autoloader for Symbian 116

 sYmbol.AutoLOAD.RESet Reset autoloader 117

 sYmbol.AutoLOAD.SET Mark symbol information manually as loaded 117

 sYmbol.AutoLOAD.TOUCH Initiate automatic loading by command 118

 sYmbol.Browse Browse symbols 119

 sYmbol.Browse.Class Browse classes 119

 sYmbol.Browse.Enum Browse enumeration types 119
General Commands Reference Guide S | 6©1989-2024 Lauterbach

 sYmbol.Browse.Function Browse functions 120

 sYmbol.Browse.Module Browse modules 121

 sYmbol.Browse.MVar Browse module variables 122

 sYmbol.Browse.name Browse symbols (flat) 122

 sYmbol.Browse.SFunction Browse functions 123

 sYmbol.Browse.SModule Browse modules 125

 sYmbol.Browse.SOURCE Browse source 126

 sYmbol.Browse.Struct Browse containers for different variable types 127

 sYmbol.Browse.sYmbol Browse symbols 128

 sYmbol.Browse.Type Browse HLL types 129

 sYmbol.Browse.TypeDef Browse type definitions 130

 sYmbol.Browse.Union Browse unions 130

 sYmbol.Browse.Var Browse variables 131

 sYmbol.CASE Set symbol search mode 132

 sYmbol.CHECK Check database 132

 sYmbol.Class View class hierarchy 133

 sYmbol.CLEANUP Workarounds for redundant symbol information 134

 sYmbol.CLEANUP.DOUBLES Make ambiguous symbols unique 135

 sYmbol.ColorCode Enable color coding 135

 sYmbol.ColorDef Specify keyword colors 136

 sYmbol.CREATE Create and modify user-defined symbols 136

 sYmbol.CREATE.ATTRibute Create user-defined attribute 137

 sYmbol.CREATE.Done Finish symbol creation 137

 sYmbol.CREATE.Function Create user-defined function 138

 sYmbol.CREATE.Label Create user-defined symbol 139

 sYmbol.CREATE.LocalVar Create user-defined local variable 139

 sYmbol.CREATE.MACRO Create user-defined macro 140

 sYmbol.CREATE.Module Create user-defined module 140

 sYmbol.CREATE.RESet Erase all user-defined symbols 141

 sYmbol.CREATE.Var Create user-defined variable 141

 sYmbol.CUTLINE Limit size of text blocks 142

 sYmbol.Delete Delete symbols of one program 142

 sYmbol.DeleteMACRO Delete macro information 143

 sYmbol.DeletePATtern Delete labels from symbol database using wildcards 143

 sYmbol.DEMangle C++ demangler 143

 sYmbol.DEOBFUSCATE Deobfuscate global and static symbol 144

 sYmbol.DONE Finish load of symbols 144

 sYmbol.ECA ECA file management 145

 sYmbol.ECA.BINary Static preprocessing for code coverage 146

 sYmbol.ECA.BINary.CollapseAll Collapse all trees 146

 sYmbol.ECA.BINary.ControlFlowMode.INSTR Consider instrumentation 146

 sYmbol.ECA.BINary.ControlFlowMode.Trace Consider trace events 147

 sYmbol.ECA.BINary.EditDecision Modify start address of decision 147
General Commands Reference Guide S | 7©1989-2024 Lauterbach

 sYmbol.ECA.BINary.ExpandAll Expand all trees 148

 sYmbol.ECA.BINary.EXPORT.AdJoinGAPS Split up observability gaps 149

 sYmbol.ECA.BINary.EXPORT.Decisions Export decision details as CSV 149

 sYmbol.ECA.BINary.EXPORT.GAPS Export observability gaps to JSON 149

 sYmbol.ECA.BINary.FilterMapped Filter display by the mapping state 150

 sYmbol.ECA.BINary.FilterType Filter display by decision type 151

 sYmbol.ECA.BINary.PROCESS Static preprocessing for code coverage 151

 sYmbol.ECA.BINary.SetCONDitionOffset Set condition offset 153

 sYmbol.ECA.BINary.SetDecisionState Disable/Enable decision evaluation 154

 sYmbol.ECA.BINary.view Result of static preprocessing for code coverage 155

 sYmbol.ECA.Delete Delete loaded ECA data 157

 sYmbol.ECA.Init Clear gathered ECA data 157

 sYmbol.ECA.List List ECA file overview 157

 sYmbol.ECA.LOAD Load a single ECA file 160

 sYmbol.ECA.LOADALL Load all ECA files 161

 sYmbol.FILTER.ADD.SOURCE Add source files to filter 162

 sYmbol.FILTER.ADD.sYmbol Add symbols to filter 162

 sYmbol.FILTER.Delete Delete filter 163

 sYmbol.ForEach Symbol wildcard command 164

 sYmbol.INFO Display detailed information about debug symbol 165

 sYmbol.LANGUAGE Select language 168

 sYmbol.List Display list of all symbols 169

 sYmbol.List.ATTRibute Display memory attributes 169

 sYmbol.List.BUILTIN List built-in data types 169

 sYmbol.List.ColorDef List the keyword color definitions 170

 sYmbol.List.Enum List of enumeration constants 171

 sYmbol.List.FRAME Display frames 172

 sYmbol.List.Function Display functions 173

 sYmbol.List.IMPORT List imported symbols 173

 sYmbol.List.InlineBlock List inlined code blocks 174

 sYmbol.List.InlineFunction List inlined functions 174

 sYmbol.List.LINE Display source lines 175

 sYmbol.List.Local Display local symbols 176

 sYmbol.List.MACRO List all C macros 176

 sYmbol.List.MAP Display memory load map 177

 sYmbol.List.Module Display modules 177

 sYmbol.List.PATCH Display STF-symbol information 178

 sYmbol.List.Program Display programs 178

 sYmbol.List.REFerence Display reference information 179

 sYmbol.List.SECtion Display physical sections 180

 sYmbol.List.SOURCE Display source file names 181

 sYmbol.List.SourceFunction Display source to function relations 183

 sYmbol.List.SOURCETREE Display source files hierarchy 184
General Commands Reference Guide S | 8©1989-2024 Lauterbach

 sYmbol.List.STACK Display virtual stack 184

 sYmbol.List.Static Display static symbols 185

 sYmbol.List.TREE Display symbols in tree form 185

 sYmbol.List.Type Display data types 186

 sYmbol.LSTLOAD Load assembler source file 187

 sYmbol.LSTLOAD.GHILLS Load GHILLS assembler source file 187

 sYmbol.LSTLOAD.HPASM Load HP assembler source file 187

 sYmbol.LSTLOAD.IAR Load IAR assembler source file 189

 sYmbol.LSTLOAD.INT68K Load Intermetrics assembler source file 190

 sYmbol.LSTLOAD.INTEL Load INTEL assembler source file 190

 sYmbol.LSTLOAD.INTEL2 Load INTEL assembler source file 191

 sYmbol.LSTLOAD.KEIL Load Keil assembler source file 191

 sYmbol.LSTLOAD.MicroWare Load MICROWARE assembler source file 191

 sYmbol.LSTLOAD.MRI68K Load MICROTEC assembler source file 193

 sYmbol.LSTLOAD.OAK Load OAK assembler source file 193

 sYmbol.MARKER Fine-tune the nested function run-time analysis 194

 sYmbol.MARKER.Create Marker for nesting function run-time analysis 195

 KBEGIN/KEND Marker

 sYmbol.MARKER.Delete Delete a marker 199

 sYmbol.MARKER.List Displays the marker list 199

 sYmbol.MARKER.RESet Erase all markers 199

 sYmbol.MARKER.TOUCH Marker post-processing 200

 sYmbol.MATCH Symbol search mode 200

 sYmbol.MEMory Display memory usage 201

 sYmbol.Modify Modify symbols 202

 sYmbol.Modify.Access Modify access of symbols 202

 sYmbol.Modify.ADDRess Modify address of symbols 203

 sYmbol.Modify.AddressToRange Modify address of symbols 203

 sYmbol.Modify.AlienFunction Disable frame info for a function 204

 sYmbol.Modify.ATTRibute Modify memory attribute 204

 sYmbol.Modify.CutFunction Reduce function address information 204

 sYmbol.Modify.NAME Rename symbol 205

 sYmbol.Modify.NAMES Rename symbols 205

 sYmbol.Modify.RangeToAddress Modify address of symbols 206

 sYmbol.Modify.RangeToFunction Modify address range into function 206

 sYmbol.Modify.SOURCE Define source file 206

 sYmbol.Modify.SplitFunction Split function 207

 sYmbol.Modify.StaticCOPY Create static copy of local stack variables 207

 sYmbol.Modify.StaticToStack Change static variables 208

 sYmbol.Modify.TYPE Modify type of symbols 208

 sYmbol.name Display symbols 209

 sYmbol.NAMESPACES Search symbol in C++ namespace 211

 sYmbol.NEW Create new symbol 212
General Commands Reference Guide S | 9©1989-2024 Lauterbach

 sYmbol.NEW.ATTRibute Create user-defined memory attribute 212

 sYmbol.NEW.Function Create user-defined function 214

 sYmbol.NEW.Label Create user-defined symbol 215

 sYmbol.NEW.LocalVar Create user-defined local variable 216

 sYmbol.NEW.MACRO Create user-defined macro 216

 sYmbol.NEW.Module Create user-defined module 216

 sYmbol.NEW.Var Create user-defined variable 217

 sYmbol.OVERLAY Code overlay 218

 sYmbol.OVERLAY.AutoID Automatically determine overlay IDs 218

 sYmbol.OVERLAY.Create Declare code overlay section 220

 sYmbol.OVERLAY.DETECT Detect the current overlay status 224

 sYmbol.OVERLAY.FRIEND Declare a friend overlay segment 224

 sYmbol.OVERLAY.List Show declared code overlay sections 226

 sYmbol.OVERLAY.RESet Reset overlay declarations 226

 sYmbol.PATCH STF-symbol information 227

 sYmbol.PATCH.DISable Disable instrumentation code 227

 sYmbol.PATCH.ENable Enable instrumentation code 227

 sYmbol.PATCH.List Display STF-symbol information 228

 sYmbol.POINTER Define special register 230

 sYmbol.POSTFIX Set symbol postfix 230

 sYmbol.PREFIX Set symbol prefix 230

 sYmbol.RELOCate Relocate symbols 231

 sYmbol.RELOCate.Auto Control automatic relocation 231

 sYmbol.RELOCate.Base Define base address 232

 sYmbol.RELOCate.List List relocation info 232

 sYmbol.RELOCate.Magic Define program magic number 232

 sYmbol.RELOCate.Passive Define passive base address 233

 sYmbol.RELOCate.shift Relocate symbols 233

 sYmbol.RESet Clear symbol table 234

 sYmbol.SourceBeautify Beautify HLL lines on loading 235

 sYmbol.SourceCONVert Conversion for Japanese font 236

 sYmbol.SourceLOAD Initiate the loading of an HLL source file 237

 sYmbol.SourcePATH Source search path 238

 sYmbol.SourcePATH.Delete Delete path from search list 238

 sYmbol.SourcePATH.DOWN Make directory last in search order 239

 sYmbol.SourcePATH.List List source search paths 239

 sYmbol.SourcePATH.RESet Reset search path configuration 241

 sYmbol.SourcePATH.Set Define search path 242

 sYmbol.SourcePATH.SetBaseDir Define directory as base for relative paths 243

 sYmbol.SourcePATH.SetCache Internal use only 244

 sYmbol.SourcePATH.SetCachedDir Cache direct search path directory 244

 sYmbol.SourcePATH.SetCachedDirCache Internal use only 245

 sYmbol.SourcePATH.SetCachedDirIgnoreCache Cache direct search path 245
General Commands Reference Guide S | 10©1989-2024 Lauterbach

 sYmbol.SourcePATH.SetDir Define directory as direct search path 246

 sYmbol.SourcePATH.SetDynamicDir Adjust search order at hit 247

 sYmbol.SourcePATH.SetMasterDir Store cached files only relative 248

 sYmbol.SourcePATH.SetRecurseDir Define recursive direct search path 249

 sYmbol.SourcePATH.SetRecurseDirCache Internal use only 249

 sYmbol.SourcePATH.SetRecurseDirIgnoreCase Recursive search path 250

 sYmbol.SourcePATH.Translate Replace part of the source path 250

 sYmbol.SourcePATH.TranslateSUBpath Replace sub-path 252

 sYmbol.SourcePATH.UP Move path up in the search order 252

 sYmbol.SourcePATH.Verbose Display search details in message AREA 253

 sYmbol.SourceRELOAD Reload source files 254

 sYmbol.STATE Display statistic 254

 sYmbol.STRIP Set max. symbol length 255

 sYmbol.TYPEINFO Display information about a specific data type 255

 sYmbol.View Show symbol info 256

 SYnch ... 257

 SYnch Synchronization mechanisms between different TRACE32 systems 257

 Overview SYnch 257

 SYnch.Connect Connect to other TRACE32 PowerView instances 258

 SYnch.MasterBreak Invite other TRACE32 to stop synchronously 260

 SYnch.MasterGo Invite other TRACE32 to start synchronously 261

 SYnch.MasterStep Invite other TRACE32 to Asm step synchronously 261

 SYnch.MasterSystemMode Invite other TRACE32 to follow mode change 262

 SYnch.OFF Disable connection mechanism 262

 SYnch.ON Enable connection mechanism 262

 SYnch.RESet Reset SYnch mechanism 263

 SYnch.SlaveBreak Synchronize with stop in connected TRACE32 263

 SYnch.SlaveGo Synchronize with start in connected TRACE32 264

 SYnch.SlaveStep Synchronize with asm step in connected TRACE32 264

 SYnch.SlaveSystemMode Synch. with mode changes in other TRACE32 265

 SYnch.state Display current SYnch settings 265

 SYnch.XTrack Establish time synchronization to another TRACE32 instance 266

 SYStem ... 268

 SYStem System configuration 268

 SYStem.BdmClock Select BDM clock 268

 SYStem.BREAKTIMEOUT Define the used timeout for break 269

 SYStem.CADICommand Send a command to target 270

 SYStem.CADIconfig CADI-specific setups 271

 SYStem.CADIconfig.ExecSwOnly Filter on executing software capability 271

 SYStem.CADIconfig.RemoteServer Define connection to CADI server 271

 SYStem.CADIconfig.SpecRegDefine Define special register set 273

 SYStem.CADIconfig.SpecRegsOnly Use only special defined register set 273

 SYStem.CADIconfig.Traceconfig Define network settings to CADI trace 274
General Commands Reference Guide S | 11©1989-2024 Lauterbach

 SYStem.CADIconfig.TraceCore Define core for CADI trace 274

 SYStem.CONFIG Configure debugger according to target topology 275

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 276

 SYStem.CONFIG.CoreNumber Set up number of hardware threads 282

 SYStem.CONFIG.DEBUGPORT Specify debugport 283

 SYStem.CONFIG.DEBUGTIMESCALE Extend debug driver timeouts 286

 SYStem.CONFIG.ELA Configure Embedded Logic Analyzer (ELA) 287

 SYStem.CONFIG.ListCORE Display the cores of a virtual target 287

 SYStem.CONFIG.ListSIMulation Display the simulations of a virtual target 288

 SYStem.CONFIG.MULTITAP Select type of JTAG multi-TAP network 289

 SYStem.CONFIG.MULTITAP.JtagSEQuence JTAG seq. on SYStem.Up 290

 SYStem.CONFIG.state Display target configuration 292

 SYStem.CONFIG.TRACEPORT Declare trace source and trace port type 293

 SYStem.CONFIG.TRANSACTORPIPENAME Set up pipe name 294

 SYStem.CONFIG.USB USB configuration 294

 SYStem.CONFIG.XCP XCP specific settings 294

 SYStem.CPU Select CPU 296

 SYStem.CpuAccess Run-time memory access (intrusive) 297

 SYStem.CpuBreak Master control to deny stopping the target (long stop) 298

 SYStem.CpuSpot Master control to deny spotting the target (short stop) 299

 SYStem.DCI DCI configuration 299

 SYStem.DETECT Detect target system resources 300

 The System Detection Wizard 302

 Daisy-Chain Detection via the TRACE32 AREA Window 304

 SYStem.DLLCommand Custom DLL connection to target 304

 SYStem.InfineonDAS Configure the InfineonDAS debug port 305

 SYStem.IRISconfig IRIS-specific setups 306

 SYStem.IRISconfig.RemoteServer Define connection to IRIS server 306

 SYStem.JtagClock Define JTAG frequency 307

 SYStem.LOG Log read and write accesses to the target 308

 SYStem.LOG.CLEAR Clear the ‘SYStem.LOG.List’ window 309

 SYStem.LOG.CLOSE Close the system log file 310

 SYStem.LOG.Init Clear the 'SYStem.LOG.List' window 310

 SYStem.LOG.List Log the accesses made by TRACE32 311

 SYStem.LOG.Mode Set logging mode 312

 SYStem.LOG.OFF Pause logging 313

 SYStem.LOG.ON Resume logging 313

 SYStem.LOG.OPEN Open a system log file 314

 SYStem.LOG.RESet Reset configuration of system log to defaults 314

 SYStem.LOG.Set Select the TRACE32 accesses to be logged 315

 SYStem.LOG.SIZE Define number of lines in the ‘SYStem.LOG.List’ window 316

 SYStem.LOG.state Open configuration window of system log 317

 SYStem.LOG.StopOnError Stop logging on error 318
General Commands Reference Guide S | 12©1989-2024 Lauterbach

 SYStem.MCDCommand Send command to MCD server 318

 SYStem.MCDconfig Send configuration to MCD server 319

 SYStem.MemAccess Select run-time memory access method 320

 SYStem.Mode Select mode 321

 SYStem.Option Special setup 321

 SYStem.Option.IMASKASM Disable interrupts while single stepping 322

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 322

 SYStem.Option.MACHINESPACES Address extension for guest OSes 322

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 323

 SYStem.Option.ZoneSPACES Enable symbol management for zones 324

 SYStem.PAUSE Pause the execution of operations 325

 SYStem.POLLING Polling mode of CPU 326

 SYStem.PORT Configure external communication interface 327

 SYStem.RESet Reset configuration 328

 SYStem.RESetOut Reset peripherals 328

 SYStem.RESetTarget Release target reset 328

 SYStem.state Display SYStem.state window 329

 SYStem.TARGET Set target IP name or address 330

 SYStem.VirtualTiming Modify timing constraints 331

 SYStem.VirtualTiming.HardwareTimeout Disable/enable hardware timeout 332

 SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout 332

 SYStem.VirtualTiming.InternalClock Base for artificial time calculation 333

 SYStem.VirtualTiming.MaxPause Limit pause 334

 SYStem.VirtualTiming.MaxTimeout Override time-outs 334

 SYStem.VirtualTiming.OperationPause Insert a pause after each operation 335

 SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base 335

 SYStem.VirtualTiming.PauseScale Multiply pause with a factor 336

 SYStem.VirtualTiming.PollingPause Advance emulation time when polling 336

 SYStem.VirtualTiming.TimeinTargetTime Set up general time-base 337

 SYStem.VirtualTiming.TimeScale Multiply time-base with a factor 338

 SystemTrace .. 339

 SystemTrace MIPI STP and CoreSight ITM 339

 SystemTrace.state Open system-trace configuration window 341

General Commands Reference Guide S | 13©1989-2024 Lauterbach

General Commands Reference Guide S

Version 06-Jun-2024

History

26-Mar-2024 New command sYmbol.ECA.BINary.EXPORT.AdJoinGAPS.

19-Feb-2024 Description for sYmbol.AutoLOAD.List updated.

24-Oct-2023 Description for SYStem.CONFIG.DEBUGPORT updated.

16-Oct-2023 Description for sYmbol.ECA.BINary.PROCESS updated.

16-Oct-2023 New command sYmbol.ECA.BINary.ControlFlowMode.INSTR,
sYmbol.ECA.BINary.ControlFlowMode.Trace and sYmbol.ECA.BINary.EXPORT.GAPS.

23-Aug-2023 New command sYmbol.List.Enum.

19-May-2023 Updated the window sYmbol.ECA.List by introducing a new checkbox LENient and
replacing the column Time with signature.

26-Apr-2023 Renamed sYmbol.ECA.BINary.EXPORT to sYmbol.ECA.BINary.EXPORT.Decisions.

12-Aug-2022 New option /WinTOP for the command STOre.

28-Jul-2022 Updated description of sYmbol.MATCH Best.

13-Apr-2022 New command sYmbol.DEOBFUSCATE.

24-Jan-2022 New command sYmbol.ECA.BINary.PROCESS.

Dec-2021 Added description for the command sYmbol.ECA.Init.

Dec-2021 Added description for the command sYmbol.CLEANUP.AlignmentPaddings.
General Commands Reference Guide S | 14©1989-2024 Lauterbach

SELFTEST

SELFTEST Execute selftest operation

Executes the SELFTEST operation. Error results are shown in the selected AREA window.

Format: SELFTEST
General Commands Reference Guide S | 15©1989-2024 Lauterbach

SETUP

SETUP Setup commands

Using the SETUP command group, many parameters of the debugger or window system can be changed.

For additional SETUP commands, refer to the SETUP commands in “PowerView Command Reference”
(ide_ref.pdf).

See also

■ SETUP.ALIST ■ SETUP.BreakPointTableWalk
■ SETUP.BreakTransfer ■ SETUP.COLORCORE
■ SETUP.DIS ■ SETUP.DUMP
■ SETUP.EMUPATH ■ SETUP.GoOnPaused
■ SETUP.IMASKASM ■ SETUP.IMASKHLL
■ SETUP.LISTCLICK ■ SETUP.PROCESS
■ SETUP.SIMULINK ■ SETUP.StepAllCores
■ SETUP.StepAtBreakPoint ■ SETUP.StepAutoAsm
■ SETUP.StepBeforeGo ■ SETUP.StepByStep
■ SETUP.StepNoBreak ■ SETUP.StepOnPaused
■ SETUP.StepTrace ■ SETUP.StepWithinBreakpoints
■ SETUP.StepWithinTask ■ SETUP.sYmbol
■ SETUP.TIMEOUT ■ SETUP.Var
■ SETUP.VarCall ■ SETUP.VarPtr
■ SETUP.VerifyBreakSet

▲ ’SETUP’ in ’PowerView Command Reference’
General Commands Reference Guide S | 16©1989-2024 Lauterbach

SETUP.ALIST Default analyzer display

The SETUP.ALIST commands allow to set up the default display of the Analyzer.List command.

See also

■ SETUP

SETUP.ALIST.RESet Reset analyzer display

Resets analyzer display to the default settings.

SETUP.ALIST.set Default analyzer display

The syntax of the command is the same as the channel selection for the command Analyzer.List. The
option defines if the Flowtrace or the Bustrace analyzer should be used as default by all analyzer display
commands.

Example:

SETUP.BreakPointTableWalk Set up MMU translation for breakpoints

When set to ON, this command enables MMU translation for breakpoint tag delete.

See also

■ SETUP

Format: SETUP.ALIST.RESet

Format: SETUP.ALIST.set <items> … [/BT | /FT]

SETUP.ALIST Address CPU TIme.REF ; display external trace, cpu and
time

Format: SETUP.BreakPointTableWalk [ON | OFF]
General Commands Reference Guide S | 17©1989-2024 Lauterbach

SETUP.BreakTransfer Breakpoint synchronization

This command is deprecated because the TRACE32 TCF integration provides a synchronization between
TRACE32 PowerView and Eclipse. For example, setting a breakpoint or executing a single step at the
TRACE32 side will be reported to Eclipse and vice versa.

For more information, see “TRACE32 as TCF Agent” (app_tcf_setup.pdf).

See also

■ SETUP

SETUP.COLORCORE Enable coloring for core-specific info in SMP systems

See also

■ SETUP

▲ ’PowerView - Screen Display’ in ’PowerView User’s Guide’

Format: SETUP.BreakTransfer [ON | OFF] (deprecated)

Format: SETUP.COLORCORE [ON | OFF]

ON
(default)

Core-specific information is displayed against a colored window
background (SMP debugging and tracing only).

OFF Coloring of core-specific information is disabled.
General Commands Reference Guide S | 18©1989-2024 Lauterbach

SETUP.DIS Disassembler configuration

The command sets default values for configuring the disassembler output of newly created windows (e.g.
Data.List). The command does not affect existing windows containing disassembler output.

Among other things the size of columns and the format of for constants (signed, unsigned, …) can be
configured.

The first four parameters for this command configure the size of the columns in disassembler output:

The next two arguments limit the movement of the PC bar within the window:

With these arguments, you can configure the display of constants and symbols:

Format: SETUP.DIS [<fields> [<bar>]] [<constants>]

<fields>: [<code>] [<label>] [<mnemonic>] [<comment>]

<bar>: [<head>] [<bottom>]

<constants>: [Hex | Decimal] [Signed | Unsigned] [Absolut | sYmbol]

<code> Number of displayed code bytes. Set to zero is possible.

<label> Size of the label field.

<mnemonic> Size of the mnemonic field.

<comment> Size of the comment field.

<head> Size of reserved area on the top of the window (in percent).

<bottom> Size of reserved area in bottom of window.

Hex In the mnemonic field the constants are displayed in hex.

Decimal In the mnemonic field the constants are displayed in decimal.

Signed The constants are displayed as signed numbers.

Unsigned The constants are displayed as unsigned numbers.
General Commands Reference Guide S | 19©1989-2024 Lauterbach

There might be more architecture specific keywords. E.g.: For the 68K family there is an additional
parameter <traparg> to specify the number of bytes to be used as argument after trap commands (for OS-
9). For PowerPC you can use Simple (default) or Generic to chose between simple or generic mnemonics.
Please see the related Processor Architecture Manual for architecture specific keywords.

Example:

See also

■ SETUP ■ List ■ List.auto

SETUP.DUMP Defaults for hex-dumps

Example:

See also

■ SETUP ■ Data.dump ■ Var.DUMP

Absolut In the mnemonic field the constants are displayed absolute, with the
comment field they are displayed symbolically.

sYmbol The constants are displayed symbolically within the mnemonic field.

SETUP.DIS Unsigned ; display constants as unsigned values

SETUP.DIS sYmbol ; Switch to symbolic display of constants

Format: SETUP.DUMP [/<option> …]

<option> For a description of the options, see Data.dump.

SETUP.DUMP /Byte ; display width is now byte by default
General Commands Reference Guide S | 20©1989-2024 Lauterbach

SETUP.EMUPATH Emulation softkeys configuration

The most left softkey selects emulation softkeys. These softkeys will be defined by this command.

gives the following softkeys:

See also

■ SETUP

SETUP.GoOnPaused Route go to paused core
Virtual targets only: MCD

Default: OFF.

See also

■ SETUP

Format: SETUP.EMUPATH "<command>" …

SETUP.EMUPATH "s." "g.n" "r." "fpu." "d.s 0x0ff000 0x0" "r.res"

Format: SETUP.GoOnPaused [ON | OFF]

ON Go command will be sent to a core even if it is in “paused” state.

OFF If selected core is “paused” state, Go command will be sent to the next
core which is in “stopped” state.
General Commands Reference Guide S | 21©1989-2024 Lauterbach

SETUP.IMASKASM Mask interrupts during assembler step

If enabled, the interrupt enable bit of the microcontroller will be disabled during single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt enable bit is
restored to the value before the step. This command is not implemented within all emulation probes.

See also

■ SETUP ■ Step.single

▲ ’Release Information’ in ’Legacy Release History’

SETUP.IMASKHLL Mask interrupts during HLL step

If enabled, the interrupt enable bit of the microcontroller will be disabled during HLL single-step operation.
The interrupt routine is not executed during single-step operations. After single step the interrupt enable bit is
restored to the value before the step. This command is not implemented within all emulation probes.

See also

■ SETUP ■ Step.single

▲ ’Release Information’ in ’Legacy Release History’

Format: SETUP.IMASKASM [ON | OFF]

NOTE: On some processors this modification is also seen by the user program. So this
option can affect the flow of the target program. Accesses to the interrupt-enable bit
can see the wrong values. Operations to modify the interrupt enable bit may not
work as expected.

Format: SETUP.IMASKHLL [ON | OFF]

NOTE: By changing the register through target software, this option can affect the flow of
the target program. Accesses to the interrupt-enable bit will see the wrong values.
Operations to modify the interrupt enable bit will not work as expected. When the
HLL line enables the interrupts (e.g. in an RTOS function call) then pending
interrupts will be executed.
General Commands Reference Guide S | 22©1989-2024 Lauterbach

SETUP.LISTCLICK Double-click source line symbol to run this action

Executes the defined <command> when you double-click a variable or function in HLL-source (with the left
mouse key). The name of the variable/function is appended to the command. The characters '?' or '*' can be
used to mark the position of the variable/function name in the command. Lines with '*' will be executed
without further input query.

Example 1: Default action when you double-click a function in a TRACE32 window, e.g. in the List.Mix
window:

Example 2: Default action when you double-click a variable in a TRACE32 window, e.g. in the List.Mix
window:

Example 3: A user-defined action:

See also

■ SETUP ■ List ■ List.auto ■ WinOverlay

Format: SETUP.LISTCLICK "<command>"

; display a listing for the double-clicked function in a new List
; window that is superimposed on the previous List window
SETUP.LISTCLICK "WinOverlay.List `*`"

SETUP.LISTCLICK "Var ?" ; lets you modify the variable in
the
; TRACE32 command line

SETUP.LISTCLICK "Var.View %Multiline *" ; open a temporary window with
variable
General Commands Reference Guide S | 23©1989-2024 Lauterbach

SETUP.PROCESS Processing percentage in statistics window

Default: OFF.

See also

■ SETUP

SETUP.SIMULINK Deprecated command

This command is no longer needed in the new integration. For information about the new TRACE32
Simulink integration, refer to “Integration for Simulink” (int_simulink.pdf).

See also

■ SETUP

Format: SETUP.PROCESS [ON | OFF]

OFF While trace is processing, the string “PROCESING” is displayed on the
top left corner of <trace>.STATistic windows.

ON While trace is processing, the processing percentage is displayed on the
top left corner of <trace>.STATistic windows.

Format: SETUP.SIMULINK ON [/<option>] | OFF (deprecated)

<option>: <release> | IntegrationDir <init_dir> | ToModelAlways | <debug>

<release>: R2010A | R2010B | R2011A | R2011B | R2012A | R2012B | R2010A |
R2013A | R2013B | R2014A | R2014B

<debug>: Verbose | NoExchange
General Commands Reference Guide S | 24©1989-2024 Lauterbach

SETUP.StepAllCores Force single stepping on all cores

Default: OFF.

Forces assembler single stepping on all cores of an SMP system.

If you debug a multicore system in SMP configuration a single step on HLL code affects all cores while single
stepping on ASM code does affect only the active core.
By switching SETUP.StepAllCores to ON also single steps on assembler level will affect all cores.

Lauterbach recommends to keep SETUP.StepAllCores OFF

Support of this feature depends on your CPU.
Setting SETUP.StepAllCores to ON might have no effect.
The setting is supported for MPC5xxx PowerPCs. It is not yet supported for ARM or TriCore.
Please contact Lauterbach, if you need this feature for your target architecture.

By just typing the command and appending a blank, you can view the current setting in the TRACE32
message line.
By executing the command without arguments, SETUP.StepAllCores toggles the current setting.

See also

■ SETUP

Format: SETUP.StepAllCores [ON | OFF]
General Commands Reference Guide S | 25©1989-2024 Lauterbach

SETUP.StepAtBreakPoint Single step to skip breakpoint

When interrupts are pending and the emulation is started on a breakpoint, it is possible that the target
executes the interrupt routine and returns to the same breakpoint location after. The debugging 'hangs' on
the breakpoints. To avoid this, this option will first execute a single step when the program would start on a
breakpoint. On some processors with internal interrupt sources, the SETUP.IMASKASM option must also
be turned ON. This option is usually the default for ICD.

See also

■ SETUP

SETUP.StepAutoAsm HLL steps stops at assembler code

When a single step is performed in HLL debug mode and the target address of the step is code without HLL
information (e.g. a module compiled without HLL debug symbols), the debugger will per default continue
single stepping in the background until the next HLL line is reached (i.e. step from HLL line to HLL line). If the
setting it turned ON, the debugger will stop at the address without debug symbols. Use this setting to debug
modules without HLL debug information or compiler generated code sections.

See also

■ SETUP

▲ ’Release Information’ in ’Legacy Release History’

Format: SETUP.StepAtBreakPoint [ON | OFF | DEFault]
SETUP.StepBreak [ON | OFF] (deprecated)

DEFault Selects the architecture’s default behavior.

OFF Performs an ASM single step before continuing program execution after a
Go.

ON Immediately continues program execution after a Go.

Format: SETUP.AutoAsm [ON | OFF]
General Commands Reference Guide S | 26©1989-2024 Lauterbach

SETUP.StepBeforeGo Single step before go

Perform an ASM single step before each Go. In contrast to the SETUP.StepAtBreakPoint command, this
option steps always regardless the emulation is started on a breakpoint or not.

See also

■ SETUP

SETUP.StepByStep Single step HLL lines

Single steps HLL when executing an HLL step. On some processors with internal interrupt sources, the
SETUP.IMASKASM option must also be turned on to avoid stepping through the interrupt program.

See also

■ SETUP

SETUP.StepNoBreak Stepping HLL lines with disabled breakpoints

See also

■ SETUP

Format: SETUP.StepBeforeGo [ON | OFF]

OFF Performs an ASM single step before continuing program execution after a
Go.

ON Immediately continues program execution after a Go.

Format: SETUP.StepByStep [ON | OFF]

Format: SETUP.StepNoBreak [ON | OFF]

OFF User-defined breakpoints are active while single stepping in HLL.

ON User-defined breakpoints are not active while single stepping in HLL.
General Commands Reference Guide S | 27©1989-2024 Lauterbach

SETUP.StepOnPaused Route step to selected core
Virtual targets only: MCD

Default: OFF.

See also

■ SETUP

SETUP.StepTrace Show stepping trail in list window

If this option is enabled, list windows will show stepping trails.

See also

■ SETUP

SETUP.StepWithinBreakpoints Multi-core step on SMP systems

Enables/disables multi-core step on SMP systems.

See also

■ SETUP

Format: SETUP.StepOnPaused [ON | OFF]

ON The MCD step command is also sent to a core in “paused” state.

OFF The MCD step command is sent to the next core which is in “stopped”
state and not in “paused stated.

Format: SETUP.StepTrace [ON | OFF]

Format: SETUP.StepWithinBreakpoints [ON | OFF]
General Commands Reference Guide S | 28©1989-2024 Lauterbach

SETUP.StepWithinTask Task selective stepping

When enabled all HLL stepping and temporary breakpoints will be task selective (on the currently active
task). This allows to step and debug shared code without stopping in another task.

See also

■ SETUP

SETUP.sYmbol Length of symbols

Configures the width of the columns for the symbol display commands. The SETUP.sYmbol command only
affects the display of symbols, not the number of significant characters during symbol entry.

See also

■ SETUP ■ List ■ List.auto ■ sYmbol.Browse

Format: SETUP.StepWithinTask [ON | OFF]

Format: SETUP.sYmbol <path_len> <name_len> <type_len> [ON | OFF]

<path_len> Sets the default display width for columns which hold a complete symbol
path, including program and module names.
An example is the width of the path\symbol column in the sYmbol.List
window.

<name_len> Sets the default display width for single symbol names.
An example is the width of the symbol column in the sYmbol.Browse
window.

<type_len> Sets the default display width for columns holding information on the
symbol type.
An example is the width of the type column in the sYmbol.Browse
window.

ON, OFF Displays or hides the program name in symbol paths. An example is the
path in the path\symbol column of the sYmbol.List window.
General Commands Reference Guide S | 29©1989-2024 Lauterbach

SETUP.TIMEOUT Define emulation monitor time-out

Values larger than 1 stretch the time-out delay within the emulation monitor. This value determines, how long
a window waits for becoming inactive. Short values will result in a fast screen update, but may result in
flickering windows when a spot point or the OS Awareness is active. Large values will cause a slower update
on the screen when real-time emulation is running.

See also

■ SETUP ■ Data.dump ■ Data.Test ■ List
■ List.auto

Format: SETUP.TIMEOUT <factor>
General Commands Reference Guide S | 30©1989-2024 Lauterbach

SETUP.Var Defaults for the Var commands
[Buttons] [Examples]

Defines the default formatting of variables in Var windows.

• Without <format> parameters, the SETUP.Var command opens the SETUP.Var dialog window.
(Same as choosing Var menu > Format from the TRACE32 menu bar.)

• With one or more parameters: The settings can be changed via the TRACE32 command line or a
PRACTICE script (*.cmm) while the dialog window remains closed.

Your settings are used during a TRACE32 session, or until you change the settings again during the same
session.

Format: SETUP.Var [%<format> …]

<format> For a description of the <formats>, see section “Display Formats” of the Var
command group.
General Commands Reference Guide S | 31©1989-2024 Lauterbach

[A] - Description of Buttons in the SETUP.Var Window

A Global format settings.

Use the command SETUP.Var, or choose Var menu > Format to open the SETUP.Var dialog
window.
In this dialog window, you can make format settings that apply to all Var.* windows you open
afterwards. Your changes have no effect on Var.* windows that are already open.
For a description of the buttons in the SETUP.Var dialog window, see table [A] below.

B Local format settings.

Right-click any variable in a Var.* window, and then select Format from the popup menu to open the
Change Variable Format dialog window.
Use this dialog window to format just a particular variable or all variables in a particular Var.*
window.
For a description of the buttons in the Change Variable Format dialog window, see table [B] below.

STanDard Selects only the check boxes that belong to the built-in standard settings. All
other check boxes are cleared.

Apply as Default Applies your settings without closing the dialog window.

OK Applies your settings and closes the dialog window.

BA
General Commands Reference Guide S | 32©1989-2024 Lauterbach

[B] - Description of Buttons in the Change Variable Format Dialog Window

STanDard Selects only the check boxes that belong to the built-in standard settings. All
other check boxes are cleared.

Apply Applies the settings only to a particular variable you have selected in a
particular Var.* window.
The formatting of the other variables remains unchanged.

Apply to Window Applies the settings to all variables displayed in a particular Var.* window.

To apply new format settings to a particular Var.* window only:

1. Right-click any variable in the desired Var.* window, and then
select Format from the popup menu.
The Change Variable Format dialog window opens.

2. Make your new settings.

3. Click Apply to Window.

The new settings are applied as local format settings to this
particular Var.* window only.

NOTE: All the other Var.* windows continue to use the global format
settings as configured in the SETUP.Var dialog window.

Apply as Default The local format settings of a particular Var.* window become the new
global format settings.
You can view the new configuration in the SETUP.Var dialog window.

OK Applies your settings and closes the dialog window.
General Commands Reference Guide S | 33©1989-2024 Lauterbach

Examples

Example 1: Three <format> settings are switched on while the SETUP.Var dialog window remains closed.
Then the Var.Watch window is opened, displaying the variable ast in the new format:

Example 2: The built-in <format> standard is restored.

See also

■ SETUP ■ Var

▲ ’Var’ in ’General Commands Reference Guide V’
▲ ’Format Variable’ in ’Training Source Level Debugging’

SETUP.Var %Decimal.on %Hex.on %BINary.on ; see above screenshot [A]

Var.Watch flags ast

A Decimal.on B Hex.on C BINary.on

SETUP.Var %STanDard ; restores the built-in
 ; standard

A B C
General Commands Reference Guide S | 34©1989-2024 Lauterbach

SETUP.VarCall Define call dummy routine

If a function is called from the Var commands, a dummy routine is placed in memory to catch the processor
after the called function has terminated. Under normal circumstances this code is never reached, as the HLL
debugger breaks, when the end of the function is reached. If the command Var.Call is used, a Go command
may start the function without any breakpoints set to the return point. In this cases, the processor will loop
endless in the 'dummy' routine. Processors with linear addressing usually require no fixed address, the
routine is kept on the stack. Processors with special addressing, like 8051 cannot keep a function on the
stack. For this processors the command SETUP.VarCall can define a free location in code memory to hold
the endless loop of the dummy function. The required space is usually two bytes.

Example:

See also

■ SETUP

Format: SETUP.VarCall [<address>]

SETUP.VarCall P:0x00fff0
Var.NEWLOCAL \x
Var.Call \x=func5(4,8,17)

; place the dummy routine at P:0x00fff0
; create virtual variable for result
; call a function of the target program
General Commands Reference Guide S | 35©1989-2024 Lauterbach

SETUP.VarPtr Limit pointer access

Defines the address ranges for valid memory pointers. This range is checked whenever an automatic
access to the contents of a pointer is made. Pointer referenced by an HLL expression are not checked
against this range.

See also

■ SETUP

SETUP.VerifyBreakSet Additional verification for software breakpoints

Default: OFF

Setting SETUP.VerifyBreakSet to ON forces the debugger to perform an additional verification whenever a
software breakpoint become active or inactive.

See also

■ SETUP

Format: SETUP.VarPtr [<address_range>]

SETUP.VarPtr 0x0--0x0ffff
Var vpchar = 0x123456 ; set pointer to character to

; 123456

Var *vpchar ; manual access to pointer, not
; checked

displays: *vpchar = 0

Var %Recursive vpchar
displays: vpchar = 0x123456 ->
INVALID

; automatic pointer access is
; checked

SETUP.VarPtr 0x0--0x0ffffff ; enlarge the address space for
; pointers

Var %Recursive vpchar
displays: vpchar = 0x123456 -> 0x0

; automatic pointer access is
; checked

SETUP.VarPtr 0x0--0x1ffff||0x800000--0x80ffff

Format: SETUP.VerifyBreakSet [ON | OFF]
General Commands Reference Guide S | 36©1989-2024 Lauterbach

SIM

SIM TRACE32 Instruction Set Simulators

The SIM command group covers the following features for the TRACE32 Instruction Set Simulators:

• Cache/MMU/MPU simulation: configuration, enabling and basic analysis

Cache simulation is currently only fully implemented for the ARM architecture. It can be
implemented for other architectures on request.

Please be aware that enabling the cache/MMU simulation slows down the simulator
performance.

• Trace generation: configuration

• Peripheral Simulation Models: load and unload

For more information on the PSM refer to “API for TRACE32 Instruction Set Simulator”
(simulator_api.pdf) and “Library for Peripheral Simulation” (simulator_api_lib.pdf).

See also

■ SIM.AREA ■ SIM.CACHE ■ SIM.command ■ SIM.INTerrupt
■ SIM.List ■ SIM.LOAD ■ SIM.RESet ■ SIM.UNLOAD

SIM.AREA Selects area for simulation output
.

Specify output AREA for API function SIMUL_Printf(simulProcessor processor, const char *format, …).

Example:

See also

■ SIM ■ SIM.command

Format: SIM.AREA <name>

AREA.Create SimulOut ; create a new AREA

AREA.view SimulOut ; display created AREA

SIM.AREA SimulOut ; assign AREA to SIMUL_Printf
; function
General Commands Reference Guide S | 37©1989-2024 Lauterbach

SIM.CACHE Cache/MMU simulation and more
.

Command group for cache/MMU simulation, simulation of tightly-coupled memory, simulator trace
generation and more.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the SIM.CACHE.state
window.

See also

■ SIM.CACHE.Allocation ■ SIM.CACHE.Mode ■ SIM.CACHE.MPURegions ■ SIM.CACHE.OFF
■ SIM.CACHE.ON ■ SIM.CACHE.Replacement ■ SIM.CACHE.SETS ■ SIM.CACHE.state
■ SIM.CACHE.Tags ■ SIM.CACHE.TRACE ■ SIM.CACHE.View ■ SIM.CACHE.ViewTLB
■ SIM.CACHE.WAYS ■ SIM.CACHE.Width ■ SIM ■ SIM.command

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide S | 38©1989-2024 Lauterbach

SIM.CACHE.Allocation Define the cache allocation technique

Describes how the CPU deals with a cache miss on a data store/write access.

In the SIM.CACHE.state window, the Allocation field shows the cache properties of the selected CPU. If
these properties do not fit, they should be changed before a SYStem.Up.

The allocation technique is taken from the MMU if SIM.CACHE.Mode is set to MMU.

See also

■ SIM.CACHE ■ SIM.CACHE.state

Format: SIM.CACHE.Allocation <cache_type> ReadAlloc | WriteAlloc

<cache_
type>:

DC | L2 | L3 | …

ReadAlloc The data from a memory address is only loaded to the cache on
read/load accesses.

