LAUTERBACH A

General Commands Reference
Guide R

General Commands Reference Guide R

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUide Rcccoiiiiiniinnmnss s e s 1
L 1= (o 5
LT o= (= 6
Register Processor registers 6
Register.Init Initialize the processor registers 6
Register.LOG Log registers 11
Register.REFRESH Refresh register window 12
Register.RELOAD Reload the compiler register settings 12
Register.Set Modify register contents 13
Register.StackTop Define stack top address 14
Register.view Display registers 15

] - 18
RESet Reset all commands 18
I 19
RTP.CLEAR Clear tracebuffer 19
RTP.DirectDataMode Simple trace mode 19
RTP.DirectDataMode.Mode Direct data mode read/write 19
RTP.HaltOnOverflow Halt system on RTP FIFO overflow 19
RTP.Mode Select the trace mode 19
RTP.OFF Disables the RTP module 19
RTP.ON Activates the RTP module 19
RTP.PortClock Configure RTPCLK 20
RTP.PortSize Size of RTP data port 20
RTP.RESet Resets RTP settings 20
RTP.state Display RTP setup 20
RTP.TraceMode Complex trace mode 20
RTP.TraceMode.RAM<x>.SECTion<y> Configures a trace region 20
RTP.TraceMode.TraceExclude Invert all trace regions 20
0I5 21
RTS Real-time profiling (RTS) 21
Overview RTS 21
©1989-2024 Lauterbach General Commands Reference Guide R 2

RTS.COMMAND Issue command to RTS APl model 24
RTS.Init Initialize RTS 24
RTS.LOAD Load RTS API module 24
RTS.OFF Deactivate real-time profiling 24
RTS.ON Activate real-time profiling 25
RTS.PROfile Display performance characteristics charts 25
RTS.RESet Restore default settings and initialize RTS 27
RTS.state Open status and control window 27
RTS.StopOnBadaddress Stop RTS on VM errors 28
RTS.StopOnError Stop RTS on flow errors 29
RTS.StopOnFifofull Stop RTS on FIFOFULL 29
RTS.StopOnNoaccesstocode Stop RTS on no access to code 30
RTS.StopOnUnknowntask Stop RTS on unknown task 30
RTS.TiImeMode Enable RTS processing with time information 31
RTS.TrackData Enable RTS data tracking 31
RTS.TRIGGERACK Acknowledge RTS trigger 32
RTS.TriggerConnect Propagate RTS triggers to RTS trigger slaves 32
RTS.TriggerOnExecute Generate RTS trigger on execution 32
RTS.TriggerOnRead Generate RTS trigger on read event 33
RTS.TriggerOnWrite Generate RTS trigger on write event 33
RTS.TriggerOnWTM Generate RTS trigger on watchpoint event 33
RTS.TriggerSlave Receive RTS triggers 34
RTS.TriggerWaitForAck Stall RTS processing until trigger acknowledged 34
RTS.UnknownData HTM unknown data 34
RTS.UNLOAD Unload RTS APl module 35
0 1T = 36
RunTime Runtime measurement 36
Overview RunTime 36
Runtime Measurements Using the Debugger 37
Nested Function Analysis 37
RunTime Functions 38
RunTime-specific Trace Commandsccccccccccmriiiismmminiesrsss s 39
RunTime.List List runtime logs 39
RunTime.Mode Mode selection 40
RunTime.refA Set reference 41
RunTime.refB Set reference 41
RunTime.SHOW Display results 42
RunTime.state Display RunTime configuration and results 44
RunTime WAIT Wait until a condition is true or a period has elapsed 45
Generic RunTime Trace COmMMAaNAScccccerrrcrcmmrrisssmerrsssssmmsrssssmsesesssssmsssesssmmsssssssnmnnneas 46
RunTime.Arm Arm the trace 46
RunTime.AutoArm Arm automatically 46
©1989-2024 Lauterbach General Commands Reference Guide R 3

RunTime.Autolnit Automatic initialization 46
RunTime.BookMark Set a bookmark in trace listing 46
RunTime.Chart Display trace contents graphically 46
RunTime.CLOCK Clock to calculate time out of cycle count information 46
RunTime.ComPare Compare trace contents 47
RunTime.DISable Disable the trace 47
RunTime.EXPORT Export trace data for processing in other applications 47
RunTime.FILE Load a file into the file trace buffer 47
RunTime.Find Find specified entry in trace 47
RunTime.FindAll Find all specified entries in trace 47
RunTime.FindChange Search for changes in trace flow 47
RunTime.GOTO Move cursor to specified trace record 47
RunTime.Init Initialize trace 48
RunTime.LOAD Load trace file for offline processing 48
RunTime.OFF Switch off 48
RunTime.PROfileChart Profile charts 48
RunTime.REF Set reference point for time measurement 48
RunTime.RESet Reset command 48
RunTime.SAVE Save trace for postprocessing in TRACE32 48
RunTime.SIZE Define buffer size 48
RunTime.STATistic Statistic analysis 49
RunTime.Timing Waveform of trace buffer 49
RunTime. TRACK Set tracking record 49
RunTime.View Display single record 49
RunTime.ZERO Align timestamps of trace and timing analyzers 49
©1989-2024 Lauterbach General Commands Reference Guide R | 4

General Commands Reference Guide R

Version 06-Jun-2024

History

24-Apr-23 The RunTime command group has been reworked. The new command is now a trace sink.

22-Aug-22 New command RunTime.WAIT.

©1989-2024 Lauterbach General Commands Reference Guide R | 5

Register

Register Processor registers

The Register command group is used to control and view the processor registers. In case of subprocessors
(e.g., FPU) extra commands are provided.

Register values can be returned by the function Register(<register_name>):

PRINT Register (DO) ; print the contents of the

; register DO in the message line

Register.Set D1 Register (DO) ; set register D1 to the contents
; of register DO

See also

W Register.Init B Register.LOG B Register. REFRESH B Register. RELOAD
B Register.Set B Register.StackTop B Register.view 1 Register()

(1 Register.LIST() 1 Register.Valid()

A ’Release Information’ in’Legacy Release History’

Register.Init Initialize the processor registers

Format: Register.Init [/<option>]
Register.RESet (deprecated)

<option>: ForeGroundSet | BackGroundSet | SystemSet | TemporarySet
CORE <number>
REGSET <number> | Current | Previous
TASK <task_magic> | <task_id> | <task_name>
<other_options>

Sets the registers to the same state as after the processor reset. Registers which are undefined after
RESET are set to zero.

<option> For information about the options, see Register.view.

©1989-2024 Lauterbach General Commands Reference Guide R | 6

B:: ; example for the debugger

SYStem.Up ; establish the communication between the
; processor and the debugger

Register.Init ; initialize the general purpose registers

©1989-2024 Lauterbach General Commands Reference GuideR | 7

CPU Behavior of Register.Init

ARC STATUS <= 0x02000000
STATUS32 <= 0x00000001
DEBUG <= 0x11000000

IRQ_LV12 <= 0x00000002 (Resets any interrupt flags)
IENABLE <= Oxffffffff
SEMAPHORE <= 0x00000000

All other registers are set to zero.
If SYStem.Option.ResetDetection is used with a semaphore bit

(Sem0...Sem3), Register.Init sets the corresponding semaphore bit
in the SEMAPHORE register.

