
MANUAL

General Commands Reference
Guide G

General Commands Reference Guide G

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide G .. 1

 History .. 4

 GLOBALON .. 5

 GLOBALON Global event-controlled PRACTICE script execution 5

 Go ... 10

 Go Debug control, program execution, and real-time emulation 10

 Debug Control for Debuggers 10

 Go.Asm Start the program execution and switch to Asm mode 11

 Go.Back Run backwards (CTS) 13

 Go.BackEntry Run backwards until function entry (CTS) 14

 Go.BackTillWarning Run backwards until warning (CTS) 15

 Go.Change Run program until content changes 15

 Go.direct Start the program execution 16

 Go.Hll Start the program execution and switch to HLL mode 18

 Go.Java Run program until JAVA code starts 19

 Go.Mix Start the program execution and switch to 'Mix' mode 20

 Go.MONitor Switch to run mode debugging 21

 Go.Next Run program until next line 21

 Go.Return Run to function epilog 22

 Go.Till Run program until expression becomes true 25

 Go.TillWarning Run program until warning (CTS) 26

 Go.Up Run up to caller 27

 GROUP ... 28

 GROUP Group functions, modules, or tasks 28

 Features 28

 GROUP.COLOR Define color for group indicator 32

 GROUP.Create Create a new group 33

 GROUP.CreateFunctions Pool functions to group 34

 GROUP.CreateLabels Use labels to pool address ranges to group 35

 GROUP.CreateModules Pool modules to group 37

 GROUP.CreatePrograms Pool programs group 38

 GROUP.CreateSources Pool source files to group 39
General Commands Reference Guide G | 2©1989-2024 Lauterbach

 GROUP.CreateTASK Pool tasks to group 40

 GROUP.Delete Delete the specified group 43

 GROUP.DeleteTASK Delete specified task from group 43

 GROUP.DISable Disable a group 44

 GROUP.ENable Enable a group 45

 GROUP.HIDE Hide group from debugging 45

 GROUP.List List all specified groups 46

 GROUP.Merge Merge group members in statistic 46

 GROUP.RESet Clear all group specifications 47

 GROUP.SEParate Separate group members in statistic 47

 GROUP.SHOW Show group for debugging 48
General Commands Reference Guide G | 3©1989-2024 Lauterbach

General Commands Reference Guide G

Version 06-Jun-2024

History

05-Jan-22 Support wildcard in GROUP.CreateTASK.
General Commands Reference Guide G | 4©1989-2024 Lauterbach

GLOBALON

GLOBALON Global event-controlled PRACTICE script execution
[<events>] [<action>] [Example]

The GLOBALON command enables the automatic start or branching of the PRACTICE programs
controlled by several events. In order for events and their actions to be available, they need to be registered
in TRACE32. To register events and their actions, you can for example:

• Run the GLOBALON commands via the TRACE32 command line.

• Include the GLOBALON commands in the PRACTICE script file system-settings.cmm. As a
result, they are automatically registered when you start TRACE32. For more information, see
“Automatic Start-up Scripts” (practice_user.pdf).

• Include the GLOBALON commands in any other script. As a result, they are only registered
when you run that script.

Registered actions remain stored on the global PRACTICE stack frame. Therefore, the actions are valid for
the entire duration of the TRACE32 session, or until they are removed manually.

Format: GLOBALON <event> [<action>]

<event>: <device_specific_events>
<practice_specific_events>
<cpu_specific_events>

<device_
specific_
events>:

ABREAK
CORESWITCH
GO
PBREAK
PBREAKAT <address>
POWERDOWN
POWERUP
RESET
SYSDOWN
SYSUP
TRIGGER

<action>: DO <file>
General Commands Reference Guide G | 5©1989-2024 Lauterbach

The currently active actions can be viewed with the PMACRO command. The outermost frame is the global
PRACTICE stack frame, as shown below.