WriteAlloc The data from a memory address is loaded to the cache on a store/write
access and the new data is written in the cache line. If it is also
stored/written to memory depends on the cache mode (write-through or
copy-back).

SIM.CACHE.Allocation IC ReadAlloc ; the instruction cache is a
; read allocate cache
General Commands Reference Guide S | 39©1989-2024 Lauterbach

SIM.CACHE.Mode Define memory coherency strategy

Defines the strategy used for the memory coherency. It is recommended to perform this setup before
SYStem.Up.

See also

■ SIM.CACHE ■ SIM.CACHE.state

SIM.CACHE.MPURegions Specify MPU regions

Defines the number of MPU regions implemented on your Cortex-R4 core.

See also

■ SIM.CACHE ■ SIM.CACHE.state

Format: SIM.CACHE.Mode ITCM | DTCM <mode>

<mode>: CopyBack
WriteThrough
MMU

CopyBack Copy back strategy guarantees memory coherency.
When a cache hit occurred for a data store/write, the cache contents is
updated and the corresponding cache line is marked as dirty. The data
value is copied back to memory when the contents of the cache line is
evicted.

WriteThrough Write Through strategy guarantees memory coherency.
When a cache hit occurs for a data store/write, the cache contents is
updated and the data is also stored/written to memory.

MMU The strategy for memory coherency is taken from the MMU.

Format: SIM.CACHE.MPURegions <region>
General Commands Reference Guide S | 40©1989-2024 Lauterbach

SIM.CACHE.OFF Disable cache and MMU simulation

Disables cache and MMU simulation.

See also

■ SIM.CACHE ■ SIM.CACHE.state

SIM.CACHE.ON Enable cache and MMU simulation

Enables cache and MMU simulation.

See also

■ SIM.CACHE ■ SIM.CACHE.state

SIM.CACHE.Replacement Define the replacement strategy

Defines the replacement strategy for each cache.

Format: SIM.CACHE.OFF

Format: SIM.CACHE.ON

Format: SIM.CACHE.Replacement <cache> <replace>

<cache>: ITLB | DTLB | TLB0 | TLB1

<replace>: NONE
Random
FreeRandom
LRU
MMU
General Commands Reference Guide S | 41©1989-2024 Lauterbach

In the SIM.CACHE.state window, the Replacement field shows the cache properties of the selected CPU. If
these properties do not fit, they should be changed before a SYStem.Up.

See also

■ SIM.CACHE ■ SIM.CACHE.state

Cyclic Cyclic (round-robin) replacement strategy is used. One round robin
counter for each cache set.

Random Random replacement strategy is used.

LRU Last recently used replacement strategy is used.

MMU The replacement strategy is defined by the CPU.
Please use SIM.CACHE.Replacement MMU if your CPU uses a not listed
replacement strategy.
General Commands Reference Guide S | 42©1989-2024 Lauterbach

SIM.CACHE.SETS Define the number of cache/TLB sets

Defines the number of cache/TLB sets.

In the SIM.CACHE.state window, the SETS field shows the cache properties of the selected CPU. If these
properties do not fit, they should be changed before a SYStem.Up.

See also

■ SIM.CACHE ■ SIM.CACHE.state

Format: SIM.CACHE.SETS <cache> <number>

<cache>: TLB0 | TLB1
General Commands Reference Guide S | 43©1989-2024 Lauterbach

SIM.CACHE.state Display cache and MMU settings

Displays the simulator settings for cache and MMU.

See also

■ SIM.CACHE ■ SIM.CACHE.Allocation ■ SIM.CACHE.Mode ■ SIM.CACHE.MPURegions
■ SIM.CACHE.OFF ■ SIM.CACHE.ON ■ SIM.CACHE.Replacement ■ SIM.CACHE.SETS
■ SIM.CACHE.Tags ■ SIM.CACHE.TRACE ■ SIM.CACHE.View ■ SIM.CACHE.ViewTLB
■ SIM.CACHE.WAYS ■ SIM.CACHE.Width

Format: SIM.CACHE.state

A For descriptions of the commands in the SIM.CACHE.state window, please refer to the
SIM.CACHE.* commands in this chapter.

Example: For information about ON, see SIM.CACHE.ON.

A

General Commands Reference Guide S | 44©1989-2024 Lauterbach

SIM.CACHE.Tags Define address mode for cache lines

Defines the address mode for cache lines. The address mode for the cache lines is taken from the MMU if
SIM.CACHE.Mode is set to MMU. It is recommended to perform this setup before SYStem.Up.

See also

■ SIM.CACHE ■ SIM.CACHE.state

SIM.CACHE.TRACE Select simulator trace method

See also

■ SIM.CACHE ■ SIM.CACHE.state

Format: SIM.CACHE.Tags <cache> <tag>

<tag>: VIVT
PIPT
VIPT
AVIVT

VIVT Virtual Index, Virtual Tag
The logical address is used as tag for a cache line.

PIPT Physical Index, Physical Tag
The physical address is used as tag for a cache line.

VIPT Virtual Index, Physical Tag

AVIVT Address Space ID + Virtual Index, Virtual Tag

Format: SIM.CACHE.TRACE BusTrace | CoreTrace

BusTrace Trace information is generated for all bus transfers.

E.g. if the cache is simulated trace information is generated for the burst
cycles that filled the cache lines.

CoreTrace
(default)

Trace information is generated for all executed instructions and
performed load/store operations. Cache accesses are included.
General Commands Reference Guide S | 45©1989-2024 Lauterbach

SIM.CACHE.View Analysis of memory accesses for cache simulation

Displays an analysis of the simulated memory accesses if cache simulation is used. Analysis results can be
displayed while program execution is running.

For detailed information on the interpretation of the results, refer to the CTS.CACHE.View command.

See also

■ SIM.CACHE ■ SIM.CACHE.state

SIM.CACHE.ViewTLB Analysis of TLB accesses for MMU simulation

Displays an analysis of the simulated TLB accesses if MMU simulation is used. Analysis results can be
displayed while program execution is running.

See also

■ SIM.CACHE ■ SIM.CACHE.state

Format: SIM.CACHE.View

Format: SIM.CACHE.ViewTLB
General Commands Reference Guide S | 46©1989-2024 Lauterbach

SIM.CACHE.WAYS Define number of cache ways

Defines the number of cache ways (blocks) for each cache.

In the SIM.CACHE.state window, the WAYS field shows the cache properties of the selected CPU. If these
properties do not fit, they should be changed before a SYStem.Up.

Example:

See also

■ SIM.CACHE ■ SIM.CACHE.state

SIM.CACHE.Width Define width of cache line

Defines the width of a single cache line in bytes.

In the SIM.CACHE.state window, the Width field shows the cache properties of the selected CPU. If these
properties do not fit, they should be changed before a SYStem.Up.

Example:

See also

■ SIM.CACHE ■ SIM.CACHE.state

Format: SIM.CACHE.WAYS <cache> <ways>

<cache>: IC | DC | L2 | L3 | ITLB | DTLB | TLB0 | TLB1

SIM.CACHE.WAYS IC 4. ; The instruction CACHE has 4 blocks

Format: SIM.CACHE.Width IC | DC | L2 | L3 <width>

SIM.CACHE.Width IC 32. ; A cache line for the instruction cache
; is 32. byte
General Commands Reference Guide S | 47©1989-2024 Lauterbach

SIM.command Issue command to simulation model

Issues a command to all loaded simulation models. The parameters are interpreted by the loaded models.

See also

■ SIM ■ SIM.AREA ■ SIM.CACHE ■ SIM.INTerrupt
■ SIM.List ■ SIM.LOAD ■ SIM.RESet ■ SIM.UNLOAD

SIM.INTerrupt Trigger interrupt

Triggers the specified interrupt.

Not all arguments are supported or required by all architectures.

Example for MPC55xx:

Example for TriCore:

See also

■ SIM ■ SIM.command

Format: SIM.command <cmd> [<string>] [<address>] [<time>] [<value>]

Format: SIM.INTerrupt <level> <vector>

SIM.INTerrupt , 0x20 ; no priority required that is
; why "," is used

; interrupt vector 0x0 is triggered

SIM.INTerrupt 15. ; the interrupt is triggered by its
; corresponding level

; <vector> is not supported,
; instead the vector is calculated
; from the BIV register value
General Commands Reference Guide S | 48©1989-2024 Lauterbach

SIM.List List loaded simulator models
.

See also

■ SIM ■ SIM.command

SIM.LOAD Load simulator module

Loads simulator DLL. The parameters are specific for the loaded DLL.

Example:

See also

■ SIM ■ SIM.command

▲ ’Release Information’ in ’Legacy Release History’

SIM.RESet Reset TRACE32 Instruction Set Simulator
.

Unloads all loaded DLL and resets all time base.

See also

■ SIM ■ SIM.command

Format: SIM.List

Format: SIM.LOAD <file> [<parameter> …]

SIM.RESet
SIM.LOAD demoport.dll 20000 0

; reset simulator
; loads DLL with your parameters

Format: SIM.RESet
General Commands Reference Guide S | 49©1989-2024 Lauterbach

SIM.UNLOAD Unload simulator module

Unloads a simulator DLL.

Example:

See also

■ SIM ■ SIM.command

Format: SIM.UNLOAD [<file>]

SIM.UNLOAD demoport.dll ; unload specified DLL

SIM.UNLOAD ; unload all DLLs
General Commands Reference Guide S | 50©1989-2024 Lauterbach

SLTrace

SLTrace Trace sink for SYStem.LOG events

The SLTrace command group allows to trace and analyze the SYStem.LOG events, i.e. the read and write
accesses TRACE32 performs to the target hardware.

This is useful for analyzing critical timing of accesses done by the debugger. It may help to improve the
speed of remote API calls.

Format: SLTrace.<trace_windows>

<trace_
windows>:

List | Chart.Distrib | ProfileChart.DistriB | STATistic.DistriB

<trace_windows> You can view the system-log trace in chart, profile chart, trace listing or trace
statistic windows. For your convenience, the <trace_windows> are directly
accessible from the SYStem.LOG.state window, as shown below [B].

For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of SLTrace.List refer to <trace>.List

C

A

B

General Commands Reference Guide S | 51©1989-2024 Lauterbach

See also

■ SYStem.LOG ■ SYStem.LOG.state

SLTrace.state Display configuration window

Displays the SLTrace.state window, where you can configure the SLTrace.

A Set the SYStem.LOG to OFF so that the recorded system-log trace can be displayed in a
<trace_window> or an existing <trace_window> can be refreshed with the latest the system-log trace.

B To open a <trace_window>, click the button you want in the SYStem.LOG.state window [B].

C Diagonal lines in a <trace_window> indicate that a system-log trace is being recorded and that the
window has not yet been updated, i.e. SYStem.LOG is still ON.

Format: SLTrace.state
General Commands Reference Guide S | 52©1989-2024 Lauterbach

SNOOPer

SNOOPer Sample-based trace

The SNOOPer trace is one of the TRACE32 trace methods which allows to gain runtime information with
just a debugger. In order to get the runtime information the debugger periodically reads out information such
as memory/variable contents, the program counter, or other system information while the program execution
is running.

Ideally, the debugger can read this information non-intrusively. The readout period is in the microsecond
range in this case. If this is not possible, the program execution has to be stopped periodically to read the
desired information. The readout periods then tend to be in the millisecond range.

To achieve high SNOOPer frequencies, the sampling is performed by the software running on the TRACE32
debug hardware where the collected samples are times-stamped and stored to a temporary buffer. The
buffer contents is read by TRACE32 PowerView after the recording stopped or is streamed to the host
during recording if the temporary buffer within the debug hardware is smaller than the trace buffer size
requested by the user.

If a TRACE32 software-only tool is used, the readout periods can be larger depending on the
communication link in use. Since the sampling software runs on the host computer, it is more likely that the
SNOOPer is suspended by other programs running there.

The “Application Note for the SNOOPer Trace” (app_snooper.pdf) introduces standard use cases and
contains important information about the technical conditions of the SNOOPer trace.

The trace features of the SNOOPer can be configured and controlled with the command group SNOOPer.

The chapter “SNOOPer-specific Trace Commands”, page 54 describes the SNOOPer-specific
configuration commands. While the chapter “Generic SNOOPer Trace Commands”, page 66 lists the
SNOOPer trace analysis and display commands, which are generic for all TRACE32 trace methods.

See also

■ Trace.METHOD

▲ ’Introduction’ in ’Application Note for the SNOOPer Trace’
▲ ’Generic SNOOPer Trace Commands’ in ’General Commands Reference Guide S’
▲ ’SNOOPer-specific Trace Commands’ in ’General Commands Reference Guide S’
▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide S | 53©1989-2024 Lauterbach

SNOOPer-specific Trace Commands

SNOOPer.<specific_cmds> Overview of SNOOPer-specific commands

See also

■ SNOOPer.SELect ■ SNOOPer.SIZE ■ SNOOPer.CORE ■ SNOOPer.Mode
■ SNOOPer.PC ■ SNOOPer.Rate ■ SNOOPer.TDelay ■ SNOOPer.TOut
■ SNOOPer.TValue

▲ ’SNOOPer’ in ’General Commands Reference Guide S’

SNOOPer.CORE Select cores for PC snooping

Selects all or specified cores for PC snooping.

Example: In this script, the cores 0. and 3. of an SMP system are selected for PC snooping with the
command SNOOPer.CORE. The result is then displayed in the SNOOPer.List window.

Prerequisite: The cores to be snooped have been assigned to the TRACE32 PowerView GUI with the
command CORE.ASSIGN.

Format: SNOOPer.CORE [<number>…]

<number> If no argument is specified, then the command selects all cores.

SNOOPer.state ;optional step: open the SNOOPer.state window

SNOOPer.Mode PC ;set the operation mode of the SNOOPer trace
 ;to PC snooping

SNOOPer.CORE 0. 3. ;select cores for PC snooping

Go ;start SNOOPer trace recording
WAIT 2.s
Break ;stop recording

SNOOPer.List ;display the result
General Commands Reference Guide S | 54©1989-2024 Lauterbach

See also

■ SNOOPer.<specific_cmds>

▲ ’Release Information’ in ’Legacy Release History’

SNOOPer.ERRORSTOP Set behavior on sampling errors

Default: ON.

Set SNOOPer behavior when on sampling error. When this command is set to OFF, the SNOOPer continues
sampling after a sampling error occurs.

A 0 in the run column stands for core 0.
3 stands for core 3.

Format: SNOOPer.ERRORSTOP [ON | OFF]

A

General Commands Reference Guide S | 55©1989-2024 Lauterbach

SNOOPer.Mode Set operation mode of SNOOPer trace
[Example]

Selects the operation mode of the SNOOPer trace. This command can be used to configure the sampling
object, the trace recording mode, and various further operation modes.

Sampling objects:

Format: SNOOPer.Mode <mode>

<mode>: Memory
PC
PC+MMU
BMC
DCC
ETM
ETM32
SFT

Fifo
Stack

Changes [ON | OFF]
SLAVE [ON | OFF]
StopAndGo [ON | OFF]
AddressTrace [ON | OFF]
FAST [ON | OFF]
ContextID [ON | OFF]
JITTER [ON | OFF]

Memory Samples the contents of up to 16 memory addresses/scalar variables.

PC Samples the program counter (PC).
This operation mode of the SNOOPer trace is referred to as PC snooping.
General Commands Reference Guide S | 56©1989-2024 Lauterbach

Recording modes:

PC+MMU Samples the program counter (PC) and the space ID.
This operation mode of the SNOOPer trace is referred to as PC snooping.

If the target processor has a memory management unit (MMU) and a
target operating system (e.g. Linux) is used, several processes/tasks can
run at the same logical addresses. In this scenario, the logical address
sampled by the SNOOPer trace is not sufficient to assign the sampled
PC to a program location. For a clear assignment, the information about
the current task is also required.
The PC+MMU mode can be used for this purpose: With every sample,
the SNOOPer trace will read the actual program counter and the memory
address containing the information about the current task. However, this
mode is always intrusive, since the current task and the program counter
have to be read exactly at the same time, which can only be achieved by
stopping the program execution.
For details, refer to your OS Awareness Manual.

BMC Samples all active benchmark counters.

DCC Samples data via Debug Communication Channel.
(This command is locked if your processor architecture does not provide
a Debug Communication Channel.)

ETM Samples the ETM counter (16-bit).
(This command is locked/unknown if your core has no ETM.)

ETM32 Samples the ETM counter (32-bit).
(This command is locked/unknown if your core has no ETM.)

SFT SFT software trace via LPD4 debug mode for RH850 processors. For
details refer to “RH850 Debugger and Trace” (debugger_rh850.pdf).

Fifo If the SNOOPer trace is full, new records will overwrite older records. The
trace always records the last cycles before the program execution is
stopped.

Stack If the SNOOPer trace is full, recording will be stopped. The trace always
records the first cycles after starting the program execution.
General Commands Reference Guide S | 57©1989-2024 Lauterbach

Further operation modes:

Changes Samples only data changes.

SLAVE ON: Ties the trace to the execution of the program, i.e. trace and the
trigger work only during user program execution.
OFF: Separates the trace from the program execution, i.e. trace is
recording even when the program execution is stopped.
(This command is only required in exceptional cases).

StopAndGo Stops the target processor periodically to collect the data of interest.
TRACE32 sets this automatically, if no runtime access of the configured
sampling object is possible.

AddressTrace The sampled data values are handled as addresses.

FAST On certain ARM based derivatives from Texas Instruments (e.g.
OMAP3xxx) this mode increases the maximum sampling rate of the
snooper. This mode may not be used in multi-core debug sessions or if
the core will be powered down.

ContextID Samples the ARM Context ID register. This option is only available for
some ARM cores.

JITTER When enabled, this option applies a random jitter to sampling time.
General Commands Reference Guide S | 58©1989-2024 Lauterbach

Example for AddressTrace Mode: Sample the content of a function pointer.

See also

■ SNOOPer.<specific_cmds> ■ <trace>.Mode

▲ ’Release Information’ in ’Legacy Release History’

SNOOPer.Mode Memory

SNOOPer.SELect Var.RANGE(funcptr)

…

SNOOPer.Mode AddressTrace ON ;advise TRACE32 to display the
;data value as address
General Commands Reference Guide S | 59©1989-2024 Lauterbach

SNOOPer.PC Enable PC snooping

Reads the PC without stopping the target (PC-snooping).

See also

■ SNOOPer.<specific_cmds>

Format: SNOOPer.PC [ON | OFF]

SNoop.PC Prints the current PC in the state line (only once).

SNoop.PC ON | OFF Enables or disables permanent updates of the PC in the state line.
General Commands Reference Guide S | 60©1989-2024 Lauterbach

SNOOPer.Rate Select sampling rate

Selects the sampling rate. The rate can be specified as time interval or as number of samples/s. The defined
rate is not guaranteed. The actual frequency used by the SNOOPer may be lower depending on the target
CPU and the sampling object.

Example:

See also

■ SNOOPer.<specific_cmds>

SNOOPer.SELect Define address for monitoring
[Examples]

Defines the sampling addresses for the SNOOPer trace Memory mode. Up to 16 sampling addresses can
be specified using the SNOOPer.SELect command. The parameter can be an address or an address
range. If the parameter is a single address, the access site is per default one byte. This is also true if a
symbolic address is used (e.g. HLL variable).

Format: SNOOPer.Rate <value> | <time>

SNOOPer.Rate 1000000. ; set to 1 MHz sample rate

SNOOPer.Rate 1.us ; same operation, 1 MHz sample rate

Format: SNOOPer.SELect [[%<format>] <address> | <range>] [[%<format>]
 <address> | <range>…] [/<option>]

<format>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
CORE <core_number>

<option>: DIALOG
General Commands Reference Guide S | 61©1989-2024 Lauterbach

When executed without arguments, the SNOOPer.SELect command clears all previously set sampling
addresses.

Examples

Example 1:

Example 2:

Example 3: If more than one byte have to be sampled, the access size has to be specified using the
<format> option, e.g. %Word or %Long.

Byte (default),
Word, TByte, Long,
PByte, HByte, SByte

Access size
• Byte (8-bit accesses) Word (16-bit accesses)
• TByte (24-bit accesses) Long (32-bit accesses)
• PByte (40-bit accesses) HByte (48-bit accesses)
• SByte (56-bit accesses) Quad (64-bit accesses)
•

CORE
<core_number>

Performs the sampling on the specified core.

DIALOG If the SNOOPer.SELect command is entered with the DIALOG option, a
dialog is displayed.

SNOOPer.SELect /DIALOG

SNOOPer.SELect 0x10000000 ; sample one byte from address 0x1000

SNOOPer.SELect mcount ; sample one byte from integer variable
 ; mcount

SNOOPer.SELect %Word 0x1000 ; sample two bytes from address 0x1000

SNOOPer.SELect %Long mcount ; sample four bytes from integer
 ; variable mcount
General Commands Reference Guide S | 62©1989-2024 Lauterbach

Example 4: If the parameter is an address range, the access size is automatically set to the size of the
range.

Example 5: If more that one address should be sampled, the addresses have to be specified using one
single SNOOPer.SELect command. The access size has to be specified for each sampling address.

See also

■ SNOOPer.<specific_cmds>

SNOOPer.SIZE Define trace buffer size

Sets the size of the SNOOPer trace memory. The size is specified in number of records (samples).
TRACE32 PowerView allocates memory on the host for the requested size. The SNOOPer trace buffer size
is thus only limited by the resources of the host.

See also

■ SNOOPer.<specific_cmds>

SNOOPer.TDelay Define trigger delay

Selects the delay between the trigger point and the execution of the trigger action defined with
SNOOPer.TOut. The delay can be specified in number of records or as percentage of the SNOOPer trace
depth.

SNOOPer.SELect 0x1000--0x1001 ; sample two bytes from address 0x1000

SNOOPer.SELect Var.RANGE(mcount) ; sample the address range of the
 ; variable mcount

Var.RANGE(<hll_expression>) Returns the address range occupied by the
specified HLL expression

SNOOPer.SELect %Long mcount %Word plot1 0x1000--0x1001

Format: SNOOPer.SIZE <records>

Format: SNOOPer.TDelay <records> | <percent>%
General Commands Reference Guide S | 63©1989-2024 Lauterbach

Example:

See also

■ SNOOPer.<specific_cmds>

SNOOPer.TOut Define the trigger destination

Defines the <trigger_action> that should be executed when the value defined with the SNOOPer.TValue
command is sampled. This command is used in conjunction with the SNOOPer Memory and PC modes.

See also

■ SNOOPer.<specific_cmds>

SNOOPer.TDelay 1000. ; sample 1000. records after the ;trigger
; point then execute the trigger action.

SNOOPer.TDelay 40% ; continue with the sampling after the
; trigger point until 40% of the trace
; buffer are filled then execute the
; trigger action.

Format: SNOOPer.TOut <trigger_action>

<trigger_
action>:

Trace | Program | PULSE | BUSA

Trace Stop the SNOOPer trace recording.

Program Stop program execution.

PULSE Trigger pulse generator.

BUSA Trigger bus line A.
General Commands Reference Guide S | 64©1989-2024 Lauterbach

SNOOPer.TValue Define data value for trigger

Defines the data value, data value range or bit mask that should trigger the action defined with the
SNOOPer.TOut command. This command is used in conjunction with the SNOOPer Memory and PC
modes.

Example:

See also

■ SNOOPer.<specific_cmds>

Format: SNOOPer.TValue <value> | <range> | <bitmask>

SNOOPer.TValue 0x1 ; trigger the TOut action when the value
; 0x1 is sampled

SNOOPer.TValue 0xA00--0xAFF ; trigger the TOut action when a value
; within the data range 0xA00--0xAFF is
; sampled

SNOOPer.TValue !0 ; trigger the TOut action when a value
; different from 0 is sampled
General Commands Reference Guide S | 65©1989-2024 Lauterbach

Generic SNOOPer Trace Commands

SNOOPer.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

SNOOPer.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

SNOOPer.AutoArm Arm automatically

See command <trace>.AutoArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

SNOOPer.AutoInit Automatic initialization

See command <trace>.AutoInit in 'General Commands Reference Guide T' (general_ref_t.pdf, page 140).

SNOOPer.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

SNOOPer.BookMarkToggle Toggles a single trace bookmark

See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).
General Commands Reference Guide S | 66©1989-2024 Lauterbach

SNOOPer.Chart Display trace contents graphically

See command <trace>.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf, page 144).

SNOOPer.Chart.DistriB Distribution display graphically

See command <trace>.Chart.DistriB in 'General Commands Reference Guide T' (general_ref_t.pdf, page
159).

SNOOPer.Chart.sYmbol Symbol analysis

See command <trace>.Chart.sYmbol in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 173).

SNOOPer.Chart.VarState Variable activity chart

See command <trace>.Chart.VarState in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 189).

SNOOPer.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

SNOOPer.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

SNOOPer.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).
General Commands Reference Guide S | 67©1989-2024 Lauterbach

SNOOPer.DRAW.channel Plot no-data values against time

See command <trace>.DRAW.channel in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 204).

SNOOPer.DRAW.Var Plot variable values against time

See command <trace>.DRAW.Var in 'General Commands Reference Guide T' (general_ref_t.pdf, page
210).

SNOOPer.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in 'General Commands Reference Guide T' (general_ref_t.pdf, page
212).

SNOOPer.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

SNOOPer.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

SNOOPer.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

SNOOPer.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).
General Commands Reference Guide S | 68©1989-2024 Lauterbach

SNOOPer.Get Display input level

See command <trace>.Get in 'General Commands Reference Guide T' (general_ref_t.pdf, page 242).

SNOOPer.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

SNOOPer.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

SNOOPer.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

SNOOPer.ListVar List variable recorded to trace

See command <trace>.ListVar in 'General Commands Reference Guide T' (general_ref_t.pdf, page 266).

SNOOPer.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

SNOOPer.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

SNOOPer.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).
General Commands Reference Guide S | 69©1989-2024 Lauterbach

SNOOPer.PROfileChart.COUNTER Display a profile chart

See command <trace>.PROfileChart.COUNTER in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 293).

SNOOPer.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

SNOOPer.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).

SNOOPer.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

SNOOPer.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

SNOOPer.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

SNOOPer.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 343).
General Commands Reference Guide S | 70©1989-2024 Lauterbach

SNOOPer.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

SNOOPer.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

SNOOPer.PROTOcol.PROfileSTATistic Profile chart for user-defined
protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

SNOOPer.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 350).

SNOOPer.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

SNOOPer.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

SNOOPer.SAVE Save trace for postprocessing in TRACE32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).
General Commands Reference Guide S | 71©1989-2024 Lauterbach

SNOOPer.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
362).

SNOOPer.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

SNOOPer.state Display trace configuration window

See command <trace>.state in 'General Commands Reference Guide T' (general_ref_t.pdf, page 376).

SNOOPer.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

SNOOPer.STATistic.DistriB Distribution analysis

See command <trace>.STATistic.DistriB in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 401).

SNOOPer.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

SNOOPer.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).
General Commands Reference Guide S | 72©1989-2024 Lauterbach

SNOOPer.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

SNOOPer.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).
General Commands Reference Guide S | 73©1989-2024 Lauterbach

SPE

SPE Signal Processing eXtension (SPE)
PowerPC 55xx/85xx only

The SPE command group is used to display and modify the SPE (Signal Processing eXtension) registers for
PowerPC.

See also

■ SPE.Init ■ SPE.Set ■ SPE.view ❏ SPE()

▲ ’SPE Function’ in ’General Function Reference’

SPE.Init Initialize SPE registers
PowerPC 55xx/85xx only

Initializes all SPE registers to zero.

See also

■ SPE ■ SPE.view

SPE.Set Modify SPE registers
PowerPC 55xx/85xx only

Writes the given value to the specified SPE register.

Format: SPE.Init
SPE.RESet (deprecated)

Format: SPE.Set <register> <value> [/<option>]

<register>: R0..R31 | ACC | SPEFSCR

<option> For a description of the options, see Register.view.

R0..R31 and ACC Are 64-bit values that are entered as 16-digits hex values. See example.
General Commands Reference Guide S | 74©1989-2024 Lauterbach

Example:

See also

■ SPE ■ SPE.view

SPE.view Display SPE register window
PowerPC 55xx/85xx only

Opens a window displaying the SPE vector registers R0..R31, ACC and SPEFSCR.

See also

■ SPE ■ SPE.Init ■ SPE.Set ❏ SPE()

SPE.Set R15 0x123456789ABCDEF0
SPE.Set ACC 0xFFFFFFFFFFFFFFFF

Format: SPE.view [/<option>]

<option> For a description of the options, see Register.view.
General Commands Reference Guide S | 75©1989-2024 Lauterbach

SSE

SSE SSE registers (Streaming SIMD Extension)
Intel® x86

The SSE command group is used to display and modify the SSE (Streaming SIMD Extensions) registers for

Intel® x86.

See also

■ SSE.Init ■ SSE.Set ■ SSE.view ❏ SSE()

▲ ’Command Groups for Special Registers’ in ’Intel® x86/x64 Debugger’
▲ ’SSE Function’ in ’General Function Reference’

SSE.Init Initialize SSE registers
Intel® x86

Sets the SSE registers to their default values.

See also

■ SSE

SSE.Set Modify SSE registers
Intel® x86

Modifies the SSE registers.

See also

■ SSE

Format: SSE.Init

Format: SSE.Set <register> <value> … [/<option>]

<option> For a description of the options, see Register.view.
General Commands Reference Guide S | 76©1989-2024 Lauterbach

SSE.view Display SSE registers
Intel® x86

Displays the SSE registers.

See also

■ SSE

▲ ’Release Information’ in ’Legacy Release History’

Format: SSE.view [/<option>]

<option> For a description of the options, see Register.view.
General Commands Reference Guide S | 77©1989-2024 Lauterbach

StatCol

StatCol Statistics collector

For a description of the StatCol commands, see “System Trace User’s Guide” (trace_stm.pdf).
General Commands Reference Guide S | 78©1989-2024 Lauterbach

Step

Step Single-step

Using the Step command group, you can step through the program in a controlled way, executing an
assembly opcode, a source line or a function at a time.

See also

■ Step.Asm ■ Step.Back ■ Step.BackChange ■ Step.BackOver
■ Step.BackTill ■ Step.Change ■ Step.Diverge ■ Step.Hll
■ Step.Mix ■ Step.Over ■ Step.single ■ Step.Till
■ Go ■ List

▲ ’Release Information’ in ’Legacy Release History’

Step.Asm Assembler single-step

Switches to assembler mode before performing the required single steps via the Step command. The
performed steps are assembly steps.

See also

■ Step ■ Step.single

Step.Back Step backwards

This command can only be used together with the Context Tracking System (CTS). The command steps
back one assembler instruction or one HLL line. Under certain conditions, the command automatically
activates CTS when it is turned off.

See also

■ Step ■ Step.single

Format: Step.Asm [<count>]

Format: Step.Back
General Commands Reference Guide S | 79©1989-2024 Lauterbach

Step.BackChange Step back until expression changes

Steps back till the expression changes. The command will stop also, if the expression cannot be evaluated.

Example:

See also

■ Step ■ Step.single

▲ ’Release Information’ in ’Legacy Release History’

Step.BackOver Step back over call

This command can only be used together with the Context Tracking System (CTS). The command steps
back one assembler instruction or one HLL line.

Under certain conditions, the command automatically activates CTS when it is turned off.

See also

■ Step ■ Step.single

▲ ’Release Information’ in ’Legacy Release History’

Step.BackTill Step back until expression true

Steps back till the boolean expression becomes true. The command will stop also, if the expression cannot
be evaluated.

Format: Step.BackChange

Step.BackChange Register(A7) ; steps till register A7 changes

Step.BackChange
Data.Long(sd:0x100)

; steps till the longword at
location
; 100 changes

Format: Step.BackOver

Format: Step.BackTill [<boolean_expression>]
General Commands Reference Guide S | 80©1989-2024 Lauterbach

Example:

See also

■ Step ■ Step.single

Step.Change Step until expression changes

Steps till the expression changes. The command will stop also, if the expression cannot be evaluated.

Example:

See also

■ Step ■ Step.single

Step.BackTill Register(A7)>0x1000 ; steps till register A7 is larger
; than 1000

Step.BackTill
Data.Long(sd:0x100)==0x0

; steps till the longword at
; location 100 gets the value 0

Format: Step.Change [<expression>]

Step.Change Register(A7) ; steps till register A7 changes

Step.Change Data.Long(SD:0x100) ; steps till the long word at
 ; location 100 changes
General Commands Reference Guide S | 81©1989-2024 Lauterbach

Step.Diverge Step to next unreached line

The Step.Diverge command can be used to exit loops or to fast forward to not yet reached HLL lines. It
performs Step.Over repeatedly until an HLL line is reached which has not been reached in the previous
steps.

TRACE32 maintains a list of all HLL lines which were already reached. These reached lines are marked with
a slim grey line in the List window (see picture below).

In ASM/MIX mode, Step.Diverge applies to assembler code lines instead of HLL lines.

The reached lines list is cleared when you use the Go.direct command without address or the Break
command while the program execution is stopped.

The reached lines list is not cleared at the following commands:

• Step.single, Step.Over, Step.Change <expression>, Step.Till <condition>

• Var.Step.Change <hll_expression>, Var.Step.Till <hll_condition>

• Go.Return, Go.Up, Go.direct <address>

• Var.Go.direct <hll_expression>

Format: Step.Diverge
General Commands Reference Guide S | 82©1989-2024 Lauterbach

See also

■ Step ■ Step.single

▲ ’Release Information’ in ’Legacy Release History’

The debugger did
not reach the
else branch yet
General Commands Reference Guide S | 83©1989-2024 Lauterbach

Step.Hll Step in HLL-mode

Similar to the Step.single command, except that simultaneous switching into high-level language mode
occurs.

See also

■ Step ■ Step.Mix ■ Step.single

▲ ’Release Information’ in ’Legacy Release History’

Step.Mix Step in mixed-mode

Similar to the Step.single command, except that simultaneous switching into mixed mode takes place.

See also

■ Step ■ Step.Hll ■ Step.single

Format: Step.Hll [<count>]

Format: Step.Mix [<count>]
General Commands Reference Guide S | 84©1989-2024 Lauterbach

Step.Over Step over call

Steps within a function and runs called functions in real-time.

The method for this command is depends, whether the operation-mode is HLL or assembler (ASM/MIX).

See also

■ Step ■ Step.single

▲ ’Release Information’ in ’Legacy Release History’

Step.single Single-step

Executes one program step until the next assembler instruction or HLL line, depending on the current debug
mode, is reached. <count> is the number of command executions (default is 1).

Examples:

See also

■ Step ■ Step.Asm ■ Step.Back ■ Step.BackChange
■ Step.BackOver ■ Step.BackTill ■ Step.Change ■ Step.Diverge
■ Step.Hll ■ Step.Mix ■ Step.Over ■ Step.Till
■ SETUP.IMASKASM ■ SETUP.IMASKHLL ■ Var.Step

Format: Step.Over

ASM In assembler mode the debugger reads the instruction at the current PC.
On a CALL instruction a Go.Next command is executed. All other
instructions will cause a regular single-step command.

HLL In HLL mode the system first executes an HLL single-step. After this step
it checks, whether the PC is still in the same function. If the PC has left
the function it will check the value addressed by the SP. With that value
being within the original function, the program is continued to that point. If
this address contains no HLL breakpoint the above procedure will be
repeated (HLL step …).

Format: Step.single [<count>]

Step.single
Step.single 10.

; single step
; 10 steps
General Commands Reference Guide S | 85©1989-2024 Lauterbach

Step.Till Step until expression true

Steps till the boolean expression becomes true. The command will stop also if the expression cannot be
evaluated.

Examples:

See also

■ Step ■ Step.single

Format: Step.Till [<boolean_expression>]

Step.Till Register(A7)>0x1000 ; steps till register A7 is larger
 ; than 1000

Step.Till Data.Long(SD:0x100)==0x0 ; steps till the long word at
 ; location 100 gets the value 0
General Commands Reference Guide S | 86©1989-2024 Lauterbach

STM

STM System trace configuration
STM by ARM, STM and STDI by Texas Instruments

A system trace is a hardware module on a SoC which enables the developer to output predefined hardware
or software messages without affecting the run-time behavior of the system.

For a description of the STM commands, see “System Trace User’s Guide” (trace_stm.pdf).
General Commands Reference Guide S | 87©1989-2024 Lauterbach

STOre

STOre Store settings as PRACTICE script

Stores settings in the format of a PRACTICE script (*.cmm). The script can be executed by using the DO
command.

Format: STOre <file> [[%<format>]<item> …] [/<option>]

<format>: sYmbol | NosYmbol

<item>: default | ALL | Win | WinPAGE | WinTOP | SYStem …

<option>: NoDate

<format> Description

sYmbol Addresses (e.g. for the commands Break or GROUP) are stored as
symbols. With this option, breakpoints can be stored and recalled for a
newer version of the program with different addresses. The keyword must
be entered before the item which shall be stored. The default can be set
with SETUP.STOre.SYMBOLIC.

NosYmbol Addresses (e.g. for the commands Break or GROUP) are stored as scalar
values (plain hex). With this option, stored breakpoints can be recalled
when no debug symbols are available. The keyword must be entered
before the item which shall be stored.

<item> Description

no item specified If no item is specified, then the default setting is used; see default below.

AREA Store the current AREA settings.

ALL Store all settings.

Analyzer See Analyzer command.

AnalyzerFocus Save the current AUTOFOCUS configuration to a file.

ART See ART command.

BookMark Store the settings of trace bookmarks and address bookmarks - see
BookMark command.
To export bookmarks as an XML file, see BookMark.EXPORT.

Break Store breakpoints - see Break command.

BSDL Store the boundary scan settings. See BSDL command.
General Commands Reference Guide S | 88©1989-2024 Lauterbach

CAnalyzer See CAnalyzer command.

CAnalyzerFocus Store the electrical settings for the CAnalyzer. See
CAnalyzer.ShowFocus.

CIProbe See CIProbe command.

Count See Count command.

default Some settings are stored by default, except for the window setting.

EDITOR Store the auto-indentation settings, etc. for all TRACE32 editors. See
SETUP.EDITOR.

FDX See FDX command.

FLASH (For diagnostic purposes only.) Store the FLASH declaration displayed in
the FLASH.List window and the settings made with the FLASH.TARGET
command.

GLOBAL Stores global PRACTICE macros with the current values - see GLOBAL
command.

GROUP See GROUP command.

HELP Stores help settings and bookmarks - see HELP command

HISTory See HISTory command.

LA Logic Analyzer - see LA command.

LOGGER See LOGGER command.

MAP See MAP command.

MARKER See sYmbol.MARKER.

NAME See NAME command.

NoDate
(deprecated)

Omit the date at the beginning of the generated script. Use the option
/NoDate instead.
This item is deprecated since Sep/2023.

On-chip See Onchip command.

PBREAK Stores the breakpoints created for PRACTICE scripts (*.cmm). See
PBREAK command group.

PERF Performance Analyzer - see PERF command.

POD See POD command.

Register, RegSet See Register command.

SNOOP See SNOOP command.

SPATH Source search path - see sYmbol.SPATH command.

SPATHCACHE Stores cached directories from the sYmbol.SPATH command.

<item> Description
General Commands Reference Guide S | 89©1989-2024 Lauterbach

Example: executing the following STOre command in TRACE32 PowerView for ARM64 connected to Zynq-
Ultrascale+ processor

Symbolic | HEX
(deprecated)

Addresses are stored as symbols or scalar values (plain hex). Use the
format parameter %sYmbol or %NosYmbol instead.

SYnch See SYnch command.

SYStem See SYS command.

TRANSlation Store all static address TRANSlations as well as all common, transparent
and protected address ranges as displayed by command
TRANSlation.List.

TrOnchip Trigger Onchip - see TrOnchip command.

TrPOD Trigger Probe - see TP command.

VCO See VCO command.

Win Store entire window configuration.

WinPAGE Store the current window page. See WinPAGE command.

WinTOP Store the active window. See WinTOP command.

<option> Description

NoDate Omit the comment containing the current date at the beginning of the
generated PRACTICE script file (*.cmm).

STOre ~~~\test.cmm SYStem

<item> Description
General Commands Reference Guide S | 90©1989-2024 Lauterbach

produces the following file:

See also

■ AutoSTOre ■ BookMark.List ■ ClipSTOre ■ SETUP.QUITDO
■ SETUP.STOre

B::

SYStem.RESet
SYStem.CPU ZYNQ-ULTRASCALE+-APU
SYStem.CONFIG CoreNumber 4.
SYStem.CONFIG CORE 1. 1.
CORE.ASSIGN 1. 2. 3. 4.
SYStem.MemAccess DAP
SYStem.CpuBreak Enable
SYStem.CpuSpot Enable
SYStem.JtagClock 10.MHz
SYStem.Option.MMUPLM OFF
SYStem.Option.ENRESET OFF
SYStem.Option.TRST OFF
SYStem.CONFIG.DAPIRPRE 0.
SYStem.CONFIG.DAPDRPRE 0.
SYStem.CONFIG.DAPIRPOST 12.
SYStem.CONFIG.DAPDRPOST 1.
SYStem.CONFIG.SLAVE OFF
SYStem.CONFIG.TAPState SELectDRscan
SYStem.Mode Up

ENDDO
General Commands Reference Guide S | 91©1989-2024 Lauterbach

SVE

SVE Access the scalable vector extension SVE

This command group allows to access the scalable vector extension (SVE). They are available for the
processor architecture ARMv8.2 and newer.

SVE.Init Initialize SVE registers

Sets the SVE registers to their default values.

SVE.RESet Reset SVE settings

Resets debugger SVE settings.

SVE.Set Modify SVE registers

Allows to modify SVE registers. Predicate registers and the FFR cannot be modified.

Registers can be modified with either floating-point values, or hexadecimal values.

Format: SVE.Init

Format: SVE.RESet

Format: SVE.Set
General Commands Reference Guide S | 92©1989-2024 Lauterbach

SVE.view Display SVE registers

All accessible SVE registers are displayed in a window. The contents of this window depend on the
implemented vector size.

The FFR register cannot be displayed. Predicate registers are read only.

Format: SVE.view
General Commands Reference Guide S | 93©1989-2024 Lauterbach

sYmbol

sYmbol Debug symbols

See also

■ sYmbol.AddInfo ■ sYmbol.AutoLOAD ■ sYmbol.Browse ■ sYmbol.CASE
■ sYmbol.CHECK ■ sYmbol.Class ■ sYmbol.CLEANUP ■ sYmbol.ColorCode
■ sYmbol.ColorDef ■ sYmbol.CREATE ■ sYmbol.CUTLINE ■ sYmbol.Delete
■ sYmbol.DeleteMACRO ■ sYmbol.DeletePATtern ■ sYmbol.DEMangle ■ sYmbol.DEOBFUSCATE
■ sYmbol.DONE ■ sYmbol.ECA ■ sYmbol.ForEach ■ sYmbol.INFO
■ sYmbol.LANGUAGE ■ sYmbol.List ■ sYmbol.LSTLOAD ■ sYmbol.MARKER
■ sYmbol.MATCH ■ sYmbol.MEMory ■ sYmbol.Modify ■ sYmbol.name
■ sYmbol.NAMESPACES ■ sYmbol.NEW ■ sYmbol.OVERLAY ■ sYmbol.PATCH
■ sYmbol.POINTER ■ sYmbol.POSTFIX ■ sYmbol.PREFIX ■ sYmbol.RELOCate
■ sYmbol.RESet ■ sYmbol.SourceBeautify ■ sYmbol.SourceCONVert ■ sYmbol.SourceLOAD
■ sYmbol.SourcePATH ■ sYmbol.SourceRELOAD ■ sYmbol.STATE ■ sYmbol.STRIP
■ sYmbol.TYPEINFO ■ sYmbol.View

▲ ’sYmbol Functions’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’

Overview sYmbol

Using the sYmbol command group, you can list, browse, or modify existing symbols and create new
symbols.

Symbolic information is stored in several tables combined with one another. For details about the syntax of
symbols, search paths and C++ support, refer to the description of the Var command group.

Statics Contains all static symbols, i.e. symbols with a fixed address. The symbol
may be local related to a function, a module or a program.

Functions Contains all function blocks and additional information about functions,
i.e. virtual frame pointers, register usage, stack frame layout.

Locals All local symbols of a function. The ranges of validity are also contained
in this table.

Modules A module is one separately compiled program unit, i.e. one source file.

Types High level language types and the physical description. Only named
types are included in this table.

Sources Contains a list of all HLL source files and the path names to the sources.