ARM, Cortex, XScale

ARM7/9/10/11, Cortex-A/R, XScale:

Rx=0

SPSRx = 0x10

CPSR = 0xd3 (ARM7/9/10, XScale), 0x1d3 (ARM11, Cortex-A/R)
R15 (PC) = 0, 0xffff0000 if high exception vectors selected

Cortex-M:

Rx=0

R15 (PC) = [vector table base + 4]

xPSR = 0x01000000

MSP = [vector table base + 0]

PSP =0

R13 (SP) = MSP or PSP depending on the mode

C166 The CP is set to OxFC00. The sixteen registers RO - R15 are set to
0x0. DPPO = 0x0, DPP1 = 0x1, DPP2 = 0x2 and DPP3 = 0x3.
Stack registers STKUN is set to OxFC00 and STKOV is set to
0xFAO00.
The Stack Pointer SP is set to 0xFC00
The Instruction Pointer IP is set to zero.
The Code Segment Pointer CSP and the VECSEG are set to the
initial value after SYStem.Mode Up.
All other registers are set to zero.

CEVA-X MODA and MODA shadow register are set to Ox1E.

All other registers are set to zero.

©1989-2024 Lauterbach

General Commands Reference Guide R |

8

CPU

Behavior of Register.Init

DSP56K

Family 56000 and 56100

The eight 16-bit modifier registers M[0-7] are set to OxFFFF. This
specifies linear arithmetic as the default type for address register
update calculations.The Operating Mode Register (OMR) is set to
the initial value after SYStem.Mode Up. Values of bits MA, MB and
MC of the OMR register are preserved.The program counter is set
to zero. All interrupts are masked by setting the Status Register
(SR) to 0x300.

Family 56300 and 56720 Dualcore

The eight 24-bit modifier registers M[0-7] are set to OXFFFFFF. This
specifies linear arithmetic as the default type for address register
update calculations. The Operating Mode Register (OMR) is set to
the initial value after SYStem.Mode Up. Values of bits MA, MB, MC
and MD of the OMR register are preserved. All interrupts are
masked by setting Status Register (SR) to 0x300. The program
counter is set to zero.

Family 56800 and 56800E

The eight 16-bit modifier registers M[0-7] are set to OxFFFF. This
specifies linear arithmetic as the default type for address register
update calculations. The Operating Mode Register (OMR) is set to
the initial value after SYStem.Mode Up. Values of bits MA and MB
of the OMR register are preserved. All interrupts are masked by
setting Status Register (SR) to 0x300. The program counter is set to
zero.

HCS08

The Program Counter is set to the value read at OxFFFE. The Stack
Pointer SP is set to OxFF and the CCR is set to 0x68. All other
registers are set to zero.

HC11

The Program Counter is set to the value read at OxFFFE. The Stack
Pointer SP is set to a default value dependent on the derivative. The
CCR is set to 0xD8. All other registers are set to zero.

HC12/S12/S12X

The Program Counter is set to the value read at OXFFFE. The CCR
is set to OxD8. All other registers are set to zero.

Microblaze

All registers are set to zero.

MIPS32/MIPS64/NEC-VR

Program Counter, Status register and Config register are set to their
initial values after reset (read during SYStem.Mode Up). PRID and
Cause register are updated, all other registers are set to zero.

MMDSP

Sets all registers to their initial value after a reset. This is done via a
soft reset of the core.

NOTE: This may have effects besides updating the contents of
architectural registers.

PowerPC

Program counter and MSR are set to their initial values after reset
(read during SYStem.Mode Up). GPRs and SPR appearing in the
Register window are set to zero.

PCP

All registers are set to zero.

©1989-2024 Lauterbach

General Commands Reference Guide R |

9

CPU Behavior of Register.Init

RISC-V All registers are set to zero, with the following exceptions:
The initial values for registers PC, and PRV are read from the CPU
during SYStem.Mode Up.
If this is not possible the following default values are assumed:
PC=0
PRV =M

Teak MODO and MODOS registers SATA bit is set. MOD1 and MOD1S
registers CMD bit is set. MOD3 and MODS3S registers CREP, CPC
and CCNTA bits are set.
All other registers are set to zero.

Teaklite/Teaklite-1l/Oak All registers are set to zero.

Teaklite-lll MOD?2 register SATA and SATP bits are set.
All other registers are set to zero.

x86 EDX is set to a cpu specific value defining the
family/model/stepping of the core if a SYStem.Mode Up has been
executed at some point before, otherwise EDX is set to 0.
EAX,EBX,ECX,ESI,EDI,ESP,EBP are set to 0.
EIP is set to OXFFFO and EFLAGS to 2.
CRO is set to 0x60000010 and CR2-4 to 0.
DRO-3 are set to 0. DR6 to OxFFFFOFFO and DR7 to 0x400.
IDT and GDT: Base = 0 and Limit = OxFFFF.
LDT and TR: Selector = 0, Base = 0, Limit = OxFFFF, Access =
0x82.
CS: Selector = 0xF000, Base = OxFFFFO0000, Limit = OxFFFF,
Access = 0x93.
DS,ES,FS,GS,SS: Selector =0, Base = 0, Limit = OxFFFF, Access =
0x93.
NOTE: In a multicore system the above holds for the main bootstrap
processor. For the other processors the following differences apply:
EIP is set to 0x10000 and CRO to 0x10.

TMS320 All registers except SSR, IER and TSR are set to zero.

TriCore All registers are set to zero with the following exceptions:
The initial values for registers PC, PSW, ISP and BTV are read from
the CPU at SYStem.Mode Up.
If this is not possible the following default values are assumed:
PC=0xA0000020 (AURIX and later), 0xA0000000 (otherwise)
PSW=0x00000B80
BTV=0xA0000100
ISP=0x00000100

XTENSA All registers are set to zero.

ZSP All registers are set to zero.

See also
B Register B Register.view

©1989-2024 Lauterbach

General Commands Reference Guide R | 10

Register.LOG Log registers

Format: Register.LOG [<set>] ...[/[<option>]
<set>: ALL
<option>: AREA <name>

Writes the selected registers to the AREA window whenever the program execution stops. The output can
be redirected to any named AREA window. The output of any AREA windows can also be redirected to a

file.
Example:
AREA.Create REG_LOG ; set up an AREA window named
; REG_LOG
AREA.OPEN REG_LOG regfile.log ; write all outputs to the
; AREA window REG_LOG also to the
; file regfile.log
AREA.view REG_LOG ; display the AREA window REG_LOG
; 1n TRACE32
Register.LOG ALL /AREA REG_LOG ; log the contents of all registers
; at every program stop to the
; AREA window REG_LOG
Register.LOG ; end the register logging
AREA.CLOSE REG_LOG ; close the file regfile.log
See also
B Register B Register.view

©1989-2024 Lauterbach General Commands Reference Guide R | 11

Register.REFRESH Refresh register window

Format: Register.REFRESH

Forces the debugger to re-read all processor registers from the target and refresh the Register.view
window.

Use this command, if your registers might have changed. The time base registers of the PowerPC
processors for example change permanently even when the program execution is stopped.

NOTE: Whenever the program execution is stopped, the Register.view window is
refreshed automatically.

See also
B Register B Register.view
Register.RELOAD Reload the compiler register settings
Format: Register.RELOAD

Re-writes the initialization values of the last Data.LOAD command into the appropriate processor registers.

See also

B Register B Register.view
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide R | 12

Register.Set Modify register contents

Format: Register.Set <register> [<value>] [/<option>]

<register>: DOID1ID2|D3I...

<option>: TASK <task_magic> | <task_id> | <task_name>
<other_options>

Sets <register> to the specified <value>.

The Register.Set command is also invoked by a double-click to the register contents or by choosing Set ...
in the Register popup menu.