SPATH List of directories of the source search path.
General Commands Reference Guide S | 94©1989-2024 Lauterbach

PRACTICE Functions

Refer to “sYmbol Functions” in General Function Reference, page 304 (general_func.pdf).

Lines High level language source lines, respectively blocks. On one address
can be one high level language block only.

Sections Logical and physical program address ranges. According to the compiler
a differentiation between 'CODE', 'DATA', 'BSS', 'ROMABLE' etc. is made.
For each section special access rights are valid.

Programs Usually only one program is loaded. If more than one has been loaded,
the option NoClear must be used together with the Data.LOAD
command.

Stacks Contains information about the stack frame. Usually this is the offset
between a register in the processor and a “virtual frame pointer”. This
information is needed when there is no real frame pointer register used
by highly optimizing compilers.

Attributes This table is target dependent. It may contain information about different
processor executing environments (e.g. ARM/Thumb) or special code
constructs (e.g. jump tables or literal data in code).

Macros Contains the contents of preprocessor macros. This information is not
available for all compilers. However it may be generated manually with
the sYmbol.CREATE.MACRO command.

Map Holds a log of all memory operations during download. Only maintained
when the option MAP was set with the load command.

Compilers This listing contains compiler specific information. It cannot be displayed
and is determined on internal use by the HLL debugger
General Commands Reference Guide S | 95©1989-2024 Lauterbach

sYmbol.AddInfo Provide additional symbolic information

The command can provide additional information about structures, pointers or variables. The information
can scale the display, make typecasts or provide application specific interpretation of information (e.g. C++
descriptor displays).

Here is a list of additional symbolic information types that can be set (not all symbolic information types are
available depending on what the information is assigned to):

Format: sYmbol.AddInfo

Scaled <multiplier>
[<offset>
<explanation>]]

Scales the value of the element:
trueValue = (srcValue * multiplier) + offset.

RScaled <multiplier>
[<offset>
[<explanation>]]

Scales the value of the element:
trueValue = (multiplier / srcValue) + offset

<explanation> Any user-defined text, such as class name, meaning, type, unit of
measurement, etc. (See example)

JSTRING Handles the element as pointer pointing to a string stored in the Java
jstring representation. (See example)

NSTRING <bitmask> Handles the element as pointer pointing to a structure, where the first
element is the string length and the next element is the string. (See
example)

ZSTRING Handles the element as pointer pointing to a C-like string (string
terminated by zero). (See example)

MaskedPointer
<mask> [<offset>]

Modifies the pointer target address:
truePointer = (srcPointer & mask) | offset
(See example)

MostDerived
<struct/class_name>

Forces data referenced by a pointer to be displayed as data of the
declared struct or class (See example)

DESCRIPTOR Forces data references by a pointer to be displayed according to a
descriptor.

ENUM
<item_value>
 <item_name>

Adds a name for a value inside a variable.

Hex Marks the element to be displayed in hexadecimal.

Decimal Marks the element to be displayed in decimal.
General Commands Reference Guide S | 96©1989-2024 Lauterbach

See also

■ sYmbol.AddInfo.Address ■ sYmbol.AddInfo.Delete
■ sYmbol.AddInfo.LINK ■ sYmbol.AddInfo.List
■ sYmbol.AddInfo.LOADASAP2 ■ sYmbol.AddInfo.Member
■ sYmbol.AddInfo.RESet ■ sYmbol.AddInfo.Type
■ sYmbol.AddInfo.Var ■ sYmbol

Ascii Marks the element to be displayed as ASCII.

sYmbol Marks the element to be displayed as a pointer to a symbol.

HIDE Hides the element from watch windows.

BigEndian Forces access to element in BigEndian byte order.

LittleEndian Forces access to element in LittleEndian byte order.

LINK <link_name> Format an element as defined by the sYmbol.AddInfo.LINK command.
General Commands Reference Guide S | 97©1989-2024 Lauterbach

sYmbol.AddInfo.Address Add symbol information to fixed address

Adds scaling information to an address or an address range. All symbolic information types are described in
sYmbol.AddInfo.

Example 1:

Example 2:

See also

■ sYmbol.AddInfo

Format: sYmbol.AddInfo.Address <range> | <address> <info> [<parameters>]

<info>: Scaled <multiplier> [<offset> [<explanation>]]
RScaled <multiplier> [<offset> [<explanation>]]
…

; multiply each HLL variable that is located in the address range
; 0xA1080000++0xff by 1.34 and add 10. Use mVolt as unit

sYmbol.AddInfo.Address 0xA1080000++0xff Scaled 1.34 +10. " mVolt"

; multiply the reciprocal contents of each HLL variable that is located
; in the address range 0xA1080000++0xff by 20. and add +3.3. Use mA as
; unit

sYmbol.AddInfo.Address 0xA1080000++0xff RScaled 20. +3.3 " mA"
General Commands Reference Guide S | 98©1989-2024 Lauterbach

sYmbol.AddInfo.Delete Delete information

Deletes existing information from the given variable or type name.

Example:

See also

■ sYmbol.AddInfo ■ sYmbol.AddInfo.RESet

Format: sYmbol.AddInfo.Delete <name>

sYmbol.AddInfo.Var cstr1 ZSTRING

sYmbol.AddInfo.Delete "cstr1"
General Commands Reference Guide S | 99©1989-2024 Lauterbach

sYmbol.AddInfo.LINK Define information for "sYmbol.AddInfo" commands

Defines information for other sYmbol.AddInfo commands. All symbolic information types are described in
sYmbol.AddInfo.

Example:

See also

■ sYmbol.AddInfo

Format: sYmbol.AddInfo.LINK <link_name> <info> [<parameters>]

<info>: NSTRING <bitmask>
JSTRING
ZSTRING
MostDerived <struct | class>
DESCRIPTOR <bitmask> <struct | class>
...

sYmbol.AddInfo.List

;1. create description group 'seasons'
;2. link meaningful description to each numerical value
sYmbol.AddInfo.LINK seasons enum 0 "spring"
sYmbol.AddInfo.LINK seasons enum 1 "summer"
sYmbol.AddInfo.LINK seasons enum 2 "autumn"
sYmbol.AddInfo.LINK seasons enum 3 "winter"
; equivalent to C statement symbols for
; "enum seasons {spring, summer, autumn, winter};"

;link the integer variables to the description group 'seasons'
sYmbol.AddInfo.Var mcount LINK seasons
sYmbol.AddInfo.Var mstatic1 LINK seasons

Var.Watch
Var.AddWatch mcount
Var.AddWatch mstatic1

Var.set mcount=0
Var.set mstatic1=1
General Commands Reference Guide S | 100©1989-2024 Lauterbach

sYmbol.AddInfo.List List additional information

Shows all available additional information which has been declared by sYmbol.AddInfo commands.

See also

■ sYmbol.AddInfo

sYmbol.AddInfo.LOADASAP2 Load scaling information from ASAP2 file

Loads the scaling and physical unit information from an ASAP2 file.

See also

■ sYmbol.AddInfo ■ Data.LOAD.ASAP2

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.AddInfo.List

Format: sYmbol.AddInfo.LOADASAP2 <file>
General Commands Reference Guide S | 101©1989-2024 Lauterbach

sYmbol.AddInfo.Member Add information to member of struct

Add information to specific member of a specific struct or class. All symbolic information types are
described in sYmbol.AddInfo.

Example 1

Format: sYmbol.AddInfo.Member <type> <member> <info> [<parameters>]

<info>: Scaled <multiplier> [<offset> [<explanation>]]
RScaled <multiplier> [<offset> [<explanation>]]
ZSTRING
MaskedPointer <mask> <offset>
MostDerived <struct/class_name>
...

<type> Name of struct or class.

<member> Name of struct or class element.

sYmbol.AddInfo.Member neste c Scaled 3.4

sYmbol.AddInfo.Member nesta a Scaled 6.3
General Commands Reference Guide S | 102©1989-2024 Lauterbach

Example 2

A masked pointer is a pointer where only a part of the “pointer value” is stored. In the following example, the
element ast->right is a value, whose lower 17 bits are the part of an address. The target address is
calculated using the lower 17 bits and adding 0x22200000 as base address. The pointer in this example is
declared using the command:

Example 3

C Code:

PRACTICE script:

See also

■ sYmbol.AddInfo

sYmbol.AddInfo.Member strtype1 right MaskedPointer 0x0001FFFF 0x22200000

struct example{ uint32 mode : 2; } instance;
enum values { on = 0, off, flicker };

; <class_name> <member> ENUM <item_value> <item_name>
sYmbol.AddInfo.Member example mode ENUM 0 "on"
sYmbol.AddInfo.Member example mode ENUM 1 "off"
sYmbol.AddInfo.Member example mode ENUM 2 "flicker"

sYmbol.CREATE.MACRO on 0
sYmbol.CREATE.MACRO off 1
sYmbol.CREATE.MACRO flicker 2
sYmbol.CREATE.Done

Var.Set instance.mode=flicker
General Commands Reference Guide S | 103©1989-2024 Lauterbach

sYmbol.AddInfo.RESet Remove all additional information

Removes all additional information.

See also

■ sYmbol.AddInfo ■ sYmbol.AddInfo.Delete

sYmbol.AddInfo.Type Add information to a data type

Add information to a specific data type. All symbolic information types are described in sYmbol.AddInfo.

The following shows examples to display Symbian OS descriptors and strings correctly in the debugger
window.

See also

■ sYmbol.AddInfo

Format: sYmbol.AddInfo.RESet

Format: sYmbol.AddInfo.Type <type> <info> [<parameters>]

<info>: NSTRING <bitmask>
JSTRING
ZSTRING
MostDerived <struct | class>
DESCRIPTOR <bitmask> <struct | class>
...

sYmbol.AddInfo.Type tdef2 ZSTRING ; the data type tdef2 is a zero-
; terminated string

sYmbol.AddInfo.Type "TDesC16" DESCRIPTOR 0x1xxxxxxx "TPtrC16"

sYmbol.AddInfo.Type "TPtrC8" NSTRING 0x0xxxxxxx

sYmbol.AddInfo.Type nextx MostDerived "TreeMFPtr"
General Commands Reference Guide S | 104©1989-2024 Lauterbach

sYmbol.AddInfo.Var Add information to a variable

Adds type information to a variable. All symbolic information types are described in sYmbol.AddInfo.

Example:

See also

■ sYmbol.AddInfo

Format: sYmbol.AddInfo.Var <var> <info> [<parameters>]

<info>: Scaled <multiplier> [<offset> [<explanation>]]
RScaled <multiplier> [<offset> [<explanation>]]
ZSTRING
MaskedPointer <mask> <offset>
MostDerived <string>
...

sYmbol.AddInfo.Var cstr1 ZSTRING ;The contents of cstr1 is a zero-
 ;terminated string

sYmbol.AddInfo.List ;Display definition list
General Commands Reference Guide S | 105©1989-2024 Lauterbach

sYmbol.AutoLOAD Automated loading of symbols

The command sYmbol.AutoLOAD allows to automate the loading of symbol files. This is helpful if a boot
loader or an RTOS downloads code to the target. To debug this downloaded code loading of the appropriate
symbol information is required.

The sYmbol.AutoLOAD command maintains a list for automatic loading of symbol information. This list
contains:

• A list of address ranges

• For each address range a component name and an appropriate load command

Whenever the user wants to display an address within a specified address range, and TRACE32 also needs
symbol information for the display, the appropriate load command is automatically started.

See also

■ sYmbol.AutoLOAD.CHECK ■ sYmbol.AutoLOAD.CHECKCoMmanD
■ sYmbol.AutoLOAD.CHECKDLL ■ sYmbol.AutoLOAD.CHECKEPOC
■ sYmbol.AutoLOAD.CHECKLINUX ■ sYmbol.AutoLOAD.CHECKQNX
■ sYmbol.AutoLOAD.CHECKUEFI ■ sYmbol.AutoLOAD.CHECKWIN
■ sYmbol.AutoLOAD.CHECKWINCE ■ sYmbol.AutoLOAD.CLEAR
■ sYmbol.AutoLOAD.config ■ sYmbol.AutoLOAD.Create
■ sYmbol.AutoLOAD.Delete ■ sYmbol.AutoLOAD.List
■ sYmbol.AutoLOAD.LOADEPOC ■ sYmbol.AutoLOAD.RESet
■ sYmbol.AutoLOAD.SET ■ sYmbol.AutoLOAD.TOUCH
■ sYmbol

Format: sYmbol.AutoLOAD.<sub_cmd>
General Commands Reference Guide S | 106©1989-2024 Lauterbach

sYmbol.AutoLOAD.CHECK Update autoloader table

A single sYmbol.AutoLOAD.CHECK command triggers the refresh of the Autoloader table
(sYmbol.AutoLOAD.List).

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.config

Format: sYmbol.AutoLOAD.CHECK [now [/<option>] | ON | OFF | ONGO]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

now Update the Autoloader table now.

ON If set to ON, TRACE32 updates the autoloader table after every single step
and whenever the program execution is stopped. This significantly slows
down the speed of TRACE32.

OFF If set to OFF, no automatic update of the autoloader table is done.

ONGO TRACE32 updates the autoloader table whenever the program execution is
stopped.

MACHINE Updates the autoloader table only for the specified machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).
General Commands Reference Guide S | 107©1989-2024 Lauterbach

sYmbol.AutoLOAD.CHECKCoMmanD Configure dynamic autoloader

The dynamic autoloader reads the target’s component table and fills the autoloader list with the components
found on the target. All necessary information, such as load addresses and space IDs, are retrieved from
kernel-internal information. The dynamic autoloader is activated by the command
sYmbol.AutoLOAD.CHECK.

Example:

This command needs an OS Awareness configured for the OS running on the target. Please see the OS
Awareness Manuals (rtos_<os>.pdf) for further information.

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.config
❏ sYmbol.AutoLOAD.CHECKCMD()

Format: sYmbol.AutoLOAD.CHECKCoMmanD <load_command> [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

<load_command> If an address is accessed that is covered by the autoloader list, the
autoloader calls <load_command> and appends parameters e.g. addresses
and space ID of the component to the action. Usually, <load_command> is
a call to a PRACTICE script (*.cmm) that handles the parameters and loads
the symbols. Please see the example scripts in the ~~/demo directory.

MACHINE Allows to specify different autoloader scripts for different machines.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

sYmbol.AutoLOAD.CHECKCoMmanD "DO autoload"

sYmbol.AutoLOAD.CHECK

sYmbol.AutoLOAD.List

NOTE: The dynamic autoloader covers only components that are already started.
Components that are not in the current process/library table are not covered.
General Commands Reference Guide S | 108©1989-2024 Lauterbach

sYmbol.AutoLOAD.CHECKDLL Configure automatic DLL file loader

This command can only be used with Texas Instruments DSPs.

If the symbol __DLModules is not available, please specify the <address> for the automatic DLL file loader.
If no <load_command> is specified DO autoload is used. The automatic DLL file loader is activated by the
command sYmbol.AutoLOAD.CHECK.

Please refer also to the examples in ~~/demo/c5000/etc/dll/

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.config

Format: sYmbol.AutoLOAD.CHECKDLL [<address>] [<load_command>]
General Commands Reference Guide S | 109©1989-2024 Lauterbach

sYmbol.AutoLOAD.CHECKEPOC Dynamic autoloader for Symbian

The dynamic autoloader reads the target’s process table and fills the autoloader list with the modules found
on the target. All necessary information, such as load addresses and space IDs, are retrieved from kernel-
internal information. The dynamic autoloader also covers dynamically loaded modules. The dynamic
autoloader is activated by the command sYmbol.AutoLOAD.CHECK.

If an address is accessed that is covered by the autoloader list, the autoloader calls <load_command> and
appends the load addresses and the space ID of the module to the action. Usually, <load_command> is a
call to a PRACTICE script (*.cmm) that handles the parameters and loads the symbols. Please see the
example scripts in the ~~/demo directory.

Example:

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.config

sYmbol.AutoLOAD.CHECKLINUX Configure autoloader for Linux debugging

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.config

Format: sYmbol.AutoLOAD.CHECKEPOC <load_command>

sYmbol.AutoLOAD.CHECKEPOC "DO autoload.cmm"

NOTE: • The dynamic autoloader covers only modules that are already started.
Modules that are not in the current process/library table are not covered.

• If a process symbol file is loaded, the dynamic autoloader adds the space
ID, which may be used to load the symbols to the appropriate space.

Format: sYmbol.AutoLOAD.CHECKLINUX <action> (deprecated)
General Commands Reference Guide S | 110©1989-2024 Lauterbach

sYmbol.AutoLOAD.CHECKQNX Configure autoloader for QNX debugging

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also

■ sYmbol.AutoLOAD

sYmbol.AutoLOAD.CHECKUEFI Configure autoloader for UEFI debugging

The UEFI code is provided by the boot FLASH, but debugging becomes more comfortable when debug
symbols are available. TRACE32 uses the so-called Autoloader to realize the automatic loading of debug
symbols whenever they are required.

The command sYmbol.AutoLOAD.CHECKUEFI specifies the command that is automatically used by the
Autoloader to load the symbol information. Usually a script called autoload.cmm provided by Lauterbach
is used.

The command sYmbol.AutoLOAD.CHECKUEFI implicitly also defines the parameters that TRACE32 uses
internally for the Autoloader (see screenshot below).

When the Autoloader is configured, the command sYmbol.AutoLOAD.CHECK can be used to scan the
UEFI module table and to activate the Autoloader. The command sYmbol.AutoLOAD.List allows to inspect
the scanned module information.

Format: sYmbol.AutoLOAD.CHECKQNX <action> (deprecated)

Format: sYmbol.AutoLOAD.CHECKUEFI <load_command>
General Commands Reference Guide S | 111©1989-2024 Lauterbach

Since the UEFI module table is updated by UEFI, a re-scan might be necessary.

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.config

sYmbol.AutoLOAD.CHECKWIN Configure autoloader

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also

■ sYmbol.AutoLOAD

sYmbol.AutoLOAD.CHECKWINCE Configure autoloader

This command is deprecated. Use sYmbol.AutoLOAD.CHECKCoMmanD instead.

See also

■ sYmbol.AutoLOAD

sYmbol.AutoLOAD.CHECKUEFI \
 "DO ~~/demo/x86/bootloader/uefi/h2o/autoload.cmm"

sYmbol.AutoLOAD.CHECK

sYmbol.AutoLOAD.List

Format: sYmbol.AutoLOAD.CHECKWIN <action> (deprecated)

Format: sYmbol.AutoLOAD.CHECKWINCE <action> (deprecated)

AutoLoader parameter list
General Commands Reference Guide S | 112©1989-2024 Lauterbach

sYmbol.AutoLOAD.CLEAR Remove symbol information

Removes symbol information for the specified <address> or <component_name>.

Examples:

See also

■ sYmbol.AutoLOAD

sYmbol.AutoLOAD.config Configure symbol autoloader

Opens a configuration dialog for the symbol autoloader.

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.CHECK
■ sYmbol.AutoLOAD.CHECKCoMmanD ■ sYmbol.AutoLOAD.CHECKDLL
■ sYmbol.AutoLOAD.CHECKEPOC ■ sYmbol.AutoLOAD.CHECKLINUX
■ sYmbol.AutoLOAD.CHECKUEFI ■ sYmbol.AutoLOAD.List
❏ sYmbol.AutoLOAD.CONFIG()

Format: sYmbol.AutoLOAD.CLEAR <address> | <component_name> [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

MACHINE Removes symbol information only for the specified machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

sYmbol.AutoLOAD.CLEAR C:0x5009B420

sYmbol.AutoLOAD.CLEAR "*trkengine*"

Format: sYmbol.AutoLOAD.config
General Commands Reference Guide S | 113©1989-2024 Lauterbach

sYmbol.AutoLOAD.Create Create entry for autoloader table

Specify an entry for the Autoloader table. The complete Autoloader table can be displayed with the
sYmbol.AutoLOAD.List command.

Example:

See also

■ sYmbol.AutoLOAD

sYmbol.AutoLOAD.Delete Delete autoloader entries

Deletes entries from the autoloader table. Without parameters, this commands clears the entire autoloader
table.

Example:

See also

■ sYmbol.AutoLOAD

Format: sYmbol.AutoLOAD.Create <range> <component_name> <load_command>

<component_name> Is the TRACE32 internal name for the symbol file. Please use the command
sYmbol.List.Program to get this name.

<load_command> Can be either a command of the Data.LOAD command group or a
PRACTICE script (*.cmm).

sYmbol.AutoLOAD.Create 0x1000--0x2fff "thumble" \
 "Data.LOAD.Elf thumble.axf /NoClear /NoCODE"

sYmbol.AutoLOAD.Create 0x10000--0x1ffff "can" "DO Load_CAN"

Format: sYmbol.AutoLOAD.Delete [<name> | <address>]

sYmbol.AutoLOAD.Delete "init"
General Commands Reference Guide S | 114©1989-2024 Lauterbach

sYmbol.AutoLOAD.List List autoloader table
+

Lists the Autoloader table with the related information for each entry.

Right-clicking a line shows additional submenu:

• Touch: same as executing sYmbol.AutoLOAD.TOUCH for the specified autoloader entry.

• Set: same as executing sYmbol.AutoLOAD.SET for the specified autoloader entry.

• Clear: same as executing sYmbol.AutoLOAD.CLEAR for the specified autoloader entry.

See also

■ sYmbol.AutoLOAD ■ sYmbol.AutoLOAD.config

Format: sYmbol.AutoLOAD.List

Column description

dyn If selected, indicates that the autoloader entry is dynamic, e.g. created by an OS
Awareness. Otherwise, if the field is not selected, it means that the autoloader
entry is static, i.e. it was created manually using sYmbol.AutoLOAD.Create.

load Selected once one of the sYmbol.AutoLOAD.SET or sYmbol.AutoLOAD.TOUCH
commands has been executed for the autoloader entry.

cmd Shows the <load_command>.
If an address is accessed that is covered by the autoloader list, the autoloader calls
<load_command> and appends parameters e.g. addresses and space ID of the
component to the action. Usually, <load_command> is a call to a PRACTICE script
(*.cmm) that handles the parameters and loads the symbols. Please see the
example scripts in the ~~/demo directory.
General Commands Reference Guide S | 115©1989-2024 Lauterbach

sYmbol.AutoLOAD.LOADEPOC Definition for static autoloader for Symbian

When generating a Symbian OS ROM image (e.g. with “buildrom”), the builder generates a log file as well
(usually “rombuild.log”). This log file contains the section addresses of all modules included in the image.
The static autoloader reads this log file and fills the autoloader list with the modules found in the log file with
it’s appropriate load addresses.

If an address is accessed that is covered by the autoloader list, the autoloader calls <load_command> and
appends the load addresses of the module to the action. Usually, <load_command> is a call to a PRACTICE
script that handles the parameters and loads the symbols. Please see the example scripts in the ~~/demo
directory.

Example:

See also

■ sYmbol.AutoLOAD

Format: sYmbol.AutoLOAD.LOADEPOC <log_file> <load_command> [/<option>]

<option>: StripPATH | CutPATH | LowerPATH
StripPART <number> | <string>

NOTE: • The static autoloader addresses only modules that are linked into the
ROM image. Modules loaded to the target dynamically are not covered.

• The log file does not include the process ID that a process will get when
started. Thus, the static autoloader loads the symbols of a process to
space ID zero.

sYmbol.AutoLOAD.LOADEPOC "la_001.techview.log" "DO autoload.cmm"
General Commands Reference Guide S | 116©1989-2024 Lauterbach

sYmbol.AutoLOAD.RESet Reset autoloader

Clears the autoloader table.

See also

■ sYmbol.AutoLOAD

sYmbol.AutoLOAD.SET Mark symbol information manually as loaded

The command sYmbol.AutoLOAD.Set allows to manually mark symbol information as loaded. This is
helpful to suppress an error message when no symbol information was generated for a specified address or
component range.

Example:

See also

■ sYmbol.AutoLOAD

Format: sYmbol.AutoLOAD.RESet

Format: sYmbol.AutoLOAD.SET <name> | <address> | <addressrange>

sYmbol.AutoLOAD.SET 0x5015E030

sYmbol.AutoLOAD.SET "*efsrv*"
General Commands Reference Guide S | 117©1989-2024 Lauterbach

sYmbol.AutoLOAD.TOUCH Initiate automatic loading by command

Initiates the loading of symbol information as defined by the sYmbol.AutoLOAD.CHECKCoMmanD.

Examples:

See also

■ sYmbol.AutoLOAD

Format: sYmbol.AutoLOAD.TOUCH <component_name> | <addressrange> |
<address> [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

<component_name> Wildcards possible.

<address> Any address within the address range used by a component.

<addressrange> Touches all components mapped within the given address, e.g.
librairies of a single process.

MACHINE Touches only the component of the specified machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

sYmbol.AutoLOAD.TOUCH "*efsrv*"

sYmbol.AutoLOAD.TOUCH 0x50011f9c
General Commands Reference Guide S | 118©1989-2024 Lauterbach

sYmbol.Browse Browse symbols

See also

■ sYmbol.Browse.Class ■ sYmbol.Browse.Enum ■ sYmbol.Browse.Function ■ sYmbol.Browse.Module
■ sYmbol.Browse.MVar ■ sYmbol.Browse.name ■ sYmbol.Browse.SFunction ■ sYmbol.Browse.SModule
■ sYmbol.Browse.SOURCE ■ sYmbol.Browse.Struct ■ sYmbol.Browse.sYmbol ■ sYmbol.Browse.Type
■ sYmbol.Browse.TypeDef ■ sYmbol.Browse.Union ■ sYmbol.Browse.Var ■ sYmbol
■ SETUP.sYmbol ❏ sYmbol.MATCHES()

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.Browse.Class Browse classes

Lets you browse through the list of classes that have been loaded to the internal TRACE32 symbol database
with Data.LOAD.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

sYmbol.Browse.Enum Browse enumeration types

Lets you browse through the list of enumeration types that have been loaded to the internal TRACE32
symbol database with Data.LOAD.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.Class [<name>]

Format: sYmbol.Browse.Enum [<name>]
General Commands Reference Guide S | 119©1989-2024 Lauterbach

sYmbol.Browse.Function Browse functions

Lets you browse through the list of functions that have been loaded to the internal TRACE32 symbol
database with Data.LOAD.

Alternatively, you can browse through the function list by selecting Functions from the drop-down list in the
sYmbol.Browse.sYmbol window.

For a description of the command line arguments, see sYmbol.Browse.sYmbol.

In addition, the browser command is automatically executed when:

• A symbol is entered that ends with a wildcard or

• The symbol is not unique and the sYmbol.MATCH command is set to Choose.

Example:

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.Function [<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete

List.auto func* ;First, the symbol browser opens, where you can select
 ;the desired function with a double-click.

 ;Then the selected function is displayed in the
 ;List.auto window.
General Commands Reference Guide S | 120©1989-2024 Lauterbach

sYmbol.Browse.Module Browse modules

Lets you browse through the list of modules that have been loaded to the internal TRACE32 symbol
database with Data.LOAD.

Alternatively, you can browse through the module list by selecting Modules from the drop-down list in the
sYmbol.Browse.sYmbol window.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.Module [<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete

<name_pattern>,
etc.

For a description of the command line arguments, see
sYmbol.Browse.sYmbol.
General Commands Reference Guide S | 121©1989-2024 Lauterbach

sYmbol.Browse.MVar Browse module variables

Lets you browse through the list of module variables that have been loaded to the internal TRACE32 symbol
database with Data.LOAD. Functions and local variables are not displayed in the sYmbol.Browse.MVar
window.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

sYmbol.Browse.name Browse symbols (flat)

Display symbols sorted alphabetically. This command is an alias for sYmbol.name.

Format: sYmbol.Browse.MVar [<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete

<name_pattern>,
etc.

For a description of the command line arguments, see
sYmbol.Browse.sYmbol.

Format: sYmbol.Browse.name [<name_pattern> [<type_pattern>] [/<option>]

<option>: Click <cmd>
Delete
General Commands Reference Guide S | 122©1989-2024 Lauterbach

Lower and upper case characters are not distinguished. For mangled C++ symbols the search order is
based on the function signatures. A complex search function is implemented to find symbol name very fast,
if the complete name will be not known. The search patterns are:

Refer to sYmbol.name for more information.

See also

■ sYmbol.Browse ■ sYmbol.Browse.Class ■ sYmbol.Browse.Enum ■ sYmbol.Browse.Function
■ sYmbol.Browse.Module ■ sYmbol.Browse.MVar ■ sYmbol.Browse.SFunction ■ sYmbol.Browse.SModule
■ sYmbol.Browse.SOURCE ■ sYmbol.Browse.Struct ■ sYmbol.Browse.sYmbol ■ sYmbol.Browse.Type
■ sYmbol.Browse.TypeDef ■ sYmbol.Browse.Union ■ sYmbol.Browse.Var ■ sYmbol.INFO

▲ ’The Symbol Database’ in ’Training Source Level Debugging’

sYmbol.Browse.SFunction Browse functions

Lets you browse through the list of functions that have been loaded to the internal TRACE32 symbol
database with the Data.LOAD command.

'*' Matches any string, empty strings too.

'?' Matches any character, but not an empty character.

'"' Can be used to input special characters like '*' or '?'

Click Defines a command, that can be executed by a short click with the left
mouse button. The characters '*' or '?' can be used as placeholder for the
complete name of the symbol. Using the '*' will force the command to be
executed without further interaction and without leaving the window. The
character '?' will cause the cursor to leave the window and build a command
line, that can be modified before entering.

Delete Deletes the window after the selection has been made.

Format: sYmbol.Browse.SFunction [<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete
General Commands Reference Guide S | 123©1989-2024 Lauterbach

The S in SFunction selects the Source check box. With the Source check box selected, the names of the
source files are displayed instead of the module names.

Alternatively, you can browse through the function list by selecting Functions from the drop-down list in the
sYmbol.Browse.sYmbol window.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

<name_pattern>,
etc.

For a description of the command line arguments, see
sYmbol.Browse.sYmbol.
General Commands Reference Guide S | 124©1989-2024 Lauterbach

sYmbol.Browse.SModule Browse modules

Lets you browse through the modules that have been loaded to the internal TRACE32 symbol database with
Data.LOAD.

The S in SModule selects the Source check box. With the Source check box selected, the names of the
source files are displayed instead of the module names.

Alternatively, you can browse through the module list by selecting Modules from the drop-down list in the
sYmbol.Browse.sYmbol window.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.SModule [<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete

<name_pattern>,
etc.

For a description of the command line arguments, see
sYmbol.Browse.sYmbol.
General Commands Reference Guide S | 125©1989-2024 Lauterbach

sYmbol.Browse.SOURCE Browse source

Lets you browse through the list of source files that have been loaded to the internal TRACE32 symbol
database with the Data.LOAD command.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.SOURCE [<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete

<name_pattern>,
etc.

For a description of the command line arguments, see
sYmbol.Browse.sYmbol.
General Commands Reference Guide S | 126©1989-2024 Lauterbach

sYmbol.Browse.Struct Browse containers for different variable types

Lets you browse through the containers for different variable types that have been loaded to the internal
TRACE32 symbol database with the Data.LOAD command.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.Struct [<name>]

A You can use the wildcards ‘*’ and ‘?’ to filter the <name> list.

A

General Commands Reference Guide S | 127©1989-2024 Lauterbach

sYmbol.Browse.sYmbol Browse symbols

Lets you browse through the symbol and debug information that has been loaded to the internal TRACE32
symbol database with the Data.LOAD command.

Entering an ASCII string searches for symbols beginning with this string. The Up and Down buttons can be
used to navigate up and down in the symbol tree.

Double-clicking a symbol in a sYmbol.Browse.sYmbol window opens the symbol in its default window.
Alternatively, you can customize TRACE32’s response to the double-click by using the Click <cmd> option.
An example is shown in the screenshots below.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name ■ sYmbol.STATE

▲ ’The Symbol Database’ in ’Training Source Level Debugging’

Format: sYmbol.Browse.sYmbol [<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete

<name_pattern> Path and symbol name, or just the symbol name.

<type_pattern> HLL types.

The patterns support the wildcards * and ? for filtering the display in the sYmbol.Browse.*
windows.

Click <cmd> Command <cmd> will be executed after you double-click a symbol entry.
Without the Click option, the double-clicked symbol opens in its default
window.

Delete Dialog will be closed after you double-click a symbol entry.
General Commands Reference Guide S | 128©1989-2024 Lauterbach

sYmbol.Browse.Type Browse HLL types

Lets you browse through the list of HLL types that have been loaded to the internal TRACE32 symbol
database with the Data.LOAD command.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.Browse.Type [<name>]

A You can use the wildcards * and ? to filter the list. See also <name> below.

<name> Name of an HLL type. HLL types include int, char, unsigned int, int*, struct
<name>, enum <name>, etc.

A

General Commands Reference Guide S | 129©1989-2024 Lauterbach

sYmbol.Browse.TypeDef Browse type definitions

Lets you browse through the list of type definitions that have been loaded to the internal TRACE32 symbol
database with Data.LOAD.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

sYmbol.Browse.Union Browse unions

Lets you browse through the list of unions that have been loaded to the internal TRACE32 symbol database
with Data.LOAD.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.TypeDef [<name>]

Format: sYmbol.Browse.Union [<name>]
General Commands Reference Guide S | 130©1989-2024 Lauterbach

sYmbol.Browse.Var Browse variables

Lets you browse through the list of variables that have been loaded to the internal TRACE32 symbol
database. Alternatively, you can browse through the variables list by selecting Variables from the drop-down
list in the sYmbol.Browse.sYmbol window.

Double-clicking a symbol in a sYmbol.Browse.sYmbol window opens the symbol in its default window.
Alternatively, you can customize TRACE32’s response to the double-click by using the Click <cmd> option.
An example is shown in the figure below.

For a description of the command line arguments and another example for the Click <cmd> option, see
sYmbol.Browse.sYmbol.

In addition, the browser command is automatically executed when:

• A symbol that ends with a wildcard is entered at the TRACE32 command line or

• The symbol is not unique and the sYmbol.MATCH command is set to Choose.

See also

■ sYmbol.Browse ■ sYmbol.Browse.name

Format: sYmbol.Browse.Var[<name_pattern> [<type_pattern>]] [/<option>]

<option>: Click <cmd>
Delete

Var.Watch vd* ;First, the symbol browser opens, where you can select
 ;the desired variable with a double-click.

 ;Then the selected variable is displayed in the
 ;Var.Watch window.

Double-clicking
displays the selected
variable in a
Data.View window.
General Commands Reference Guide S | 131©1989-2024 Lauterbach

sYmbol.CASE Set symbol search mode

If the option will be set (default), there is a differentiation between small and capital letters.

See also

■ sYmbol ■ Var

sYmbol.CHECK Check database

Checks the internal symbol database for errors. Can be used when the compiler output format is
questionable.

See also

■ sYmbol

Format: sYmbol.CASE [ON | OFF]

Format: sYmbol.CHECK
General Commands Reference Guide S | 132©1989-2024 Lauterbach

sYmbol.Class View class hierarchy

Displays the base classes inherited by the class as a tree. As a default the inherited classes for C++ are
displayed. With the Nested option regular included structures and pointers to structures are displayed also.
This allows the usage of this command for non C++ applications.

View the hierarchy of a specific class.

See also

■ sYmbol

Format: sYmbol.Class <class> [/Nested]
General Commands Reference Guide S | 133©1989-2024 Lauterbach

sYmbol.CLEANUP Workarounds for redundant symbol information

See also

■ sYmbol.CLEANUP.DOUBLES ■ sYmbol

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.CLEANUP.<sub_cmd>

<sub_cmd>: sYmbols | CodeLiterals | AsmFrames | MidInstLines [/<option>] |
FunctionRanges | DataInCode | LineRanges | DOUBLES |
AlignmentPaddings

<option>: VM | Forward | Backward | AlignToSymbols

sYmbols Removes all double symbols, all double type information, empty type
information and redundant symbols for the common bank address range.

CodeLiterals Architecture specific. Tries to fix debug information about literals that
really contain executable code.

AsmFrames Removes frame information for assembler frames.

MidInstLines Ignores HLL line information which points to odd addresses
plus terminates the disassembly of code lines. For option descriptions,
see below.

FunctionRanges Fixes overlapping function end addresses.

DataInCode Identifies and marks data inside code areas (PowerPC only).

LineRanges Tries to fix bad address range information of source lines.

DOUBLES For a command description, see sYmbol.CLEANUP.DOUBLES.

Alignement-
Paddings

Detects memory address ranges at the end of functions that were
inserted due to memory alignment and removes them from the function
address ranges.

Options only for command sYmbol.CLEANUP.MidInstLines

VM Fixes code in VM (VM access class).

Forward, Backward Moves questionable lines forward/backward.

AlignToSymbols Keeps alignment of lines to symbols in code block.
General Commands Reference Guide S | 134©1989-2024 Lauterbach

sYmbol.CLEANUP.DOUBLES Make ambiguous symbols unique

Makes symbols loaded to the TRACE32 symbol database unique by appending two underscores and a
serial number to ambiguous symbols: <ambiguous_symbol>__<serial_number>

See also

■ sYmbol.CLEANUP

sYmbol.ColorCode Enable color coding

Enables the source text color coding. Source color coding improves the readability of source files by using
multiple colors. Enabled by default.

See also

■ sYmbol

Format: sYmbol.CLEANUP.DOUBLES

Format: sYmbol.ColorCode [ON | OFF]

Ambiguous symbols Unique symbols after using
sYmbol.CLEANUP.DOUBLES
General Commands Reference Guide S | 135©1989-2024 Lauterbach

sYmbol.ColorDef Specify keyword colors

Specify a color used for the display of keywords in your HLL code.

Example:

See also

■ sYmbol ■ sYmbol.List.ColorDef ■ SETUP.COLOR

▲ ’PowerView - Screen Display’ in ’PowerView User’s Guide’

sYmbol.CREATE Create and modify user-defined symbols

The sYmbol.CREATE command group allows to create new symbols or modify existing used-defined
symbols. The created symbols will be made available to the debugger with the command
sYmbol.CREATE.DONE.

See also

■ sYmbol.CREATE.ATTRibute ■ sYmbol.CREATE.Done ■ sYmbol.CREATE.Function ■ sYmbol.CREATE.Label
■ sYmbol.CREATE.LocalVar ■ sYmbol.CREATE.MACRO ■ sYmbol.CREATE.Module ■ sYmbol.CREATE.RESet
■ sYmbol.CREATE.Var ■ sYmbol ■ sYmbol.Delete ■ sYmbol.NEW

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.ColorDef <keyword> <value>

<value> All color definitions can be listed with the command sYmbol.List.ColorDef.

sYmbol.ColorDef "printf" 2 ; display all printf in green
General Commands Reference Guide S | 136©1989-2024 Lauterbach

sYmbol.CREATE.ATTRibute Create user-defined attribute

Creates a new user-defined attribute. The new attribute only becomes visible (e.g. in the
sYmbol.List.ATTRibute window) after calling sYmbol.CREATE.Done.

Example:

See also

■ sYmbol.CREATE

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.CREATE.Done Finish symbol creation

Finishes the creation of new symbols and makes them available to the debugger. This command is only
required for sYmbol.CREATE commands. sYmbol.NEW commands already contain this functionality, but
will execute slower.

Example:

See also

■ sYmbol.CREATE

Format: sYmbol.CREATE.ATTRibute<attribute> <address>|<range>

sYmbol.CREATE.ATTRibute DATA 0x1000--0x1fff
sYmbol.CREATE.Done

Format: sYmbol.CREATE.Done

sYmbol.CREATE.Label mylab1 0x1000
sYmbol.CREATE.Label mylab2 0x1010
sYmbol.CREATE.Done

; creates “mylab1” at 1000
; creates “mylab2” at 1010
; make labels available to program
General Commands Reference Guide S | 137©1989-2024 Lauterbach

sYmbol.CREATE.Function Create user-defined function

Creates symbol information for a new function. The function has no parameters or local variables. It can only
be used to define a range for a piece of code (e.g. for performance analysis).

Note that functions created with sYmbol.CREATE.Function will only become visible (e.g. in the
sYmbol.List window) after calling sYmbol.CREATE.Done.

This is not required for sYmbol.NEW.Function which immediately commits all changes to the symbol
table and thus executes slower.

See also

■ sYmbol.CREATE ■ sYmbol.NEW.Function

Format: sYmbol.CREATE.Function <name> <addressrange>

; function ends before mylabel2
sYmbol.CREATE.Function myfunc mylabel1--(mylabel2-1)
sYmbol.CREATE.Done

; function ends before mylabel2
sYmbol.NEW.Function myfunc mylabel1--(mylabel2-1)
General Commands Reference Guide S | 138©1989-2024 Lauterbach

sYmbol.CREATE.Label Create user-defined symbol

Creates a new label. A label is a symbol without type information that refers to a single memory location.

Example 1:

Example 2:

See also

■ sYmbol.CREATE ■ sYmbol.NEW.Label

sYmbol.CREATE.LocalVar Create user-defined local variable

Creates a new local variable in a user-defined function created with sYmbol.CREATE.Function or
sYmbol.NEW.Function.

Note that local variables created with sYmbol.CREATE.LocalVar will only become visible (e.g. in the
sYmbol.List window) after calling sYmbol.CREATE.Done. This is not required for sYmbol.NEW.LocalVar
which immediately commits all changes to the symbol table and thus executes slower.

Example:

See also

■ sYmbol.CREATE

Format: sYmbol.CREATE.Label <name> <address>

sYmbol.CREATE.Label mylab1 0x1000
sYmbol.CREATE.Label mylab2 0x1010
sYmbol.CREATE.Done

; creates “mylab1” at 1000
; creates “mylab2” at 1010
; make labels available to program

sYmbol.NEW.Label mylab3 0x1020 ; ”mylab3” is available immediately

Format: sYmbol.CREATE.LocalVar <function> <var> <address>|<range> <type>

sYmbol.CREATE.Function myfunc 0x1000--0x10ff
sYmbol.CREATE.LocalVar myfunc loc_var 0x2000 int
sYmbol.CREATE.Done
General Commands Reference Guide S | 139©1989-2024 Lauterbach

sYmbol.CREATE.MACRO Create user-defined macro

Creates a new macro. The macro can be used like a C-preprocessor macro. Parameters can be supplied in
the same way.

Example:

See also

■ sYmbol.CREATE ■ sYmbol.NEW.MACRO

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.CREATE.Module Create user-defined module

Creates a user-defined module.

Example:

See also

■ sYmbol.CREATE ■ sYmbol.NEW.Module

Format: sYmbol.CREATE.MACRO <name> <contents>

; creation and usage of macro MY_NEXT(<arg>)
sYmbol.CREATE.MACRO MY_NEXT(p) ((p)->next)
sYmbol.CREATE.Done
Var.View MY_NEXT(myvar)

Format: sYmbol.CREATE.Module <name> <range>

sYmbol.CREATE.Module test 50000--5ffff
sYmbol.CREATE.Done
sYmbol.Browse.Module
General Commands Reference Guide S | 140©1989-2024 Lauterbach

sYmbol.CREATE.RESet Erase all user-defined symbols

Removes all symbols defined by sYmbol.CREATE or sYmbol.NEW commands.

See also

■ sYmbol.CREATE ■ sYmbol.NEW

sYmbol.CREATE.Var Create user-defined variable

Creates a user-defined variable.

Examples:

See also

■ sYmbol.CREATE ■ sYmbol.NEW.Var

Format: sYmbol.CREATE.RESet

Format: sYmbol.CREATE.Var <variable_name> <address>|<range> <type>

sYmbol.List.Type /Unnamed
sYmbol.CREATE.Var my_char 0x1000 char
sYmbol.CREATE.Done
sYmbol.INFO my_char

; list all types
; create variable
; finish creation
; display all information
; about the created variable

sYmbol.List.Type /Unnamed
sYmbol.CREATE.Var my_abc D:0xa000 struct abc
sYmbol.CREATE.Done
sYmbol.INFO my_abc
General Commands Reference Guide S | 141©1989-2024 Lauterbach

sYmbol.CUTLINE Limit size of text blocks

The number of source lines, displayed for one high-level line is limited. This prevents the display of large
parts of source text in analyzer or data windows, if the source contains many definitions. The last lines are
always displayed. Without arguments function is turned off, i.e. all lines are displayed again.

Example:

See also

■ sYmbol

sYmbol.Delete Delete symbols of one program

Deletes all symbols of one program.