[Bu:Register o= (==
\ RO 39 Re SP> 00000003 =
R1 3 R9 3 Register |
e E— § #{Indirect List ¥
R4 3 R12 3 @& Indirect View
RS 3 R13 00013FAC i
RE 3 Riz 3 #] Indirect Dump
R7 3 PC 91AC »
SPSR 600000D3 CPSR 8000003 2 'Infe -
F
B::R.S |RG Mo
[[ok]] [<address>] [<valus>] [<floar>] [options]
(register int) vi4
<option> For information about the options, see Register.view.
Examples:
Register.Set PC start ; set the Program Counter to the label
; start
Register.Set DO Register (D0O)+1 ; ilncrement register contents
See also
B Register B Register.view 1 Register()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide R | 13

Register.StackTop Define stack top address

Format: Register.StackTop <address>

Limits the display of the stack in the register window. When the stack is below or equal to this address its
contents will not be displayed.

Example:
Register.StackTop 0x14000 ; limit the stack display in the
; register window to address
; 0x14000
See also
B Register B Register.view 1 Register()

©1989-2024 Lauterbach General Commands Reference Guide R | 14

Register.view Display registers

Format: Register.view [/<option>]

<display_ SpotLight

option>: Stack

<context_ CORE <number>

option>: REGSET <number> | Current | Previous
SystemSet | TemporarySet
TASK <task_magic> | <task_id>. | "<task_name>"
MACHINE <machine_id> [[NCPU <vcpu_id>]

Display the general purpose registers. For some CPUs additional information is displayed if the
Register.view window is dragged to its full size.

[B:Register.view [=|[E =] [B:Register.view =][]
N _ RO 0 RS 0 5P~ OOBCGL4E N _ RO 0 RS 0 - ODBC614E "
7 Rl 666666BE RI 0 . 0000227C 7 Z Rl 666666BE RO 0 - 0000227C
404F6666 R10 0 40180000 c C 404F6666 R10 0 40180000
66666666 A1l 0 +08 00000000 v _ 66666666 A1l 0 +08 00000000
O0BC614E R12 404F6666 00000000 I T R4 ODBCEL4E FR1Z 404F6666 00000000
56CC R13 OFE4 7 00000000 FF 56CC R13 OFE4 +10 00000000
0 R14 227C 00000000 _ 0 R14 227C 00000000
0 PC 22AC +18 E1A00000 Z 0 PC 22AC +18 E1A00000 £
5PS 10 CPSR 600001D3 +1C E1A00000 ~ sve SPS 10 CPSR 600001D3 +1C E1A00000
T) Q _ +20 EBO000OC
A A USR: FIQ: +24 EBODODLE
E_ 0 RS 0 +28& EF0D0001L
. 0 R 0 0000461C
Default d|sp|ay 0 0 R10 0) 00000204
1 0 RiL 0 00005410
2 12 0 +38 00001768
3 0 +3C 00023583
0 +40 00001000
10 00000000
& 00000020
IRQ: C 00000000
OFE4 R13 0 +30 00000ODO
227C R4 0 00000000
5 R 10
0
0 +68
10 +6C E59C2030 -
4 13
Full display
SpotLight Highlight changed registers.

Registers changed by the last program run/single step are marked in
dark red. Registers changed by the second to last program run/single
step are marked a little bit lighter. This works up to a level of 4.

Register.view /SpotLight

©1989-2024 Lauterbach General Commands Reference Guide R | 15

Stack

With Stack: The stack display [A] is shown.
Without Stack: The stack display is hidden.

oW

[B::Register.view /Stack T @
7 R e 0 it a
C _ R2 0 R10 O | +04 000021FC
— 0oC R11 S 5 40180000
R4 1 Ri1z 3§ +0C 00000000
R5 564C R13 OFE4 § +10 00000000
RE 0 Rl4 0§ +14 00000000
R7 0 PC 22A8 | +15 00000000
SP5R 10 CPSR B00000D3 § +1C ESSF0034 &
[B] Toggle between:
. S = Addresses relative to the stack pointer
. F = Addresses relative to the frame pointer
. C = Addresses relative to the canonical frame address

[C] Clicking the Stack button in the Register.view window lets you
show/hide the stack display on the fly.

SystemSet

The TRACES32-internal register set is a temporary buffer within
TRACE32. This buffer is used to hold a copy of the CPU registers.
Commands like Register.Copy, Register.SWAP are using this TRACE32-
internal register set.

Register.COPY

Go
Break

Register.view

; copy general purpose registers into the
; TRACE32-internal register set

; start program execution

; stop program execution

/SystemSet ; display TRACE32-internal register set

TemporarySet

(diagnosis purpose only)

CORE <number>

(SMP debugging only)

The TRACE32 PowerView GUI displays the context (registers, cache,
memory ...) of the currently selected core if SMP debugging is
performed. The option CORE allows to display the register set of another
core.

©1989-2024 Lauterbach

General Commands Reference Guide R | 16

CORE.select CORE 1 ; advise TRACE32 to display the

Register.view

; context of core 1

; display the registers of the
; current context

Register.view /CORE 0 ; display the registers for core 0

REGSET <number>

(processor-specific)
MIPS architecture: Display the specified shadow register set.
SH2A architecture: Display the specified register bank.

TASK <task_magic>, Display the register set of the specified task.
etc.
See also “What to know about the Task Parameters”
(general_ref_t.pdf).
Register.view /TASK 0x41498 ; <task_magic>
; <task_id>
Register.view /TASK "thread 0" ; <task_name>
MACHINE Display the current register set for the specified machine (only available

<machine_id>

with SYStem.Option.MACHINESPACES ON).

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

VCPU <vcpu_id>

Display the current register set for the specified VCPU (only available
with SYStem.Option.MACHINESPACES ON).

See also

W Register W Register.Init B Register.LOG B Register REFRESH
B Register.RELOAD B Register.Set B Register.StackTop B Go.direct

1 Register() 1 Register.LIST() (1 Register.Valid()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide R |

17

RESet

Resets all commands.

RESet Reset all commands

Format: RESet

All commands of the debugger are reset to their default state.

See also
B SYStem.RESet

©1989-2024 Lauterbach General Commands Reference Guide R | 18

RTP

RTP.CLEAR Clear tracebuffer

See command RTP.CLEAR in 'RAM Trace Port' (trace_rtp.pdf, page 6).

RTP.DirectDataMode Simple trace mode

See command RTP.DirectDataMode in 'RAM Trace Port' (trace_rtp.pdf, page 7).

RTP.DirectDataMode.Mode Direct data mode read/write

See command RTP.DirectDataMode.Mode in 'RAM Trace Port' (trace_rtp.pdf, page 7).

RTP.HaltOnOverflow Halt system on RTP FIFO overflow

See command RTP.HaltOnOverflow in 'RAM Trace Port' (trace_rtp.pdf, page 8).

RTP.Mode Select the trace mode

See command RTP.Mode in 'RAM Trace Port' (trace_rtp.pdf, page 8).

RTP.OFF Disables the RTP module

See command RTP.OFF in 'RAM Trace Port' (trace_rtp.pdf, page 8).

RTP.ON Activates the RTP module

See command RTP.ON in 'RAM Trace Port' (trace_rtp.pdf, page 9).

©1989-2024 Lauterbach General Commands Reference Guide R | 19

RTP.PortClock Configure RTPCLK

See command RTP.PortClock in 'RAM Trace Port' (trace_rtp.pdf, page 9).

RTP.PoriSize Size of RTP data port

See command RTP.PortSize in 'RAM Trace Port' (trace_rtp.pdf, page 9).

RTP.RESet Resets RTP settings

See command RTP.RESet in 'RAM Trace Port' (trace_rtp.pdf, page 10).

RTP.state Display RTP setup

See command RTP.state in 'RAM Trace Port' (trace_rtp.pdf, page 10).

RTP.TraceMode Complex trace mode

See command RTP.TraceMode in 'RAM Trace Port' (trace_rtp.pdf, page 11).

RTP.TraceMode.RAM<x>.SECTion<y> Configures a trace region

See command RTP.TraceMode.RAM<x>.SECTion<y> in 'RAM Trace Port' (trace_rtp.pdf, page 11).

RTP.TraceMode.TraceExclude Invert all trace regions

See command RTP.TraceMode.TraceExclude in 'RAM Trace Port' (trace_rtp.pdf, page 12).

©1989-2024 Lauterbach General Commands Reference Guide R | 20

RTS

RTS Real-time profiling (RTS)
See also
B RTS.COMMAND W RTS.Init
B RTS.LOAD B RTS.OFF
B RTS.ON B RTS.PROfile
B RTS.RESet B RTS.state
B RTS.StopOnBadaddress B RTS.StopOnError
B RTS.StopOnFifofull B RTS.StopOnNoaccesstocode
B RTS.StopOnUnknowntask B RTS.TImeMode
B RTS.TrackData B RTS.TRIGGERACK
B RTS.TriggerConnect B RTS.TriggerOnExecute
B RTS.TriggerOnRead B RTS.TriggerOnWrite
B RTS.TriggerOnWTM B RTS.TriggerSlave
B RTS.TriggerWaitForAck B RTS.UnknownData
B RTS.UNLOAD B COVerage
B |STATistic
A 'RTS Functions’ in 'General Function Reference’

A ’'Release Information’ in’Legacy Release History’

Overview RTS

Real-time profiling (RTS) is a trace mode that allows to process the trace data while the trace information
is being recorded. RTS requires that the program code that is needed to decode the trace raw data is
located in the TRACES32 virtual memory (VM:). RTS can therefore be used only for static program code.
However, it supports code overlays and zone spaces.

Direct processing is possible for the following command groups:
. COVerage.List*

J ISTATistic.List”

. RTS.PROfile

By default the trace data is discarded after processing, but enabling the Trace.Mode STREAM allows to
obtain the trace data for a later analysis.

RTS is currently supported for the following processor architecture/trace protocols:
. ARM ETMv3 and ARM ETMv4

. Nexus for MPC5xxx and QorlQ

J TriCore MCDS

©1989-2024 Lauterbach General Commands Reference Guide R | 21

RTS can only be used if the average data rate at the trace port does not exceed the maximum transmission
rate of the host interface in use. Peak loads at the trace port are intercepted by the trace memory, which can
be considered to be operating as a large FIFO.

Not all chip timestamp modes are decodable by RTS.

Example 1: Live update of code coverage results for Nexus MPC5xxx, trace information is discarded after
processing.

; enable Nexus Indirect Branch History Messages to get compact
; trace data
NEXUS.HTM ON

; load executable to target and to TRACE32 Virtual Memory
Data.LOAD.El1f demo.x /PlusVM

; switch RTS processing to on
RTS.ON

; specify stops on errors if required (just as example)
; RTS.StopOnNoaccesstocode ON

; select the required coverage metric (just as example)
; COVerage.Option.SourceMetric Decision

; display code coverage for HLL functions
COVerage.ListFunc

; display source code with coverage tagging
List E:0x8D04 /COVerage

Go

Break

; switch RTS processing to off
RTS.OFF

; save coverage results to file
COVerage.SAVE demo.acd

©1989-2024 Lauterbach General Commands Reference Guide R | 22

Example 2: Live update of code coverage results for Nexus MPC5xxx, trace information is obtained for a
later analysis:

; enable Nexus Indirect Branch History Messages to get compact
; trace data
NEXUS.HTM ON

; select trace mode STREAM to obtain trace data
Trace.Mode STREAM

; suppress generation of TRACE32 tool timestamps
Trace.PortFilter MAX

; load executable to target and to TRACE32 Virtual Memory
Data.LOAD.El1f demo.x /PlusVM

; switch RTS processing to on
RTS.ON

; specify stops on errors if required (just as example)
; RTS.StopOnNoaccesstocode ON

; select the required coverage metric (just as example)
; COVerage.Option.SourceMetric Decision

; display code coverage for HLL functions
COVerage.ListFunc

; display source code with coverage tagging
List E:0x8D04 /COVerage

Go

Break

; save coverage results to file
COVerage.SAVE demo.acd

; save trace recording
Trace.SAVE demo.ad

; switch RTS processing to off
RTS.OFF

; select trace mode Fifo
Trace.Mode Fifo

©1989-2024 Lauterbach General Commands Reference Guide R | 23

RTS.COMMAND Issue command to RTS APl model

Format: RTS.COMMAND <cmd> [<string>] [<address>] [<time>] [<value>]

Issues a command to all loaded RTS API models. The parameters are interpreted by the loaded models.

See also
H RTS B RTS.LOAD M RTS.state H RTS.UNLOAD
RTS.Init Initialize RTS
Format: RTS.Init

Initializes RTS by clearing the already processed RTS data. The trace buffer is also initialized.

See also
W RTS B RTS.state
RTS.LOAD Load RTS API module
Format: RTS.LOAD <file> [<parameter> ...]

Loads RTS API library. The parameters are specific for the loaded library.

See also
W RTS B RTS.COMMAND B RTS.state B RTS.UNLOAD
RTS.OFF Deactivate real-time profiling
Format: RTS.OFF

Disable trace processing while trace information is recorded.

©1989-2024 Lauterbach General Commands Reference Guide R | 24

The Trace.Mode is switched to STREAM, if Trace.Mode STREAM was selected when RTS was enabled
and to Fifo otherwise.

The COVerage.state and the ISTATistic.state window return to the state they had before RTS.ON was
done. The COVerage and ISTATistic results retain in their database.

See also
H RTS B RTS.state B COVerage.state B ISTATistic.state
RTS.ON Activate real-time profiling
Format: RTS.ON

Enables trace processing while trace information is recorded. The COVerage and the ISTATistic system are
cleared.

The trace raw data without tool timestamps are conveyed to the host computer for processing. The trace
data are discarded after processing if another Trace.Mode than STREAM was selected when RTS was
enabled.

The trace raw data and the tool timestamps are conveyed to the host computer for processing if
Trace.Mode STREAM was selected when RTS was enabled. The trace data are retained in the streaming
file. The generation of the tool timestamp can be suppressed by using the command Trace.PortFilter MAX.

See also
W RTS B RTS.state B <trace>.PortFilter B COVerage. METHOD
RTS.PROfile Display performance characteristics charts
Format: RTS.PROfile [{<event option>}] [<time>]
<event_ MIPS
option>: READS
WRITES
TaskSwitches
<time>: 0.1s 1 1.0s | 10.s

Currently the results are not conclusive. RTS.PROFile is intended to prove that RTS is alive and
working.

©1989-2024 Lauterbach General Commands Reference Guide R | 25

Displays a window charting the occurrence of events on the vertical axis versus the elapsed time on the
horizontal axis. If no <event_option> is specified the following events are displayed: MIPS, READS,

WRITES. The default update time is 0.1s.

Il B=:RTS.PROfile

=N Noh/

[@mit || Okold |[@ |[vIvout][&1 |[S out|[E Autd used: [N

events/sec

-25.0s 0.
| -

150000000.

100000000.

-

50000000. R
(S | N I i 1} hlllllllllll*
4 1 3

The events are assigned colors according to their position:

J 1st parameter : red
. 2nd parameter : green
. 3rd parameter : blue

The following table explains the event options:

MIPS Number of instructions executed.
READS Number of memory read operations executed by the core.
WRITES Number of memory write operations executed by the core.

TaskSwitches

Number of task switches performed.