Example:

See also

■ sYmbol ■ sYmbol.CREATE ■ sYmbol.NEW

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.CUTLINE [<length>]

sYmbol.CUTLINE 3. ; display max. 3 lines for each HLL line

Format: sYmbol.Delete [<program>]

sYmbol.Delete \\mccp ; delete only symbols of program "mccp"
General Commands Reference Guide S | 142©1989-2024 Lauterbach

sYmbol.DeleteMACRO Delete macro information

Deletes certain macro information.

See also

■ sYmbol

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.DeletePATtern Delete labels from symbol database using wildcards

Delete all labels from the symbol database that match the specified <symbol_pattern>. Allowed
wildcards are * and ?.

Example:

See also

■ sYmbol

sYmbol.DEMangle C++ demangler

The first argument activates the demangler, the second enables the demangling of function arguments.

Format: sYmbol.DeleteMACRO <macro>

Format: sYmbol.DeletePATtern <symbol_pattern>

sYmbol.DeletePATtern _d_*

Format: sYmbol.DEMangle [ON | OFF] [ON | OFF]
General Commands Reference Guide S | 143©1989-2024 Lauterbach

Example:

See also

■ sYmbol

sYmbol.DEOBFUSCATE Deobfuscate global and static symbol
[build 145539 - DVD 09/2022]

This command allows to deobfuscate global and static symbols for the defined module on user request.

The input <file> contains a list of real symbol name and obfuscated symbol name separated by a blank.

All symbols that match an obfuscated name are replaced with the real symbol name.

See also

■ sYmbol ■ sYmbol.Modify.NAMES

sYmbol.DONE Finish load of symbols
[build 133356 - DVD 09/2021]

Finishes load of symbols when using Data.LOAD MORE.

See also

■ sYmbol

sYmbol.DEMangle OFF

sYmbol.DEMangle ON OFF
sYmbol.DEMangle ON

; get_branches__6ForestFP4Tree (ANSI)
; @Forest@get_branches$qp4Tree (TURBO-C++)
; Forest::get_branches
; Forest::get_branches(Tree *)

Format: sYmbol.DEOBFUSCATE <file> [<module>]

Format: sYmbol.DONE
General Commands Reference Guide S | 144©1989-2024 Lauterbach

sYmbol.ECA ECA file management

The TRACE32 debugger receives all the necessary information about the source code via the debug
information generated by the compiler. However, some commands require more details. Lauterbach
provides the command line tool t32cast (see “Application Note for t32cast” (app_t32cast.pdf)) to generate
these details.

t32cast analyzes the individual source code files and generates a .eca file per source code file, which is
stored in the same directory. ECA stands for Extended Code Analysis.

The sYmbol.ECA command group allows to manage the .eca files.

ECA files are currently used by the code coverage system.

See also

■ sYmbol.ECA.BINary ■ sYmbol.ECA.Delete ■ sYmbol.ECA.Init ■ sYmbol.ECA.List
■ sYmbol.ECA.LOAD ■ sYmbol.ECA.LOADALL ■ sYmbol ■ sYmbol.List.SOURCE
General Commands Reference Guide S | 145©1989-2024 Lauterbach

sYmbol.ECA.BINary Static preprocessing for code coverage

See also

■ sYmbol.ECA

sYmbol.ECA.BINary.CollapseAll Collapse all trees
[build 134348 - DVD 09/2021]

Command to collapse all trees in an open sYmbol.ECA.BINary.view window.

See also

■ sYmbol.ECA.BINary.ExpandAll ■ sYmbol.ECA.BINary.view

sYmbol.ECA.BINary.ControlFlowMode.INSTR Consider instrumentation
[build 157096 - DVD 2023/02]

This command is used to configure the sYmbol.ECA.BINary.PROCESS command.

See also

■ sYmbol.ECA.BINary.ControlFlowMode.Trace ■ sYmbol.ECA.BINary.PROCESS

▲ ’Steps in Preparation for Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

Format: sYmbol.ECA.BINary.CollapseAll

Format: sYmbol.ECA.BINary.ControlFlowMode.INSTR [ON | OFF]

ON Consider source code instrumentation sites as source for monitoring
decisions/conditions for code coverage.

OFF (default) Ignore source code instrumentation sites as source for monitoring
decisions/conditions for code coverage.
General Commands Reference Guide S | 146©1989-2024 Lauterbach

sYmbol.ECA.BINary.ControlFlowMode.Trace Consider trace events
[build 157096 - DVD 2023/02]

This command is used to configure the sYmbol.ECA.BINary.PROCESS command.

See also

■ sYmbol.ECA.BINary.ControlFlowMode.INSTR ■ sYmbol.ECA.BINary.PROCESS

▲ ’Build Process’ in ’Application Note for Trace-Based Code Coverage’

sYmbol.ECA.BINary.EditDecision Modify start address of decision
[build 134102 - DVD 09/2021]

Allows editing the start address of a decision as loaded from an ECA file. This is an expert command that
should only be used under the guidance of Lauterbach support.

Format: sYmbol.ECA.BINary.ControlFlowMode.Trace [ON | OFF]

ON (default) Consider trace event of conditional branches/instructions as source
for monitoring decisions/conditions for code coverage.

OFF Ignore trace events of conditional branches/instructions as source
for monitoring decisions/conditions for code coverage.

Format: sYmbol.ECA.BINary.EditDecision <source> [<index>] <address>
sYmbol.ECA.EditDecision (deprecated)
General Commands Reference Guide S | 147©1989-2024 Lauterbach

This command can also be accessed via the Decision pull-down in sYmbol.ECA.BINary.view window.

Example:

sYmbol.ECA.BINary.ExpandAll Expand all trees
[build 134348 - DVD 09/2021]

Command to expand all trees in an open sYmbol.ECA.BINary.view window. It expands all trees.

See also

■ sYmbol.ECA.BINary.CollapseAll ■ sYmbol.ECA.BINary.view

; modify start address of the decision in source code line 90
sYmbol.ECA.BINary.EditDecision \"..\coverage.c"\90 P:0x9000051E

Format: sYmbol.ECA.BINary.ExpandAll
General Commands Reference Guide S | 148©1989-2024 Lauterbach

sYmbol.ECA.BINary.EXPORT.AdJoinGAPS Split up observability gaps
[build 166686 - DVD2024/09]

Splits up the observability gaps per source file and place each gap file in the same directory as the
corresponding ECA file. Existing gap files are preserved if no more recent data is available.

sYmbol.ECA.BINary.EXPORT.Decisions Export decision details as CSV
[build 135075 - DVD 09/2021]

Export decision details as displayed in the sYmbol.ECA.BINary.view window to a CSV file. For
documentation of the command options refer to sYmbol.ECA.BINary.view.

sYmbol.ECA.BINary.EXPORT.GAPS Export observability gaps to JSON
[build 159689 - DVD2023/09]

Export the observability gaps detected with the sYmbol.ECA.BINary.PROCESS command to a JSON file.
The JSON file is used as input for the t32cast command line tool to control the targeted instrumentation, see
“Application Note for t32cast” (app_t32cast.pdf).

See also

■ sYmbol.ECA.BINary.PROCESS ■ sYmbol.ECA.BINary.view

▲ ’Build Process’ in ’Application Note for Trace-Based Code Coverage’

Format: sYmbol.ECA.BINary.EXPORT.GAPS [/<option>]

<option>: CLOBber

CLOBber Allows existing files to be overwritten.

Format: sYmbol.ECA.BINary.EXPORT.Decisions <file> [/<option>]

<option>: FilterMapped | FilterType | StripPATH

Format: sYmbol.ECA.BINary.EXPORT.GAPS <file>
General Commands Reference Guide S | 149©1989-2024 Lauterbach

sYmbol.ECA.BINary.FilterMapped Filter display by the mapping state
[build 134348 - DVD 09/2021]

Command to filter the display by the mapping states in an open sYmbol.ECA.BINary.view window.

See also

■ sYmbol.ECA.BINary.view

Format: sYmbol.ECA.BINary.FilterMapped <display>

<type>: ALL | MAPPED | UNMAPPED | NOTINBINARY]

<display>

ALL Display the mapping result of all decisions (default).

MAPPED Display only the mapped decisions.
The source code lines for mapped decisions are displayed in blue.

UNMAPPED Display only the unmapped decisions.
The source code lines for unmapped decisions are displayed in
orange.

NOTINBINARXY No mapping is possible because there is no object code for this
decisions. The compiler has optimized this location.
General Commands Reference Guide S | 150©1989-2024 Lauterbach

sYmbol.ECA.BINary.FilterType Filter display by decision type
[build 134348 - DVD 09/2021]

Command to filter by decision types in an open sYmbol.ECA.BINary.view window.

See also

■ sYmbol.ECA.BINary.view

sYmbol.ECA.BINary.PROCESS Static preprocessing for code coverage
[build 142398 - DVD 02/2022]

The sYmbol.ECA.BINary.PROCESS command performs static analysis required for MC/DC, condition,
and decision coverage.

• It preprocesses the object code to improve code coverage results for instruction set specialties
such as IT blocks (Arm Thumb).

• It determines the best monitoring strategy for decisions/conditions.

In the first two steps, the analysis performs the following:

1. The number and the places of all conditional branches/instructions in the object code of the
application is detected.

2. The result of the first step is matched with the decision/conditions details located in the .eca files.

The outcome is a mapping of all conditions/decisions to the object code. This is sufficient for the build
process.

Build Process

The analysis outcome can be used to close observability gaps through targeted instrumentation. For the
analysis, the sYmbol.ECA.BINary.ControlFlowMode.Trace command must be set ON.
Decisions/conditions that cannot be monitored by conditional branches/statements are detected by the
analysis and marked as unmapped. In this way, the observability gaps are identified. The gaps can be
exported to a JSON file using the sYmbol.ECA.BINary.EXPORT.GAPS command. This file forms the input
for the targeted source code instrumentation by the command line tool t32cast, see “Application Note for
t32cast” (app_t32cast.pdf).

Format: sYmbol.ECA.BINary.FilterType <type>

<type>: ALL | IFTHEN | FOR | DOWHILE | WHILE | SWITCH
ASSIGN | NESTEDASSIGN | TERNARY | ARGUMENT

Format: sYmbol.ECA.BINary.PROCESS
COVerage.StaticInfo (deprecated)
General Commands Reference Guide S | 151©1989-2024 Lauterbach

To detect the observabiltiy gaps, TRACE32 must have access to the full context of the application for which
the code coverage analysis will be performed later. What is meant in this context is the memory layout and
the symbol information. If the application context can be fully setup in a TRACE32 Instruction Set Simulator,
the ISS can be used in the build process.

Code Coverage Analysis

For the code coverage analysis it must be configured which information should be considered for a complete
result:

• the conditional branches/instructions in the trace recording of the program flow based on the
mapping of all conditions/decisions to the object code performed in the first two steps of the static
analysis (command sYmbol.ECA.BINary.ControlFlowMode.Trace ON).

• the source code instrumentation sites detected by further analysis steps
(command sYmbol.ECA.BINary.ControlFlowMode.INSTR ON).

• the breakpoints.

The sYmbol.ECA.BINary.view command displays the result of monitoring.

Here is a sample command sequence for the build process.

; target setup

; load the application
Data.LOAD.Elf my_demo

; load the OS Awareness
TASK.CONFIG ~~/demo/arm/kernel/freertos/freertos.t32

; detects memory address ranges at the end of functions that were
; inserted due to memory alignment and removes them from the function
; address ranges.
sYmbol.CLEANUP.AlignmentPaddings

; consider conditional branches/instructions in the object code for the
; static analysis
sYmbol.ECA.BINary.ControlFlowMode.Trace ON

; perform the static analysis for condition, decision and MC/DC coverage
sYmbol.ECA.BINary.PROCESS

; display the observabiltiy gaps
sYmbol.ECA.BINary.view /FilterMapped UNMAPPED /ExpandAll

; export the observabiltiy gap details
sYmbol.ECA.BINary.EXPORT.GAPS mygaps.json
General Commands Reference Guide S | 152©1989-2024 Lauterbach

Here is a sample command sequence for the code coverage analysis.

See also

■ sYmbol.ECA.BINary.ControlFlowMode.INSTR ■ sYmbol.ECA.BINary.ControlFlowMode.Trace
■ sYmbol.ECA.BINary.EXPORT.GAPS ■ sYmbol.ECA.BINary.view
❏ sYmbol.ECA.BINary.GAPNUMBER()

▲ ’Build Process’ in ’Application Note for Trace-Based Code Coverage’
▲ ’Build Process’ in ’Application Note for Trace-Based Code Coverage’

sYmbol.ECA.BINary.SetCONDitionOffset Set condition offset
[build 134102 - DVD 09/2021]

Sets the address offset of a condition in relation to its decision. This is an expert command that should only
be used under the guidance of Lauterbach support.

This command can also be accessed via the Condition pull-down in sYmbol.ECA.BINary.view window.

; target setup

; load the application
Data.LOAD.Elf my_demo

; load the OS Awareness
TASK.CONFIG ~~/demo/arm/kernel/freertos/freertos.t32

; detects memory address ranges at the end of functions that were
; inserted due to memory alignment and removes them from the function
; address ranges.
sYmbol.CLEANUP.AlignmentPaddings

; consider conditional branches/instructions in the object code for the
; static analysis
sYmbol.ECA.BINary.ControlFlowMode.Trace ON

; consider source code instrumentation probe points for the
; static analysis
sYmbol.ECA.BINary.ControlFlowMode.INSTR ON

; perform the static analysis for condition, decision and MC/DC coverage
sYmbol.ECA.BINary.PROCESS

; start code coverage analysis

Format: sYmbol.ECA.BINary.SetCONDitionOffset <source> [<dec_index>] <index>
<address>
sYmbol.ECA.SetConditionOffset (deprecated)
General Commands Reference Guide S | 153©1989-2024 Lauterbach

Example:

sYmbol.ECA.BINary.SetDecisionState Disable/Enable decision evaluation
[build 134102 - DVD 09/2021]

Disable or enable a decision for evaluation during code coverage. When a decision is disabled it is ignored
when measuring code coverage with the following metrics: Decision, Condition, MCDC.

The current status of all decisions can be viewed with sYmbol.ECA.BINary.view.

Example:

; set offset of condition 0 of decision in line 171 to 0x8
sYmbol.ECA.BINary.SetConditionOffset \"..\coverage.c"\171 0. 0x8

; set offset of condition 0 of second decision in line 327 to 0x4C
sYmbol.ECA.BINary.SetConditionOffset \"..\coverage.c"\327 1. 0. 0x4C

Format: sYmbol.ECA.BINary.SetDecisionState <source> [<dec_index>] <address>
ON | OFF
sYmbol.ECA.SetDecisionState (deprecated)

; Disable decision in line 171
sYmbol.ECA.BINary.SetDecisionState \"..\coverage.c"\171 OFF

; Enable second decision in line 327
sYmbol.ECA.BINary.SetDecisionState \"..\coverage.c"\327 1. ON
General Commands Reference Guide S | 154©1989-2024 Lauterbach

sYmbol.ECA.BINary.view Result of static preprocessing for code coverage
[build 134102 - TRACE32 Release 09/2021]

This command allows to display the results of the static analysis performed by the command
sYmbol.ECA.BINary.PROCESS.

Format: sYmbol.ECA.BINary.view [/<option>]
sYmbol.ECA.ViewDecisions (deprecated)

<option>: FilterMapped | FilterType | ExpandAll | StripPATH

Columns

Decision ID (TRACE32 numbers the decisions).

tree TRACE32 internal tree:
- module name
 - eca file with full path
 - function name
 - source code line including decision
 - atomic conditions of the decision
General Commands Reference Guide S | 155©1989-2024 Lauterbach

If a List /Track window is open, the source code line selected in the sYmbol.ECA.BINary.view window is
referenced there. The exact type of the decision can be inspected.

See also

■ sYmbol.ECA.BINary.CollapseAll ■ sYmbol.ECA.BINary.ExpandAll
■ sYmbol.ECA.BINary.EXPORT.GAPS ■ sYmbol.ECA.BINary.FilterMapped
■ sYmbol.ECA.BINary.FilterType ■ sYmbol.ECA.BINary.PROCESS

▲ ’Build Process’ in ’Application Note for Trace-Based Code Coverage’

Columns

mapped dec Number of mapped decisions.

dec Overall number of decisions.

mapped cond Mapped conditions.

cond Overall number of conditions.

Options

FilterMapped Filter display by the mapping state, see command
sYmbol.ECA.BINary.FilterMapped.

FilterType Filter display by types, see command sYmbol.ECA.BINary.FilterType.

ExpandAll Open window with all trees expanded. See also command
sYmbol.ECA.BINary.ExpandAll.

StripPATH Overall number of conditions.
General Commands Reference Guide S | 156©1989-2024 Lauterbach

sYmbol.ECA.Delete Delete loaded ECA data

Deletes all loaded ECA data and clears the sYmbol.ECA.List window.

See also

■ sYmbol.ECA

sYmbol.ECA.Init Clear gathered ECA data
[build 142398 - DVD 02/2022]

Clears data gathered by sYmbol.ECA commands.

See also

■ sYmbol.ECA

sYmbol.ECA.List List ECA file overview
 [Columns] [Toolbar] [Example]

Lists details about the loaded .eca files.

The option /ERRORS advises TRACE32 PowerView to only display the .eca files that were loaded with an
error.

Format: sYmbol.ECA.Delete

Format: sYmbol.ECA.Init

Format: sYmbol.ECA.List [/ERRORS]
General Commands Reference Guide S | 157©1989-2024 Lauterbach

Description of Columns in the sYmbol.ECA.List Window

source List of all source files from the TRACE32 symbol database.
The source file names are part of the debug information loaded with the
program.

program Name of the program that includes the object code generated for the
source file.

eca Name of the loaded .eca file.

directory Directory containing the source file and the loaded .eca file.

size Size of the loaded .eca file in bytes.

signature Checksum signature of the loaded .eca file as a hex number.

state The state loaded indicates that the ECA file was loaded successfully.

The state error indicates one of the following:

• .eca file not found.

• .eca file contains invalid data.

The state n/a indicates that TRACE32 does not support .eca files
for the file type. E.g. no .eca data are supported for .asm files.

A state column => loaded: Double-clicking the row opens the ECA file in the TRACE32 EDIT window.
The ECA file opens in an external editor if you have configured one with the SETUP.EDITEXT
command.

B state column => (empty): Double-clicking a row loads the ECA file, if available.

C Check box allows to set the LENient option for loading operations.

C

A

B

General Commands Reference Guide S | 158©1989-2024 Lauterbach

Description of Toolbar Buttons in the sYmbol.ECA.List Window

Example: This script loads the .eca data for the module \coverage.

See also

■ sYmbol.ECA

Clear Deletes all previously loaded ECA data and clears the sYmbol.ECA.List
window.

Touch all Loads the .eca file for all source files.
(command sYmbol.ECA.LOADALL /SkipErrors)

Search Path Lists the search paths specified for the source files
(command sYmbol.SourcePATH.List). TRACE32 expects the .eca files in
the same directory as their source files.

ECA Files… Displays full sYmbol.ECA.List window. The button is only active in the
sYmbol.ECA.List /ERRORS window.

Errors… Opens the sYmbol.ECA.List /ERRORS window, displaying only .eca files
tagged with error.

;defines directory as base for relative source paths
sYmbol.SourcePATH.SetBaseDir "J:/user1/projects/sources"
;load program
Data.LOAD.Elf "coverage.elf" /RelPath
;load ECA file for the module \coverage
sYmbol.ECA.LOAD \coverage
sYmbol.ECA.List
General Commands Reference Guide S | 159©1989-2024 Lauterbach

sYmbol.ECA.LOAD Load a single ECA file

Loads the ECA data pertaining to the specified <module>.

The sYmbol.List.Module command lists all modules from the TRACE32 symbol database.

The column source shows the name of the corresponding source file.

After the source file is loaded, the column file in the sYmbol.List.SOURCE window shows the full source
path.

TRACE32 searches for the .eca file under this source path.

An error message is displayed when the .eca file is not found or contains invalid data.

See also

■ sYmbol.ECA

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.ECA.LOAD <module> [/<option>]

<option>: SkipErrors | LENient | SetBaseDir

SkipErrors Ensures that warnings are issued instead of error messages. For scripts,
error messages cause the script to stop. Warnings keep the script running.

LENient Allows loading of ECA files with minor errors as invalid file version or
checksum mismatch.

SetBaseDir Forces the search of matching ECA files relative to the specified base
directory.

;load ECA file for the module \coverage
sYmbol.ECA.LOAD \coverage
General Commands Reference Guide S | 160©1989-2024 Lauterbach

sYmbol.ECA.LOADALL Load all ECA files

Loads the ECA files for all modules listed in the TRACE32 symbol database.

Example: This script shows how to load all ECA data for the program my_demo.elf.

See also

■ sYmbol.ECA

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.ECA.LOADALL [/<option>]

<option>: SkipErrors | LENient | SetBaseDir

SkipErrors Ensures that warnings are issued instead of error messages. For scripts,
error messages cause the script to stop. Warnings keep the script running.

LENient Allows loading of ECA files with minor errors as invalid file version or
checksum mismatch.

SetBaseDir Forces the search of matching ECA files relative to the specified base
directory.

;load the elf file
Data.LOAD.elf my_demo.elf

;load ECA data for all modules
sYmbol.ECA.LOADALL /SkipErrors
General Commands Reference Guide S | 161©1989-2024 Lauterbach

sYmbol.FILTER.ADD.SOURCE Add source files to filter

Several source files are combined under a filter name. The filter can then be used in commands as a
representative of these source files. The syntax of the pathname is oriented towards the source column in
the sYmbol.Browse.SOURCE window.

sYmbol.FILTER.ADD.sYmbol Add symbols to filter

Several symbols are combined under a filter name. The filter can then be used in commands as a
representative of the symbols.

Format: sYmbol.FILTER.ADD.SOURCE <filter_name> <list_of_sources>

<list_of_
sources>

<source0> [<source1> …<source9>]

sYmbol.Browse.SOURCE

sYmbol.FILTER.ADD.SOURCE jd_files \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdcolor.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdmainct.c"

COVerage.ListFunc.preset jd_files

; Add a further source file
sYmbol.FILTER.ADD.SOURCE jd_files \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdhuff.c"

Format: sYmbol.FILTER.ADD.sYmbol <filter_name> <list_of_symbols>

<list_of_
symbols>

<symbol0> [<symbol1> …<symbol9>]
General Commands Reference Guide S | 162©1989-2024 Lauterbach

The example below combines modules to a filter.

sYmbol.FILTER.Delete Delete filter

Delete specified filter.

sYmbol.Browse.Module

sYmbol.FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListFunc.preset jd_modules

sYmbol.FILTER.ADD.sYmbol jd_modules \jdsample

Format: sYmbol.FILTER.Delete <filter_name>
General Commands Reference Guide S | 163©1989-2024 Lauterbach

sYmbol.ForEach Symbol wildcard command

Executes a PRACTICE command for each symbol matching the specified name and type patterns.

Examples:

For more examples on wildcards, see command sYmbol.name.

See also

■ sYmbol ❏ sYmbol.MATCHES()

Format: sYmbol.ForEach "<cmd>" [<name_pattern> [<type_pattern>]]

<cmd> The command to be executed has to be specified with quotation marks. It
may contain the characters '*' or '?' as placeholders that are replaced by the
complete name of a matching symbol.

<name_pattern>
<type_pattern>

The patterns are case-insensitive. Therefore lower and upper case
characters are not distinguished. The following wildcards can be used in
pattern expressions:

'*' Matches any string, including empty strings.
For the <type_pattern>, only symbols with HLL type information match.

'?' Matches one (non-empty) character.

'"' Can be used to input special characters like '*' or '?'

sYmbol.ForEach "Break.Set" *func* ; will execute the command
; Break.Set <symbol>
; for all symbols containing
;'func'

sYmbol.ForEach
"Break.Set Var.END(""*"") /Charly" * *

; execute the command
; Break.Set
;Var.END(<symbol>) /Charly
; which sets a “Charly :
; breakpoint” to the
; last address of each HLL
;function or variable
General Commands Reference Guide S | 164©1989-2024 Lauterbach

sYmbol.INFO Display detailed information about debug symbol

Displays symbolic address, location, scope and layout of the specified debug <symbol>. If an
<address> is specified, the details about the debug symbol located at <address> are displayed.

The option /Track enables the address tracking. See example 2.

Example 1:

Format: sYmbol.INFO <symbol> | <address> [/Track]

sYmbol.INFO func9 ; display detailed debug information for
; the function func9
General Commands Reference Guide S | 165©1989-2024 Lauterbach

Example 2:

sYmbol.INFO , /Track ; display a sYmbol.INFO window with address
; tracking enabled

; you have to use a ",", if you do not want
; to specify the <symbol> parameter

Data.dump 0x40004000 ; display a hex dump starting at address
; 0x40004000

; address tracking works as follows:
; as soon as you select an address in the Data.dump window, details about
; the symbol located at selected address are displayed
General Commands Reference Guide S | 166©1989-2024 Lauterbach

See also

■ sYmbol ■ sYmbol.Browse.name ■ sYmbol.STATE ■ Data.dump
■ MMU.INFO ■ Var.INFO

▲ ’The Symbol Database’ in ’Training Source Level Debugging’

List.auto ; Analogous, if a line is selected in the
; Source Listing all the details about the
; related function are displayed
General Commands Reference Guide S | 167©1989-2024 Lauterbach

sYmbol.LANGUAGE Select language

Selects the language and style, that is used for HLL expressions.

Example:

See also

■ sYmbol

Format: sYmbol.LANGUAGE [<language>]

sYmbol.LANGUAGE MCC68K
General Commands Reference Guide S | 168©1989-2024 Lauterbach

sYmbol.List Display list of all symbols

Displays the sYmbol.List window with a list of all symbols. The list is ordered by the symbols’ addresses
and scrolled so that <address> is shown at the top of the window.

The <address> can be entered as a literal (e.g. P:0xFC004AB) or using a symbol path (e.g.
\\sieve\page1\main). When using wildcards, the symbol path needs to evaluate to a single symbol.

See also

■ sYmbol.List.ATTRibute ■ sYmbol.List.BUILTIN ■ sYmbol.List.ColorDef ■ sYmbol.List.Enum
■ sYmbol.List.FRAME ■ sYmbol.List.Function ■ sYmbol.List.IMPORT ■ sYmbol.List.InlineBlock
■ sYmbol.List.InlineFunction ■ sYmbol.List.LINE ■ sYmbol.List.Local ■ sYmbol.List.MACRO
■ sYmbol.List.MAP ■ sYmbol.List.Module ■ sYmbol.List.PATCH ■ sYmbol.List.Program
■ sYmbol.List.REFerence ■ sYmbol.List.SECtion ■ sYmbol.List.SOURCE ■ sYmbol.List.SourceFunction
■ sYmbol.List.SOURCETREE ■ sYmbol.List.STACK ■ sYmbol.List.Static ■ sYmbol.List.TREE
■ sYmbol.List.Type ■ sYmbol ■ sYmbol.STATE

sYmbol.List.ATTRibute Display memory attributes

Displays memory attributes. Memory attributes can classify the code or execution model at a specific
address. This information is highly compiler dependent.

See also

■ sYmbol.List

sYmbol.List.BUILTIN List built-in data types

Lists all built-in data types of the used programming language.

See also

■ sYmbol.List

Format: sYmbol.List [<address>]

Format: sYmbol.List.ATTRibute [<address>]

Format: sYmbol.List.BUILTIN
General Commands Reference Guide S | 169©1989-2024 Lauterbach

sYmbol.List.ColorDef List the keyword color definitions

Lists the color definition for the keywords of the HLL code displayed in the Data.List window (if, else,
while, etc.). The class column in the sYmbol.ListColorDef window shows the currently assigned
formatting class (= style in a word processing application such as OpenOffice.Org Writer).
By default, the keywords are assigned to the formatting class 1, and its default color is blue.

By assigning keywords to class 2 or 3, you can format keywords green or purple. If you want to pick another
color for the classes 2 and 3, then click the change button in the SETUP.COLOR window.

Example 1: This script shows how to change the color of the for keyword. To try this script, copy it to a
test.cmm file, and then step through it in TRACE32 (See “How to...”).

Example 2: A PRACTICE script that adds more keywords to the sYmbol.List.ColorDef window is included
in your TRACE32 installation. To access the script, run this command:
B::CD.PSTEP ~~/demo/practice/colors/syntaxcolor.cmm

See also

■ sYmbol.List ■ sYmbol.ColorDef ■ SETUP.COLOR

▲ ’PowerView - Screen Display’ in ’PowerView User’s Guide’

Format: sYmbol.List.ColorDef

sYmbol.List.ColorDef ;Display the keywords, their colors, and
 ;the classes to which the keywords are assigned

SETUP.COLOR ;Display the current color settings

sYmbol.ColorDef "for" 2. ;Assign the keyword 'for' to class 2 =>
 ;'for' turns green

sYmbol.ColorDef "for" 3. ;Assign the keyword 'for' to class 3 =>
 ;'for' turns purple

SETUP.COLOR 39. 255. 128. 0. ;Change the color of class 3 to orange

SETUP.COLOR 39. ;Restore the default color of class 3 again

sYmbol.ColorDef "for" 1. ;Apply class 1 to the 'for' keyword again

Change keyword color.
General Commands Reference Guide S | 170©1989-2024 Lauterbach

sYmbol.List.Enum List of enumeration constants
[build 161826 - DVD 09/2023]

Lists all enumeration constants with the related information.

See also

■ sYmbol.List

Format: sYmbol.List.Enum
General Commands Reference Guide S | 171©1989-2024 Lauterbach

sYmbol.List.FRAME Display frames

Lists the location and further related information about the frames. In the sYmbol.List.FRAME window,
each entry tells the debugger for a certain program range where the registers are saved, e.g. relative to the
current stack pointer (SP).

Description of Columns in the sYmbol.List.FRAME Window

Description of Values in the “rules” Column

See also

■ sYmbol.List ■ Frame

Format: sYmbol.List.FRAME [<address>]

address Address range of a single frame

rules Rules used by TRACE32 PowerView to recover the previous stack
frames.

RET Location of the return value, e.g. a register

R0 to R14 Register names (architecture-specific)

CFA Canonical frame address

<register>:used Registers which cannot be recovered

<register>:- Registers with valid content

*CFA-<offset>
or
*CFA+<offset>

Address where the register content can be recovered from,
e.g. *CFA-0x4
General Commands Reference Guide S | 172©1989-2024 Lauterbach

sYmbol.List.Function Display functions

Lists the location and further related information about the loaded functions.

See also

■ sYmbol.List

sYmbol.List.IMPORT List imported symbols

Lists the symbols that are loaded by imported DLLs (required e.g. for Symbian or Windows CE).

See also

■ sYmbol.List

Format: sYmbol.List.Function [<range> | <address>]

Format: sYmbol.List.IMPORT
General Commands Reference Guide S | 173©1989-2024 Lauterbach

sYmbol.List.InlineBlock List inlined code blocks

When compiling with optimization the compiler may insert functions or parts of a function directly
instead of adding a call to the function. This command lists all parts of the code where function parts
have been inlined by the compiler.

See also

■ sYmbol.List

sYmbol.List.InlineFunction List inlined functions

Lists the location and further related information about the loaded inline functions.

See also

■ sYmbol.List

Format: sYmbol.List.InlineBlock

Format: sYmbol.List.InlineFunction
General Commands Reference Guide S | 174©1989-2024 Lauterbach

sYmbol.List.LINE Display source lines

Displays the location and further related information about the loaded lines.

See also

■ sYmbol.List

Format: sYmbol.List.LINE [<address>]
General Commands Reference Guide S | 175©1989-2024 Lauterbach

sYmbol.List.Local Display local symbols

Displays all symbols local to functions and blocks.

See also

■ sYmbol.List

sYmbol.List.MACRO List all C macros

List all C macros. C macros can either be loaded with Data.LOAD <file> /MACRO or they can be created
with the command sYmbol.Create.MACRO.

See also

■ sYmbol.List

Format: sYmbol.List.Local [<range> | <address>]

Format: sYmbol.List.MACRO
General Commands Reference Guide S | 176©1989-2024 Lauterbach

sYmbol.List.MAP Display memory load map

Displays address ranges where code was saved during download and the order in which the code was
saved. Can be used to find out “where the code has gone”.

Example:

See also

■ sYmbol.List ❏ sYmbol.List.MAP.COUNT() ❏ sYmbol.List.MAP.RANGE()

sYmbol.List.Module Display modules

Displays information about the loaded models, e.g. the location or the loaded source file.

See also

■ sYmbol.List

Format: sYmbol.List.MAP [<address>]

;<your_code>
SYStem.Up ;connect to target
Data.LOAD.Elf sieve_flash_thumb_ii_v7m.elf ;load application to target

sYmbol.List.MAP ;let's find out
 ;"where the code has gone"

A The loaded *.elf file contains two section, and the code has been loaded to these two address
ranges.

Format: sYmbol.List.Module [<address>]

A

General Commands Reference Guide S | 177©1989-2024 Lauterbach

sYmbol.List.PATCH Display STF-symbol information

Is a alias for sYmbol.PATCH.List.

See also

■ sYmbol.List

sYmbol.List.Program Display programs

Displays the location and further related information about the loaded programs.

See also

■ sYmbol.List ❏ sYmbol.LIST.PROGRAM()

Format: sYmbol.List.PATCH [<address>]

Format: sYmbol.List.Program
General Commands Reference Guide S | 178©1989-2024 Lauterbach

sYmbol.List.REFerence Display reference information

Displays DWARF declaration info. THe ELF file ha to loaded with /REFerence option:

See also

■ sYmbol.List

Format: sYmbol.List.REFerence

Data.LOAD.ELF <elf_file> /REFerence
General Commands Reference Guide S | 179©1989-2024 Lauterbach

sYmbol.List.SECtion Display physical sections

Opens the sYmbol.List.SECtion window, displaying the logical address ranges, section names, and
access rights for the sections. Physical address ranges are also displayed, provided the file type contains
any.

Description of Columns in the sYmbol.List.SECtions Window

See also

■ sYmbol.List ❏ sYmbol.SECADDRESS() ❏ sYmbol.SECEND() ❏ sYmbol.SECNAME()
❏ sYmbol.SECPRANGE() ❏ sYmbol.SECRANGE()

Format: sYmbol.List.SECtion [<address>]

address Logical address range of a section.

path\section Section names in source files.

acc Access rights:
• R: Read access
• W: Write access
• X: Section can execute code

load • L: Section is loaded by the debugger.
• 0: Section is set to zero by the debugger.

physical Physical address range of a section - only for certain file types and
architectures.
General Commands Reference Guide S | 180©1989-2024 Lauterbach

sYmbol.List.SOURCE Display source file names
[Example]

If a files with debug information is loaded (Data.LOAD.<file_format>), this file also provides the paths for
the HLL (C/C++/JAVA etc.) source files. The command sYmbol.List.SOURCE lists the file names and
paths in the source column.

Description of Toolbar Buttons in the sYmbol.List.SOURCE Window

Format: sYmbol.List.SOURCE [/ERRORS]

Clear Invalidates the state column for all source files and invalidates the search
results displayed in the file column
(command sYmbol.SourceRELOAD).

Touch All By default an HLL source file is only loaded by TRACE32 when the contents
of the HLL source file is required during debugging. This button advises
TRACE32 to load all source files
(command sYmbol.SourceLOAD).

Search Path Displays details on source search paths
(command sYmbol.SourcePATH.List).

Errors Display only modules tagged with error in the state column.
General Commands Reference Guide S | 181©1989-2024 Lauterbach

Description of Columns in the sYmbol.List.SOURCE Window

Example:

Resolve Path in the Source context menu opens a dialog where you can choose the correct path for the
selected module/source. TRACE32 adds the result to the source search paths. The result can be inspected
via the sYmbol.SourcePATH.List command. The procedure is as follows:

• Absolute paths are fixed with the help of the command sYmbol.SourcePATH.Translate.

• Relative paths are fixed with the help of the command sYmbol.SourcePATH.SetBaseDir.

See also

■ sYmbol.List ■ sYmbol.ECA ❏ sYmbol.LIST.SOURCE()

▲ ’Release Information’ in ’Legacy Release History’

module Path of the compiled file as it is maintained by TRACE32.

source Source path for C/C++/JAVA source file after the completion of the
Data.LOAD.<file_format> command.

file Source path from which the C/C++/JAVA source file was actually loaded.
Required adjustments of the source path can be performed with the help
of the sYmbol.SourcePATH command group.

size Size information as provided by the loaded file.

time Time information as provided by the loaded file.

state The state loaded indicates that the C/C++/JAVA source file was loaded
successfully.
The state error indicates that the C/C++/JAVA source file could not be
loaded. Modules tagged with error are printed in red.

sYmbol.List.SOURCE /ERRORS // Advise TRACE32 PowerView to display
// only modules tagged with error.
General Commands Reference Guide S | 182©1989-2024 Lauterbach

sYmbol.List.SourceFunction Display source to function relations

Lists the location and source file information about the loaded functions.

See also

■ sYmbol.List

Format: sYmbol.List.SourceFunction [<range> | <address>]
General Commands Reference Guide S | 183©1989-2024 Lauterbach

sYmbol.List.SOURCETREE Display source files hierarchy

Displays the hierarchy of the source files in a tree structure.

See also

■ sYmbol.List

sYmbol.List.STACK Display virtual stack

Displays information about virtual stack pointers. This information is highly compiler dependent.

See also

■ sYmbol.List

Format: sYmbol.List.SOURCETREE

Format: sYmbol.List.STACK [<address>]
General Commands Reference Guide S | 184©1989-2024 Lauterbach

sYmbol.List.Static Display static symbols

Displays all symbols with a fixed address.

See also

■ sYmbol.List

sYmbol.List.TREE Display symbols in tree form

Displays modules, symbols, and variables in a tree structure.

See also

■ sYmbol.List

Format: sYmbol.List.Static [<range> | <address>]

Format: sYmbol.List.TREE
General Commands Reference Guide S | 185©1989-2024 Lauterbach

sYmbol.List.Type Display data types

Displays all data types used by the compiler.

See also

■ sYmbol.List

Format: sYmbol.List.Type [/Unnamed]

Unnamed Displays also unnamed types, e.g. "char *".
General Commands Reference Guide S | 186©1989-2024 Lauterbach

sYmbol.LSTLOAD Load assembler source file

Using the sYmbol.LSTLOAD command group, you can load various formats of assembler list files for
source text debugging on assembler level.

See also

■ sYmbol.LSTLOAD.GHILLS ■ sYmbol.LSTLOAD.HPASM
■ sYmbol.LSTLOAD.IAR ■ sYmbol.LSTLOAD.INT68K
■ sYmbol.LSTLOAD.INTEL ■ sYmbol.LSTLOAD.INTEL2
■ sYmbol.LSTLOAD.KEIL ■ sYmbol.LSTLOAD.MicroWare
■ sYmbol.LSTLOAD.MRI68K ■ sYmbol.LSTLOAD.OAK
■ sYmbol

sYmbol.LSTLOAD.GHILLS Load GHILLS assembler source file

Loading of a GHILLS assembler list file for source text debugging on assembler level. If the base address of
the module doesn’t fit, the base address will be given as an argument.

See also

■ sYmbol.LSTLOAD

sYmbol.LSTLOAD.HPASM Load HP assembler source file

Loading of an HP assembler list file for source text debugging on assembler level. If the base address of the
module doesn't fit, the base address will be given as an argument. If a program name is given, the module
entry will be generated from the file name of the list file. The different commands load different HP assembler
list file formats.

The debugging can be controlled by the following assembler comments:

; T32-ORG

To mark lines including ORG statements.

Format: sYmbol.LSTLOAD.GHILLS <module>|<program> <file> [<base_address>]

Format: sYmbol.LSTLOAD.HPASM <module>|<program> <file> [<base>]

Format: sYmbol.LSTLOAD.HPASM2 <module>|<program> <file> [<base>]
General Commands Reference Guide S | 187©1989-2024 Lauterbach

; T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address). Include files,
which shall not be displayed, must be switched off also.

;T32-ON

Reactivation of the debugging function.

See also

■ sYmbol.LSTLOAD

NOTE: The source line numbers will not match in this case, as the relation to the original
source is lost.

Data.LOAD.HP sps
sYmbol.LSTLOAD.HPASM \SPS1 sps1.lst
sYmbol.LSTLOAD.HPASM \SPS2 sps2.lst

; load the module and symbols
; load the source lines for
; module 1
; load the source lines for
; module 2
General Commands Reference Guide S | 188©1989-2024 Lauterbach

sYmbol.LSTLOAD.IAR Load IAR assembler source file

Loading of a IAR assembler list file for source text debugging on assembler level. If the base address of the
module doesn't fit, the base address will be given as an argument.

The first comment line of the file (beginning with '*') must start in the first column of the source text! The
debugging can be controlled by the following assembler comments:

*T32-ORG

To mark lines including ORG statements.

*T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address). Include files,
which shall not be displayed, must be switched off also.

*T32-ON

Reactivation of the debugging function.

See also

■ sYmbol.LSTLOAD

Format: sYmbol.LSTLOAD.IAR <module>|<program> <file> [<base_address>]

NOTE: The source line numbers will not match in this case, as the relation to the original
source is lost.
General Commands Reference Guide S | 189©1989-2024 Lauterbach

sYmbol.LSTLOAD.INT68K Load Intermetrics assembler source file

Loading of a Intermetrics assembler list file for source text debugging on assembler level. If the base
address of the module doesn't fit, the base address will be given as an argument.

The debugging can be controlled by the following assembler comments:

*T32-ORG

To mark lines including ORG statements.

*T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address).

*T32-ON

Reactivation of the debugging function.

See also

■ sYmbol.LSTLOAD

sYmbol.LSTLOAD.INTEL Load INTEL assembler source file

Loading of a INTEL assembler list file for source text debugging on assembler level. If the base address of
the module doesn’t fit, the base address will be given as an argument.

See also

■ sYmbol.LSTLOAD

Format: sYmbol.LSTLOAD.INT68K <module>|<program> <file> [<base_address>]

Format: sYmbol.LSTLOAD.INTEL <module>|<program> <file> [<base_address>]
General Commands Reference Guide S | 190©1989-2024 Lauterbach

sYmbol.LSTLOAD.INTEL2 Load INTEL assembler source file

Loading of a INTEL multi-segment assembler list file for source text debugging on assembler level. If the
base address of the module doesn’t fit, the base address will be given as an argument. This

See also

■ sYmbol.LSTLOAD

sYmbol.LSTLOAD.KEIL Load Keil assembler source file

Loading of an KEIL (8051) assembler list file for source text debugging on assembler level. The base
address is optional, it is used when the address sections are unknown.

See also

■ sYmbol.LSTLOAD

sYmbol.LSTLOAD.MicroWare Load MICROWARE assembler source file

Loading of a MICROWARE assembler list file for source text debugging on assembler level. If the base
address of the module doesn't fit, the base address will be given as an argument. If a program name is
given, the module entry will be generated from the file name of the list file.

Format: sYmbol.LSTLOAD.INTEL2 <module>|<program> <file> [<base_address>]

Format: sYmbol.LSTLOAD.KEIL <module> <file> [<base>]

Format: sYmbol.LSTLOAD.MicroWare <module>|<program> <file> [<base>]
General Commands Reference Guide S | 191©1989-2024 Lauterbach

Example:

See also

■ sYmbol.LSTLOAD

Data.LOAD.ROF sps /MAP
sYmbol.LSTload.mw \\SPS sps1.lst 0x1000

sYmbol.LSTload.MicroWare \\SPS sps2.lst 0x1200

; load the module and
; symbols
; load the source
; lines for module 1
; load the source
; lines for module 2
General Commands Reference Guide S | 192©1989-2024 Lauterbach

sYmbol.LSTLOAD.MRI68K Load MICROTEC assembler source file

Loading of a MICROTEC assembler list file for source text debugging on assembler level. If the base
address of the module doesn't fit, the base address will be given as an argument.

The first comment line of the file (beginning with '*') must start in the first column of the source text! The
debugging can be controlled by the following assembler comments:

*T32-ORG

To mark lines including ORG statements.

*T32-OFF

To switch of the source text debugging. The debugging must be switched of for lines containing data
statements or definitions (i.e. lines which address column not containing a program address).

*T32-ON

Reactivation of the debugging function.

See also

■ sYmbol.LSTLOAD

sYmbol.LSTLOAD.OAK Load OAK assembler source file

Loading of a OAK assembler list file for source text debugging on assembler level.

See also

■ sYmbol.LSTLOAD

Format: sYmbol.LSTLOAD.MRI68K <module>|<program> <file> [<base_address>]

Format: sYmbol.LSTLOAD.OAK <module>|<program> <file> [<base>]
General Commands Reference Guide S | 193©1989-2024 Lauterbach

sYmbol.MARKER Fine-tune the nested function run-time analysis

The sYmbol.MARKER commands are intended for very advanced users only. The commands are used for
fine-tuning the nesting function run-time analysis, typically in conjunction with the Trace.STATistic.Func
command. Markers can be used to handle special cases for nested trace statistics. Please contact
Lauterbach support before using the sYmbol.MARKER commands.

The sYmbol.MARKER commands let you create markers for symbols, display them in a list window, delete
individual markers, and reset all markers. The following examples are just intended to illustrate these
actions.

Example 1:

Example 2:

See also

■ sYmbol ■ sYmbol.MARKER.Create ■ sYmbol.MARKER.Delete ■ sYmbol.MARKER.List
■ sYmbol.MARKER.RESet ■ sYmbol.MARKER.TOUCH

▲ ’Release Information’ in ’Legacy Release History’

;Display the marker list window
sYmbol.MARKER.List

;Create function entry markers for the functions func1, main
sYmbol.MARKER.Create FENTRY func1
sYmbol.MARKER.Create FENTRY main

;Create function exit markers
sYmbol.MARKER.Create FEXIT sYmbol.EXIT(func1)
sYmbol.MARKER.Create FEXIT sYmbol.EXIT(main)

A Double-click a line to open a List.auto window, displaying the location of a marker. Note that the
marker itself is not visible in the List.auto window.

;Delete an individual function entry marker
sYmbol.MARKER.Delete func1

;Delete an individual function exit marker
sYmbol.MARKER.Delete sYmbol.EXIT(main)

;Delete all markers
sYmbol.MARKER.RESet

A

General Commands Reference Guide S | 194©1989-2024 Lauterbach

http://www.lauterbach.com/

sYmbol.MARKER.Create Marker for nesting function run-time analysis

Nesting function run-time analysis commands likeTrace.STATistic.Func process the trace information to
reconstruct the function call hierarchy. The focus is put on the transitions between functions. The following
events are of interest:

• Function entries/exits

• Task switches

• Entries/exits of interrupt service routines

• Entries/exits of TRAP handlers

Optimization of the OS and the compiler as well as the technology used for the trace generation may disturb
the reconstruction of the call hierarchy. As a result, nesting function run-time analysis fails. Markers are a
mean to feed TRACE32 with additional information that help to pass blocking points in the analysis.

The command sYmbol.MARKER.List provides a list of all created markers.

Format: sYmbol.MARKER.Create <type> <instruction_address>
sYmbol.CREATE.MARKER (deprecated)
sYmbol.NEW.MARKER (deprecated)

<type>: KENTRY | KEXIT | KBACKDOOR | KBEGIN | KEND | KFROM | KTO |
KLEAVE | FENTRY | KFENTRY | IFENTRY | ILEAVE | FEXIT |
FEXITINIT | FEXITDOUBLE | FEXITCLEANUP | FBACKDOOR | KFBACK-
DOOR | CLEANUP | CLEANUP2 | IGNORE | IGNOREFROM | IGNORETO |
CALL | JUMP | BYJUMP | TASKSWITCH | CORRELATE

sYmbol.MARKER.Create KENTRY os_prologue ; mark the address os_prologue
; as kernel entry point

sYmbol.MARKER.Create KEXIT os_epilogue ; mark the address os_epilogue
; as kernel exit point

sYmbol.MARKER.List ; list all markers
General Commands Reference Guide S | 195©1989-2024 Lauterbach

KENTRY/KEXIT/KBACKDOOR Marker

A detailed description of the usage of the markers is given at the command description of
Trace.STATistic.TASKKernel and Trace.STATistic.TASKFunc.

KBEGIN/KEND Marker

Mark <address> as kernel event. These markers work the same way as KENTRY and KEXIT but are
not nested, i.e. a KEND marker closes all previously opened KBEGIN markers.

FENTRY/FEXIT/FBACKDOOR/FEXITDOUBLE/FEXITINT Marker

A detailed description of the usage of the markers is given at the command description of
Trace.STATistic.Func.

sYmbol.MARKER.Create KENTRY os_prologue ; mark the address
; os_prologue
; as kernel entry point

sYmbol.MARKER.Create KEXIT os_epilogue ; mark the address
; os_epilogue
; as kernel exit point

sYmbol.MARKER.List ; list all markers

FENTRY <address> Mark <address> as function entry.

FEXIT <address> Mark <address> as function exit.

FBACKDOOR <address> Mark <address> as function entry. TRACE32 ignores this function
entry in the trace evaluation if a prior function entry was detected.

FEXITDOUBLE <address> Mark <address> as function exit where a function exits two
function levels.

FEXITINT <address> Mark <address> as interrupt exit/return event.
General Commands Reference Guide S | 196©1989-2024 Lauterbach

CORRELATE Marker

Purpose: Solve issues of trace export technology.

CORRELATE markers allows to assign read/write accesses to instructions.

If trace information is exported for all executed instructions but only for selected read/write accesses, an
exact assignment of an read/write access to the load/store operation is not possible in most cases. The
read/write access is displayed in the Trace Listing in red before the next exported instruction information
(ptrace).

This behavior may disturb the reconstruction of the call hierarchy in the following case: A task switch occurs
(write access to variable holding the task ID) and then a function is called, but in the Trace Listing the task
switch is displayed after the function call. As a result the function is hooked into the wrong call tree.

More than one CORRELATE marker is possible as long as its address is unique between two ptrace
packets.

In the example below, the write access to the task identifier (TASK.CONFIG(magic)) and all instructions are
exported via a Nexus port (MPC5646).

…

NEXUS.BTM ON
NEXUS.HTM ON
Break.Set TASK.CONFIG(magic) /Write /TraceData

…

General Commands Reference Guide S | 197©1989-2024 Lauterbach

For the reconstruction of the call hierarchy and an accurate timing the write access of the task ID has to be
assigned exactly to the corresponding instruction. For this purpose a CORRELATE marker can be used.

IGNORE / IGNOREFROM / IGNORETO / IGNOREALLFUNC

See also

■ sYmbol.MARKER

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.MARKER.Create CORRELATE V:4000105C

IGNORE <address> TRACE32 ignores all instructions with the specified
<address>, for nesting function run-time analysis.

IGNOREFROM <start_address>
IGNORETO <end_address>

TRACE32 ignores all instructions between
<start_address> and <end_address>, for nesting
function run-time analysis.

IGNOREALLFUNC TRACE32 ignores all function entries and all function
exits, for nesting function run-time analysis.
General Commands Reference Guide S | 198©1989-2024 Lauterbach

sYmbol.MARKER.Delete Delete a marker

Deletes the specified marker. To delete all markers, use sYmbol.MARKER.RESet.

See also

■ sYmbol.MARKER

sYmbol.MARKER.List Displays the marker list

Opens the sYmbol.MARKER.List window, displaying the list of markers created with
sYmbol.MARKER.Create.

A detailed description of the usage of the markers is given at the command description of
Trace.STATistic.TASKKernel and Trace.STATistic.TASKFunc.

See also

■ sYmbol.MARKER

sYmbol.MARKER.RESet Erase all markers

Removes all markers created with sYmbol.MARKER.Create.

See also

■ sYmbol.MARKER

Format: sYmbol.MARKER.Delete <address>

Format: sYmbol.MARKER.List [<address>]
sYmbol.List.MARKER [<address>] (deprecated)

Format: sYmbol.MARKER.RESet
General Commands Reference Guide S | 199©1989-2024 Lauterbach

sYmbol.MARKER.TOUCH Marker post-processing

Default: ON

Enables/disables the re-processing of the function nesting analysis results after sYmbol.MARKER.Create
commands. This command can be used in order to speed up the marker processing in TRACE32 in case a
large number of markers is created.

Example:

See also

■ sYmbol.MARKER

sYmbol.MATCH Symbol search mode

Defines the behavior when a symbol is not unique.

See also

■ sYmbol ■ Data.Find

Format: sYmbol.MARKER.TOUCH [ON | OFF]

sYmbol.MARKER.TOUCH OFF
;<group of sYmbol.MARKER.Create commands>
sYmbol.MARKER.TOUCH ON

Format: sYmbol.MATCH [Exact | Best | Choose]

Exact Refuses any symbols that are not unique. This adjustment is useful for
regression test and automatic batch scripts.

Best Open browser window to choose symbol when there is no best match.
This is the default.

Choose Opens a symbol browser to choose from one of the symbols. This is
useful for choosing between different overloaded methods in C++.
General Commands Reference Guide S | 200©1989-2024 Lauterbach

sYmbol.MEMory Display memory usage

Displays a summary of memory used by the different components of the symbol table. The results are
written to the AREA A000 (display with AREA command).

See also

■ sYmbol

Format: sYmbol.MEMory
General Commands Reference Guide S | 201©1989-2024 Lauterbach

sYmbol.Modify Modify symbols

This command group allows to modify the symbol table or add additional information to existing symbols and
types. See also sYmbol.RELOCate.

See also

■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess
■ sYmbol.Modify.AddressToRange ■ sYmbol.Modify.AlienFunction
■ sYmbol.Modify.ATTRibute ■ sYmbol.Modify.CutFunction
■ sYmbol.Modify.NAME ■ sYmbol.Modify.NAMES
■ sYmbol.Modify.RangeToAddress ■ sYmbol.Modify.RangeToFunction
■ sYmbol.Modify.SOURCE ■ sYmbol.Modify.SplitFunction
■ sYmbol.Modify.StaticCOPY ■ sYmbol.Modify.StaticToStack
■ sYmbol.Modify.TYPE ■ sYmbol

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.Modify.Access Modify access of symbols

Modifies the memory access class of symbols. The symbol path limits the modification to special symbols of
a module or a program. If an address range is given, only the symbols in this range will be modified. The
command is useful in combination with the automatic symbol relocation feature, when constants are placed
in ROM.

Examples:

See also

■ sYmbol.Modify.ADDRess ■ sYmbol.Modify.AddressToRange
■ sYmbol.Modify.AlienFunction ■ sYmbol.Modify.ATTRibute
■ sYmbol.Modify ■ sYmbol.Modify.CutFunction
■ sYmbol.Modify.NAME ■ sYmbol.Modify.NAMES
■ sYmbol.Modify.RangeToAddress ■ sYmbol.Modify.RangeToFunction
■ sYmbol.Modify.SOURCE ■ sYmbol.Modify.SplitFunction
■ sYmbol.Modify.StaticCOPY ■ sYmbol.Modify.StaticToStack
■ sYmbol.Modify.TYPE

Format: sYmbol.Modify

Format: sYmbol.Modify.Access <class>: [<symbol_path>|<range>]

sYmbol.Modify.Access d:0x1000--0x1fff ; all symbols in the range get
; the memory access class d:

sYmbol.Modify.Access p:
sYmbol.SECRANGE(const)

; all symbols in the 'const'
; section get the memory
; access class p:
General Commands Reference Guide S | 202©1989-2024 Lauterbach

sYmbol.Modify.ADDRess Modify address of symbols

Modifies the start address or address range of a symbol, module, program or function.

Example:

See also

■ sYmbol.Modify.Access ■ sYmbol.Modify.AddressToRange
■ sYmbol.Modify.AlienFunction ■ sYmbol.Modify.ATTRibute
■ sYmbol.Modify ■ sYmbol.Modify.CutFunction
■ sYmbol.Modify.NAME ■ sYmbol.Modify.NAMES
■ sYmbol.Modify.RangeToAddress ■ sYmbol.Modify.RangeToFunction
■ sYmbol.Modify.SOURCE ■ sYmbol.Modify.SplitFunction
■ sYmbol.Modify.StaticCOPY ■ sYmbol.Modify.StaticToStack
■ sYmbol.Modify.TYPE

sYmbol.Modify.AddressToRange Modify address of symbols

Extends a single address label into a symbol with an address range. The address range starts at the symbol
address and ends at the address of the next symbol minus 1. This command is the opposite of
sYmbol.Modify.RangeToAddress.

Example:

See also

■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify ■ sYmbol.Modify.SOURCE

Format: sYmbol.Modify.ADDRess <symbol> <address>|<range>

; assign new range to module
sYmbol.Modify.ADDRess \mymodule 0x1000--0x1fff

Format: sYmbol.Modify.AddressToRange <symbol> |<address>

sYmbol.Modify.AddressToRange mylabel
General Commands Reference Guide S | 203©1989-2024 Lauterbach

sYmbol.Modify.AlienFunction Disable frame info for a function

Disables frame information for a selected function.

See also

■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify ■ sYmbol.Modify.SOURCE

sYmbol.Modify.ATTRibute Modify memory attribute

Modifies the attribute of the given memory range

Example:

See also

■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify ■ sYmbol.Modify.SOURCE

sYmbol.Modify.CutFunction Reduce function address information

Reduces the address range information for the defined functions to a single address. This command is used
only in very special cases.

Format: sYmbol.Modify.AlienFunction <symbol> |<range>

Format: sYmbol.Modify.ATTRibute <attribute> <symbol>|<range>

; change the memory attribute for the range 0x400--0x4FF to DATA
sYmbol.Modify.ATTRibute DATA 0x400--0x4FF

Format: sYmbol.Modify.CutFunction <range> | <address>
General Commands Reference Guide S | 204©1989-2024 Lauterbach

Example:

See also

■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify.SOURCE

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.Modify.NAME Rename symbol

Renames symbol. If multiple symbols with the given name are available, an error “ambiguous symbol” is
returned. Use in this case sYmbol.Modify.NAMES.

Example:

See also

■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify.SOURCE

sYmbol.Modify.NAMES Rename symbols

Renames all symbols having the name <symbol_name>, except for function locals.

If you need to rename a lot of symbols, consider using sYmbol.DEOBFUSCATE as it will be much faster.

See also

■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify.SOURCE
■ sYmbol.DEOBFUSCATE

sYmbol.List.Function
sYmbol.Modify.CutFunction 0x104c++0xff

Format: sYmbol.Modify.NAME <symbol_name> <new_name>

; renames ‘vtriplearray’ to ‘tt’
sYmbol.Modify.NAME vtripplearray tt

Format: sYmbol.Modify.NAMES <symbol_name> <new_name>
General Commands Reference Guide S | 205©1989-2024 Lauterbach

sYmbol.Modify.RangeToAddress Modify address of symbols

Changes an symbol with an address range into a single address label. This command is the opposite of
sYmbol.Modify.AddressToRange.

See also

■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify.SOURCE

sYmbol.Modify.RangeToFunction Modify address range into function

Modifies address range into function.

Example: assembly functions are often represented in the debugging information by the compiler as a
single address label. As a consequence, these assembly functions won’t be included in the function run-time
analysis windows. The commands sYmbol.Modify.AddressToRange and
sYmbol.Modify.RangeToFunction can be used together to change these single address labels into
functions.

See also

■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify.SOURCE

sYmbol.Modify.SOURCE Define source file

Defines the source file name for a given module. The command can be used when the names or directories
of source files have been changed after compilation.

Format: sYmbol.Modify.AddressToRange <symbol> |<address>

Format: sYmbol.Modify.RangeToFunction <symbol> |<range>

sYmbol.Modify.AddressToRange _divsi3
sYmbol.Modify.RangeToFunction _divsi3

Format: sYmbol.Modify.SOURCE <module> <file>
General Commands Reference Guide S | 206©1989-2024 Lauterbach

Example:

See also

■ sYmbol.Modify.SplitFunction ■ sYmbol.Modify.StaticCOPY
■ sYmbol.Modify.StaticToStack ■ sYmbol.Modify
■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess
■ sYmbol.Modify.AddressToRange ■ sYmbol.Modify.AlienFunction
■ sYmbol.Modify.ATTRibute ■ sYmbol.Modify.CutFunction
■ sYmbol.Modify.NAME ■ sYmbol.Modify.NAMES
■ sYmbol.Modify.RangeToAddress ■ sYmbol.Modify.RangeToFunction
■ sYmbol.Modify.TYPE

sYmbol.Modify.SplitFunction Split function

Makes two functions out of one function. Takes a label inside the function as a parameter. The second
function starts at this label and has the name of the label.

See also

■ sYmbol.Modify.SOURCE ■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess

sYmbol.Modify.StaticCOPY Create static copy of local stack variables

Creates static copy of local stack variables.

See also

■ sYmbol.Modify.SOURCE ■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess

; use source file mod2.c for module 'mod1'
sYmbol.Modify.SOURCE \mod1 ..\src\mod2.c

Format: sYmbol.Modify.SplitFunction <label>

Format: sYmbol.Modify.StaticCOPY <module> <address> <address> [<reg>]
General Commands Reference Guide S | 207©1989-2024 Lauterbach

sYmbol.Modify.StaticToStack Change static variables

Changes static variables into global stack variables.

See also

■ sYmbol.Modify.SOURCE ■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess

sYmbol.Modify.TYPE Modify type of symbols

Changes the symbol type.

See also

■ sYmbol.Modify ■ sYmbol.Modify.Access ■ sYmbol.Modify.ADDRess ■ sYmbol.Modify.SOURCE

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.Modify.StaticToStack <reg> <address> [<symbol | address range>]

Format: sYmbol.Modify.TYPE <symbol> <type>
General Commands Reference Guide S | 208©1989-2024 Lauterbach

sYmbol.name Display symbols

Displays symbols sorted alphabetically.

Lower and upper case characters are not distinguished. For mangled C++ symbols the search order is
based on the function signatures. A complex search function is implemented to find symbol name very fast,
if the complete name will be not known. The search patterns are:

If the wildcard '*' is defined for the type_pattern, only symbols with HLL type information are extracted. The
C++ demangler for the symbols is used, if the pattern contains the characters '(' or ':'.

Examples:

Format: sYmbol.name [<name_pattern> [<type_pattern>] [/<option>]

<option>: Click <cmd>
Delete

'*' Matches any string, empty strings too.

'?' Matches any character, but not an empty character.

'"' Can be used to input special characters like '*' or '?'

sYmbol ; displays all symbols

sYmbol ** ; displays all local symbols

sYmbol ** ; displays all local symbols of global
; functions and module local symbols

sYmbol \mcc* ; displays all symbols local to module
; 'mcc'

sYmbol func9* ; displays all symbols local to
; function 'func9'

sYmbol i ; displays all symbols with the name 'i'

sYmbol \mcc*\i ; displays all local symbols in module
; 'mcc' with the name 'i'
General Commands Reference Guide S | 209©1989-2024 Lauterbach

The Click option can define a command, that can be executed by a short click with the left mouse button.
The characters '*' or '?' can be used as placeholder for the complete name of the symbol. Using the '*' will
force the command to be executed without further interaction and without leaving the window. The character
'?' will cause the cursor to leave the window and build a command line, that can be modified before entering.
The option Delete deletes the window after the selection has been made.

sYmbol \m*\f*\i* ; displays all local symbols with the
; symbol name beginning with 'i' in all
; functions with function names
; beginning with 'f' in all modules
; beginning with 'm'

sYmbol * * ; displays all symbols with HLL type
; information

sYmbol * *ptr ; displays all symbols, which have an
; HLL type
; that ends with 'ptr', e.g. 'intptr'

sYmbol * char * ; displays all symbols, which have an
; HLL type
; that begins with the text 'char ',
; e.g. 'char *', 'char [10]', 'char &'

sYmbol * char "*" ; displays all symbols with HLL type of
; 'char *'

sYmbol * *"*"* ; displays all symbols with type names,
; that contain a '*'

sYmbol ops::operator* ; displays all operators defined for
; the C++ class 'ops'

sYmbol operator* ; will search for all symbols,
; beginning with the string 'operator'
; NOTE: the demangler is not active, so
; no operators of C++ classes are
; listed!

sYmbol *::operator*(int) ; display all operator of all classes,
; that have only one argument of type
; 'int'
General Commands Reference Guide S | 210©1989-2024 Lauterbach

Examples: See also sYmbol.ForEach.

The address based softkeys are available by pressing the left mouse button. Short clicking the left button
can execute the command defined by the option Click. The default is the command Data.List. Pressing one
of the softkeys leaves the window, and builds a command line according to the softkey and symbol.

See also

■ sYmbol

sYmbol.NAMESPACES Search symbol in C++ namespace

This command configures the debugger to search in the specified C++ namespaces for a debug symbol.

If the debug symbol cannot be found in the global namespace and the debug symbol is referred without
scope operator (e.g. inside a namespace {} section or after a using <namespace> declaration, the
debugger will search in the namespaces specified by this command.

Example:

See also

■ sYmbol

▲ ’Release Information’ in ’Legacy Release History’

sYmbol * /Click "Break.Set" ; will execute the command
; Break.Set <symbol>

sYmbol * /Click "Break.Set *
/Alpha"

; will execute the command
; Break.Set <symbol> /Alpha

sYmbol * /Click "Var.View ?" ; will build a command line
; Var.View <symbol>
; and leave the symbol window

Format: sYmbol.NAMESPACES [<namespace>]

sYmbol.NAMESPACES std ; search debug symbols in namespace std if
; debug symbol not found in current
; context
General Commands Reference Guide S | 211©1989-2024 Lauterbach

sYmbol.NEW Create new symbol

The sYmbol.NEW command group allows to create new symbols or modify existing user-defined symbols.
The command sYmbol.CREATE has the same functionality, but executes faster when multiple symbols are
created.

See also

■ sYmbol.NEW.ATTRibute ■ sYmbol.NEW.Function ■ sYmbol.NEW.Label ■ sYmbol.NEW.LocalVar
■ sYmbol.NEW.MACRO ■ sYmbol.NEW.Module ■ sYmbol.NEW.Var ■ sYmbol
■ sYmbol.CREATE ■ sYmbol.CREATE.RESet ■ sYmbol.Delete

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.NEW.ATTRibute Create user-defined memory attribute
[Example]

Creates a user-defined memory attribute, e.g. for program code, data code, access width, etc.
Memory attributes tell TRACE32 how to interpret memory content. If attributes are missing in the debug
information of your symbol file, e.g. an ELF file, you can create the attributes with sYmbol.NEW.ATTRibute.

Selection of Memory Attributes for Various Architectures

Memory attributes for the ARM architecture:

Format: sYmbol.NEW <name> <address> | <range>

Format: sYmbol.NEW.ATTRibute <attribute> <start_address | addressrange>

<attribute>: DEFault
<architecture_specific_attributes>

DEFault Memory content is interpreted based on the current processor state.

<architecture_
specific_attributes>

The softkeys below the TRACE32 command line display the available
memory attributes.
• For a selection of memory attributes for various architectures, see

below.
• For more information about available memory attributes, refer to

the design manual of the respective architecture.

ARM Code of A32, ARM 32-bit instruction set

THUMB Code of T32, Thumb/Thumb-2/ThumbEE instruction set
General Commands Reference Guide S | 212©1989-2024 Lauterbach

Memory attributes for the ARC architecture:

Memory attributes for the PowerPC architecture:

Memory attributes for the TI-TMS320C55x architecture:

Memory attributes for the Intel® x86 architecture:

AARCH64 Code of A64, ARM 64-bit instruction set

DATA Data

CODE Program code

DATA.Byte 8-bit data

DATA.Word 16-bit data

DATA.Long 32-bit data

FLE Code of standard PowerPC instruction set

VLE Code of Variable Length Encoding

DATA Data

BYTE Tells TRACE32 to interpret code in byte-pointer mode.
Corresponds to SYStem.Option.ByteMode BYTE for the specified
<address_range>.

WORD Tells TRACE32 to interpret code in word-pointer mode.

USE16 16-bit mode

USE32 32-bit mode

USE64 64-bit mode

NOTE: The Intel® Processor Trace does not include any information whether it is in 16,
32, or 64 bit mode. Using the above memory attributes, you can tell TRACE32
how to disassemble correctly.
General Commands Reference Guide S | 213©1989-2024 Lauterbach

Example:

See also

■ sYmbol.NEW

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.NEW.Function Create user-defined function

Creates a new function. The function has no parameters or local variables. It can only be used to define a
range for a piece of code (e.g. for performance analysis).

Example:

See also

■ sYmbol.NEW ■ sYmbol.CREATE.Function

;open window, displaying the memory attributes per address range
sYmbol.List.ATTRibute

;create an attribute for a data address range without DATA attribute
sYmbol.NEW.ATTRibute DATA D:10004138--10004193

;display all available information about an address including its attr.
sYmbol.INFO D:10004138

;this code is now interpreted as data
List.Mix D:10004138

Format: sYmbol.NEW.Function <name> <addressrange>

sYmbol.NEW.Function myfunc mylabel1--(mylabel2-1)
General Commands Reference Guide S | 214©1989-2024 Lauterbach

sYmbol.NEW.Label Create user-defined symbol

Creates a new label. A label is a symbol without type information that refers to a single memory location.

Example:

See also

■ sYmbol.NEW ■ sYmbol.CREATE.Label

Format: sYmbol.NEW.Label <name> <address>

sYmbol.CREATE.Label mylab1 0x1000
sYmbol.CREATE.Label mylab2 0x1010
sYmbol.CREATE.Done

; creates “mylab1” at 1000
; creates “mylab2” at 1010
; make labels available to program

sYmbol.NEW.Label mylab3 0x1020 ; “mylab3” is available immediately
General Commands Reference Guide S | 215©1989-2024 Lauterbach

sYmbol.NEW.LocalVar Create user-defined local variable

Creates a user-defined local variable in a user-defined function.

See also

■ sYmbol.NEW

sYmbol.NEW.MACRO Create user-defined macro

Creates a new macro. The macro can be used like a C-preprocessor macro. Parameters can be supplied in
the same way.

Example:

See also

■ sYmbol.NEW ■ sYmbol.CREATE.MACRO

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.NEW.Module Create user-defined module

Defines a new module.

Format: sYmbol.NEW.LocalVar <function> <var> <address> | <addressrange> <type>

Format: sYmbol.NEW.MACRO <name> <contents>

; creation and usage of macro MY_NEXT(<arg>)
sYmbol.NEW.MACRO MY_NEXT(p) ((p)->next)
Var.View MY_NEXT(myvar)

Format: sYmbol.NEW.Module <name> <addressrange>
General Commands Reference Guide S | 216©1989-2024 Lauterbach

Example:

See also

■ sYmbol.NEW ■ sYmbol.CREATE.Module

sYmbol.NEW.Var Create user-defined variable

Creates a user-defined variable.

Examples:

See also

■ sYmbol.NEW ■ sYmbol.CREATE.Var

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.NEW.Module \\new 0x2000--0x2fff
sYmbol.Browse.Module

Format: sYmbol.NEW.Var <variable_name> <address> | <addressrange> <type>

sYmbol.List.Type /Unnamed ; list all types

sYmbol.NEW.Var my_char 0x1000 char ; create variable

sYmbol.INFO my_char ; display all information
; about the created variable

sYmbol.List.Type /Unnamed

sYmbol.NEW.Var my_abc D:0xa000 struct abc

sYmbol.INFO my_abc // structure my_abc of type abc

sYmbol.NEW.Var MyCharArray D:0x1200 char[50]

sYmbol.INFO MyCharArray // character array with 50 elements

sYmbol.NEW.Var MyPtrArray D:0x1400 unsigned short *[25]

sYmbol.INFO MyPtrArray // unsigned short pointer array with 25 el.
General Commands Reference Guide S | 217©1989-2024 Lauterbach

sYmbol.OVERLAY Code overlay

Using the sYmbol.OVERLAY command group, TRACE32 can be configured to debug targets that execute
and switch between code overlays.

To enable overlay support, use SYStem.Option.OVERLAY.

Code overlays are characterized by utilizing the same address range in the target for executing different
code at different times. This requires switching between different code segments in physical memory at run-
time. As a result, multiple program symbols can refer to the same address range and may refer to program
code that currently is not present in physical memory. This requires configuration of TRACE32.

See also

■ sYmbol.OVERLAY.AutoID ■ sYmbol.OVERLAY.Create ■ sYmbol.OVERLAY.DETECT ■ sYmbol.OVERLAY.FRIEND
■ sYmbol.OVERLAY.List ■ sYmbol.OVERLAY.RESet ■ sYmbol

sYmbol.OVERLAY.AutoID Automatically determine overlay IDs

Calculates a unique identifier for each overlay currently present in the system.

To detect which overlay is currently active (i.e. present in the execution area), the debugger uses unique
identifiers based on the overlays’ contents. The command sYmbol.OVERLAY.AutoID calculates these
identifiers for all currently declared overlay section. Therefore before using it, all code overlay sections
have to be known to TRACE32 (through debug information or by explicit declaration) and the application
code has to be present in memory.

The unique identifier is often called “magic ID” (making reference to the arbitrary value) and is comprised of
a “magic” ID value present on a corresponding ID address. It is found by comparing the contents of the
overlay sections and searching for a pair that uniquely identifies each of them. By default the algorithm reads
the overlays from the storage areas. To speed up the process, copy the program to the debugger VM: and
use the option VM: (see there for details).

Format: sYmbol.OVERLAY.AutoID [OVS: | VM:]

OVS: (default) Read the overlay code from the overlay storage area (OVS).

VM: To increase detection speed, TRACE32 can read the overlay code from
the debugger VM:. This requires that the code was loaded to the
execution area (/CODESEC) inside the segmented (/OVERLAY)
debugger virtual memory (/VM) with a command like
Data.LOAD.Elf <file> /OVERLAY /CODESEC /NosYmbol /VM
General Commands Reference Guide S | 218©1989-2024 Lauterbach

There are two ways for TRACE32 to know about the target program’s overlays:

• In case of “Relocation-based Code Overlay Support”, TRACE32 reads information about overlay
sections from the ELF file. This requires special build settings and using the option /overlay with
Data.LOAD.Elf <file> /OVERLAY

• When using “File-based Code Overlay Support”, you have to manually declare all sections and
source files (more generally: all DWARF-modules) before loading your ELF file. The declaration
is done with the command sYmbol.OVERLAY.Create.

See also

■ sYmbol.OVERLAY

NOTE: To avoid problems with software breakpoints, sYmbol.OVERLAY.AutoID only
uses ID addresses that do not correspond to HLL lines in the segment.

NOTE: OVS stands for “OVerlay Storage area”. Besides being a parameter, OVS: is also a
memory class specifier for accessing the overlay sections at their so-called storage
area: the address it is stored at before being copied to an execution area (the
address at which the overlay is executed).
General Commands Reference Guide S | 219©1989-2024 Lauterbach

sYmbol.OVERLAY.Create Declare code overlay section
[Examples]

Declares a code overlay section and its corresponding modules.

Typically this command is only used for “File-based Code Overlay Support” i.e. when the overlays are
contained in different executable files (e.g. ELF files). In this case you have to declare all sections and
source files (more generally: all DWARF-modules) before loading the executable files so that the load
command (e.g. via Data.LOAD.Elf <file> /OVERLAY) can copy the object code to the corresponding OVS:
memory.

In case of “Relocation-based Code Overlay Support”, manual declaration of the sections is not required,
because they are declared automatically based on information contained in the ELF file when it is loaded
using the option /OVERLAY (Data.LOAD.Elf <file> /OVERLAY). Despite this sYmbol.OVERLAY.Create
can be useful e.g. in order to define an overlay segment ID for all code sections.

Format: sYmbol.OVERLAY.Create <execution_addr_range | overlay_segment_id>,
 [<id_address>], [<id_value>], <elf_section_name>, [<dwarf_module>],
 [<storage_address>]

<execution_addr_
range>
 or
<overlay_segment_
id>

Address range where the code overlay section gets executed. You have to
specifies also one unique segment ID for all sections which belong to one
overlay page (overlay pages overlap each other).
e.g. P:0x42:0x1000-1fff
In most cases it is enough just to specify the segment ID (here 0x42),
since the debugger can normally find the execution addresses in the ELF
section table by using the <elf_section_name>.

<id_address>,
<id_value>

The (<id_address> x <id_value>) pair specifies a “magic” ID that uniquely
identifies the overlay section when it is present at its execution address. For
details regarding the ID see sYmbol.OVERLAY.AutoID which allows auto-
detecting the ID.

<elf_section_name> Unique name for the overlay code section as used in your ELF file. e.g.
".page1" The section names are normally defined in your linker script
used for building your ELF file.
In TRACE32 you can view the sections of a loaded ELF with command
sYmbol.List.SECtion.
From a system shell (cmd.exe / bshell) you can view the available section
names e.g. with the GNU command readelf -S <ElfFile>
When using overlay sections from different ELF files you can prefix the
section name with the ELF file name e.g. "//myprog/.page1"

NOTE: By running the sYmbol.OVERLAY.Create command with the
same arguments again except for a new <id_value>, you can assign
more than one ID to the same <elf_section_name>. See example 4.
General Commands Reference Guide S | 220©1989-2024 Lauterbach

Examples

Example 1: File-based code overlay support (single-ELF)

<dwarf_module>
(source file)

Required only for “File-based Code Overlay Support” to tell the debugger
which source files belong to which overlay section (this can only be detected
from the ELF when it contains relocation information).
<dwarf_module> is usually the name of a source file (e.g. a C-/C++ file).

You can omit this parameter, if your ELF file was linked with compiler
support for code overlays e.g. “-Wl,--emit-relocs” (GCC)
or “--emit-debug-overlay-section” (ARM RealView).

NOTE: By running the sYmbol.OVERLAY.Create command with the
same arguments again except for a new <dwarf_module>, you can
assign more than one module to the same <elf_section_name>.
See example 1.

<storage_address> Specifies the start of the address range where the code section is stored
before it gets copied to its execution memory space.

You can usually omit this parameter, as the <storage_address> is
normally auto-detected when loading you ELF file.

sYmbol.RESet
SYStem.Option.OVERLAY ON
sYmbol.OVERLAY.Create 1,,,".page1","task.c"
sYmbol.OVERLAY.Create 1,,,".page1","funcasm.c"
sYmbol.OVERLAY.Create 1,,,".page1","sieve.c"
sYmbol.OVERLAY.Create 2,,,".page2","blubber.c"
sYmbol.OVERLAY.Create 2,,,".page2","inc.c"
Data.LOAD.Elf ovdemo.elf /OVERLAY /NoClear /Include /NOFRAME
sYmbol.OVERLAY.AutoID
sYmbol.OVERLAY.List /STorage /Modules

A Modules per code overlay section

A

General Commands Reference Guide S | 221©1989-2024 Lauterbach

Example 2: Relocation-based code overlay support (single-ELF)

Example 3: Relocation-based multi-ELF code overlay support

sYmbol.RESet
SYStem.Option.OVERLAY ON
Data.LOAD.Elf ovdemo.elf /OVERLAY /Include
sYmbol.OVERLAY.AutoID
sYmbol.OVERLAY.List /STorage

A The file ovdemo.elf has two code overlay sections named .page1 and .page2

sYmbol.RESet
SYStem.Option.OVERLAY ON
sYmbol.OVERLAY.Create 1,,,"\\page1\.text"
sYmbol.OVERLAY.Create 2,,,"\\page2\.text"
Data.LOAD.Elf page1.elf /NoClear /NoRegister /OVERLAY
Data.LOAD.Elf page2.elf /NoClear /NoRegister /OVERLAY
sYmbol.OVERLAY.AutoID
sYmbol.OVERLAY.List /STorage

A The code overlays in the two *.elf files (page1.elf and page2.elf) have the same section name:
.text

A

A

General Commands Reference Guide S | 222©1989-2024 Lauterbach

Example 4: Relocation-based code overlay support (single-ELF) with more than one ID per ELF section

See also

■ sYmbol.OVERLAY

sYmbol.RESet
SYStem.Option.OVERLAY ON
sYmbol.OVERLAY.Create 1,D:0x1000,0x10,".page1"

;assign the ID 0x20 to the elf section named ".page2"
sYmbol.OVERLAY.Create 2,D:0x1000,0x20,".page2"

;additionally assign the ID 0x22 to the same elf section ".page2"
sYmbol.OVERLAY.Create 2,D:0x1000,0x22,".page2"

Data.LOAD.Elf ovdemo.elf /OVERLAY /Include /NoClear
sYmbol.OVERLAY.List /STorage

A The code overlay section .page2 has two IDs: 0x20 and 0x22.

A

General Commands Reference Guide S | 223©1989-2024 Lauterbach

sYmbol.OVERLAY.DETECT Detect the current overlay status

Default: ON

Executing sYmbol.OVERLAY.DETECT ON performs an immediate update of the status (active vs. not
active) of all registered code overlays. The detection mechanism uses the ID address and ID value shown in
sYmbol.OVERLAY.List.

The optional parameter controls the automatic update of the status of overlay pages when the target
executes code that may have changed it.

To use the command, first enable overlays via SYStem.Option.OVERLAY.

See also

■ sYmbol.OVERLAY

sYmbol.OVERLAY.FRIEND Declare a friend overlay segment
[build no. 46380 - DVD 08/2013]

The command is relevant for tracing the switches between overlays using ARM ETM.

For an original overlay segment, the command declares (or deletes) the so-called “friend” overlay segment.
The friend overlay segment (a better term would be subsequent overlay) is a segment that usually is
executed after the original segment. Declaring a friend overlay gives the debugger a hint which allows to
improve the accuracy of decoding trace data corresponding to the switch between the segments. See the
box “background” on the following page for more information.

For each overlay one friend overlay can be declared. For deleting the friend overlay use the command with a
friend ID of 0.

In addition to “normal” overlay segments, friend overlays can also be declared for the “common area” of all
(“permanent”) non-overlay code by using the segment id 0.

Format: sYmbol.OVERLAY.DETECT [ON | OFF]

Format: sYmbol.OVERLAY.FRIEND <original_overlay_id> <friend_overlay_id>

NOTE: Only relevant for decoding ARM ETM trace data in the context of overlays.
General Commands Reference Guide S | 224©1989-2024 Lauterbach

The configuration of overlays segments and their respective friend overlays is displayed by
sYmbol.OVERLAY.List /FRiend..

Background Information

If the trace decoder encounters an opcode on an address not contained in the current overlay segment this
causes a problem. Therefore - when a friend overlay is declared - the trace decoder also checks the friend
overlay for this address. If the address is found, the opcode is considered to be part of the friend overlay
otherwise as part of the “common area” and thus as not belonging to an overlay.

The previous case can occur when the target switches to a new overlay segment. Switches between
overlays are typically reported by an ownership trace message which is created by a special opcode writing
to a dedicated register (ownership register).

If additional opcodes are executed in the context of the old overlay segment (e.g. opcodes residing on an
address of the old overlay segment) the ownership message appears “too early” causing problems decoding
the trace data of subsequent opcodes (e.g. RTS return-from-subroutine). If the opcode is executed in the
context of the new overlay segment, the message is sent “too late” because the opcode was executed
before the ownership trace message was created.

The special case where the subsequent overlay does include the address in question but contains a different
opcode on the address cannot be handled correctly. It may cause a flow error which however in practice is
rather infrequent.

See also

■ sYmbol.OVERLAY

<original_overlay_id> ID of the original overlay segment (16-bit integer)
If segment is zero, a friend segment will be assigned for the global memory
space.

<friend_overlay_id> ID of the friend overlay segment i.e. typically the subsequent overlay
segment (16-bit integer)
If friend is zero, the friend will deleted.

NOTE: To have an effect, the command needs to be executed before activating RTS via
RTS.ON.
General Commands Reference Guide S | 225©1989-2024 Lauterbach

sYmbol.OVERLAY.List Show declared code overlay sections

Shows the declared code overlays and the corresponding symbol information set with
sYmbol.OVERLAY.Create and/or sYmbol.OVERLAY.AutoID. The code overlays currently present in
memory (“active code overlays”) are highlighted.

See also

■ sYmbol.OVERLAY

sYmbol.OVERLAY.RESet Reset overlay declarations

Clears the complete table of declared overlay sections.
The table of declared overlay sections can be shown with sYmbol.OVERLAY.List. Entries can be added
with sYmbol.OVERLAY.Create.

See also

■ sYmbol.OVERLAY

Format: sYmbol.OVERLAY.List [/Modules | /STorage | /FRriend]

Modules Shows the DWARF modules related to the overlay section.
This is only useful in case of “File-based Code Overlay Support “, since the
column is empty in case of “Relocation-based Code Overlay Support”.

STorage Shows the memory region from where the code overlays should be
loaded.

FRiend Shows the friends of each memory segment.
See sYmbol.OVERLAY.FRIEND

Format: sYmbol.OVERLAY.RESet
General Commands Reference Guide S | 226©1989-2024 Lauterbach

sYmbol.PATCH STF-symbol information

The Greenhills compiler can add extra assembler instructions to the code, e.g. to function entries and
function exits. This instrumentation code generates SFT software trace messages during program
execution.

TRACE32 can extract the symbol information about the extra assembler instructions from the loaded
application file. Using the sYmbol.PATCH command group, you can list the extracted symbol information, as
well as enable and disable it.

For PRACTICE demo scripts (*.cmm), see ~~/demo/rh850/etc/sft_trace/

See also

■ sYmbol.PATCH.DISable ■ sYmbol.PATCH.ENable ■ sYmbol.PATCH.List ■ sYmbol

sYmbol.PATCH.DISable Disable instrumentation code

Disables instrumentation code at the specified <address> or within the specified address <range>.
Executing the command without an argument disables all instrumentation codes.

The sYmbol.PATCH.List window displays an overview of all symbols in TRACE32 representing the
enabled and disabled instrumentation codes.

Example: See sYmbol.PATCH.List.

See also

■ sYmbol.PATCH

sYmbol.PATCH.ENable Enable instrumentation code

Enables instrumentation code at the specified <address> or within the specified address <range>. Executing
the command without an argument enables all instrumentation codes.

The sYmbol.PATCH.List window displays an overview of all symbols in TRACE32 representing the
enabled and disabled instrumentation codes.

Format: sYmbol.PATCH.List [<address> | <range>]

Format: sYmbol.PATCH.ENable [<address> | <range>]
General Commands Reference Guide S | 227©1989-2024 Lauterbach

Example: See sYmbol.PATCH.List.

See also

■ sYmbol.PATCH

sYmbol.PATCH.List Display STF-symbol information

Lists the extracted symbol information of the instrumentation code in the sYmbol.PATCH.List window.

Example 1: This script deactivates function entries and exits within a specified range.

Format: sYmbol.PATCH.List [<address>]
sYmbol.List.PATCH [<address>] (alias)

A The enable column displays the status of the instrumentation codes. Clicking a cell in the enable
column enables or disables the instrumentation codes:

B A checkmark indicates that the original instrumentation code is active, see [B’].

C No checkmark indicates that the original instrumentation code is patched, e.g. by NOP instructions,
see [C’].

D Double-clicking in the sYmbol.PATCH.List window opens a corresponding List window.

sYmbol.PATCH.List
; |----------<range>-------------|
sYmbol.PATCH.DISable INTOSTM0--sYmbol.END(func_1msec)

A

B

C

C’

B’

D

General Commands Reference Guide S | 228©1989-2024 Lauterbach

Example 2: This script uses the sYmbol.ForEach command to enable and disable symbol groups that
match the desired name pattern.

Result of example 2:

See also

■ sYmbol.PATCH

sYmbol.PATCH.List

;1st step: disable all functions
sYmbol.ForEach "sYmbol.PATCH.DISable sYmbol.RANGE(""*"")" ** /Function

;2nd step: enable the functions that match the name pattern, here *sec*
sYmbol.ForEach "sYmbol.PATCH.ENable sYmbol.RANGE(""*"")" *sec* /Function
General Commands Reference Guide S | 229©1989-2024 Lauterbach

sYmbol.POINTER Define special register

Determination of frame pointer and static pointer registers. The frame pointer addresses the variables
located on the stack, the static pointer addresses the static variables with position independent data only.
During loading an HLL program the registers are automatically preset with the values according to the
compilers.

See also

■ sYmbol

sYmbol.POSTFIX Set symbol postfix

Allows to define a postfix character. If for a symbol name used in a PRACTICE command no applicable
symbol is found in the debug information, the postfix character is appended to the symbol name and the
search is repeated.

The use of a postfix makes sense when using a compiler, which appends a special sign behind every
symbol (for example MarkWilliams C).

See also

■ sYmbol.PREFIX ■ sYmbol

sYmbol.PREFIX Set symbol prefix

A sign may be defined as a prefix. If during entry of a symbol no applicable drag-in can be found, the prefix
will be appended in front of the symbol and the search will begin once more. The use of a prefix makes
useful when using a compiler, which adds a special sign in front of every symbol (for example Microtec
Pascal/C).