Examples:
RTS.PROfile 1.s ; update chart every second
RTS.PROfile READS 10.s ; display chart only for reads
; update chart every 10 seconds
See also
H RTS B RTS.state

©1989-2024 Lauterbach

General Commands Reference Guide R

26

RTS.RESet

Restore default settings and initialize RTS

Format:

RTS.RESet

Restores the default settings and similar to RTS.Init clears the already processed RTS data.

See also
H RTS B RTS.state
RTS.state Open status and control window
Format: RTS.state

Opens the RTS status and control window. This window displays the current status of the RTS system,
allows to configure the most important options, and gives access to various analysis options through
the buttons at the left side.

& B::RTS.state
rts
OFF

commands
| RESet |
[®mit |

[i PROfile |

|@COVerage|
[ElsTAT |

utilisation

Ii
2415672,
15864844,

data base

2. MB

state

active u

(=[O

Brrors

| StopOnError
nocode

StopOnMNoaccesstocode
fifofulls

StopOnFifofull

diagnostics 4.

A For descriptions of the commands in the RTS.state window, please refer to the RTS.* commands in
this chapter. Example: For information about ON, see RTS.ON.

Exceptions:

. COVerage opens the COVerage.ListModule window.

J ISTAT opens the ISTATistic.ListModule window.

B See RTS.StopOnNoaccesstocode and RTS.StopOnFifofull.

©1989-2024 Lauterbach

General Commands Reference Guide R | 27

Description of Fields in the RTS.state Window

utilisation Shows the number of trace records transferred to the host. The
bottom line shows the number of bytes already processed by RTS.

database Indicates how much memory on the host is currently used by RTS.
state Shows the current RTS status e.g. ready, active, no tracing, catching
up etc.

See also

B RTS B RTS.COMMAND

B RTS.Init B RTS.LOAD

B RTS.OFF H RTS.ON

B RTS.PROfile B RTS.RESet

B RTS.StopOnBadaddress B RTS.StopOnError

B RTS.StopOnFifofull B RTS.StopOnNoaccesstocode

B RTS.StopOnUnknowntask B RTS.TImeMode

B RTS.TrackData B RTS.TRIGGERACK

B RTS.TriggerConnect B RTS.TriggerOnExecute

B RTS.TriggerOnRead B RTS.TriggerOnWrite

B RTS.TriggerOnWTM B RTS.TriggerSlave

B RTS.TriggerWaitForAck B RTS.UnknownData

B RTS.UNLOAD 1 RTS.ERROR()

1 RTS.RECORDS()

A ’'Release Information’ in’Legacy Release History’

RTS.StopOnBadaddress Stop RTS on VM errors
Format: RTS.StopOnBadaddress [ON | OFF]
Default: OFF.
ON If RTS.StopOnBadaddress is ON, the trace recording is stopped when a

bad data address is detected. The diagnostics List button in the RTS.state
window provides access to a diagnostic trace listing.

OFF If RTS.StopOnBadaddress is OFF, bad data addresses are counted.
See also
W RTS B RTS.state

©1989-2024 Lauterbach General Commands Reference Guide R | 28

RTS.StopOnError Stop RTS on flow errors

Format: RTS.StopOnError [ON | OFF]
Default: ON.
ON If RTS.StopOnError is ON, the trace recording is stopped when a Flow

Error is detected. The diagnostics List button in the RTS.state window
provides access to a diagnostic trace listing.

OFF If RTS.StopOnError is OFF, flow errors are counted.
See also
H RTS B RTS.state
RTS.StopOnFifofull Stop RTS on FIFOFULL
Format: RTS.StopOnFifofull [ON | OFF]
Default: OFF.
ON If RTS.StopOnFifoFull is ON, the trace recording is stopped when a

FIFOFULL is detected. The diagnostics List button in the RTS.state
window provides access to a diagnostic trace listing.

OFF If RTS.StopOnFifoFull is OFF, FIFOFULLSs are counted.
See also
H RTS B RTS.state

©1989-2024 Lauterbach General Commands Reference Guide R | 29

RTS.StopOnNoaccesstocode Stop RTS on no access to code

Format:

RTS.StopOnNoaccesstocode [ON | OFF]

RTS requires that the program code that is needed to decode the trace raw data is located in TRACE32
Virtual Memory. If TRACES32 cannot find the program code to decode the raw trace data, a
Noaccesstocode error occurs.

ON If RTS.StopOnNoaccesstocode is ON, the trace recording is stopped
when a Noaccesstocode error is detected. The diagnostics List button in
the RTS.state window provides access to a diagnostic trace listing.

OFF (default) If RTS.StopOnNoaccesstocode is OFF, Noaccesstocode errors are
counted.

See also

W RTS B RTS.state

RTS.StopOnUnknowntask Stop RTS on unknown task

Format: RTS.StopOnUnknowntask [ON | OFF]

Default: OFF.
ON If RTS.StopOnUnknowntask is ON, the trace recording is stopped when

an unknown task is detected in the trace.

OFF If RTS.StopOnUnknowntask is OFF, unknown tasks are counted.

See also

B RTS B RTS.state

©1989-2024 Lauterbach

General Commands Reference Guide R | 30

RTS.TimeMode Enable RTS processing with time information

Format: RTS.TImeMode [OFF | External]

Default: OFF.

Configures RTS to enable processing of time information. As this increases the RTS processing workload,
only enable if required.

OFF Disables the processing of time information.
External Enables RTS processing with time information.
See also
W RTS B RTS.state
RTS.TrackData Enable RTS data tracking
Format: RTS.TrackData [ON | OFF]

If ON, RTS decodes all received data trace messages and writes the data value to the corresponding
address into the TRACES32 virtual memory. The data in VM can then be used for further processing without

target access.
Currently not supported for ETMv4.

See also
H RTS B RTS.state

©1989-2024 Lauterbach General Commands Reference Guide R | 31

RTS.TRIGGERACK Acknowledge RTS trigger

Format: RTS.TRIGGERACK

Acknowledges the RTS trigger to continue RTS processing if RTS.TriggerWaitForAck is ON.

See also
B RTS B RTS.state
RTS.TriggerConnect Propagate RTS triggers to RTS trigger slaves
Format: RTS.TriggerConnect { [<host>;]<port>}

Sends RTS triggers to other TRACES32 PowerView instances via InterCom. InterCom must be enabled in
this instance, as well as in the slave instances. The slave instances must set RTS.TriggerSlave to receive

the master’s RTS triggers.

See also
W RTS B RTS.state
RTS.TriggerOnExecute Generate RTS trigger on execution
Format: RTS.TriggerOnExecute {<address>}

Selects program addresses that generate an RTS trigger when one of the addresses was found as executed
in the program flow.

See also
B RTS B RTS.state

©1989-2024 Lauterbach General Commands Reference Guide R | 32

RTS.TriggerOnRead Generate RTS trigger on read event

Format: RTS.TriggerOnRead {<address> [<data> | <bitmask>] }

Selects data addresses with optional value or bitmask that generate an RTS trigger when a matching read
access occurred.

Currently not supported for ETMv4.

See also
B RTS B RTS.state
RTS.TriggerOnWrite Generate RTS trigger on write event
Format: RTS.TriggerOnWrite {<address> [<data> | <bitmask>] }

Selects data addresses with optional value or bit mask that generate an RTS trigger when a matching write
access occurred.

Currently not supported for ETMv4.

See also
B RTS B RTS.state

RTS.TriggerOnWTM Generate RTS trigger on watchpoint event

Only supported for PowerPC NEXUS

Format: RTS.TriggerOnWTM <event>[ON | OFF]

<event>: IAC1 | IAC2 | IAC3 | IAC4 | IAC5 | IAC6 | IAC7 | IAC8
DAC1 | DAC2 | DAC3 | DAC4

Selects watchpoint hit events that generate an RTS trigger when a matching watchpoint hit message (WHM)
occurred. Remote API clients programs can register for RTS trigger events to react on RTS triggers.