See also

■ sYmbol.POSTFIX ■ sYmbol

Format: sYmbol.POINTER [<framepointer>] [<staticpointer>]

Format: sYmbol.POSTFIX [<character>]

Format: sYmbol.PREFIX [<character>]
General Commands Reference Guide S | 230©1989-2024 Lauterbach

sYmbol.RELOCate Relocate symbols

The command group sYmbol.RELOCate is outdated (excluding the command sYmbol.RELOCate.shift)
and is nowadays only used for OS9-aware debugging (“OS Awareness Manual OS-9” (rtos_os9.pdf)).

The command Data.LOAD.Elf <file> /RELOC … provides greater flexibility when symbols need to be
relocated.

See also

■ sYmbol.RELOCate.Auto ■ sYmbol.RELOCate.Base ■ sYmbol.RELOCate.List ■ sYmbol.RELOCate.Magic
■ sYmbol.RELOCate.Passive ■ sYmbol.RELOCate.shift ■ sYmbol

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.RELOCate.Auto Control automatic relocation

The command sYmbol.RELOCate.Auto is outdated and is nowadays only used for OS9-aware debugging.
Please refer to “OS Awareness Manual OS-9” (rtos_os9.pdf) for more information on this command.

See also

■ sYmbol.RELOCate ■ sYmbol.RELOCate.Base ■ sYmbol.RELOCate.List ■ sYmbol.RELOCate.Magic
■ sYmbol.RELOCate.Passive ■ sYmbol.RELOCate.shift

Format: sYmbol.RELOCate <class>:<offset>] [<symbol_path>|<range>]

Format: sYmbol.RELOCate.Auto [ON | OFF]
General Commands Reference Guide S | 231©1989-2024 Lauterbach

sYmbol.RELOCate.Base Define base address

The command sYmbol.RELOCate.Base is outdated and is nowadays only used for OS9-aware debugging.
Please refer to “OS Awareness Manual OS-9” (rtos_os9.pdf) for more information on this command.

See also

■ sYmbol.RELOCate ■ sYmbol.RELOCate.Auto ■ sYmbol.RELOCate.List ■ sYmbol.RELOCate.Magic
■ sYmbol.RELOCate.Passive ■ sYmbol.RELOCate.shift

sYmbol.RELOCate.List List relocation info

The command sYmbol.RELOCate.List is outdated and is nowadays only used for OS9-aware debugging.
Please refer to “OS Awareness Manual OS-9” (rtos_os9.pdf) for more information on this command.

See also

■ sYmbol.RELOCate ■ sYmbol.RELOCate.Auto ■ sYmbol.RELOCate.Base ■ sYmbol.RELOCate.Magic
■ sYmbol.RELOCate.Passive ■ sYmbol.RELOCate.shift

sYmbol.RELOCate.Magic Define program magic number

The command sYmbol.RELOCate.Magic is outdated and is nowadays only used for OS9-aware
debugging. Please refer to “OS Awareness Manual OS-9” (rtos_os9.pdf) for more information on this
command.

See also

■ sYmbol.RELOCate ■ sYmbol.RELOCate.Auto ■ sYmbol.RELOCate.Base ■ sYmbol.RELOCate.List
■ sYmbol.RELOCate.Passive ■ sYmbol.RELOCate.shift

Format: sYmbol.RELOCate.Base <class>:<base>] [<symbol_path>|<range>]

Format: sYmbol.RELOCate.List

Format: sYmbol.RELOCate.Magic <program_magic>] [<symbol_path>|<range>]
General Commands Reference Guide S | 232©1989-2024 Lauterbach

sYmbol.RELOCate.Passive Define passive base address

The command sYmbol.RELOCate.Passive is outdated and nowadays only used for OS9-aware
debugging. Please refer to “OS Awareness Manual OS-9” (rtos_os9.pdf) for more information on this
command.

See also

■ sYmbol.RELOCate ■ sYmbol.RELOCate.Auto ■ sYmbol.RELOCate.Base ■ sYmbol.RELOCate.List
■ sYmbol.RELOCate.Magic ■ sYmbol.RELOCate.shift

sYmbol.RELOCate.shift Relocate symbols

Manually relocates symbols. The symbol path limits the relocation to special symbols of a module or a
program. If an address range is given, only the symbols in this range will be relocated. Relocation is always
relative to the current address of the symbol. When the memory access classes of some symbols are
wrong, they can be changed by the sYmbol.Modify.Access command.

Examples:

See also

■ sYmbol.RELOCate ■ sYmbol.RELOCate.Auto ■ sYmbol.RELOCate.Base ■ sYmbol.RELOCate.List
■ sYmbol.RELOCate.Magic ■ sYmbol.RELOCate.Passive

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.RELOCate.Passive <class>:<base>

Format: sYmbol.RELOCate.shift <class>:<offset> [<symbol_path>|<range>]

; relocate all program symbols by 12240H
sYmbol.RELOCate.shift P:0x12240

; relocate all data symbols of module 'main'
sYmbol.RELOCate.shift D:0x1000 \main

; relocate all data symbols in the given range
sYmbol.RELOCate.shift D:0x1000 0x40000--0x4ffff
General Commands Reference Guide S | 233©1989-2024 Lauterbach

sYmbol.RESet Clear symbol table

All symbols and search paths for source files are cleared.

See also

■ sYmbol

Format: sYmbol.RESet
General Commands Reference Guide S | 234©1989-2024 Lauterbach

sYmbol.SourceBeautify Beautify HLL lines on loading

Example:

See also

■ sYmbol

Format: sYmbol.SourceBeautify [ON | OFF]

ON Beautifies the indentations of HLL lines displayed in the List windows.
The source file itself is not touched.

OFF Displays the HLL lines as formatted in the source file.

NOTE: The command takes only effect if it is set to ON or OFF before executing the
Data.LOAD.<file_format> command.

sYmbol.SourceBeautify ON

;load ELF file plus associated source file. For demo purposes, the *.c
;file contains some malformatted HLL lines.
Data.LOAD.ELF armle.axf /StripPATH /LowerPATH

List.HLL main ;refer to [B]

A Source file (*.c) with indentation issues. B Indentation issues fixed in TRACE32.

A

B

General Commands Reference Guide S | 235©1989-2024 Lauterbach

sYmbol.SourceCONVert Conversion for Japanese font

Converts the HLL source information from EUC (Extended UNIX Code) to JP for Windows.

See also

■ sYmbol

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.SourceCONVert <mode>

<mode>: OFF | EUC-JP
General Commands Reference Guide S | 236©1989-2024 Lauterbach

sYmbol.SourceLOAD Initiate the loading of an HLL source file

By default an HLL source file is only loaded by TRACE32 when the contents of the HLL source file is
required during debugging. The command sYmbol.SourceLOAD loads the HLL source file for the defined
module on user request. The HLL source line information from the absolute object file must be loaded before
using this command. If the command sYmbol.SourceLOAD is used without any parameter, all HLL source
files are loaded.

The command sYmbol.SourceLOAD allows also the specification of a new HLL source file instead of the
one listed in sYmbol.List.SOURCE. This can be useful, if the name or directory of the source file has been
changed after compilation.

Examples:

See also

■ sYmbol

Format: sYmbol.SourceLOAD [<module> [<file>]]

; load all source files
Data.LOAD.COFF arm.abs
sYmbol.SourceLOAD

; load the source file for the module \\thumble\arm
Data.LOAD.COFF arm.abs
sYmbol.List.SOURCE
sYmbol.SourceLOAD \\thumble\arm

; load the source file NewArm.C for the module \\thumble\arm
Data.LOAD.COFF arm.abs
sYmbol.SourceLoad \\thumble\arm G:\ARM\etc\Test\NewArm.C
General Commands Reference Guide S | 237©1989-2024 Lauterbach

sYmbol.SourcePATH Source search path

Adds or removes directories to the path used for searching the source files accessed by TRACE32. The
current search order can be displayed by the command sYmbol.SourcePATH.List. The list can be saved
with the STOre command and the SPATH item.

Examples:

See also

■ sYmbol.SourcePATH.Delete ■ sYmbol.SourcePATH.DOWN
■ sYmbol.SourcePATH.List ■ sYmbol.SourcePATH.RESet
■ sYmbol.SourcePATH.Set ■ sYmbol.SourcePATH.SetBaseDir
■ sYmbol.SourcePATH.SetCache ■ sYmbol.SourcePATH.SetCachedDir
■ sYmbol.SourcePATH.SetCachedDirCache ■ sYmbol.SourcePATH.SetCachedDirIgnoreCache
■ sYmbol.SourcePATH.SetDir ■ sYmbol.SourcePATH.SetDynamicDir
■ sYmbol.SourcePATH.SetMasterDir ■ sYmbol.SourcePATH.SetRecurseDir
■ sYmbol.SourcePATH.SetRecurseDirCache ■ sYmbol.SourcePATH.SetRecurseDirIgnoreCase
■ sYmbol.SourcePATH.Translate ■ sYmbol.SourcePATH.TranslateSUBpath
■ sYmbol.SourcePATH.UP ■ sYmbol.SourcePATH.Verbose
■ sYmbol

sYmbol.SourcePATH.Delete Delete path from search list

Removes the specified directory from the search path.

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH [+ | - | -- | <directory>] … (deprecated)

+ Use the '+' to add a directory to the path.

- Use the '-' sign to remove a path from the list.

-- Two minus signs ’--’ clear the whole list like sYmbol.RESet.

sYmbol.SourcePATH + c:\source\proj_1
sYmbol.SourcePATH + c:\mike\source\proj_1
…
sYmbol.SourcePATH - c:\source\proj_1

; add search directories

; remove search directory

Format: sYmbol.SourcePATH.Delete <directory>
General Commands Reference Guide S | 238©1989-2024 Lauterbach

sYmbol.SourcePATH.DOWN Make directory last in search order

Internal TRACE32 command. The specified directory becomes the last in the defined search order.

See also

■ sYmbol.SourcePATH

sYmbol.SourcePATH.List List source search paths
[Examples]

Lists defined search paths and their attributes.

Description of Toolbar Buttons in the sYmbol.SourcePATH.List Window

Format: sYmbol.SourcePATH.DOWN <directory>

Format: sYmbol.SourcePATH.List
sYmbol.List.SPATH (deprecated)

Delete All Reset all source path settings.
(command sYmbol.SourcePATH.RESet)

Reload Reload all loaded source files.
(command sYmbol.SourceRELOAD)

Verbose Enable/disable search details in the TRACE32 Message Area.
(command sYmbol.SourcePATH.Verbose ON | OFF)

Store… Save source path search setting to <file>.
(command STOre <file> SPATH)

Cache… Save source path search setting plus list of all cached files to <file>.
(Command STOre <file> SPATHCACHE)

Load… Load source path settings from <file>.
(command DO <file>)

AddDir Add directory as base directory and as direct directory to search path list.
(command sYmbol.SourcePATH <dir>)
General Commands Reference Guide S | 239©1989-2024 Lauterbach

Example for a base directory:

Example for direct directories:

; Define directory as base for relative paths
sYmbol.SourcePATH.SetBaseDir C:\T32_ARM\demo\sources

; directory is direct search path
sYmbol.SourcePATH.SetDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_drivers

; directory is direct search path, all source files found in the defined
; directory are cached by TRACE32
sYmbol.SourcePATH.SetCachedDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_net

; directory is direct search path, the directory and all its
; sub-directories are used as search path
sYmbol.SourcePATH.SetRecurseDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_ext

; directory is a direct search path, if the source file was found in
; this directory, this directory will become the first to be searched
; in
sYmbol.SourcePATH.SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_int
General Commands Reference Guide S | 240©1989-2024 Lauterbach

Example for translated paths:

See also

■ sYmbol.SourcePATH

▲ ’Release Information’ in ’Legacy Release History’

sYmbol.SourcePATH.RESet Reset search path configuration

Resets the search path configuration.

See also

■ sYmbol.SourcePATH

sYmbol.SourcePATH.Translate "Z:/Projects/own/trunk/V850/src/sieve"
"C:/T32_V850/demo/20131129trainings_demo/demo/v850/compiler/iar"

sYmbol.SourcePATH.Translate "C:/Programme/IAR Systems"
"C:/T32_V850/demo"

sYmbol.List.SourcePATH

Format: sYmbol.SourcePATH.RESet
General Commands Reference Guide S | 241©1989-2024 Lauterbach

sYmbol.SourcePATH.Set Define search path

This command combines the commands:

• sYmbol.SourcePATH.SetDir

• sYmbol.SourcePATH.SetBaseDir

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.Set <directory>
General Commands Reference Guide S | 242©1989-2024 Lauterbach

sYmbol.SourcePATH.SetBaseDir Define directory as base for relative paths

Defines directory as base for relative paths.

See also

■ sYmbol.SourcePATH

▲ ’Release Information’ in ’Legacy Release History’

Format: sYmbol.SourcePATH.SetBaseDir <directory>

; load object file vmlinux and cut the following from the source paths:
; start of source path til end of "kernels-arm"
Data.LOAD.Elf ~~~~/vmlinux /StripPART "kernels-arm"

sYmbol.SourcePATH.SetBaseDir J:\AND\omap\sources

sYmbol.SourcePATH.List

sYmbol.List.SOURCE

source Source path provided by executable.

file Source path as modified by the Data.LOAD command
or
source path from which the file was loaded.
General Commands Reference Guide S | 243©1989-2024 Lauterbach

sYmbol.SourcePATH.SetCache Internal use only

Internal TRACE32 software command, not of interest for TRACE32 users.

See also

■ sYmbol.SourcePATH

sYmbol.SourcePATH.SetCachedDir Cache direct search path directory

All source files found in the defined directory are cached by TRACE32.

Example:

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.SetCache <file>

Format: sYmbol.SourcePATH.SetCachedDir {<directory>}

sYmbol.SourcePATH.SetCachedDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_net

STOre CacheCon SPATHCACHE ; generate a script for fast recaching
General Commands Reference Guide S | 244©1989-2024 Lauterbach

sYmbol.SourcePATH.SetCachedDirCache Internal use only

Internal TRACE32 software command, not of interest for TRACE32 users.

See also

■ sYmbol.SourcePATH

sYmbol.SourcePATH.SetCachedDirIgnoreCache Cache direct search path

All source files found in the defined directory are cached by TRACE32 ignoring lowercase/uppercase.

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.SetCachedDirCache <directory> …

Format: sYmbol.SourcePATH.SetCachedDirIgnoreCase {<directory>}
General Commands Reference Guide S | 245©1989-2024 Lauterbach

sYmbol.SourcePATH.SetDir Define directory as direct search path

The source files are directly searched in the defined directories.

Examples:

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.SetDir <directory>

Data.LOAD.Elf armle.axf ; load elf file

sYmbol.List.SOURCE ; display path information for
; source files

; define directory as direct search path
sYmbol.SourcePATH.SetDir C:\T32_ARM\demo\arm\compiler\arm

sYmbol.SourcePATH.List ; display search path defined by
; user

sYmbol.List.SOURCE ; display path information for
; source files

Source path provided by Elf file error indicates that
the source file was
not found under the
provided path

Source path from which the file
was loaded
General Commands Reference Guide S | 246©1989-2024 Lauterbach

sYmbol.SourcePATH.SetDynamicDir Adjust search order at hit

The search order defined by this command is dynamically changed. The directory in which the last searched
source file was found becomes the first directory in which the debugger searches for the next source file.

Example:

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.SetDynamicDir {<directory>}

sYmbol.SourcePATH.SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_net

sYmbol.SourcePATH.SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_drivers

sYmbol.SourcePATH.SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_ext

sYmbol.SourcePATH.SetDynamicDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard\demo_int

sYmbol.SPATH.List
General Commands Reference Guide S | 247©1989-2024 Lauterbach

sYmbol.SourcePATH.SetMasterDir Store cached files only relative

If the command STOre <file> SPATHCACHE is used, all file names are only saved relative to the defined
directory.

Example:

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.SetMasterDir <directory>

Data.LOAD G:\AND\compiler\xc\bt800ip.iee

sYmbol.SourcePATH.SetCachedDir G:\AND\compiler\xc\System

sYmbol.SourcePATH.SetMasterDir G:\AND\compiler

STOre cache.cmm SPATHCACHE

// And Thu May 27 16:40:51 2004

B::

sYmbol.SourcePATH.SetCachedDirCache "xc\System"

sYmbol.SourcePATH.SetCache "xc\System"
(

"ad_cond.c"
"adsubs.c"
"bt_27.c"
"bt_27.h"
"bt_28.c"
"bt_flsh.c"

)

ENDDO
General Commands Reference Guide S | 248©1989-2024 Lauterbach

sYmbol.SourcePATH.SetRecurseDir Define recursive direct search path

Use the defined directory and all subdirectories as search path.

Example:

See also

■ sYmbol.SourcePATH

sYmbol.SourcePATH.SetRecurseDirCache Internal use only

Internal TRACE32 software command, not of interest for TRACE32 users.

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.SetRecurseDir {<directory>}

sYmbol.SourcePATH.SetRecurseDir
C:\T32_ARM\demo\arm\hardware\imx53\quickstartboard

Format: sYmbol.SourcePATH.SetRecurseDirCache <directory>…
General Commands Reference Guide S | 249©1989-2024 Lauterbach

sYmbol.SourcePATH.SetRecurseDirIgnoreCase Recursive search path

Use the defined directory and all subdirectories as search path. Lowercase/uppercase is ignored

See also

■ sYmbol.SourcePATH

sYmbol.SourcePATH.Translate Replace part of the source path

Replaces <original_path> in source path with <new_path>. Use case: The code was built on a remote
machine. Thus the base path must be replaced.

Format: sYmbol.SourcePATH.SetRecurseDirIgnoreCase {<directory>}

Format: sYmbol.SourcePATH.Translate <original_path> <new_path>
General Commands Reference Guide S | 250©1989-2024 Lauterbach

Example:

See also

■ sYmbol.SourcePATH

▲ ’Release Information’ in ’Legacy Release History’

Data.LOAD.Elf sieve.elf

sYmbol.List.SOURCE

sYmbol.SourcePATH.Translate "Z:/Projects/own/trunk/V850/src/sieve"
"C:/T32_V850/demo/20131129trainings_demo/demo/v850/compiler/iar"

sYmbol.SourcePATH.Translate "C:/Programme/IAR Systems"
"C:/T32_V850/demo"

sYmbol.List.SourcePATH
General Commands Reference Guide S | 251©1989-2024 Lauterbach

sYmbol.SourcePATH.TranslateSUBpath Replace sub-path

Replaces <original_sub_path> in source path with <new_sub_path>. Use case: Only a single folder is
different.

Example:

See also

■ sYmbol.SourcePATH

sYmbol.SourcePATH.UP Move path up in the search order

Internal TRACE32 command. The defined directory becomes the first in the search path order.

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.TranslateSUBpath <original_sub_path>
 <new_sub_path>

sYmbol.SourcePATH.TranslateSUBpath "P5" "K8"

Format: sYmbol.SourcePATH.UP <directory>
General Commands Reference Guide S | 252©1989-2024 Lauterbach

sYmbol.SourcePATH.Verbose Display search details in message AREA

Default: OFF.

Example:

See also

■ sYmbol.SourcePATH

Format: sYmbol.SourcePATH.Verbose ON | OFF

OFF No details about the source file search are given.

ON Details about the source file search are displayed in the TRACE32
message AREA.view window, if a source file is loaded by TRACE32.

AREA.view ; open TRACE32 message AREA window
; to display source file search
; details

sYmbol.SourcePATH.Verbose ON

List ; display source listing

Verbose ON is indicated in the sYmbol.SourcePATH.List window
General Commands Reference Guide S | 253©1989-2024 Lauterbach

sYmbol.SourceRELOAD Reload source files

Invalidates all loaded source files and marks them for reload. This can be useful when the source search
path has been changed to reload the source modules that came from the old source path.

See also

■ sYmbol

sYmbol.STATE Display statistic

Displays the size of the symbol tables and the global settings. See also sYmbol.MEMory.

See also

■ sYmbol ■ sYmbol.Browse.sYmbol ■ sYmbol.INFO ■ sYmbol.List
❏ sYmbol.STATE()

▲ ’The Symbol Database’ in ’Training Source Level Debugging’

Format: sYmbol.SourceRELOAD

Format: sYmbol.STATE
General Commands Reference Guide S | 254©1989-2024 Lauterbach

sYmbol.STRIP Set max. symbol length

Cuts symbols to the specified length. This option is useful, when the compiler has a limited symbol length.

Example:

See also

■ sYmbol

sYmbol.TYPEINFO Display information about a specific data type

Displays information about a specific data type. Alternatively, right-click a data type in a sYmbol.List.Type
window, and then select View Details, or double-click a data type in that window.

See also

■ sYmbol

Format: sYmbol.STRIP [<length>]

sYmbol.STRIP 8.
Data.List Main_Function ; will display 'Main_Fun'

Format: sYmbol.TYPEINFO <data_type>
General Commands Reference Guide S | 255©1989-2024 Lauterbach

sYmbol.View Show symbol info

Same as command sYmbol.Info.

See also

■ sYmbol

Format: sYmbol.View <name> [/Track]
General Commands Reference Guide S | 256©1989-2024 Lauterbach

SYnch

SYnch Synchronization mechanisms between different TRACE32 systems

See also

■ SYnch.Connect ■ SYnch.MasterBreak ■ SYnch.MasterGo ■ SYnch.MasterStep
■ SYnch.MasterSystemMode ■ SYnch.OFF ■ SYnch.ON ■ SYnch.RESet
■ SYnch.SlaveBreak ■ SYnch.SlaveGo ■ SYnch.SlaveStep ■ SYnch.SlaveSystemMode
■ SYnch.state ■ SYnch.XTrack ■ TargetSystem ■ InterCom

Overview SYnch

For AMP multicore debugging and multiprocessor debugging, two or more TRACE32 PowerView instances
need to be started. The command group SYnch allows to establish a connection between different
TRACE32 instances for the following purposes:

• To establish a start/stop synchronization between the cores/processors controlled by different
TRACE32 instances.

• To allow concurrent assembler single steps between the cores/processors controlled by different
TRACE32 instances.

• To allow synchronous system mode changes between the cores/processors controlled by
different TRACE32 instances.

• To get a time synchronization between trace information in different TRACE32 instances. This
requires that the trace information uses a common time base, e.g. global TRACE32 timestamp or
global chip timestamps.

For configuration of the synchronization mechanisms, use the TRACE32 command line, a PRACTICE script
(*.cmm), or the SYnch.state window. See also prerequisite [A] below.

A Prerequisite: You have set up an InterCom system using the InterCom commands, which allows to
exchange data between different TRACE32 systems.

A

General Commands Reference Guide S | 257©1989-2024 Lauterbach

SYnch.Connect Connect to other TRACE32 PowerView instances

Format 1: Establishes connections via the InterCom system to other TRACE32 PowerView instances that
are connected to same PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the
config.t32 file).

Format 2: Establishes connections to other TRACE32 instances by using the InterCom system.

Format 1 and Format 2: SYnch.ON is automatically set when the command SYnch.Connect establish the
connections.

Example 1 for Format 2: This script line connects two instances based on their host names and port
numbers.

Example 2 for Format 1 and Format 2: This script line disconnects the TRACE32 instances.

Format 1: SYnch.Connect [<instances> …]

<instances>: <intercom_name> | ALL | OTHERS | <name_pattern> | [<host>:]<port>

Format 2: SYnch.Connect [<host>:]<port> …

(without parameters)
Format 1, Format 2

If the command is used without parameters, it disconnects the TRACE32
PowerView instances.

<intercom_name>
Format 1

InterCom name of a TRACE32 instance. Names can be assigned to
TRACE32 instances with the InterCom.NAME command.
The InterCom.execute command supports the wildcards * and ? in
InterCom names.

<name_pattern>
Format 1

The SYnch.Connect command supports the wildcards * and ? in
InterCom names. For example: cluster1.*

ALL
Format 1

All known TRACE32 instances.

OTHERS
Format 1

ALL except SELF.

<host>:<port>
Format 1, Format 2

Name of the host and the port number.

SYnch.Connect localhost:20001 localhost:20002

SYnch.Connect
General Commands Reference Guide S | 258©1989-2024 Lauterbach

Example 3 for Format 1: All instances are connected except the one where this command is executed.

Example 4 for Format 1: The command SYnch.Connect OTHERS is executed on all TRACE32 instances.

See also

■ SYnch ■ SYnch.state ■ InterCom.ENable ■ InterCom.NAME

▲ ’Release Information’ in ’Legacy Release History’

SYnch.Connect OTHERS

InterCom.execute ALL SYnch.Connect OTHERS
General Commands Reference Guide S | 259©1989-2024 Lauterbach

SYnch.MasterBreak Invite other TRACE32 to stop synchronously

Default: OFF

SYnch.MasterBreak and SYnch.SlaveBreak can be freely programmed for the connected TRACE32
instances. But the break switch/cross trigger unit in the multicore chip might not provide resources to
program all links. TRACE32 adjust the programming of the links to the available resources in this case.

See also

■ SYnch ■ SYnch.state

Format: SYnch.MasterBreak [ON | OFF]

ON Invite other TRACE32 instances to stop synchronously.

Cores in a multicore chip can be stopped instruction-accurate if the chip
provides a break switch/cross trigger unit.

Otherwise software-controlled stop synchronization is used. Software-
controlled synchronization stop the cores/processors one by one with a
minimum delay of 1.ms.

OFF No invitation for a synchronous stop is broadcast to other TRACE32
instances.
General Commands Reference Guide S | 260©1989-2024 Lauterbach

SYnch.MasterGo Invite other TRACE32 to start synchronously

See also

■ SYnch ■ SYnch.state

SYnch.MasterStep Invite other TRACE32 to Asm step synchronously

See also

■ SYnch ■ SYnch.state

Format: SYnch.MasterGo [ON | OFF]

OFF
(default)

No invitation for a synchronous start is broadcast to other TRACE32
instances.

ON Invite other TRACE32 instances to start synchronously.

Cores in a multicore chip can start synchronously if this is supported by
the chip.

Otherwise software-controlled start synchronization is used. software-
controlled synchronization starts the cores/processors one by one with a
minimum delay of 1.ms.

Format: SYnch.MasterStep [ON | OFF]

OFF
(default)

No invitation for concurrent assembler single stepping is broadcast to
other TRACE32 instances.

ON Invite other TRACE32 instances to perform concurrent assembler single
stepping. HLL single stepping is regarded as a synchronous start.
General Commands Reference Guide S | 261©1989-2024 Lauterbach

SYnch.MasterSystemMode Invite other TRACE32 to follow mode change

See also

■ SYnch ■ SYnch.state

SYnch.OFF Disable connection mechanism

Disables the software component that allows a TRACE32 instance to connect to other instances.

See also

■ SYnch ■ SYnch.state

SYnch.ON Enable connection mechanism

Enables the software component that allows a TRACE32 instance to connect to other instances.

See also

■ SYnch ■ SYnch.state

Format: SYnch.MasterSystemMode [ON | OFF]

OFF
(default)

No invitation for synchronous mode changing is broadcast to other
TRACE32 instances.

ON Invite other TRACE32 instances to perform system mode changes
synchronously. System mode changes are typically performed by one of
the following commands: SYStem.Up, SYStem.Mode <mode>
commands and SYStem.RESetTarget.

Format: SYnch.OFF

Format: SYnch.ON
General Commands Reference Guide S | 262©1989-2024 Lauterbach

SYnch.RESet Reset SYnch mechanism

Resets the SYnch mechanism to its default settings.

See also

■ SYnch ■ SYnch.state

SYnch.SlaveBreak Synchronize with stop in connected TRACE32

See also

■ SYnch ■ SYnch.state

Format: SYnch.RESet

Format: SYnch.SlaveBreak [ON | OFF]

OFF Don’t synchronize with the stop of the program execution in a connected
TRACE32 instance.

ON Synchronize with the stop of the program execution in a connected
TRACE32 instance.

Cores in a multicore chip can be stopped instruction-accurate if the chip
provides a break switch/cross trigger unit.

Otherwise software-controlled stop synchronization is used. Software-
controlled synchronization stop the cores/processors one by one with a
minimum delay of 1.ms.
General Commands Reference Guide S | 263©1989-2024 Lauterbach

SYnch.SlaveGo Synchronize with start in connected TRACE32

See also

■ SYnch ■ SYnch.state

SYnch.SlaveStep Synchronize with asm step in connected TRACE32

See also

■ SYnch ■ SYnch.state

Format: SYnch.SlaveGo [ON | OFF]

OFF Don’t synchronize with the start of the program execution in a connected
TRACE32 instance.

ON Synchronize with the start of the program execution in a connected
TRACE32 instance.

Cores in a multicore chip can start synchronously if this is supported by
the chip.

Otherwise software-controlled start synchronization is used. software-
controlled synchronization starts the cores/processors one by one with a
minimum delay of 1.ms.

Format: SYnch.SlaveStep [ON | OFF]

OFF Don’t synchronize with assembler single steps in a connected TRACE32
instance.

ON Synchronize with assembler single steps in a connected TRACE32
instance.
General Commands Reference Guide S | 264©1989-2024 Lauterbach

SYnch.SlaveSystemMode Synch. with mode changes in other TRACE32

See also

■ SYnch ■ SYnch.state

SYnch.state Display current SYnch settings

Displays the current setup of the SYnch mechanism.

See also

■ SYnch ■ SYnch.Connect ■ SYnch.MasterBreak ■ SYnch.MasterGo
■ SYnch.MasterStep ■ SYnch.MasterSystemMode ■ SYnch.OFF ■ SYnch.ON
■ SYnch.RESet ■ SYnch.SlaveBreak ■ SYnch.SlaveGo ■ SYnch.SlaveStep
■ SYnch.SlaveSystemMode ■ SYnch.XTrack

Format: SYnch.SlaveSystemMode [ON | OFF]

OFF Don’t synchronize with system mode changes in connected TRACE32
instances.

ON Synchronize with system mode changes in connected TRACE32
instances.

Format: SYnch.state

A For descriptions of the commands in the SYnch.state window, please refer to the SYnch.*
commands in this chapter. Example: For information about ON, see SYnch.ON.

A

General Commands Reference Guide S | 265©1989-2024 Lauterbach

SYnch.XTrack Establish time synchronization to another TRACE32 instance

Establishes a time synchronization between trace information in different TRACE32 instances via the
InterCom system. This requires that the trace information uses a common time base e.g. global TRACE32
time stamps or global chip timestamps.

Format 1: Establishes a time synchronization to other TRACE32 PowerView instances that are connected
to same PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file).

Format 2: Establishes a time synchronization to other TRACE32 PowerView instances in general.

Example 1 for Format 1:

Format 1: SYnch.XTrack [<instances> …]
<trace>.XTrack <intercom_name> (deprecated)

<instances>: <intercom_name> | ALL | OTHERS | <name_pattern>

Format 2: SYnch.XTrack [<host>:]<port> …

(without parameters)
Format 1, Format 2

If the command is used without parameters, it disconnects the TRACE32
PowerView instances.

<intercom_name>
Format 1

InterCom name of a TRACE32 instance. Names can be assigned to
TRACE32 instances with the InterCom.NAME command.
The InterCom.execute command supports the wildcards * and ? in
InterCom names.

<name_pattern>
Format 1

The SYnch.Connect command supports of the wildcards * and ? in
InterCom names. For example: cluster1.*

ALL
Format 1

All known TRACE32 instances.

OTHERS
Format 1

ALL except SELF.

<host>:<port>
Format 2

Name of the host and the port number.

; all instances are connected to each other
InterCom.execute ALL SYnch.XTrack OTHERS

; trace commands in one TRACE32 instance
Trace.List /Track
Trace.Chart.sYmbol /ZoomTrack
General Commands Reference Guide S | 266©1989-2024 Lauterbach

Example 2 for Format 2:

See also

■ SYnch ■ SYnch.state

; connect the instance where SYnch.XTrack is executed with the other two
; instances ‘localhost:20001’ and ‘localhost:20002’
SYnch.XTrack localhost:20001 localhost:20002

; trace commands in one TRACE32 instance
Trace.List /Track
Trace.Chart.sYmbol /ZoomTrack
General Commands Reference Guide S | 267©1989-2024 Lauterbach

SYStem

SYStem System configuration

The SYStem commands are used for setting the operating modes of the system. In addition, they are used
to define all those parameters which remain valid after stopping the emulation. The subcommands of the
SYStem command group are highly target-dependent; for details, check the Processor Architecture
Manual for your target system.

In general, the configuration commands (e.g. SYStem.Option) should be used before the emulation system
is activated with the SYStem.Mode or SYStem.Up command. Changing configuration options while the
system is up may cause unpredictable behavior.

SYStem.BdmClock Select BDM clock

Either the divided CPU frequency is used as the BDM clock or a fixed clock rate. The fixed clock rate must
be used if the operation frequency is very slow or if the clock line is not available. The default is a fixed rate of
1 MHz.

See also

■ SYStem.state

Format: SYStem.BdmClock <rate> (deprecated)
Use SYStem.JtagClock instead.

<rate>: 2 | 4 | 8 | 16 | <fixed>

<fixed>: 1000. … 5000000.
General Commands Reference Guide S | 268©1989-2024 Lauterbach

SYStem.BREAKTIMEOUT Define the used timeout for break

The Break.direct command performs a break request and waits for 3.s for the target to stop, otherwise an
“emulation running” error is reported. The command SYStem.BREAKTIMEOUT can be use to specify a
different timeout.

See also

■ SYStem.state

Format: SYStem.BREAKTIMEOUT <time>
General Commands Reference Guide S | 269©1989-2024 Lauterbach

SYStem.CADICommand Send a command to target

Sends the <command> as string to the target. <command> is accepted without ' " '. The command is send
via CADI function 'CADIXfaceBypass()'. If an answer is provided, it will be displayed in AREA.view
beginning with "Answer: ".

See also

■ SYStem.state

Format: SYStem.CADICommand <command>
General Commands Reference Guide S | 270©1989-2024 Lauterbach

SYStem.CADIconfig CADI-specific setups
Virtual targets only: CADI

The SYStem.CADIconfig command group is used to define CADI-specific setups for debugging and
tracing.

See also

■ SYStem.CADIconfig.ExecSwOnly ■ SYStem.CADIconfig.RemoteServer
■ SYStem.CADIconfig.SpecRegDefine ■ SYStem.CADIconfig.SpecRegsOnly
■ SYStem.CADIconfig.Traceconfig ■ SYStem.CADIconfig.TraceCore
■ SYStem.IRISconfig ■ SYStem.state

SYStem.CADIconfig.ExecSwOnly Filter on executing software capability

Default = ON.

See also

■ SYStem.CADIconfig

SYStem.CADIconfig.RemoteServer Define connection to CADI server
Virtual targets only: CADI

Informs TRACE32 how to connect to the CADI server for debugging purposes. If this command is omitted
from your start-up script, then TRACE32 assumes that the virtual target (including the CADI server) and
TRACE32 are running on the same machine.

Without arguments: Resets the connection to a configuration where TRACE32 and the virtual target are
assumed to be running on the same machine (localhost).

Format: SYStem.CADIconfig.ExecSwOnly ON | OFF

ON TRACE32 connects just to CADI instances which can execute
software (CADI internal flag .executesSoftware is set).

OFF TRACE32 connects to any core or instance via CADI, regardless its
capability of executing software.

Format: SYStem.CADIconfig.RemoteServer [<ip> <port>]
General Commands Reference Guide S | 271©1989-2024 Lauterbach

With arguments: Defines a connection to the CADI server on a remote computer. Ensure that your CADI
server allows remote connections.

Examples:

See also

■ SYStem.CADIconfig ❏ SYStem.CADIconfig.RemoteServer()

<ip> IP address or host name of the remote computer where the virtual target
is running.

<port> Parameter Type: Decimal value. TCP/IP port of the CADI server.

SYStem.CADIconfig.RemoteServer

SYStem.CADIconfig.RemoteServer 192.168.178.2 7002.

SYStem.CADIconfig.RemoteServer RmtPC 7000.

Host 1 Host 2

TRACE32

t32caditrace.dll

Virtual target
(incl. CADI server)t32cadi.dll

Debug Connection
via CADI

Optional Trace Connection via TCP/IP

Figure 1 of 2: The red line illustrates the connection that is defined as a remote connection using the
SYStem.CADIconfig.RemoteServer command.

localhost

TRACE32

t32caditrace.dll

Virtual target
(incl. CADI server)

t32cadi.dll
Debug Connection

via CADI

Optional Trace Connection via TCP/IP

Figure 2 of 2: The red line illustrates the localhost connection that is defined using the
SYStem.CADIconfig.RemoteServer command.
General Commands Reference Guide S | 272©1989-2024 Lauterbach

SYStem.CADIconfig.SpecRegDefine Define special register set

With SYStem.CADIconfig.SpecRegDefine a generic read and write access to registers which are not part
of the regular CPU architecture register sets and its peripherals can be defined. The special defined register
is searched from the complete CADI provided register list. SYStem.CADIconfig.SpecRegDefine without
any parameter deletes the complete special register definition (=default). A maximum of six registers can be
defined.

See also

■ SYStem.CADIconfig

SYStem.CADIconfig.SpecRegsOnly Use only special defined register set

Default = OFF.

See also

■ SYStem.CADIconfig

Format: SYStem.CADIconfig.SpecRegDefine {<offset> <Reg name>}

<offset> Address offset in hex format to access the register named with <Reg
name>. The offset is add to the CADI base address for special
registers defines (= DBG:0C0000000). Maximum offset value is
0x0FFFFF, higher values are masked with 0x0FFFFF.

<Reg name> Name of the special defined register as case sensitive string.
Maximum string length is 27 characters.

Format: SYStem.CADIconfig.SpecRegsOnly ON | OFF

ON TRACE32 searches only for special defined registers (see
SYStem.CADIconfig.SpecRegDefine)

OFF TRACE32 searches for regular register sets defined by SYStem.CPU selection
and for special defined registers.
General Commands Reference Guide S | 273©1989-2024 Lauterbach

SYStem.CADIconfig.Traceconfig Define network settings to CADI trace
Virtual targets only: CADI

Without arguments: Defines a connection to the trace plug-in based on the default values. The file name of
the trace plug-in is t32caditrace.dll / t32caditrace.so.

With arguments: Defines a user-defined connection to the trace plug-in.

The red line illustrates the connection that is defined using the SYStem.CADIconfig.Traceconfig
command.

See also

■ SYStem.CADIconfig ❏ SYStem.CADIconfig.Traceconfig()

▲ ’Introduction’ in ’Virtual Targets User’s Guide’

SYStem.CADIconfig.TraceCore Define core for CADI trace

Defines the core for which the CADI trace feature will be active in the case of SMP core setup. CADI trace
allows just one core to be traced.

See also

■ SYStem.CADIconfig

Format: SYStem.CADIconfig.Traceconfig [<ip> <port>]

<ip>
(default: 127.0.0.1)

IP address of the host machine where the virtual target is running.
IPv4 only. Host names are not allowed.

<port>
(default: 21000.)

Parameter Type: Decimal value. TCP/IP port of the trace plug-in.

Format: SYStem.CADIconfig.TraceCore <Corenumber>

t32caditrace.dll
Trace Connection

via TCP/IP

Virtual target
(including CADI server)

Debug Connection
via CADI

t32cadi.dllTRACE32
General Commands Reference Guide S | 274©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The commands of the SYStem.CONFIG command group describe the target configuration to the debugger.

See also

■ SYStem.CONFIG.STM ■ SYStem.state

▲ ’Release Information’ in ’Legacy Release History’

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore (deprecated)

<parameter> The supported parameters highly depend on the target processor
architecture. Please refer to the description of the SYStem.CONFIG
command in your Processor Architecture Manual for more information.
General Commands Reference Guide S | 275©1989-2024 Lauterbach

SYStem.CONFIG.CORE Assign core to TRACE32 instance
[Examples]

If the target provides a joint debug interface for several cores/chips it is necessary to inform the TRACE32
instance which core/chip it controls for debugging. This means, SYStem.CONFIG.CORE tells TRACE32 to
which specified <core> and <chip> it has to connect when the SYStem.Up command is executed.

Most architectures have 1 <chip> with several <cores>. Architectures with 2 or more <chips> are relatively
rare.

Next:

• Description of Format 1 for Physical Targets including example.

• Description of Format 2 for Virtual Targets including examples.

Format 1 for Physical Targets

Format 1: SYStem.CONFIG.CORE <core | thread> <chip>
SYStem.MultiCore.CORE (deprecated)

Format 2:
Virtual targets only

SYStem.CONFIG.CORE <string> | <value>

<core> Specify the core within the chip that is controlled by the TRACE32
instance.
The command SYStem.CONFIG.CORE <core> is mainly used, if the
cores within a chip are not daisy-chained, or daisy-chained and
interrelated. The <core> index is also used by the command
CORE.NUMber as start value to set up an SMP system.

See also Example for <core> and <chip>.

<chip> Specify which cores belong to the same chip if several chips are daisy-
chained.
This allows the debugger to coordinate chip-wide resources e.g. chip
reset, cross trigger matrix, shared trace port etc. Key for this coordination
is that TRACE32 is aware of the chip.
General Commands Reference Guide S | 276©1989-2024 Lauterbach

Format 2 for Virtual Targets

MCD Interface - Syntax Rules for <string> - Format 2 of SYStem.CONFIG.CORE

To specify unique strings identifying cores, observe the following rules for <string> and take the screenshot
below into account for a better understanding of these rules:

• The <string> is case-sensitive.

• The <string> starts at the first column to the left of the core # column:

• In the <string>, each column of the SYStem.CONFIG.ListCORE window is represented by a |
character (vertical line). To ignore one or more columns, type one | per column to be ignored:

<string> Unique string identifying the core to which TRACE32 connects in a virtual
target.

The syntax rules for <string> differ for the MCD and the CADI interface:
• See MCD interface
• See CADI interface

See also example for <string> in an SMP system. This simple example
applies to the MCD and the CADI interface.

<value> Core number identifying the core to which TRACE32 connects in a virtual
target.

The same <value> is displayed in the core # column of the
SYStem.CONFIG.ListCORE window.

The example for <value> applies to the MCD and the CADI interface.

; col.1 col.2 col.3 col.4
SYStem.CONFIG.CORE "<core>|<device>|<system_instance>|<system>"

SYStem.CONFIG.CORE "||4:1" ;ignore columns 1 and 2, and connect
 ;to the core having this unique
 ;sub-string ‘4:1’ in column 3

1234
General Commands Reference Guide S | 277©1989-2024 Lauterbach

• You can specify (a) an entire row or (b) the contents of one or more cells (cell = intersection of
column and row) or (c) just a sub-string of a cell:

• Wildcards like * and ? are not supported.

• For SMP systems: To connect to two or more cores, separate their unique strings or sub-strings
with a comma:

;(a) entire row - the ellipsis ... is used for space economy
SYStem.CONFIG.CORE "HARDWARE.ARM0.cpu3|HARDWARE.ARM0|...|..."

;(b) content of one cell
SYStem.CONFIG.CORE "HARDWARE.ARM0.cpu3"

;(c) sub-string from cell
SYStem.CONFIG.CORE "cpu3"

;connect to cpu1 and cpu2
SYStem.CONFIG.CORE "cpu1,cpu2"

;let’s take the sub-strings ‘4:0’ and 4:1’ from column 3 into
;account
SYStem.CONFIG.CORE "cpu0||4:0,cpu3||4:1"
General Commands Reference Guide S | 278©1989-2024 Lauterbach

CADI Interface - Syntax Rules for <string> - Format 2 of SYStem.CONFIG.CORE

To specify unique strings identifying cores, observe the following rules for <string> and take the screenshot
below into account for a better understanding of these rules:

• The <string> is case-sensitive.

• The <string> always contains the instance or a part of it, and may contain the Simulation ID:

• Information from columns other than Simulation ID and instance cannot be used to define a
connection to a core.

• Wildcards like * and ? are not supported.

• For SMP systems: To connect to two or more cores, separate their unique strings or sub-strings
with a comma:

;connect to a core by just specifying the instance
SYStem.CONFIG.CORE "cluster.cpu0"

;connect to a core by specifying the Simulation ID and the instance
SYStem.CONFIG.CORE "7000|cluster.cpu0"

;connect to cpu0 and cpu3, see instance column
SYStem.CONFIG.CORE "cpu0,cpu3"

;let’s take the Simulation ID into account
SYStem.CONFIG.CORE "7000|cpu0,7000|cpu3"
General Commands Reference Guide S | 279©1989-2024 Lauterbach

Example for <core> and <chip> - Format 1 of SYStem.CONFIG.CORE

Example for the MPC5517 (one chip with 2 cores)

Start-up commands for the e200z1 core:

Start-up commands for the e200z0 core:

SYStem.RESet ; reset all SYStem settings

SYStem.CPU MPC5517 ; select MPC5517 as target
; processor

; <core> <chip>
SYStem.CONFIG.CORE 1. 1.