See also
H RTS B RTS.state

©1989-2024 Lauterbach General Commands Reference Guide R | 33

RTS.TriggerSlave Receive RTS triggers

Format: RTS.TriggerSlave [ON | OFF]

Enables receiving and processing of RTS triggers.

See also
B RTS B RTS.state
RTS.TriggerWaitForAck Stall RTS processing until trigger acknowledged
Format: RTS.TriggerWaitForAck [ON | OFF]

If ON and an RTS trigger occurred, RTS processing is suspended until the RTS trigger is acknowledged
using RTS.TRIGGERACK or through Remote API.

See also
H RTS M RTS.state
RTS.UnknownData HTM unknown data
Format: RTS.UnknownData <data>

This command is only needed in some rare cases when RTS is used together with HTM and data is lost
because of trace FIFO overflows.

See also
B RTS B RTS.state

©1989-2024 Lauterbach General Commands Reference Guide R | 34

RTS.UNLOAD Unload RTS API module

Format: RTS.UNLOAD [<file>]

Unloads an RTS API library.

See also
W RTS B RTS.COMMAND H RTS.LOAD B RTS.state

©1989-2024 Lauterbach General Commands Reference Guide R | 35

RunTime

Overview RunTime

RunTime Runtime measurement
See also
B <trace>.Arm B <trace>.AutoArm B <trace>.Autolnit B <trace>.BookMark
B <trace>.Chart B <trace>.CLOCK B <trace>.ComPare B <trace>.DISable
B <trace>.EXPORT B <trace>.FILE W <trace>.Find B <trace>.FindAll
B <trace>.FindChange B <trace>.GOTO B <trace>.Init B <trace>.LOAD
B <trace>.OFF M <trace>.PROfileChart B <irace>.REF B <trace>.RESet
B <trace>.SAVE B <trace>.SIZE B <trace>.STATistic B <trace>.Timing
B <trace>.TRACK W <trace>.View W <trace>.ZERO B RunTime.List
Bl RunTime.Mode B RunTime.refA B RunTime.refB B RunTime.SHOW
B RunTime.state B RunTime.WAIT 1 RunTime.ACCURACY() 1 RunTime.ACTUAL()
1 RunTime.LAST() 1 RunTime.LASTRUN() 1 RunTime.REFA() A RunTime.REFB()
A ’'RunTime Functions’ in ‘General Function Reference’
A ’Release Information’ in’Legacy Release History’

The RunTime command group and the RunTime() functions are used to measure the time the target has

been executing code.

The runtime is calculated from the target reset and increments while the target executes program code. The

target runtime is frozen when the target is stopped.

There are different methods of measuring the runtime with different accuracies. The available methods
depend on the target hardware and the debug interface (debugger-based vs. trace-based).

On some cores, the runtime can also be based on onchip counters, which reduce the time lag of the external

time.

©1989-2024 Lauterbach

General Commands Reference Guide R | 36

Runtime Measurements Using the Debugger

The RunTime counter allows to measure the program execution times between two breakpoints. The
accuracy of the measurement depends on the features provided by the debug interface. The measurement
error is displayed in the extended view of RunTime.state or by the function RunTime.ACCURACY().

er B::RunTime.state EI@
373.382ms ? 2.117s A advanced
state used accuracy
(O Disable | (+0/-14731ms)
(®) OFF %
() Arm SIZE CLOCK
[1024, [{]]
commands
& Init Mode Mode

List (®) Fifo (CsLow
] AutoArm (O Stack (®) FAST
[Autolnit () CONTinuous

(ZJBMC

The polling rate can be influenced by selecting one of the mode RunTime.Mode SLOW | FAST |
CONTinuous.

Nested Function Analysis

The RunTime command group can be used with SPOT breakpoints set on function entries and exits to get
the time of execution of nested functions.

Example:

RunTime.RESet

RunTime.OFF

Break.SetFunc funcl /SPOT
Break.SetFunc func2 /SPOT
Break.SetFunc func2a /SPOT
Go.direct sieve
RunTime.STATistic.Func

= B:RunTime.STATistic.Func EI@
B Setup... | iif Groups... | 38 Config..| (3 Goto.. | =|Detailed | | Nesting % Chart
funcs: 5. total: 163.558ms
range [total min max avr count intern® 1% 2% 5% 10% 20% 50% | 4
(root) [163.558ms - 163.558ms - - 37.370%
func2 56.307ms 5.621ms 5.639ms 5.631ms 10. 20.655%
funcl 67.526ms 1.115ms 1.137ms 1.125ms 60. 41.285%
func2a 1.127ms 1.127ms 1.127ms 1.127ms 1. 0.689% |+
sieve 0.000us - - - 1.(0/1) 0. 000%

©1989-2024 Lauterbach General Commands Reference Guide R | 37

RunTime Functions

The following functions can be used to obtain various runtime-related values.

RunTime.ACTUAL() returns the total measured program runtime. The total program runtime is
reset by the following commands SYStem.Mode Up, RunTime.Init, RunTime.Mode <mode>.

RunTime.LASTRUN() returns the last measured runtime, i.e. the time of a single step or the time
between the last Go and Break.

RunTime.LAST() the return value is calculated by:

&difftime=CONVert .TIMEUSTOINT (RunTime.ACTUAL () -RunTime.LAST ())

RunTime.ACCURACY() returns the inaccuracy of the runtime measurement. It depends on the
RunTime.Mode.

The following RunTime functions are deprecated:

RunTime.REFA() returns the reference value A. There is a homonymous command to set the
value.

RunTime.REFB() returns the reference value B. There is a homonymous command to set the
value.

©1989-2024 Lauterbach General Commands Reference Guide R | 38

RunTime-specific Trace Commands

RunTime.List List runtime logs
[build 149833 - TRACES32 Release 02/2023]
Format: RunTime.List [<parameter>]
<parameter>: [<record> | <record_range> | <time> | <time_range>] [<items> ...] [/<options>]

Opens a window displaying the runtime logs.

<parameter> For a detailed description of the parameters and options, refer to
Trace.List command.

:RunTime.List =8 o
/B Setup... | 5% Config...| () Goto.. | F3Find.. | ¢l Chart | Bl Profile | EEMIPS | 4 More Y Less
record |run |address cycle |data symbol ti.back |
-00000020 | 5T:Z00000EQ go hdemo S'I eve 'Func2+0x52 0.000us
-00000019 |BRK —— 5T:200000E0 — Yhdemosieve\func2+0x52 _
-00000018 | ST:ZOOOOOEO go \\demo\s‘l eve'\func2+0x52 =
-00000017 [BRK — ST: wdemo'sieve\ func2+0x52 v
-00000016 | | \\demo\ eve'\func2+0x52
-00000015 [BRK — ST: wdemo'sieve\ func2+0x52 &
-00000014 | :ZOOOOOEO go \\demo\s‘l eve'\func2+0x52
-00000013 |BRK —— S5T:200000E0 — Yhdemosieve\func2+0x52
-00000012 | :200000E0 go \\demo\s‘l eve' func2+0x52
-00000011 |BRK —— ST wdemo'sieveimain+0xdA

-00000010 | \ demo' sieveimain+0x4A
-00000009 [BRK — ST: wdemo'sieve' funcs

-00000008 | :2000015A go \\demo\s‘l eve'funcs

-00000007 |BRK —— S5T:2000015C — Yhdemo'\sieve\funcd+0x2
-00000006 | | :ZOOOOJ.SC go __demo_ eve\func4+0x2
-00000005 |[BRK —— ST eve'\funcd+0xls
-00000004 | eve' func4+0x18

-00000003 [BRK —— 5T:2 eve'ymain+0x94
-00000002 | :ZOOOO?DA go \\demo\s‘l eve'imain+0x94
-00000001 |BRK —— S5T:20000156 — Yhdemosieveifunc3

The address at which the program execution was started (go, break or implicitly after a spot break point) is
recorded in the runtime trace with the cycle type go and a zero timestamp.