; assign the TRACE32 instance to
; core 1 (e200z1), chip 1

SYStem.Up ; establish the communication
; between the debugger and the
; e200z1 core

SYStem.RESet ; reset all SYStem settings

SYStem.CPU MPC5517 ; select MPC5517 as target
; processor

; <core> <chip>
SYStem.CONFIG.CORE 2. 1.

; assign the TRACE32 instance to
; core 2 (e200z0), chip 1

SYStem.Mode.Attach ; establish the communication
; between the debugger and the
; e200z1 core

TRACE32 Instance for e200z1 Core

TRACE32 Instance for e200z0 Core

HOST USB Interface

Joint JTAG Interface

e200z1 Core

TARGET

M
P

C
55

17

e200z0 Core

CORE 1.

CORE 2.
General Commands Reference Guide S | 280©1989-2024 Lauterbach

Example for <string> - Format 2 of SYStem.CONFIG.CORE

This simple example applies to the MCD and the CADI interface in an SMP system. Steps that are
specific to SMP systems are flagged with ‘(SMP system)’ in the comments:

Example for <value> - Format 2 of SYStem.CONFIG.CORE

This example applies to the MCD and CADI Interface.

See also

■ SYStem.CONFIG.ListCORE ■ CORE.ASSIGN

SYStem.DOWN

SYStem.CONFIG.ListCORE ;list the cores of a virtual target in
 ;the SYStem.CONFIG.ListCORE window.

SYStem.CPU CortexA9MPCore ;select a multicore CPU (SMP system)

SYStem.CONFIG.CoreNumber 2 ;set up the number of cores you want
CORE.NUMber 2 ;TRACE32 to connect to (SMP system)

SYStem.CONFIG.CORE "cpu1,cpu2" ;connect to cpu1 and cpu2 (SMP system)

 ;NOTE: In the ‘Cores’ pull-down list,
 ;cpu1 becomes core 0 and
 ;cpu2 becomes core 1.
 ;The ‘Cores’ pull-down list is accessible
 ;via the TRACE32 state line.
SYStem.Up

SYStem.DOWN

SYStem.CONFIG.ListCORE ;list the cores of a virtual target in the
 ;SYStem.CONFIG.ListCORE window

 ;the core <values> are displayed in the
 ;'core #' column. TRACE32 connects to the core
 ;having the specified <value>

; <value>
SYStem.CONFIG.CORE 2.

SYStem.Up
General Commands Reference Guide S | 281©1989-2024 Lauterbach

SYStem.CONFIG.CoreNumber Set up number of hardware threads

Sets up the number of hardware threads that are available inside the chip. The access to the particular
hardware threads can be configured by architecture specific SYStem.CONFIG commands described in
your Processor Architecture Manual. The defined hardware threads can be used by the CORE
commands to set up an SMP system.

An error message is displayed below the command line if the command is used for single-core CPUs.

See also

❏ CONFIGNUMBER()

Format: SYStem.CONFIG.CoreNumber <number>
General Commands Reference Guide S | 282©1989-2024 Lauterbach

SYStem.CONFIG.DEBUGPORT Specify debugport

Debugging via a functional interface of the host computer (<dp_fi> parameters)

Debugging via a functional interface is only supported for certain architectures. Please refer to the
Lauterbach home page for details.

Please refer to “TRACE32 Debug Back-Ends” (backend_overview.pdf) for setup details.

Format: SYStem.CONFIG.DEBUGPORT <dp_fi> |<dp_emu> |<dp_hw>

<dp_fi>: Unknown
CSWP0
IntelUSB0
SNEAKPEEK0
XCP0

<dp_emu>: GTL0 | GTL1 | GTL2 | GTL3 | GTL4
InfineonDAS0
VerilogTransactor0
Unknown

<dp_hw> : DebugCable0
DebugCableA | DebugCableB

Interface Protocol

Unknown (default)

CSWP0 USB Arm CoreSight Wire Protocol

IntelUSB0 USB Intel DCI Protocol

SNEAKPEEK0 TCP/IP MIPI SneakPeek Protocol

XCP0 TCP/IP ASAM MCD-1 XCP Protocol
General Commands Reference Guide S | 283©1989-2024 Lauterbach

Debugging a RTL simulation or emulation (<dp_emu> parameters)

Debugging a RTL simulation or emulation is only supported for certain architectures. Please refer to the
Lauterbach homepage for details.

Please refer to “TRACE32 Debug Back-Ends” (backend_overview.pdf) for setup details.

Debugging via TRACE32 hardware (<dp_hw> parameter)

The command SYStem.CONFIG.DEBUGPORT <dp_hw> is only needed for a PowerDebug plus
CombiProbe configuration and that only if two Whisker cables are connected to the CombiProbe.

If two whiskers are connected to the CombiProbe, the following must essentially be observed:

You need to ensure that each whisker has a master PowerView instance. In single debug port scenarios, the
first PowerView instance started is automatically a master. In a dual debug port scenario, you must specify
the master PowerView instance yourself for the second whisker using the SYStem.CONFIG.Slave OFF
command. Details about the command can be found in your Processor Architecture Manual manual.

Please be aware that SYStem.RESet also resets the SYStem.CONFIG.DEBUGPORT and
SYStem.CONFIG.Slave settings. So if you want to use one of the Lauterbach demo scripts for the second
whisker, you probably have to adapt the script.

Communication via

Unknown (default)

GTL<n> Generic Transactor Library designed by Lauterbach, e.g. GTL0

InfineonDAS0 Infineon DAS Server

VerilogTransactor0 Verilog Transactors
for testing the low-level communication, not suitable for debugging
General Commands Reference Guide S | 284©1989-2024 Lauterbach

There are two dual-whisker setups:

1. CombiProbe with two connected MIP20T-HS whiskers for debugging via two connectors.

If SoC 1 is debugged via the first debug connector (cable A whisker),

must be set in each TRACE32 instance that controls cores of this SoC.

Analogously, if SoC 2 is debugged via the second debug connector (cable B whisker)

must be set in each TRACE32 instance that controls cores of this SoC.

Debugging via two debug connectors is also possible using two MIPI34 whiskers and a
CombiProbe 2. However if you are still using a CombiProbe, it is recommended to contact
Lauterbach support in advance.

2. CombiProbe with two connected AUTO26 whiskers for dsPIC33 dual core debugging.

A dual core dsPIC33 needs a CombiProbe with two AUTO26 whiskers for debugging, because each
core has its own debug connector. In the required AMP setup, the following setting must be made in
the TRACE32 instance controlling the first core (cable A whisker):

SYStem.CONFIG.DEBUGPORT DebugCableA

SYStem.CONFIG.DEBUGPORT DebugCableB

SYStem.CONFIG.DEBUGPORT DebugCableA

POWER DEBUG E40

POWER DEBUG E40

PC or
Workstation

USB
Cable

Target with Two SoCs

CombiProbe
A

M
IP
I2

0T
/
M
IP
I1

0
Co

nn
ec
to
r
1

fo
r
So

C
1

B

M
IP
I2

0T
/
M
IP
I1

0
Co

nn
ec
to
r
2

fo
r
So

C
2

General Commands Reference Guide S | 285©1989-2024 Lauterbach

Analogously, the following must be set in the TRACE32 instance controlling the second core (cable B
whisker):

There exist ready-to-run dual-whisker scripts from Lauterbach for this core architecture.

SYStem.CONFIG.DEBUGTIMESCALE Extend debug driver timeouts

Extends any timing behavior of the debug driver by the passed <multiplier>.

The timing behavior should be adapted in case the debugger is connected to an emulator that runs with a
much smaller clock compared to a silicon target. The original timeout settings may cause timeouts or bus
errors in this scenario.

SYStem.CONFIG.DEBUGPORT DebugCableB

Format: SYStem.CONFIG.DEBUGTIMESCALE <multiplier>

<multiplier> The <multiplier> can take only values out of the power-of-two series e.g. 1, 2,
4, 8, 16 etc.
A high <multiplier> can cause the software to hang for an extended period of
time in case the debug driver waits for a certain condition.
General Commands Reference Guide S | 286©1989-2024 Lauterbach

SYStem.CONFIG.ELA Configure Embedded Logic Analyzer (ELA)
ARM

Configures the ELA CoreSight module, which provides visibility to on-chip signals. After configuration, the
ELA command group is available.

See also

■ ELA

SYStem.CONFIG.ListCORE Display the cores of a virtual target
Virtual targets only

Retrieves the list of cores from a virtual target and displays the result as a snapshot in the
SYStem.CONFIG.ListCORE window. To re-read the list from the virtual target, re-open the window.

Format: SYStem.CONFIG.ELA <sub_cmd>

<sub_cmd>: Base <address> | RESET

Base <address> Informs the debugger about the start address of the register block of the
component. And this way it notifies the existence of the component.

RESET Undoes the configuration for this component. This does not cause a
physical reset for the component on the chip.

Format: SYStem.CONFIG.ListCORE
General Commands Reference Guide S | 287©1989-2024 Lauterbach

The following screenshot shows an example of a core list provided by a virtual target that is connected to
TRACE32 via the CADI interface:

The following screenshot shows an example of a core list provided by a virtual target that is connected to
TRACE32 via the MCD interface:

See also

■ SYStem.CONFIG.ListSIMulation ■ SYStem.CONFIG.CORE
❏ SYStem.CONFIG.ListCORE() ❏ SYStem.CONFIG.ListSIM()

▲ ’Connecting to Virtual Targets’ in ’Virtual Targets User’s Guide’

SYStem.CONFIG.ListSIMulation Display the simulations of a virtual target
Virtual targets only: CADI

Retrieves the list of simulations from a virtual target and displays the result as a snapshot in the
SYStem.CONFIG.ListSIMulation window. To re-read the list from the virtual target, re-open the window.

See also

■ SYStem.CONFIG.ListCORE ❏ SYStem.CONFIG.ListCORE()
❏ SYStem.CONFIG.ListSIM()

A Column headers in the SYStem.CONFIG.ListCORE window correspond to the column headers of the
used interface.

B The core # column displays the sequence of cores provided by the interface.

Format: SYStem.CONFIG.ListSIMulation

A The sim # column displays the sequence of simulations provided by the interface.

BA

A B

A

General Commands Reference Guide S | 288©1989-2024 Lauterbach

▲ ’Connecting to Virtual Targets’ in ’Virtual Targets User’s Guide’

SYStem.CONFIG.MULTITAP Select type of JTAG multi-TAP network

Some SoCs with a JTAG interface need special JTAG sequences before the core can be accessed.
E.g. The JTAG-TAP of the core has to be dynamically added to the JTAG daisy chain of the SoC.

See also

■ SYStem.CONFIG.MULTITAP.JtagSEQuence

Format: SYStem.CONFIG.MULTITAP <sub_cmd>

<sub_cmd>: NONE
PrimaryTAP <irlength> <irvalue> <drlength> <drenable> <drdisable>

NONE Disables any special multi-TAP handling (default).

PrimaryTAP Before accessing the core via JTAG, the debugger writes <irvalue> to the
JTAG IR shift-register and then <drenable> to the JTAG DR shift-register.

After accessing the core via JTAG, the debugger writes <irvalue> to the
JTAG IR shift-register and then <drdisable> to the JTAG DR shift-register.
General Commands Reference Guide S | 289©1989-2024 Lauterbach

SYStem.CONFIG.MULTITAP.JtagSEQuence JTAG seq. on SYStem.Up
[Example]

Some SoCs with a JTAG interface need special JTAG sequences before the core can be accessed. For
example, the JTAG-TAP of some ARC cores has to be dynamically added to the JTAG daisy chain of an
SoC.

With this command you can select complex JTAG sequences which should be executed by the debugger
whenever it switches between the debugged cores.

For some CPUs (selected with SYStem.CPU), TRACE32 already provides pre-defined JTAG sequences.
For others, you can create JTAG sequences for your individual needs with JTAG.SEQuence.Create.

The debugger assumes that every JTAG sequence starts and ends in the state of the JTAG state machine
which was set with SYStem.CONFIG.TAPState.

Format: SYStem.CONFIG.MULTITAP.JtagSEQuence.<sub_cmd>

<sub_cmd>: on
Attach <seq_name> | default
SELect <seq_name> | none
DeSELect <seq_name> | none

<seq_name> Name of a JTAG sequence created with JTAG.SEQuence.

Attach Choose a JTAG sequence which is executed during the attach to the core
via SYStem.Up or SYStem.Attach.
If SYStem.CONFIG SLAVE is set to OFF, the selected JTAG sequence
should reset the JTAG TAP (e.g. by going to the tests-logic-reset state).

SELect Specifies the JTAG sequence to be executed for core A when the debugger
switches from any other core to core A (in a multicore setup).

<other> core ==switch==> core A

DeSELect Specifies the JTAG sequence to be executed for core A when the debugger
switches from core A to any other core (in a multicore setup).

core A ==switch==> <other> core

default By choosing Attach default, the debugger will perform a default action,
which is: Resetting the core by going to the tests-logic-reset state (if
SYStem.CONFIG SLAVE is set to OFF) and then starting the JTAG
sequence, which has been assigned to SELect.

none No JTAG sequence will be executed.

on Enable the multitap JTAG sequences.
General Commands Reference Guide S | 290©1989-2024 Lauterbach

Example: This script snippet illustrates the use of JTAG sequences in PRACTICE scripts (*.cmm), i.e.
where and when you should define and enable a JTAG sequence, and when it is executed
automatically.

See also

■ SYStem.CONFIG.MULTITAP ■ JTAG.SEQuence

SYStem.CPU <cpu_type>
…

;define a JTAG sequence
JTAG.SEQuence.Create myAttach
JTAG.SEQuence.Add myAttach <your_code>
…

;enable the multitap JTAG sequences
SYStem.CONFIG.MULTITAP.JtagSEQuence.on
SYStem.CONFIG.MULTITAP.JtagSEQuence.Attach myAttach
…

;the JTAG sequence ‘myAttach’ is executed automatically on SYStem.Up
SYStem.Up
…

General Commands Reference Guide S | 291©1989-2024 Lauterbach

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Example:

Format: SYStem.CONFIG.state [/<tab>]
SYStem.MultiCore.view (deprecated)

<tab> Opens the SYStem.CONFIG.state window on the specified tab:
• DebugPort
• Jtag
• etc.

The number of tabs and commands on the tabs are CPU specific.

For architecture-specific information about the tabs, refer to the Processor
Architecture Manuals [▲] listed in the See also block below.

SYStem.CONFIG.state /Jtag ;open the window on the Jtag tab
General Commands Reference Guide S | 292©1989-2024 Lauterbach

SYStem.CONFIG.TRACEPORT Declare trace source and trace port type

Example:

See also

■ TRACEPORT

Format: SYStem.CONFIG.TRACEPORT<index> <sub_cmd>

<index>: 1 | 2 | …

<sub_cmd>: TraceSource <source> | Name <name> | Type <type> | RESET

<index> Index number of the trace port.

TraceSource
<source>

Declares the trace <source>, e.g. TPIU, ETR, ETM.
These trace <sources> are only available if:
• You have already added them as components in the

SYStem.CONFIG.state /COmponents window.
• You have programmed them with the appropriate commands, see

example below.
For more information, refer to the SYStem.CONFIG description in your
Processor Architecture Manuals.

Name <name> Assigns a user-defined <name> to a trace port. Unique names are useful
for AMP debugging because they allow you to differentiate trace ports
with identical types across multiple TRACE32 instances.

Type <type> Declares the trace port type, e.g. AURORA or PCIE.

RESET Removes the trace port declaration.

; declare system trace components
SYStem.CONFIG DTMCONFIG ON
SYStem.CONFIG.ETM.BASE APB:0x8000E000
SYStem.CONFIG.FUNNEL1.BASE APB:0x80004000
SYStem.CONFIG.FUNNEL1.ATBSOURCE ETM 0 DTM 2
SYStem.CONFIG.ETF1.BASE APB:0x8000C000
SYStem.CONFIG.ETF1.ATBSOURCE FUNNEL1
SYStem.CONFIG.TPIU.BASE APB:0x80003000
SYStem.CONFIG.TPIU.ATBSource ETF1
SYStem.CONFIG.TRACEPORT1.Type.AURORA
SYStem.CONFIG.TRACEPORT1.TraceSource TPIU
General Commands Reference Guide S | 293©1989-2024 Lauterbach

SYStem.CONFIG.TRANSACTORPIPENAME Set up pipe name

Defines the pipe name used to communicate with the Verilog Transactor in the RTL Simulation.

Example: Enter the transactor pipe name in TRACE32 PowerView.

Linux: Define environment variable in the context of the RTL simulation and Verilog Transactor in the shell.

SYStem.CONFIG.USB USB configuration
Intel® x86

Using the SYStem.CONFIG.USB command group, you can configure a TRACE32 system for debugging
via the USB protocol.

For more information, see “Debugging via USB User´s Guide” (usbdebug_user.pdf).

SYStem.CONFIG.XCP XCP specific settings

The SYStem.CONFIG.XCP command group allows to set up and configure debugging over XCP.

The command group is available after XCP0 has been selected as debug port.

Format: SYStem.CONFIG.TRANSACTORPIPENAME <file>

SYStem.CONFIG.DEBUGPORT VerilogTransactor0
SYStem.CONFIG.TRANSACTORPIPENAME "/tmp/t32verilog_actuator_user"

> export T32VERILOGTRANSACTORPIPE=/tmp/t32verilog_actuator_user

;optional step: open the SYStem.CONFIG.state dialog showing the DebugPort
;tab
SYStem.CONFIG.state /DebugPort

;selecting the XCP back-end activates the SYStem.CONFIG XCP commands
SYStem.CONFIG.DEBUGPORT XCP0

Host Computer

TRACE32

T
C

P

3rd-Party System

J
T

A
G

D
A

P

T
C

P

CPU
XCP over TCP

(Network Cable)
General Commands Reference Guide S | 294©1989-2024 Lauterbach

For more information, see “XCP Debug Back-End” (backend_xcp.pdf).

See also

■ SYStem.CONFIG
General Commands Reference Guide S | 295©1989-2024 Lauterbach

SYStem.CPU Select CPU

Tells TRACE32 the exact CPU type used on your target. This is required to get the matching PER file and
other CPU specific settings (e.g. predefined settings for on-chip FLASH). Asterisks (*) can be used as
wildcard characters to list all CPUs of an architecture or just the ones matching the filter criterion.

Examples:

See also

■ SYStem.state ■ PER.view ❏ CPUFAMILY() ❏ SYStem.CPU()

▲ ’Release Information’ in ’Legacy Release History’

Format: SYStem.CPU <cpu>

SYStem.CPU ARM940T ;select the CPU type ARM940T
;... your code
SYStem.Up ;start the debugger

NOTE: SYStem.CPU used together with an asterisk in a PRACTICE script (*.cmm)
causes the script to stop, and the SYStem.CPU window is displayed until you
have made a selection.

SYStem.CPU * ;list the CPUs of an architecture

SYStem.CPU *ultra* ;list the CPUs of an architecture matching the
 ;filter criterion
General Commands Reference Guide S | 296©1989-2024 Lauterbach

SYStem.CpuAccess Run-time memory access (intrusive)

Default: Denied.

Configures how memory access is handled during run-time.

See also

■ SYStem.state

Format: SYStem.CpuAccess <sub_cmd> (deprecated)

<sub_cmd>: Enable (deprecated)
Use SYStem.MemAccess StopAndGo instead.

Denied (deprecated)
There is no need to use a successor command (default setting).

Nonstop (deprecated)
Use SYStem.CpuBreak Denied instead.

Enable Allow intrusive run-time memory access.

Denied Lock intrusive run-time memory access.

Nonstop Lock all features of the debugger that affect the run-time behavior.
General Commands Reference Guide S | 297©1989-2024 Lauterbach

SYStem.CpuBreak Master control to deny stopping the target (long stop)

Default: Enable.

See also

■ SYStem.state

Format: SYStem.CpuBreak [<mode>]

<mode>: Enable | Denied

Enable Allows stopping the target.

Denied Denies stopping the target. This includes manual stops and stop
breakpoints. However, short stops, such as spot breakpoints, may still be
allowed.

SYStem.CpuBreak Denied can be used to protect a target system which
does not tolerate that the program execution is stopped for an extended
period of time; for example, a motor controller which could damage the
motor if the motor control software is stopped.
For more information, see SYStem.CpuSpot, SYStem.MemAccess.
General Commands Reference Guide S | 298©1989-2024 Lauterbach

SYStem.CpuSpot Master control to deny spotting the target (short stop)

Default: Enable.

Spotting is an intrusive way to transfer data periodically or on certain events from the target system to the
debugger. As a result, the program is not running in real-time anymore. For more information, see
SYStem.CpuBreak and SYStem.MemAccess.

See also

■ SYStem.state

SYStem.DCI DCI configuration
Intel® x86

The Intel® Direct Connect Interface (DCI) allows debugging and tracing of Intel® targets using the USB3 port
of the target system.

The SYStem.DCI command group allows to configure target properties as well as TRACE32 hardware
dedicated for the use with DCI.

For more information, see “Debugging via Intel® DCI User´s Guide” (dci_intel_user.pdf).

See also

■ SYStem

Format: SYStem.CpuSpot [<mode>]

<mode>: Enable | Denied | Target | SINGLE

Enable Allows spotting the target.

Denied Denies spotting the target.
Stopping the target may still be allowed.

Target Allows spotting the target controlled by the target.
This allows target-stopped FDX and TERM communication.
All other spots are denied.

SINGLE Allows single spots triggered by a command.
This includes spotting for changing the breakpoint configuration and the
SNOOPer.PC command.
This setting also allows target-stopped FDX and TERM communication.
All other spots are denied.
General Commands Reference Guide S | 299©1989-2024 Lauterbach

SYStem.DETECT Detect target system resources
[System Detection Wizard]

Format: SYStem.DETECT <type>

<type>: state
BASECPU
CPU
DaisyChain
CoreSightTrace
DAP
IDCode
JtagClock
PortSHaRing

state Opens the System Detection Wizard which allows a step-by-step
investigation of the entire JTAG chain. It displays all found devices and
suggests a CPU and the corresponding multi-core settings for each
found device. The user can choose the desired core, any valid multi-core
configuration will be applied.

BASECPU Detects and selects the appropriate CPU and multi-core configuration for
the first device in the JTAG chain. CPU detection is only based on the
JTAG ID code, no further ID registers are read from the device.

CPU Detects and selects the appropriate CPU and multi-core configuration for
the first device in the JTAG chain. The command will investigate the
entire device for an exact detection.
If supported for your architecture, you can use SYStem.CPU AUTO
instead.

DaisyChain Scans your JTAG chain and prints details to the AREA window.
See example.

CoreSightTrace Tries to detect the ARM CoreSight Trace topology and prints details to
the AREA window.

DAP Identifies the types of access ports of the DAP.
In addition, the SYStem.DETECT.DAP command inspects the ROM
tables, if available, to discover any CoreSight components and their
access addresses.
The result is displayed in the form of a list in the SYStem.DETECT.DAP
window.

SHOWChain Scans the JTAG chain and show details in a separate window.
In this window (SYStem.DETECT SHOWChain) you can double-click on
a CPU core to set the values IRPOST, IRPRE, DRPOST and DRPRE in
window SYSTEM.CONFIG state /Jtag accordingly.
General Commands Reference Guide S | 300©1989-2024 Lauterbach

IDCode Detects the ID codes of all JTAG-TAP controllers in the JTAG chain and
stores them internally, i.e. the result is not printed to the AREA window. In
order to access the result use the following functions:

• IDCODENUMBER() returns the number of detected TAP
controllers.

• IDCODE() returns the IDCODE of the n-th TAP controller

Example: PRINT IDCODE(0) prints 0x100034B1, if the first core in the
JTAG chain is an ARC700.

JtagClock Determines the maximum JTAG Frequency by polling the BYPASS register.
This only reflects the quality of the electrical connection and the speed the
BYPASS register path. The function EVAL() retrieves the result of the
command in Hertz. This command may heavily confuse all devices attached
to the JTAG chain.

PortSHaRing Determines if the debug port is shared with a 3rd-party tool. In a PRACTICE
script, the result can be obtained by the PORTSHARING() function.

NOTE: The availability of the SYStem.DETECT types are dependent on the archi-
tecture and the debug port protocol, so they may not be available for all
architectures and configurations.

NOTE: SYStem.DETECT may apply a Power-on Reset to your system and always
switches the debug system to Down-State (see SYStem.Mode Down).
General Commands Reference Guide S | 301©1989-2024 Lauterbach

The System Detection Wizard

The System Detection Wizard is still under construction. It currently supports only the following
architectures: ARM/Cortex, MIPS, TriCore.

Example for the ARM architecture:

Before TRACE32 can check your target configuration it needs to know how the TRACE32 debugger is
connected to the target (here for example via JTAG).

Click Continue to confirm that the connection details are valid.

SYStem.DETECT state ; open a System Detection Wizard
General Commands Reference Guide S | 302©1989-2024 Lauterbach

TRACE32 runs the system detection and display the results.

If several cores are detected, you can choose which core should be controlled by the current TRACE32
instance by pushing the Set <core> button. Here for example “Device 1: Set ARM9EJ”.

The Save Configuration button allows you to store the chosen settings to a file.
General Commands Reference Guide S | 303©1989-2024 Lauterbach

Daisy-Chain Detection via the TRACE32 AREA Window

The result of the daisy-chain detection is displayed in the AREA window. TRACE32 also displays the
commands that are required for a correct daisy-chain setup (see blue bar). Just copy these commands to
your script, separate them by space and you are done.

Please be aware that TRACE32 can only generate the commands for the daisy-chain setup if it knows the ID
codes for the cores on your target (see picture below).

See also

■ SYStem.state ❏ IDCODE()

SYStem.DLLCommand Custom DLL connection to target
Debugger MIPS, V24 monitor with DLL

See also

■ SYStem.state

AREA.view ; open a TRACE32 AREA window

SYStem.DETECT.DaisyChain ; run TRACE32 daisy-chain detection

Format: SYStem.DLLCommand
General Commands Reference Guide S | 304©1989-2024 Lauterbach

SYStem.InfineonDAS Configure the InfineonDAS debug port
TriCore, GTM

The SYStem.InfineonDAS command group allows to configure the back-end for DAS. The command group
is available after InfineonDAS0 has been selected as debug port.

For more information, see “Debugging via Infineon DAS Server” (backend_das.pdf).

See also

■ SYStem

;optional step: open the SYStem.CONFIG.state dialog showing the DebugPort
;tab
SYStem.CONFIG.state /DebugPort

;selecting the DAS back-end activates the SYStem.InfineonDAS commands
SYStem.CONFIG.DEBUGPORT InfineonDAS0
General Commands Reference Guide S | 305©1989-2024 Lauterbach

SYStem.IRISconfig IRIS-specific setups
Virtual targets only: IRIS

The SYStem.IRISconfig command group is used to define IRIS-specific setups for debugging and tracing.

See also

■ SYStem.CADIconfig ■ SYStem.state

SYStem.IRISconfig.RemoteServer Define connection to IRIS server
Virtual targets only: IRIS

Defines connection parameters to IRIS server.

Format: SYStem.IRISconfig.RemoteServer [<ip> <port>]
General Commands Reference Guide S | 306©1989-2024 Lauterbach

SYStem.JtagClock Define JTAG frequency

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

See also

■ SYStem.state ❏ SYStem.JtagClock()

▲ ’Release Information’ in ’Legacy Release History’

Format: SYStem.JtagClock <frequency>
General Commands Reference Guide S | 307©1989-2024 Lauterbach

SYStem.LOG Log read and write accesses to the target
[Example]

Using the SYStem.LOG command group, you can record the read and write accesses TRACE32 performs
to the target hardware. For example, the SYStem.LOG command group can be used to diagnose why
errors like “debug port fail”, “bus error”, etc. occurred. By default, logging stops after an error has occurred
(see SYStem.LOG.StopOnError).

The read and write accesses can be displayed in the SYStem.LOG.List window. In addition, they can be
recorded in a system log file with an unlimited file size. The log entries are recorded in plain text format, and
the read and write accesses are converted to Data.Set commands. This way it is possible to re-run the
system log in a TRACE32 Instruction Set Simulator.

The system log records all TRACE32 debugger accesses to the target. Examples of accesses that cannot
be logged include:

• Accesses via JTAG API

• Accesses initiated by the TERM command

• Accesses initiated by the SNOOPer command

For configuring a system log, use the TRACE32 command line, a PRACTICE script (*.cmm), or the
SYStem.LOG.state window:
General Commands Reference Guide S | 308©1989-2024 Lauterbach

Example:

See also

■ SYStem.LOG.CLEAR ■ SYStem.LOG.CLOSE ■ SYStem.LOG.Init ■ SYStem.LOG.List
■ SYStem.LOG.Mode ■ SYStem.LOG.OFF ■ SYStem.LOG.ON ■ SYStem.LOG.OPEN
■ SYStem.LOG.RESet ■ SYStem.LOG.Set ■ SYStem.LOG.SIZE ■ SYStem.LOG.state
■ SYStem.LOG.StopOnError ■ SYStem.state ■ SLTrace ■ LOG

SYStem.LOG.CLEAR Clear the ‘SYStem.LOG.List’ window

Clears and immediately re-populates the list in the SYStem.LOG.List window with new system log entries -
same as if you are running the commands SYStem.LOG.Init and SYStem.LOG.ON in rapid succession.

SYStem.LOG.CLEAR is the command behind the Clear button in the SYStem.LOG.List window.

See also

■ SYStem.LOG ■ SYStem.LOG.Init ■ SYStem.LOG.state

SYStem.LOG.state ;optional: open the configuration window
SYStem.LOG.RESet ;use default configuration of system log
SYStem.LOG.OPEN ~~\sys.log ;open a system log file for writing
SYStem.LOG.List ;display the accesses to the target

;log the read and write accesses to the target
List.auto
Step.single

SYStem.LOG.CLOSE ;close the system log file for writing

Format: SYStem.LOG.CLEAR
General Commands Reference Guide S | 309©1989-2024 Lauterbach

SYStem.LOG.CLOSE Close the system log file

Closes the active system log file. Any further read and write accesses are not recorded in the system log file.
You can now open the file in an EDIT or TYPE window or in another application.

Example: Using the DO command, you can also re-run the system log in a TRACE32 Instruction Set
Simulator. You do not need to rename the file extension to cmm, the extension for PRACTICE scripts; you
can keep the file extension log.

See also

■ SYStem.LOG ■ SYStem.LOG.OPEN ■ SYStem.LOG.state

SYStem.LOG.Init Clear the "SYStem.LOG.List" window

Clears the system log entries displayed in the SYStem.LOG.List window. The SYStem.LOG.Init command
has no impact on the system log file.

Since the SYStem.LOG.List window itself continues to log the target, the list in the window may be
immediately re-populated after clearing.

To prevent the list in the SYStem.LOG.List window from being re-populated, run these commands:

See also

■ SYStem.LOG ■ SYStem.LOG.CLEAR ■ SYStem.LOG.state

Format: SYStem.LOG.CLOSE

...

SYStem.LOG.CLOSE ;close the system log file for writing

PEDIT ~~\sys.log ;open log file as a PRACTICE script

Format: SYStem.LOG.Init

SYStem.LOG.OFF
SYStem.LOG.Init
General Commands Reference Guide S | 310©1989-2024 Lauterbach

SYStem.LOG.List Log the accesses made by TRACE32

Displays all types of target accesses made by TRACE32.

Description of Toolbar Buttons in the SYStem.LOG.List Window

Description of Columns in the SYStem.LOG.List Window

See also

■ SYStem.LOG ■ SYStem.LOG.state

▲ ’Release Information’ in ’Legacy Release History’

Format: SYStem.LOG.List
Data.LOG (deprecated)

Setup Opens the SYStem.LOG.state window.

On Starts/resumes logging - same as SYStem.LOG.ON.

Off Pauses logging - same as SYStem.LOG.OFF.

Clear Clears and immediately re-populates the list with new system log entries -
same as if you are running the commands SYStem.LOG.Init and
SYStem.LOG.ON in rapid succession.

op Type of target access.

address Access class and address where TRACE32 has accessed the target.

width The bus width used by TRACE32.
Example: The value 4. indicates that TRACE32 performs 32-bit read or write
accesses.

data Data written or read. Only the first 8 bytes are displayed in the
SYStem.LOG.List window.

time Absolute timestamps in relation to ZERO.

xtime Execution time.
General Commands Reference Guide S | 311©1989-2024 Lauterbach

SYStem.LOG.Mode Set logging mode

Sets the degree of detail with which the read and write accesses are recorded in the system log file.

See also

■ SYStem.LOG ■ SYStem.LOG.state

Format: SYStem.LOG.Mode <logging_mode>

<logging_
mode>:

Compact ON | OFF
Source ON | OFF
NoTime ON | OFF

Compact
(default: OFF)

• OFF: Access addresses and data are included in the system log
file.

• ON: Access addresses are logged, but data is not logged.

Source
(default: OFF)

• OFF: The source of accesses such as ETM, HTM, etc. is not
logged.

• ON: Information about which component has accessed the target
is included in the system log file.

NoTime
(default: OFF)

• OFF: Timing information is included in the system log file; see time
and xtime columns of the SYStem.LOG.List window.

• ON: Timing information is not logged.

NoTime ON is useful, for example, if you want to compare two
versions of a system log file.
General Commands Reference Guide S | 312©1989-2024 Lauterbach

SYStem.LOG.OFF Pause logging

Temporarily deactivates logging, i.e. the read and write accesses are no longer logged. However, the system
log file remains operational. Logging can be resumed with SYStem.LOG.ON.

Example:

See also

■ SYStem.LOG.ON ■ SYStem.LOG ■ SYStem.LOG.state

SYStem.LOG.ON Resume logging

Logs all read and write accesses you have selected with SYStem.LOG.Set. The SYStem.LOG.ON
command can be used after the system log has been temporarily deactivated with the command
SYStem.LOG.OFF.

See also

■ SYStem.LOG.OFF ■ SYStem.LOG ■ SYStem.LOG.state

Format: SYStem.LOG.OFF

SYStem.LOG.OPEN ~~\sys.log ;open a system log file for writing
;… ;log read and write accesses
;…
SYStem.LOG.OFF ;temporarily deactivate logging
;… ;accesses are no longer logged
SYStem.LOG.ON ;resume logging
;… ;accesses are logged again
;…
SYStem.LOG.CLOSE ;close system log file and terminate logging

Format: SYStem.LOG.ON
General Commands Reference Guide S | 313©1989-2024 Lauterbach

SYStem.LOG.OPEN Open a system log file

Generates a new system log file for logging read and write accesses and opens it for writing. The number of
logged read and write accesses is unlimited. If a file with the same name already exists, it will be overwritten.

Example:

The path prefix ~~ expands to the TRACE32 system directory, by default C:\t32.

See also

■ SYStem.LOG ■ SYStem.LOG.CLOSE ■ SYStem.LOG.state

SYStem.LOG.RESet Reset configuration of system log to defaults

Resets all commands of the SYStem.LOG command group to their defaults. You can view the result in the
SYStem.LOG.state window.

See also

■ SYStem.LOG ■ SYStem.LOG.state

Format: SYStem.LOG.OPEN <file>

<file> The default extension for <file> is *.log.

SYStem.LOG.OPEN ~~\sys.log ;open a system log file
;…
;…
SYStem.LOG.CLOSE ;close file and terminate logging

Format: SYStem.LOG.RESet
General Commands Reference Guide S | 314©1989-2024 Lauterbach

SYStem.LOG.Set Select the TRACE32 accesses to be logged

Allows you to select the TRACE32 accesses you want to record in SYStem.LOG.List.

Format: SYStem.LOG.Set <setting>

<setting>: Polling ON | OFF
MemoryRead ON | OFF
MemoryWrite ON | OFF
RegisterRead ON | OFF
RegisterWrite ON | OFF
ComponentRead ON | OFF
ComponentWrite ON | OFF
VMaccess ON | OFF
TRANSlation ON | OFF
TRACE ON | OFF
REMOTEAPI ON | OFF
OS ON | OFF
ERROR ON | OFF

<setting> OFF This <setting> is omitted from the system log file.

<setting> ON This <setting> is included in the system log file.

ComponentRead Read accesses to a debug component.

ComponentWrite Write accesses.

ERROR • ON: All errors are included in the system log file.
• OFF: Logs only errors of the read and write accesses that are set

to ON.

MemoryRead Memory read accesses.

MemoryWrite Memory write accesses.

OS Accesses to the operating system (OS).

Polling Polling of the CPU. The polling mode can be set with SYStem.POLLING.

RegisterRead Register read accesses.

RegisterWrite Register write accesses.

REMOTEAPI Accesses via the TRACE32 Remote API. See also “API for Remote
Control and JTAG Access in C” (api_remote_c.pdf).

TRACE Accesses to the trace data streaming.
General Commands Reference Guide S | 315©1989-2024 Lauterbach

See also

■ SYStem.LOG ■ SYStem.LOG.state

▲ ’Release Information’ in ’Legacy Release History’

SYStem.LOG.SIZE Define number of lines in the ‘SYStem.LOG.List’ window

Default: 64.

Defines the number of lines displayed in the SYStem.LOG.List window. The displayed lines reflect the most
recent read and write accesses to the target hardware. The <lines> setting does not affect the file size.

See also

■ SYStem.LOG ■ SYStem.LOG.state

TRANSlation • ON: Display valid address translations and translation failures in
the system log file. Currently only the logical address is displayed.

• OFF: Include only translation failures in the system log file.

VMaccess If the option is enabled, any read or write access to addresses with the
access class VM: or AVM: will be recorded in the SYStem.LOG.List
window.

Format: SYStem.LOG.SIZE <lines>
General Commands Reference Guide S | 316©1989-2024 Lauterbach

SYStem.LOG.state Open configuration window of system log

Opens the SYStem.LOG.state window, where you can configure a system log for recording read and write
accesses to the target hardware.

See also

■ SYStem.LOG ■ SYStem.LOG.CLEAR ■ SYStem.LOG.CLOSE ■ SYStem.LOG.Init
■ SYStem.LOG.List ■ SYStem.LOG.Mode ■ SYStem.LOG.OFF ■ SYStem.LOG.ON
■ SYStem.LOG.OPEN ■ SYStem.LOG.RESet ■ SYStem.LOG.Set ■ SYStem.LOG.SIZE
■ SYStem.LOG.StopOnError ■ SLTrace

Format: SYStem.LOG.state

A Only the information of selected options is displayed in the SYStem.LOG.List window and recorded
in the system log file.
For descriptions of the individual options, see SYStem.LOG.Set.

B To open a system log file, do one of the following:
• Click the folder icon and navigate to the file you want to use.
• Type path and file name into the OPEN text box. Then press Enter.

The TRACE32 message line displays that the file is now open for recording log entries.

To close the system log file:
• Clear the content from the OPEN text box. Then press Enter.

The TRACE32 message line displays that the file is now closed.

C For descriptions of the commands in the SYStem.LOG.state window, refer to the SYStem.LOG.*
commands in this section.
Example: For information about the List button, see SYStem.LOG.List.

B

C

A

General Commands Reference Guide S | 317©1989-2024 Lauterbach

SYStem.LOG.StopOnError Stop logging on error

Defines the logging behavior after an error has occurred.

See also

■ SYStem.LOG ■ SYStem.LOG.state

SYStem.MCDCommand Send command to MCD server
Virtual targets only: MCD

SYStem.MCDCommand <command> sends via the MCD API call mcd_execute_command_f() the
<command> as ASCII character string to the MCD server. It is not necessary to enclose the command with
quotation marks. All quotations marks within <command> will be sent as such to the MCD server. The
answer from the MCD server on this command can have a maximum of 100 characters and can be read out
by SYStem.MCDCommand.ResultString().

See also

■ SYStem.state

Format: SYStem.LOG.StopOnError ON | OFF

ON
(default)

TRACE32 automatically runs the command SYStem.LOG.OFF to stop
logging after an error, such as a bus error, has occurred.

OFF Logging continues after an error has occurred.

NOTE: The system log file remains open for writing.
• To continue logging, click Start in the SYStem.LOG.List window or run

SYStem.LOG.ON.
• To close the system log file, run SYStem.LOG.CLOSE.

Format: SYStem.MCDCommand <command>
General Commands Reference Guide S | 318©1989-2024 Lauterbach

SYStem.MCDconfig Send configuration to MCD server
Virtual targets only: MCD

SYStem.MCDCommand <srv.cfg> will send <srv.cfg> as ASCII character string within the parameter
config_string of mcd_open_server_f() towards the MCD server. It is not necessary to enclose
<srv.cfg> with quotation marks. All quotations marks in <srv.cfg> will be sent to the MCD server.

See also

■ SYStem.state

Format: SYStem.MCDconfig <srv.cfg>
General Commands Reference Guide S | 319©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

The debugger can read and write the target memory while the CPU is executing the program.

See also

■ SYStem.state

▲ ’Release Information’ in ’Legacy Release History’

Format: SYStem.MemAccess <mode>

<mode>: Enable | Denied | StopAndGo | <cpu_specific> | <interface_specific>

Enable
CPU (deprecated)

Is used to activate the memory access while the CPU is running on the
TRACE32 Instruction Set Simulator and on debuggers which do not have
a fixed name for the memory access method.

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

<cpu_specific> Depending on the target processor, there may exist means to access
processor / target memory while the processor is running. Examples are
DAP, AHB or AXI for ARM processors, NEXUS or SAP for Power
Architecture, and so on. Refer to processor architecture manuals for
details.

<interface_specific> Depending on the debug interface in use, there may exist means to
access processor / target memory while the processor is running.
Example: XCP.
General Commands Reference Guide S | 320©1989-2024 Lauterbach

SYStem.Mode Select mode

Configures how the debugger connects to the target and how the target is handled. Please refer to the
description of this command in your Processor Architecture Manual for more information.

See also

■ SYStem.state

▲ ’Release Information’ in ’Legacy Release History’

SYStem.Option Special setup
[SYStem.state window > Option]

The <options> of SYStem.Option are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.

See also

■ SYStem.Option.IMASKASM ■ SYStem.Option.IMASKHLL
■ SYStem.Option.MACHINESPACES ■ SYStem.Option.MMUSPACES
■ SYStem.Option.ZoneSPACES ■ SYStem.state

▲ ’Release Information’ in ’Legacy Release History’

Format: SYStem.Mode [<mode>]
SYStem.<mode> (as an alternative)

<mode>: StandBy
Down
Attach
NoDebug
Go
Up
Prepare

Format: SYStem.Option <option> [ON | OFF]

<option> Mostly architecture specific. For descriptions of the options, refer to the
Processor Architecture Manuals.

NOTE: Some of the commands toggle between the options ON and OFF if they are
invoked without parameters.
General Commands Reference Guide S | 321©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

See also

■ SYStem.Option

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

See also

■ SYStem.Option

SYStem.Option.MACHINESPACES Address extension for guest OSes
ARM and Intel® x86

Default: OFF

Enables the TRACE32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.MACHINESPACES [ON | OFF]
General Commands Reference Guide S | 322©1989-2024 Lauterbach

If SYStem.Option.MACHINESPACES is enabled, addresses are extended with an identifier called machine
ID. The machine ID clearly specifies to which host or guest machine the address belongs.

See also

■ SYStem.Option

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: For architecture-specific information about the command, refer to the Processor
Architecture Manual.

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.
General Commands Reference Guide S | 323©1989-2024 Lauterbach

Examples:

See also

■ SYStem.Option

SYStem.Option.ZoneSPACES Enable symbol management for zones

Default: OFF. Not supported for all core architectures.

For CPUs which have several operation modes with individual MMU translations and register sets, the
SYStem.Option ZoneSPACES command allows to load separate symbol sets for these CPU modes.
Within TRACE32, such CPU modes are referred to as zones. Addresses and symbols belonging to a certain
CPU mode are identified by their access class specifier.

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s logical address
will be translated to the physical address with the correct MMU translation table.

See also

■ SYStem.Option

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

Format: SYStem.Option.ZoneSPACES [ON | OFF]

OFF TRACE32 does not separate symbols by access class.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.