The address where the program execution was stopped is tagged with BRK and shows the program
execution time since the last start.

See also

H RunTime H RunTime.state

©1989-2024 Lauterbach General Commands Reference Guide R | 39

RunTime.Mode Mode selection
[build 149833 - DVD 02/2023]

Format: RunTime.Mode <mode1>| <mode2>
<mode1>: SLOW | FAST | CONTinuous
BMC

TB (PowerPC only)

<mode2>; Fifo | Stack

. Target hardware: If TRACE32 is in “running” state, it is constantly polling whether the program
execution is still running or has already been stopped. There are different polling rates. The
selected polling rate determines the inaccuracy of the measurement. The inaccuracy is displayed
in the RunTime configuration window.

. Virtual target: If TRACES2 is in ,running” state, it is constantly polling whether the program
execution is still running or has already been stopped. With each polling TRACES32 also queries
the timestamp of the virtual target/simulation. If a timestamp is supplied, it is accurate.

SLOW The polling interval depends on the setting of the SETUP.UpdateRATE
command and can thus be selected by the user (target hardware).

The timestamp is queried with the poll. The result is very accurate
(default for virtual targets).

FAST The polling interval is 1 ms (default for target hardware).

CONTinous The polling is performed as often as possible. This leads to a high load
on the (JTAG) debug interface and collides with other activities over this
interface such as run-time memory access (target hardware only).

Very accurate measurement results are obtained when using an onchip cycle counter (target hardware
only). This is not supported by all core architectures.

BMC An onchip counter is used for the runtime measurement.
The core clock needs to be set using the BMC.CLOCK command.

This mode can only be used:

. if the core clock remains constant during the program runtime.
. if all cores in an SMP system run at the same clock frequency.
TB Returns the value of the runtime based on the time base registers (TBU

and TBL). This option also depends on the value of the clock.

©1989-2024 Lauterbach General Commands Reference Guide R | 40

The individual measurements can be logged in the RunTime trace. The runtime trace is located on the host
computer. Its default size is 1024 entries. Its size can be changed with the RunTime.Size command.
Logging can be switched on with the RunTime.OFF command. The log can be displayed with the
RunTime.List command.

The RunTime Trace can operate in two modes.

Fifo If the trace is full, new records will overwrite older ones. The runtime
trace includes always the last logs.

Stack If the trace is full, the logging will be stopped. The runtime trace includes
always the first log.

See also
B RunTime B RunTime.state
RunTime.refA Set reference
Format: RunTime.refA (deprecated)

The RunTime command group has been completely revised with build 155615/TRACE32 Release 02/2023.
Since then this command is set to deprecated. If you still have scripts that use this command, please use the
RunTime.Show command to display the results of the runtime measurement.

This command sets the reference value A to the current runtime. Typically the feature is used to record the
moment of an “important event” like entering an interrupt handler etc.

See also
B RunTime B RunTime.state
RunTime.refB Set reference
Format: RunTime.refB (deprecated)

The RunTime command group has been completely revised with build 155615/TRACE32 Release 02/2023.
Since then this command is set to deprecated. If you still have scripts that use this command, please use the
RunTime.Show command to display the results of the runtime measurement.

©1989-2024 Lauterbach General Commands Reference Guide R | 41

This command sets the reference value B to the current runtime.

See also
B RunTime B RunTime.state
RunTime.SHOW Display results
Format: RunTime.SHOW (deprecated)

This command was introduced with build 155615/TRACE32 Release 02/2023 to be able to display the
results of the RunTime measurements even if scripts with deprecated commands are used.

This command displays the RunTime counter window with a matrix of values related to runtime
measurements.

Each cell of the matrix shows the difference between the value denoted by the column header and the value
denoted by the row header. As the first line’s row header is “zero”, the line shows the effective values e.g.
(refA - 0), (refB - 0), ... The cell at (column refB / row ref A) shows refB - refA i.e. the runtime between both
values.

Reference values can be set to the current runtime (“actual’) by double-clicking the appropriate element.

& B:RunTime SHOW oo }

ref A ref B laststart actual
zero 0.000us 0.000us 1.415ms 1.852ms
ref A 0.000us 1.415ms 1.852ms |

ref B 1.415ms 1.852ms
laststart 437.100us E
1

A Total time since the last SYStem.Mode Up or RunTime.Init

B Time since the latest program start

In the deprecated version of the RunTime command group, the measurement method of TRACE32 was set
automatically. The following measurement methods were set depending on the core architecture.

Feature RunTime counter Runtime counter is Accuracy
is started... stopped...
“CPU running” ...after detecting the ... after deassertion of the High
signal “CPU running” signal “CPU running” signal
NEXUS Debug ... after receiving the ... after receiving the High
Status Message “Debug Mode Left” “Debug Mode Entered”
message message

©1989-2024 Lauterbach General Commands Reference Guide R | 42

Feature RunTime counter Runtime counter is Accuracy
is started... stopped...
“CPU stopped” ...by TRACE32 after ...with the activation of the RunTime counter
signal starting the CPU “CPU stopped” signal start is imprecise
Polling the PC ...by TRACE32 after ...by TRACERS2 after CPU is RunTime counter
starting the CPU stopped start and stop are
imprecise

“CPU running” signal

Some processor architectures provide a “CPU running” signal within the debug interface (e.g. DBACK for
ARM7/ARM9). This feature allows an exact measurement by the RunTime counter.

Debug Status Messages

Most NEXUS interfaces provide Debug Status Messages which indicate the start/stop of the program
execution. The maximum measurement error is calculated as follows:

(SizeOfMessageFifo x2)/(MCKOFactor) clock cycles
While MCKOFactor is the value entered via the command SYStem.Option.MCKO <factor>.
Hardware signal indicating “CPU stopped”

Some processor architectures provide a “CPU stopped” signal within the debug interface (e.g. DE for the
DSP56K). This feature allows an exact stop of the RunTime counter, but the start of the RunTime counter
can’t be synchronized exactly with the start of the program execution.

Polling

For most processor architectures the RunTime counter is started/stopped by TRACE32. Thus the
measurement can’t be exactly synchronized with the CPU start/stop.

See also

H RunTime B RunTime.state

©1989-2024 Lauterbach General Commands Reference Guide R | 43

RunTime.state

Display RunTime configuration and results

[build 155615 - DVD 02/2023]

Format:

RunTime.state

er B::RunTime.state
606.820us 2?

2.717s

(o] 2)

¥ advanced

A Total time since the last SYStem.Mode Up or RunTime.Init

Displays the RunTime state and configuration window.

B Time since the latest program start. Question marks may be shown if the accuracy of the error is not

exact:
o More than 10% error shows “??”
o More than 1% error shows “?”