NOTE: For architecture-specific information about the command, refer to the Processor
Architecture Manual.
General Commands Reference Guide S | 324©1989-2024 Lauterbach

SYStem.PAUSE Pause the execution of operations

Pauses the execution of any operation of the debugger including semihosting, status polling, and APIs. The
command cannot be interrupted or canceled. The passed option only takes effect if a back-end with virtual
connection to an RTL emulation/simulation is used, e.g. GTL.

See also

■ SYStem.state ■ WAIT

Format: SYStem.PAUSE <time> [/<option>]

<option>: Target | Host

<time> • The pause time of Host is typically measured in milliseconds, e.g.
100ms

• The pause time of Target is typically measured in microseconds,
e.g. 10us

• Without Target or Host: The used time base depends on
SYStem.VirtualTiming.PauseinTargetTime.

Host Host clock is used as time base.

Target Emulation clock is used as time base.
General Commands Reference Guide S | 325©1989-2024 Lauterbach

SYStem.POLLING Polling mode of CPU

When the CPU is running, the debug driver can poll the CPUs state in the background to speed up
operations where a fast break detection is preferred. Features that can be improved by a fast break
detection are:

• CPU break from PodBus Trigger, if the CPU has no dedicated break in line

• Any communication that is based to spot break points e.g. TERM, FDX

• Break triggered actions like Data.EPILOG, Data.TIMER

• Precision of the runtime counter if the CPU has no dedicated break in line

If the poll rate is high the system is more sensitive to disturbances.

When the CPU is stopped, the debug driver can poll the CPUs state in the background to observe for
exceptional events caused by watch-dogs or other CPUs.

Format: SYStem.POLLING <run_mode> <stopped_mode>

<run_mode>: CONTinuous
DEFault
FAST
OFF
SLOW

<stopped_
mode>:

DEFault
OFF
SIGnals

CONTinuous Polling with maximum frequency.

FAST Polling with interval of 1 ms.

OFF No polling at all, to prevent from disturbance.

SLOW Normal polling with interval of SETUP.UpdateRATE, increase RTCK time-
out to hide short power down/sleep states of the CPU.

DEFault Polling with interval of SETUP.UpdateRATE.

NOTE: The minium polling interval for timing measurement tasks, e.g. RunTime, is
1 ms, any lower settings are ignored.
General Commands Reference Guide S | 326©1989-2024 Lauterbach

For transactor based solutions those polling can slow down the debug session, therefore it’s possible to turn
it off.

See also

■ SYStem.state ■ SETUP.UpdateRATE

▲ ’Release Information’ in ’Legacy Release History’

SYStem.PORT Configure external communication interface

This command is used to configure an external communication interface:

• Between TRACE32 and a monitor program running on the target.

• Between TRACE32 and a debug agent running on the target.

Both serial and TCP/IP are supported.

Examples:

See also

■ SYStem.state

SIGnals Polling of signals as RESET only

OFF No polling at all, to prevent from disturbance.

DEFault Polling with interval of SETUP.UpdateRATE.

Format: SYStem.PORT <mode>

<mode>: COM<x> <settings>
<ip>:<port>

<x> COM port number, e.g. COM1, COM2

<settings> The <settings> for the communication interfaces depend on the host
operating system.

SYStem.PORT COM1 baud=9600 ; configure COM1 as external
; communication interface

SYStem.PORT 10.1.2.99:2345 ; configure TCP/IP as external
; communication interface
General Commands Reference Guide S | 327©1989-2024 Lauterbach

SYStem.RESet Reset configuration

Resets all debug system settings (such as SYStem.CPU, SYStem.JtagClock) to their default values. After
this switches to the SYStem.Mode Down state.

See also

■ SYStem.state ■ RESet

▲ ’Release Information’ in ’Legacy Release History’

SYStem.RESetOut Reset peripherals

Triggers the CPU RESET command, which initializes the peripherals. This command is not available on all
probes.

Example:

See also

■ SYStem.state

▲ ’Release Information’ in ’Legacy Release History’

SYStem.RESetTarget Release target reset

A target reset is performed and then released. On most targets, SYStem.RESetTarget is similar to
SYStem.Up and Register.RESet. On virtual platforms usually activates a target platform reset.

See also

■ SYStem.state

▲ ’Release Information’ in ’Legacy Release History’

Format: SYStem.RESet

Format: SYStem.RESetOut

SYStem.RESetOut ; Initialize peripherals

Format: SYStem.RESetTarget
General Commands Reference Guide S | 328©1989-2024 Lauterbach

SYStem.state Display SYStem.state window

Opens a SYStem.state window displaying all probe setup parameters. You can also open the
SYStem.state window by double-clicking the System field in the state line of the TRACE32 main window.

All modes can be selected and altered by clicking the appropriate buttons, options, etc. within the
SYStem.state window.

The SYStem.state window is highly target-dependent; example of a SYStem.state window:

See also

■ SYStem.BdmClock ■ SYStem.BREAKTIMEOUT ■ SYStem.CADICommand ■ SYStem.CADIconfig
■ SYStem.CONFIG ■ SYStem.CPU ■ SYStem.CpuAccess ■ SYStem.CpuBreak
■ SYStem.CpuSpot ■ SYStem.CSWP ■ SYStem.DCI ■ SYStem.DETECT
■ SYStem.DLLCommand ■ SYStem.GTL ■ SYStem.InfineonDAS ■ SYStem.IRISconfig
■ SYStem.JtagClock ■ SYStem.LOG ■ SYStem.MCDCommand ■ SYStem.MCDconfig
■ SYStem.MemAccess ■ SYStem.Mode ■ SYStem.Option ■ SYStem.PAUSE
■ SYStem.POLLING ■ SYStem.PORT ■ SYStem.RESet ■ SYStem.RESetOut
■ SYStem.RESetTarget ■ SYStem.SNEAKPEEK ■ SYStem.TARGET ■ SYStem.TCFconfig
■ SYStem.VirtualTiming ❏ CPUIS() ❏ hardware.ICD() ❏ INTERFACE.SIM()
❏ SYStem.CPU() ❏ SYStem.Mode() ❏ SYStem.Up()

Format: SYStem.state

A For descriptions of the architecture-specific commands in the SYStem.state window, please refer to
the SYStem.* commands in your Processor Architecture Manual.

Example: For information about Up, see SYStem.Mode Up.

A

A’
General Commands Reference Guide S | 329©1989-2024 Lauterbach

SYStem.TARGET Set target IP name or address

Defines the OSE target IP address or name to debug. If no target is specified, TRACE32 uses a broadcast
message to find OSE targets and uses the first target found.

See also

■ SYStem.state

Format: SYStem.TARGET <target>

<target>: <ip_address> | <ip_name>
General Commands Reference Guide S | 330©1989-2024 Lauterbach

SYStem.VirtualTiming Modify timing constraints

The commands of the SYStem.VirtualTiming command group are used to modify time timing behavior of
the debugger when virtual debug interfaces are used, e.g. the TRACE32 Verilog Actuator or Generic
Transactor Library.

These virtual debug interfaces connect the debugger to simulations with a virtual time or extra slow
emulators. In these scenarios, PowerView commands can take a very long time to execute. Therefore, the
interaction with the target is done by PRACTICE scripts mainly, but the default timing of the debugger
software targets more a stutter-free behavior of the windows.

To modify these timings, the SYStem.VirtualTiming commands can be used. The debugger uses timeouts
to cancel polling for expected results in the debug registers of the core and for reading back hardware
acknowledge signals of the target as the RTCK signal.

The commands SYStem.VirtualTiming.TimeinTargetTime and
SYStem.VirtualTiming.PauseinTargetTime allow to couple the timing to the emulation/simulation timing.
This allows to stall the whole simulation environment without the internal timeouts expiring, but also can lead
to longer execution time of the debugger.

The command SYStem.VirtualTiming.TimeScale can be used to reduce or increase the internal timeouts
in general. In case the simulation does not respond fast enough, the timeouts need to be extended. In case
the debugger polls for an error state too long to keep the user interface responsive, the timeouts can be
reduced.

See also

■ SYStem.VirtualTiming.HardwareTimeout ■ SYStem.VirtualTiming.HardwareTimeoutScale
■ SYStem.VirtualTiming.InternalClock ■ SYStem.VirtualTiming.MaxPause
■ SYStem.VirtualTiming.MaxTimeout ■ SYStem.VirtualTiming.OperationPause
■ SYStem.VirtualTiming.PauseinTargetTime ■ SYStem.VirtualTiming.PauseScale
■ SYStem.VirtualTiming.PollingPause ■ SYStem.VirtualTiming.TimeinTargetTime
■ SYStem.VirtualTiming.TimeScale ■ SYStem.state

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

Format: SYStem.VirtualTiming
General Commands Reference Guide S | 331©1989-2024 Lauterbach

SYStem.VirtualTiming.HardwareTimeout Disable/enable hardware timeout

The debugger has a timeout that handle the maximum time to wait for an hardware signal. The timeout can
be disabled in case it doesn’t matter for the debug scenario in case error messages “no RTCK” or ”subcore
communication timeout” occur. In case the hardware timeout is necessary for the debug scenario the
debugger can enter an endless loop, in that cases the hardware timeout should be extended by
SYStem.VirtualTiming.HardwareTimeoutScale or the target should respond earlier.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout
[Example]

Scales the timeout that leads to the message “subcore communication timeout” for software-only tools. The
command is implemented for the back-end GTL.

Low-level operations can have a total communication timeout to prevent the system from hanging in case of
an error. In software-only tools, this timeout can malfunction. Either the timeout appears too late and the
system seem to hang, or the timeout appears too early and the operation fails with the message “subcore
communication timeout”.

Format: SYStem.VirtualTiming.HardwareTimeout ON | OFF

ON Hardware timeout is active and used to cancel hardware operations.

OFF Hardware timeout is disabled.

SYStem.VirtualTiming.PauseinTargetTime OFF ; use host time

Format: SYStem.VirtualTiming.HardwareTimeoutScale
General Commands Reference Guide S | 332©1989-2024 Lauterbach

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

SYStem.VirtualTiming.InternalClock Base for artificial time calculation

Overrides the TRACE32 debug clock setting for internal timing calculation in case the interface’s debug clock
implementation is wrong in a software-only solution. A clock of 0Hz (default) will not override the debug clock
setting. The command is implemented for the back-end GTL.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

;shrink the standard timeout by factor 10 to display the timeout earlier
SYStem.VirtualTiming.HardwareTimeoutScale 0.1

Format: SYStem.VirtualTiming.InternalClock <frequency>

; TRACE32 transfers 10Mhz setting to the interface
SYStem.JtagClock 10Mhz

; but use 100kHz for internal timing calculations
SYStem.VirtualTiming.InternalClock 100kHz
General Commands Reference Guide S | 333©1989-2024 Lauterbach

SYStem.VirtualTiming.MaxPause Limit pause

The debugger software contains statements to wait time, in order to give the target time to respond. The
command is used to set up the maximum time for those wait statements.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

SYStem.VirtualTiming.MaxTimeout Override time-outs

The debugger software contains sections where a status of the target is polled for a certain time until a
conditions is met in order to finish an operation. The command is used to set up the maximum time that is
used for those sections.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

Format: SYStem.VirtualTiming.MaxPause <time>

<time>: 10ns … 40000ms

SYStem.VirtualTiming.MaxPause 1s ; set maximum to 1 second

Format: SYStem.VirtualTiming.MaxTimeout <time>

<time>: <x>ns … <y>ms

SYStem.VirtualTiming.MaxTimeout 10s ; set maximum to 10 seconds
General Commands Reference Guide S | 334©1989-2024 Lauterbach

SYStem.VirtualTiming.OperationPause Insert a pause after each operation

The debug driver issue pause statements after each action e.g. shift or bus access to give the emulation
time to compute. Operation pauses will slow down the debugger and prevent from pre-bundling operations.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base

The debugger software contains statements to wait time, in order to give the target time to respond. The
command specifies it the time shall elapse in virtual simulator time (ON) or real host time (OFF). When set to
ON the debugger behaves as with a real target, but become as slow as the simulation.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

Format: SYStem.VirtualTiming.OperationPause <time>

<time>: <x>ns … <y>ms

SYStem.VirtualTiming.OperationPause 100ns ; enable pause of 100ns

Format: SYStem.VirtualTiming.PauseinTargetTime ON | OFF

ON Pause time elapses in virtual simulation time.

OFF Pause time elapses in real host time.

SYStem.VirtualTiming.PauseinTargetTime OFF ; use host time
General Commands Reference Guide S | 335©1989-2024 Lauterbach

SYStem.VirtualTiming.PauseScale Multiply pause with a factor

The debugger software contains statements to wait time in order to give the target time to respond. The
command scales these time in order to wait a shorter or longer time.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

SYStem.VirtualTiming.PollingPause Advance emulation time when polling

The command is used for systems that advance the simulation time only when the debugger executes
actions on it. Usually the debugger is executing JTAG shifts all the time, but this is not efficient to let the
emulation time grow. Executing a "pause" statement at the emulation is more efficient, therefore the
command inserts "pause" statements of a certain duration when the emulation time needs to be increased,
e.g. when the core is running and the debugger waits until a breakpoint has been hit.

A smaller polling pause will speed up the debugger, but slow down the execution of the target program in the
emulation. A bigger polling pause will make the debugger less responsive, but let that emulation run faster.

Example:

See also

■ SYStem.VirtualTiming

Format: SYStem.VirtualTiming.PauseScale <factor>

SYStem.VirtualTiming.PauseScale 10. ; 10 times longer pauses

Format: SYStem.VirtualTiming.PollingPause <time>

SYStem.VirtualTiming.PollingPause 10us ; insert 10us pauses
General Commands Reference Guide S | 336©1989-2024 Lauterbach

SYStem.VirtualTiming.TimeinTargetTime Set up general time-base

The command specifies whether the timeout time shall elapse in virtual simulator time (ON) or real host time
(OFF). When set to ON the debugger behaves as with a real target, but become as slow as the simulation.

Example:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

Format: SYStem.VirtualTiming.TimeinTargetTime ON | OFF

ON Use virtual target time to elapse time-outs

OFF Use real host time to elapse time-outs

SYStem.VirtualTiming.TimeinTargetTime ON ; time-outs elapse time-outs
General Commands Reference Guide S | 337©1989-2024 Lauterbach

SYStem.VirtualTiming.TimeScale Multiply time-base with a factor

The command scales pauses and time-outs in general.

Example 1:

Example 2:

See also

■ SYStem.VirtualTiming

▲ ’Timing Adaption’ in ’Debugging via Infineon DAS Server’
▲ ’Timing Adaption’ in ’GTL Debug Back-End’
▲ ’Timing Adaption’ in ’Verilog Debug Back-End’

Format: SYStem.VirtualTiming.TimeScale <factor>

;in this example, time-outs and pauses are 10 times longer
SYStem.VirtualTiming.TimeScale 10.0

;in this example, time-outs and pauses are 100 times shorter
SYStem.VirtualTiming.TimeScale 0.01

;in case the error “RTCK fail” or “subcore communication timeout”
;occur, extend hardware timeouts by factor 10
SYStem.VirtualTiming.HardwareTimeoutScale 10.0
General Commands Reference Guide S | 338©1989-2024 Lauterbach

SystemTrace

SystemTrace MIPI STP and CoreSight ITM
[Examples]

Using the SystemTrace command group, you can configure the trace recording as well as analyze and
display trace data emitted either by the trace source STM or ITM.

The figure illustrates that there are three ways [A to C] to handle instrumented code from the STM or ITM:

Format: SystemTrace.<sub_cmd>

A The six command groups are distinctive ways to handle STM or ITM trace data. Prior to that you need
to set the trace method with STMTrace.METHOD or ITMTrace.METHOD.

B Alternatively, the generic replacement command groups STMTrace and ITMTrace can be used to
handle STM or ITM trace data. Prior to that you need to set the trace method with STMTrace.METHOD
or ITMTrace.METHOD.

C The command group SystemTrace lets you handle STM or ITM trace data independently of the
trace protocol and trace method in the SystemTrace.List window. This requires that the trace
method has been set with the command SystemTrace.METHOD.

Examples for [A] and [B] can be found in sections “System Trace User’s Guide” (trace_stm.pdf) and
“Overview ITM<trace>” in General Commands Reference Guide I, page 87 (general_ref_i.pdf).

An example for [C] can be found below.

SystemTrace

ITMTrace

STMAnalyzer STMOnchip STMCAnalyzer ITMAnalyzer ITMCAnalyzerITMOnchip

STMTrace

STM ITM

Chip

A

B

C

STMTrace.METHOD ITMTrace.METHOD

SystemTrace.METHOD
General Commands Reference Guide S | 339©1989-2024 Lauterbach

Example 1:

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of SystemTrace.List refer to <trace>.List

SystemTrace.state ;optional step: open the window in which the
 ;trace recording is configured.
SystemTrace.METHOD Onchip ;select the trace method Onchip for
;<configuration> ;recording system trace data.

STM.state ;optional step: open the window in which
 ;the trace source STM is configured.

STM.ON ;switch the trace source STM on.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

SystemTrace.List ;display the system trace data from the STM.

NOTE: The trace method selection for the SystemTrace command group corresponds to
the trace method selection for the Trace command group.
This becomes obvious when you compare the examples 1 and 2.

For background information, see “Types of Replacements for <trace>” in
General Commands Reference Guide T, page 121 (general_ref_t.pdf).
General Commands Reference Guide S | 340©1989-2024 Lauterbach

Example 2:

See also

■ STM ■ ITM ■ Trace.METHOD

▲ ’Release Information’ in ’Legacy Release History’

SystemTrace.state Open system-trace configuration window

Opens the SystemTrace.state window, displaying all probe setup parameters.

Trace.state ;optional step: open the window in which the
 ;trace recording is configured.
Trace.METHOD Analyzer ;select the trace method Analyzer for
;<configuration> ;recording instruction trace data.

ETM.state ;optional step: open the window in which
 ;the trace source ETM is configured.

ETM.ON ;switch the trace source ETM on.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the instruction trace data
 ;from the ETM.

Format: SystemTrace.state
General Commands Reference Guide S | 341©1989-2024 Lauterbach

	General Commands Reference Guide S
	History
	SELFTEST
	SELFTEST Execute selftest operation

	SETUP
	SETUP Setup commands
	SETUP.ALIST Default analyzer display
	SETUP.ALIST.RESet Reset analyzer display
	SETUP.ALIST.set Default analyzer display
	SETUP.BreakPointTableWalk Set up MMU translation for breakpoints
	SETUP.BreakTransfer Breakpoint synchronization
	SETUP.COLORCORE Enable coloring for core-specific info in SMP systems
	SETUP.DIS Disassembler configuration
	SETUP.DUMP Defaults for hex-dumps
	SETUP.EMUPATH Emulation softkeys configuration
	SETUP.GoOnPaused Route go to paused core
	SETUP.IMASKASM Mask interrupts during assembler step
	SETUP.IMASKHLL Mask interrupts during HLL step
	SETUP.LISTCLICK Double-click source line symbol to run this action
	SETUP.PROCESS Processing percentage in statistics window
	SETUP.SIMULINK Deprecated command
	SETUP.StepAllCores Force single stepping on all cores
	SETUP.StepAtBreakPoint Single step to skip breakpoint
	SETUP.StepAutoAsm HLL steps stops at assembler code
	SETUP.StepBeforeGo Single step before go
	SETUP.StepByStep Single step HLL lines
	SETUP.StepNoBreak Stepping HLL lines with disabled breakpoints
	SETUP.StepOnPaused Route step to selected core
	SETUP.StepTrace Show stepping trail in list window
	SETUP.StepWithinBreakpoints Multi-core step on SMP systems
	SETUP.StepWithinTask Task selective stepping
	SETUP.sYmbol Length of symbols
	SETUP.TIMEOUT Define emulation monitor time-out
	SETUP.Var Defaults for the Var commands
	SETUP.VarCall Define call dummy routine
	SETUP.VarPtr Limit pointer access
	SETUP.VerifyBreakSet Additional verification for software breakpoints

	SIM
	SIM TRACE32 Instruction Set Simulators
	SIM.AREA Selects area for simulation output
	SIM.CACHE Cache/MMU simulation and more
	SIM.CACHE.Allocation Define the cache allocation technique
	SIM.CACHE.Mode Define memory coherency strategy
	SIM.CACHE.MPURegions Specify MPU regions
	SIM.CACHE.OFF Disable cache and MMU simulation
	SIM.CACHE.ON Enable cache and MMU simulation
	SIM.CACHE.Replacement Define the replacement strategy
	SIM.CACHE.SETS Define the number of cache/TLB sets
	SIM.CACHE.state Display cache and MMU settings
	SIM.CACHE.Tags Define address mode for cache lines
	SIM.CACHE.TRACE Select simulator trace method
	SIM.CACHE.View Analysis of memory accesses for cache simulation
	SIM.CACHE.ViewTLB Analysis of TLB accesses for MMU simulation
	SIM.CACHE.WAYS Define number of cache ways
	SIM.CACHE.Width Define width of cache line
	SIM.command Issue command to simulation model
	SIM.INTerrupt Trigger interrupt
	SIM.List List loaded simulator models
	SIM.LOAD Load simulator module
	SIM.RESet Reset TRACE32 Instruction Set Simulator
	SIM.UNLOAD Unload simulator module

	SLTrace
	SLTrace Trace sink for SYStem.LOG events
	SLTrace.state Display configuration window

	SNOOPer
	SNOOPer Sample-based trace

	SNOOPer-specific Trace Commands
	SNOOPer.<specific_cmds> Overview of SNOOPer-specific commands
	SNOOPer.CORE Select cores for PC snooping
	SNOOPer.ERRORSTOP Set behavior on sampling errors
	SNOOPer.Mode Set operation mode of SNOOPer trace
	SNOOPer.PC Enable PC snooping
	SNOOPer.Rate Select sampling rate
	SNOOPer.SELect Define address for monitoring
	SNOOPer.SIZE Define trace buffer size
	SNOOPer.TDelay Define trigger delay
	SNOOPer.TOut Define the trigger destination
	SNOOPer.TValue Define data value for trigger

	Generic SNOOPer Trace Commands
	SNOOPer.ACCESS Define access path to program code for trace decoding
	SNOOPer.Arm Arm the trace
	SNOOPer.AutoArm Arm automatically
	SNOOPer.AutoInit Automatic initialization
	SNOOPer.BookMark Set a bookmark in trace listing
	SNOOPer.BookMarkToggle Toggles a single trace bookmark
	SNOOPer.Chart Display trace contents graphically
	SNOOPer.Chart.DistriB Distribution display graphically
	SNOOPer.Chart.sYmbol Symbol analysis
	SNOOPer.Chart.VarState Variable activity chart
	SNOOPer.ComPare Compare trace contents
	SNOOPer.DISable Disable the trace
	SNOOPer.DRAW Plot trace data against time
	SNOOPer.DRAW.channel Plot no-data values against time
	SNOOPer.DRAW.Var Plot variable values against time
	SNOOPer.EXPORT Export trace data for processing in other applications
	SNOOPer.FILE Load a file into the file trace buffer
	SNOOPer.Find Find specified entry in trace
	SNOOPer.FindAll Find all specified entries in trace
	SNOOPer.FindChange Search for changes in trace flow
	SNOOPer.Get Display input level
	SNOOPer.GOTO Move cursor to specified trace record
	SNOOPer.Init Initialize trace
	SNOOPer.List List trace contents
	SNOOPer.ListVar List variable recorded to trace
	SNOOPer.LOAD Load trace file for offline processing
	SNOOPer.OFF Switch off
	SNOOPer.PROfileChart Profile charts
	SNOOPer.PROfileChart.COUNTER Display a profile chart
	SNOOPer.PROfileSTATistic Statistical analysis in a table versus time
	SNOOPer.PROTOcol Protocol analysis
	SNOOPer.PROTOcol.Chart Graphic display for user-defined protocol
	SNOOPer.PROTOcol.Draw Graphic display for user-defined protocol
	SNOOPer.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	SNOOPer.PROTOcol.Find Find in trace buffer for user-defined protocol
	SNOOPer.PROTOcol.list Display trace buffer for user-defined protocol
	SNOOPer.PROTOcol.PROfileChart Profile chart for user-defined protocol
	SNOOPer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	SNOOPer.PROTOcol.STATistic Display statistics for user-defined protocol
	SNOOPer.REF Set reference point for time measurement
	SNOOPer.RESet Reset command
	SNOOPer.SAVE Save trace for postprocessing in TRACE32
	SNOOPer.SelfArm Automatic restart of trace recording
	SNOOPer.SnapShot Restart trace capturing once
	SNOOPer.state Display trace configuration window
	SNOOPer.STATistic Statistic analysis
	SNOOPer.STATistic.DistriB Distribution analysis
	SNOOPer.Timing Waveform of trace buffer
	SNOOPer.TRACK Set tracking record
	SNOOPer.View Display single record
	SNOOPer.ZERO Align timestamps of trace and timing analyzers

	SPE
	SPE Signal Processing eXtension (SPE)
	SPE.Init Initialize SPE registers
	SPE.Set Modify SPE registers
	SPE.view Display SPE register window

	SSE
	SSE SSE registers (Streaming SIMD Extension)
	SSE.Init Initialize SSE registers
	SSE.Set Modify SSE registers
	SSE.view Display SSE registers

	StatCol
	StatCol Statistics collector

	Step
	Step Single-step
	Step.Asm Assembler single-step
	Step.Back Step backwards
	Step.BackChange Step back until expression changes
	Step.BackOver Step back over call
	Step.BackTill Step back until expression true
	Step.Change Step until expression changes
	Step.Diverge Step to next unreached line
	Step.Hll Step in HLL-mode
	Step.Mix Step in mixed-mode
	Step.Over Step over call
	Step.single Single-step
	Step.Till Step until expression true

	STM
	STM System trace configuration

	STOre
	STOre Store settings as PRACTICE script

	SVE
	SVE Access the scalable vector extension SVE
	SVE.Init Initialize SVE registers
	SVE.RESet Reset SVE settings
	SVE.Set Modify SVE registers
	SVE.view Display SVE registers

	sYmbol
	sYmbol Debug symbols
	Overview sYmbol
	sYmbol.AddInfo Provide additional symbolic information
	sYmbol.AddInfo.Address Add symbol information to fixed address
	sYmbol.AddInfo.Delete Delete information
	sYmbol.AddInfo.LINK Define information for "sYmbol.AddInfo" commands
	sYmbol.AddInfo.List List additional information
	sYmbol.AddInfo.LOADASAP2 Load scaling information from ASAP2 file
	sYmbol.AddInfo.Member Add information to member of struct
	sYmbol.AddInfo.RESet Remove all additional information
	sYmbol.AddInfo.Type Add information to a data type
	sYmbol.AddInfo.Var Add information to a variable
	sYmbol.AutoLOAD Automated loading of symbols
	sYmbol.AutoLOAD.CHECK Update autoloader table
	sYmbol.AutoLOAD.CHECKCoMmanD Configure dynamic autoloader
	sYmbol.AutoLOAD.CHECKDLL Configure automatic DLL file loader
	sYmbol.AutoLOAD.CHECKEPOC Dynamic autoloader for Symbian
	sYmbol.AutoLOAD.CHECKLINUX Configure autoloader for Linux debugging
	sYmbol.AutoLOAD.CHECKQNX Configure autoloader for QNX debugging
	sYmbol.AutoLOAD.CHECKUEFI Configure autoloader for UEFI debugging
	sYmbol.AutoLOAD.CHECKWIN Configure autoloader
	sYmbol.AutoLOAD.CHECKWINCE Configure autoloader
	sYmbol.AutoLOAD.CLEAR Remove symbol information
	sYmbol.AutoLOAD.config Configure symbol autoloader
	sYmbol.AutoLOAD.Create Create entry for autoloader table
	sYmbol.AutoLOAD.Delete Delete autoloader entries
	sYmbol.AutoLOAD.List List autoloader table
	sYmbol.AutoLOAD.LOADEPOC Definition for static autoloader for Symbian
	sYmbol.AutoLOAD.RESet Reset autoloader
	sYmbol.AutoLOAD.SET Mark symbol information manually as loaded
	sYmbol.AutoLOAD.TOUCH Initiate automatic loading by command
	sYmbol.Browse Browse symbols
	sYmbol.Browse.Class Browse classes
	sYmbol.Browse.Enum Browse enumeration types
	sYmbol.Browse.Function Browse functions
	sYmbol.Browse.Module Browse modules
	sYmbol.Browse.MVar Browse module variables
	sYmbol.Browse.name Browse symbols (flat)
	sYmbol.Browse.SFunction Browse functions
	sYmbol.Browse.SModule Browse modules
	sYmbol.Browse.SOURCE Browse source
	sYmbol.Browse.Struct Browse containers for different variable types
	sYmbol.Browse.sYmbol Browse symbols
	sYmbol.Browse.Type Browse HLL types
	sYmbol.Browse.TypeDef Browse type definitions
	sYmbol.Browse.Union Browse unions
	sYmbol.Browse.Var Browse variables
	sYmbol.CASE Set symbol search mode
	sYmbol.CHECK Check database
	sYmbol.Class View class hierarchy
	sYmbol.CLEANUP Workarounds for redundant symbol information
	sYmbol.CLEANUP.DOUBLES Make ambiguous symbols unique
	sYmbol.ColorCode Enable color coding
	sYmbol.ColorDef Specify keyword colors
	sYmbol.CREATE Create and modify user-defined symbols
	sYmbol.CREATE.ATTRibute Create user-defined attribute
	sYmbol.CREATE.Done Finish symbol creation
	sYmbol.CREATE.Function Create user-defined function
	sYmbol.CREATE.Label Create user-defined symbol
	sYmbol.CREATE.LocalVar Create user-defined local variable
	sYmbol.CREATE.MACRO Create user-defined macro
	sYmbol.CREATE.Module Create user-defined module
	sYmbol.CREATE.RESet Erase all user-defined symbols
	sYmbol.CREATE.Var Create user-defined variable
	sYmbol.CUTLINE Limit size of text blocks
	sYmbol.Delete Delete symbols of one program
	sYmbol.DeleteMACRO Delete macro information
	sYmbol.DeletePATtern Delete labels from symbol database using wildcards
	sYmbol.DEMangle C++ demangler
	sYmbol.DEOBFUSCATE Deobfuscate global and static symbol
	sYmbol.DONE Finish load of symbols
	sYmbol.ECA ECA file management
	sYmbol.ECA.BINary Static preprocessing for code coverage
	sYmbol.ECA.BINary.CollapseAll Collapse all trees
	sYmbol.ECA.BINary.ControlFlowMode.INSTR Consider instrumentation
	sYmbol.ECA.BINary.ControlFlowMode.Trace Consider trace events
	sYmbol.ECA.BINary.EditDecision Modify start address of decision
	sYmbol.ECA.BINary.ExpandAll Expand all trees
	sYmbol.ECA.BINary.EXPORT.AdJoinGAPS Split up observability gaps
	sYmbol.ECA.BINary.EXPORT.Decisions Export decision details as CSV
	sYmbol.ECA.BINary.EXPORT.GAPS Export observability gaps to JSON
	sYmbol.ECA.BINary.FilterMapped Filter display by the mapping state
	sYmbol.ECA.BINary.FilterType Filter display by decision type
	sYmbol.ECA.BINary.PROCESS Static preprocessing for code coverage
	sYmbol.ECA.BINary.SetCONDitionOffset Set condition offset
	sYmbol.ECA.BINary.SetDecisionState Disable/Enable decision evaluation
	sYmbol.ECA.BINary.view Result of static preprocessing for code coverage
	sYmbol.ECA.Delete Delete loaded ECA data
	sYmbol.ECA.Init Clear gathered ECA data
	sYmbol.ECA.List List ECA file overview
	sYmbol.ECA.LOAD Load a single ECA file
	sYmbol.ECA.LOADALL Load all ECA files
	sYmbol.FILTER.ADD.SOURCE Add source files to filter
	sYmbol.FILTER.ADD.sYmbol Add symbols to filter
	sYmbol.FILTER.Delete Delete filter
	sYmbol.ForEach Symbol wildcard command
	sYmbol.INFO Display detailed information about debug symbol
	sYmbol.LANGUAGE Select language
	sYmbol.List Display list of all symbols
	sYmbol.List.ATTRibute Display memory attributes
	sYmbol.List.BUILTIN List built-in data types
	sYmbol.List.ColorDef List the keyword color definitions
	sYmbol.List.Enum List of enumeration constants
	sYmbol.List.FRAME Display frames
	sYmbol.List.Function Display functions
	sYmbol.List.IMPORT List imported symbols
	sYmbol.List.InlineBlock List inlined code blocks
	sYmbol.List.InlineFunction List inlined functions
	sYmbol.List.LINE Display source lines
	sYmbol.List.Local Display local symbols
	sYmbol.List.MACRO List all C macros
	sYmbol.List.MAP Display memory load map
	sYmbol.List.Module Display modules
	sYmbol.List.PATCH Display STF-symbol information
	sYmbol.List.Program Display programs
	sYmbol.List.REFerence Display reference information
	sYmbol.List.SECtion Display physical sections
	sYmbol.List.SOURCE Display source file names
	sYmbol.List.SourceFunction Display source to function relations
	sYmbol.List.SOURCETREE Display source files hierarchy
	sYmbol.List.STACK Display virtual stack
	sYmbol.List.Static Display static symbols
	sYmbol.List.TREE Display symbols in tree form
	sYmbol.List.Type Display data types
	sYmbol.LSTLOAD Load assembler source file
	sYmbol.LSTLOAD.GHILLS Load GHILLS assembler source file
	sYmbol.LSTLOAD.HPASM Load HP assembler source file
	sYmbol.LSTLOAD.IAR Load IAR assembler source file
	sYmbol.LSTLOAD.INT68K Load Intermetrics assembler source file
	sYmbol.LSTLOAD.INTEL Load INTEL assembler source file
	sYmbol.LSTLOAD.INTEL2 Load INTEL assembler source file
	sYmbol.LSTLOAD.KEIL Load Keil assembler source file
	sYmbol.LSTLOAD.MicroWare Load MICROWARE assembler source file
	sYmbol.LSTLOAD.MRI68K Load MICROTEC assembler source file
	sYmbol.LSTLOAD.OAK Load OAK assembler source file
	sYmbol.MARKER Fine-tune the nested function run-time analysis
	sYmbol.MARKER.Create Marker for nesting function run-time analysis
	KBEGIN/KEND Marker

	sYmbol.MARKER.Delete Delete a marker
	sYmbol.MARKER.List Displays the marker list
	sYmbol.MARKER.RESet Erase all markers
	sYmbol.MARKER.TOUCH Marker post-processing
	sYmbol.MATCH Symbol search mode
	sYmbol.MEMory Display memory usage
	sYmbol.Modify Modify symbols
	sYmbol.Modify.Access Modify access of symbols
	sYmbol.Modify.ADDRess Modify address of symbols
	sYmbol.Modify.AddressToRange Modify address of symbols
	sYmbol.Modify.AlienFunction Disable frame info for a function
	sYmbol.Modify.ATTRibute Modify memory attribute
	sYmbol.Modify.CutFunction Reduce function address information
	sYmbol.Modify.NAME Rename symbol
	sYmbol.Modify.NAMES Rename symbols
	sYmbol.Modify.RangeToAddress Modify address of symbols
	sYmbol.Modify.RangeToFunction Modify address range into function
	sYmbol.Modify.SOURCE Define source file
	sYmbol.Modify.SplitFunction Split function
	sYmbol.Modify.StaticCOPY Create static copy of local stack variables
	sYmbol.Modify.StaticToStack Change static variables
	sYmbol.Modify.TYPE Modify type of symbols
	sYmbol.name Display symbols
	sYmbol.NAMESPACES Search symbol in C++ namespace
	sYmbol.NEW Create new symbol
	sYmbol.NEW.ATTRibute Create user-defined memory attribute
	sYmbol.NEW.Function Create user-defined function
	sYmbol.NEW.Label Create user-defined symbol
	sYmbol.NEW.LocalVar Create user-defined local variable
	sYmbol.NEW.MACRO Create user-defined macro
	sYmbol.NEW.Module Create user-defined module
	sYmbol.NEW.Var Create user-defined variable
	sYmbol.OVERLAY Code overlay
	sYmbol.OVERLAY.AutoID Automatically determine overlay IDs
	sYmbol.OVERLAY.Create Declare code overlay section
	sYmbol.OVERLAY.DETECT Detect the current overlay status
	sYmbol.OVERLAY.FRIEND Declare a friend overlay segment
	sYmbol.OVERLAY.List Show declared code overlay sections
	sYmbol.OVERLAY.RESet Reset overlay declarations
	sYmbol.PATCH STF-symbol information
	sYmbol.PATCH.DISable Disable instrumentation code
	sYmbol.PATCH.ENable Enable instrumentation code
	sYmbol.PATCH.List Display STF-symbol information
	sYmbol.POINTER Define special register
	sYmbol.POSTFIX Set symbol postfix
	sYmbol.PREFIX Set symbol prefix
	sYmbol.RELOCate Relocate symbols
	sYmbol.RELOCate.Auto Control automatic relocation
	sYmbol.RELOCate.Base Define base address
	sYmbol.RELOCate.List List relocation info
	sYmbol.RELOCate.Magic Define program magic number
	sYmbol.RELOCate.Passive Define passive base address
	sYmbol.RELOCate.shift Relocate symbols
	sYmbol.RESet Clear symbol table
	sYmbol.SourceBeautify Beautify HLL lines on loading
	sYmbol.SourceCONVert Conversion for Japanese font
	sYmbol.SourceLOAD Initiate the loading of an HLL source file
	sYmbol.SourcePATH Source search path
	sYmbol.SourcePATH.Delete Delete path from search list
	sYmbol.SourcePATH.DOWN Make directory last in search order
	sYmbol.SourcePATH.List List source search paths
	sYmbol.SourcePATH.RESet Reset search path configuration
	sYmbol.SourcePATH.Set Define search path
	sYmbol.SourcePATH.SetBaseDir Define directory as base for relative paths
	sYmbol.SourcePATH.SetCache Internal use only
	sYmbol.SourcePATH.SetCachedDir Cache direct search path directory
	sYmbol.SourcePATH.SetCachedDirCache Internal use only
	sYmbol.SourcePATH.SetCachedDirIgnoreCache Cache direct search path
	sYmbol.SourcePATH.SetDir Define directory as direct search path
	sYmbol.SourcePATH.SetDynamicDir Adjust search order at hit
	sYmbol.SourcePATH.SetMasterDir Store cached files only relative
	sYmbol.SourcePATH.SetRecurseDir Define recursive direct search path
	sYmbol.SourcePATH.SetRecurseDirCache Internal use only
	sYmbol.SourcePATH.SetRecurseDirIgnoreCase Recursive search path
	sYmbol.SourcePATH.Translate Replace part of the source path
	sYmbol.SourcePATH.TranslateSUBpath Replace sub-path
	sYmbol.SourcePATH.UP Move path up in the search order
	sYmbol.SourcePATH.Verbose Display search details in message AREA
	sYmbol.SourceRELOAD Reload source files
	sYmbol.STATE Display statistic
	sYmbol.STRIP Set max. symbol length
	sYmbol.TYPEINFO Display information about a specific data type
	sYmbol.View Show symbol info

	SYnch
	SYnch Synchronization mechanisms between different TRACE32 systems
	Overview SYnch
	SYnch.Connect Connect to other TRACE32 PowerView instances
	SYnch.MasterBreak Invite other TRACE32 to stop synchronously
	SYnch.MasterGo Invite other TRACE32 to start synchronously
	SYnch.MasterStep Invite other TRACE32 to Asm step synchronously
	SYnch.MasterSystemMode Invite other TRACE32 to follow mode change
	SYnch.OFF Disable connection mechanism
	SYnch.ON Enable connection mechanism
	SYnch.RESet Reset SYnch mechanism
	SYnch.SlaveBreak Synchronize with stop in connected TRACE32
	SYnch.SlaveGo Synchronize with start in connected TRACE32
	SYnch.SlaveStep Synchronize with asm step in connected TRACE32
	SYnch.SlaveSystemMode Synch. with mode changes in other TRACE32
	SYnch.state Display current SYnch settings
	SYnch.XTrack Establish time synchronization to another TRACE32 instance

	SYStem
	SYStem System configuration
	SYStem.BdmClock Select BDM clock
	SYStem.BREAKTIMEOUT Define the used timeout for break
	SYStem.CADICommand Send a command to target
	SYStem.CADIconfig CADI-specific setups
	SYStem.CADIconfig.ExecSwOnly Filter on executing software capability
	SYStem.CADIconfig.RemoteServer Define connection to CADI server
	SYStem.CADIconfig.SpecRegDefine Define special register set
	SYStem.CADIconfig.SpecRegsOnly Use only special defined register set
	SYStem.CADIconfig.Traceconfig Define network settings to CADI trace
	SYStem.CADIconfig.TraceCore Define core for CADI trace
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.CoreNumber Set up number of hardware threads
	SYStem.CONFIG.DEBUGPORT Specify debugport
	SYStem.CONFIG.DEBUGTIMESCALE Extend debug driver timeouts
	SYStem.CONFIG.ELA Configure Embedded Logic Analyzer (ELA)
	SYStem.CONFIG.ListCORE Display the cores of a virtual target
	SYStem.CONFIG.ListSIMulation Display the simulations of a virtual target
	SYStem.CONFIG.MULTITAP Select type of JTAG multi-TAP network
	SYStem.CONFIG.MULTITAP.JtagSEQuence JTAG seq. on SYStem.Up
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG.TRACEPORT Declare trace source and trace port type
	SYStem.CONFIG.TRANSACTORPIPENAME Set up pipe name
	SYStem.CONFIG.USB USB configuration
	SYStem.CONFIG.XCP XCP specific settings
	SYStem.CPU Select CPU
	SYStem.CpuAccess Run-time memory access (intrusive)
	SYStem.CpuBreak Master control to deny stopping the target (long stop)
	SYStem.CpuSpot Master control to deny spotting the target (short stop)
	SYStem.DCI DCI configuration
	SYStem.DETECT Detect target system resources
	The System Detection Wizard
	Daisy-Chain Detection via the TRACE32 AREA Window

	SYStem.DLLCommand Custom DLL connection to target
	SYStem.InfineonDAS Configure the InfineonDAS debug port
	SYStem.IRISconfig IRIS-specific setups
	SYStem.IRISconfig.RemoteServer Define connection to IRIS server
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOG Log read and write accesses to the target
	SYStem.LOG.CLEAR Clear the ‘SYStem.LOG.List’ window
	SYStem.LOG.CLOSE Close the system log file
	SYStem.LOG.Init Clear the "SYStem.LOG.List" window
	SYStem.LOG.List Log the accesses made by TRACE32
	SYStem.LOG.Mode Set logging mode
	SYStem.LOG.OFF Pause logging
	SYStem.LOG.ON Resume logging
	SYStem.LOG.OPEN Open a system log file
	SYStem.LOG.RESet Reset configuration of system log to defaults
	SYStem.LOG.Set Select the TRACE32 accesses to be logged
	SYStem.LOG.SIZE Define number of lines in the ‘SYStem.LOG.List’ window
	SYStem.LOG.state Open configuration window of system log
	SYStem.LOG.StopOnError Stop logging on error
	SYStem.MCDCommand Send command to MCD server
	SYStem.MCDconfig Send configuration to MCD server
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select mode
	SYStem.Option Special setup
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.ZoneSPACES Enable symbol management for zones
	SYStem.PAUSE Pause the execution of operations
	SYStem.POLLING Polling mode of CPU
	SYStem.PORT Configure external communication interface
	SYStem.RESet Reset configuration
	SYStem.RESetOut Reset peripherals
	SYStem.RESetTarget Release target reset
	SYStem.state Display SYStem.state window
	SYStem.TARGET Set target IP name or address
	SYStem.VirtualTiming Modify timing constraints
	SYStem.VirtualTiming.HardwareTimeout Disable/enable hardware timeout
	SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout
	SYStem.VirtualTiming.InternalClock Base for artificial time calculation
	SYStem.VirtualTiming.MaxPause Limit pause
	SYStem.VirtualTiming.MaxTimeout Override time-outs
	SYStem.VirtualTiming.OperationPause Insert a pause after each operation
	SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base
	SYStem.VirtualTiming.PauseScale Multiply pause with a factor
	SYStem.VirtualTiming.PollingPause Advance emulation time when polling
	SYStem.VirtualTiming.TimeinTargetTime Set up general time-base
	SYStem.VirtualTiming.TimeScale Multiply time-base with a factor

	SystemTrace
	SystemTrace MIPI STP and CoreSight ITM
	SystemTrace.state Open system-trace configuration window