C Advanced button can be used to display RunTime settings.

er B::RunTime.state EI@
606.820us 77 2.717s A advanced
state used accuracy
(O Disable 1 (+0/-603.070us)
(®) OFF 64,
() Arm SIZE CLOCK
[1024, [{]]

commands

& Init Mode Mode

2 List (®) Fifo (CsLow
[Autolrm (O Stack (® FAST
[Autolnit () CONTinuous

(ZJBMC
See also

<trace>.Arm
<trace>.Chart

<trace>.OFF
<trace>.SAVE

RunTime.List

L EEEEEEEER

<trace>.TRACK

<trace>.EXPORT
<trace>.FindChange

RunTime.SHOW
RunTime.LAST()

LA EEEEEER

<trace>.AutoArm
<trace>.CLOCK
<trace>.FILE
<trace>.GOTO
<trace>.PROfileChart
<trace>.SIZE
<trace>.View
RunTime.Mode
RunTime.WAIT
RunTime.LASTRUN()

A ’Release Information’ in’Legacy Release History’

CCEEEEEEER

<trace>.Autolnit
<trace>.ComPare
<trace>.Find
<trace>.Init
<trace>.REF
<trace>.STATistic
<trace>.ZERO
RunTime.refA
RunTime.ACCURACY()
RunTime.REFA()

O EEEEEENR

<trace>.BookMark
<trace>.DISable
<trace>.FindAll
<trace>.LOAD
<trace>.RESet
<trace>.Timing
RunTime
RunTime.refB
RunTime.ACTUALY()
RunTime.REFB()

©1989-2024 Lauterbach

General Commands Reference Guide R

44

RunTime.WAIT Wait until a condition is true or a period has elapsed
[build 150017 - DVD 09/2022]

Format: RunTime.WAIT [<condition>] [<period>]

If a virtual target or a simulation system is debugged, the time behavior can be faster or slower than that of
the real target hardware. The specified <period> here refers to the simulated time. Same as WAIT

/RunTime.
<condition> PRACTICE functions that return the boolean values TRUE or FALSE.
<period> Min.: 1ms

Max.: 100000s
Without unit of measurement, the specified value will be interpreted as

seconds and must be an integer. See below.

Example 1: Run program execution for a second.

Go
RunTime.WAIT 3.s
Break

Example 2: Start program execution and wait until core stops at a breakpoint, with 3.s timeout.

Go main
RunTime.WAIT !STATE.RUN() 3.s

IF STATE.RUN()

(
PRINT %ERROR "function main not reached!"

ENDDO

See also

B RunTime B RunTime.state

©1989-2024 Lauterbach General Commands Reference Guide R | 45

Generic RunTime Trace Commands

RunTime.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

RunTime.AutoArm Arm automatically

See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

RunTime.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

RunTime.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

RunTime.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

RunTime.CLOCK Clock to calculate time out of cycle count information

See command <trace>.CLOCK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 191).

©1989-2024 Lauterbach General Commands Reference Guide R | 46

RunTime.ComPare Compare trace contents

See command <trace>.ComPare in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
192).

RunTime.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

RunTime.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

RunTime.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

RunTime.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

RunTime.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

RunTime.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

RunTime.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

©1989-2024 Lauterbach General Commands Reference Guide R | 47

RunTime.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

RunTime.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

RunTime.OFF Switch off

See command <trace>.0FF in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 278).

RunTime.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

RunTime.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

RunTime.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

RunTime.SAVE Save trace for postprocessing in TRACES32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

RunTime.SIZE Define buffer size

See command <trace>.SIZE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 373).

©1989-2024 Lauterbach General Commands Reference Guide R | 48

RunTime.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

RunTime.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

RunTime.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

RunTime.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

RunTime.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide R | 49

	General Commands Reference Guide R
	History
	Register
	Register Processor registers
	Register.Init Initialize the processor registers
	Register.LOG Log registers
	Register.REFRESH Refresh register window
	Register.RELOAD Reload the compiler register settings
	Register.Set Modify register contents
	Register.StackTop Define stack top address
	Register.view Display registers

	RESet
	RESet Reset all commands

	RTP
	RTP.CLEAR Clear tracebuffer
	RTP.DirectDataMode Simple trace mode
	RTP.DirectDataMode.Mode Direct data mode read/write
	RTP.HaltOnOverflow Halt system on RTP FIFO overflow
	RTP.Mode Select the trace mode
	RTP.OFF Disables the RTP module
	RTP.ON Activates the RTP module
	RTP.PortClock Configure RTPCLK
	RTP.PortSize Size of RTP data port
	RTP.RESet Resets RTP settings
	RTP.state Display RTP setup
	RTP.TraceMode Complex trace mode
	RTP.TraceMode.RAM<x>.SECTion<y> Configures a trace region
	RTP.TraceMode.TraceExclude Invert all trace regions

	RTS
	RTS Real-time profiling (RTS)
	Overview RTS
	RTS.COMMAND Issue command to RTS API model
	RTS.Init Initialize RTS
	RTS.LOAD Load RTS API module
	RTS.OFF Deactivate real-time profiling
	RTS.ON Activate real-time profiling
	RTS.PROfile Display performance characteristics charts
	RTS.RESet Restore default settings and initialize RTS
	RTS.state Open status and control window
	RTS.StopOnBadaddress Stop RTS on VM errors
	RTS.StopOnError Stop RTS on flow errors
	RTS.StopOnFifofull Stop RTS on FIFOFULL
	RTS.StopOnNoaccesstocode Stop RTS on no access to code
	RTS.StopOnUnknowntask Stop RTS on unknown task
	RTS.TImeMode Enable RTS processing with time information
	RTS.TrackData Enable RTS data tracking
	RTS.TRIGGERACK Acknowledge RTS trigger
	RTS.TriggerConnect Propagate RTS triggers to RTS trigger slaves
	RTS.TriggerOnExecute Generate RTS trigger on execution
	RTS.TriggerOnRead Generate RTS trigger on read event
	RTS.TriggerOnWrite Generate RTS trigger on write event
	RTS.TriggerOnWTM Generate RTS trigger on watchpoint event
	RTS.TriggerSlave Receive RTS triggers
	RTS.TriggerWaitForAck Stall RTS processing until trigger acknowledged
	RTS.UnknownData HTM unknown data
	RTS.UNLOAD Unload RTS API module

	RunTime
	RunTime Runtime measurement
	Overview RunTime
	Runtime Measurements Using the Debugger
	Nested Function Analysis
	RunTime Functions

	RunTime-specific Trace Commands
	RunTime.List List runtime logs
	RunTime.Mode Mode selection
	RunTime.refA Set reference
	RunTime.refB Set reference
	RunTime.SHOW Display results
	RunTime.state Display RunTime configuration and results
	RunTime.WAIT Wait until a condition is true or a period has elapsed

	Generic RunTime Trace Commands
	RunTime.Arm Arm the trace
	RunTime.AutoArm Arm automatically
	RunTime.AutoInit Automatic initialization
	RunTime.BookMark Set a bookmark in trace listing
	RunTime.Chart Display trace contents graphically
	RunTime.CLOCK Clock to calculate time out of cycle count information
	RunTime.ComPare Compare trace contents
	RunTime.DISable Disable the trace
	RunTime.EXPORT Export trace data for processing in other applications
	RunTime.FILE Load a file into the file trace buffer
	RunTime.Find Find specified entry in trace
	RunTime.FindAll Find all specified entries in trace
	RunTime.FindChange Search for changes in trace flow
	RunTime.GOTO Move cursor to specified trace record
	RunTime.Init Initialize trace
	RunTime.LOAD Load trace file for offline processing
	RunTime.OFF Switch off
	RunTime.PROfileChart Profile charts
	RunTime.REF Set reference point for time measurement
	RunTime.RESet Reset command
	RunTime.SAVE Save trace for postprocessing in TRACE32
	RunTime.SIZE Define buffer size
	RunTime.STATistic Statistic analysis
	RunTime.Timing Waveform of trace buffer
	RunTime.TRACK Set tracking record
	RunTime.View Display single record
	RunTime.ZERO Align timestamps of trace and timing analyzers