Let’s assume that an action has been registered for the SYSUP event. When a SYStem.Up command is
initiated via the TRACE32 PowerView GUI or the command line or via another PRACTICE script (*.cmm),
then TRACE32 responds as illustrated in the figure below:

Events: <device_specific_events>

A Global PRACTICE stack frame with GLOBALON commands

Device-specific Events Descriptions

ABREAK The analyzer mode changed to the break state.

CORESWITCH SMP debugging: The currently displayed context changed to a
different core or thread.

GO The target program started.

PBREAK The target program stopped.

PBREAKAT The target program stopped at a specific address.

POWERDOWN Target power is switched off.

POWERUP Target power is switched on.

RESET A target reset was detected.

SYSDOWN System mode changed to Down or NoDebug. The event is also
triggered if the debugger is in system mode StandBy and the target
power is switched off.

SYSUP System mode changed to Up. The event is also triggered if the
debugger is in system mode StandBy and the target power is
switched on.

TRIGGER A podbus trigger occurred (internal or external source can be
selected via TRIGGER window).

A

TRACE32 executes the
SYStem.Up command.

TRACE32 detects the
SYSUP event.

TRACE32 executes the
<action>.
General Commands Reference Guide G | 6©1989-2024 Lauterbach

Events: <practice_specific_events>

Events: <cpu_specific_events>

<actions>

One of the following actions can be defined for any of the above events:

<practice_specific_
events>

For a description of the PRACTICE specific events, such as
GLOBALON ERROR, refer to GLOBALON (practice_ref.pdf).

<cpu_specific_
events>

For information about CPU specific events, refer to the Processor
Architecture Manuals [▲] listed in the See also block below.

Actions Descriptions

no action
specified

An already defined action for a particular global event will be removed
from the global PRACTICE stack frame. See “Unregistering GLOBALON
Commands”.

DO If the event occurs, the specified PRACTICE script file will be executed
automatically.
General Commands Reference Guide G | 7©1989-2024 Lauterbach

Example - Creating Actions for GLOBALON Events

1. Develop the action (PRACTICE script *.cmm) you want to be executed automatically whenever
the desired event occurs.

For demo purposes, we will use two simple scripts for the events SYSUP and SYSDOWN so that you
can reproduce the example right away.

globalon_sysup.cmm

globalon_sysdown.cmm

2. Register the events and their actions in TRACE32.

The path prefix ~~/ works on Windows and Linux and expands to the system directory of TRACE32, by
default C:/T32 for Windows.

PRINT "System up at " Clock.Time()
AREA ; Display the message in the AREA window

; Other commands such as Data.Set, PER.Set to disable an
; external watchdog
; ...

ENDDO

PRINT "System down at " Clock.Time()
AREA ; Display the message in the AREA window
; ...
ENDDO

; At the global PRACTICE stack frame, the following
; device-specific events are registered: SYSUP and SYSDOWN

; On SYSUP, this PRACTICE script file (*.cmm) is called:
GLOBALON SYSUP DO "~~/globalon_sysup.cmm"

; On SYSDOWN, this PRACTICE script file (*.cmm) is called:
GLOBALON SYSDOWN DO "~~/globalon_sysdown.cmm
General Commands Reference Guide G | 8©1989-2024 Lauterbach

Unregistering GLOBALON Commands

You can unregister all GLOBALON commands or just a selected GLOBALON command.

• To unregister all GLOBALON commands, type at the TRACE32 command line:

• To unregister just a selected GLOBALON command, type at the TRACE32 command line:

Result: The respective line or lines are no longer displayed in global PRACTICE stack frame of the
PMACRO.list window. Thus the GLOBALON command or commands can no longer be executed.

See also

■ ON ■ END ■ PMACRO.RESet

▲ ’Mico32 specific Event for the ON and GLOBALON Command’ in ’Mico32 Debugger’
▲ ’CPU specific Events for the ON and GLOBALON Command’ in ’Intel® x86/x64 Debugger’

NOTE: Unregistering all GLOBALON commands from the global PRACTICE stack
frame also deletes all global PRACTICE macros.

END ; Ends all active PRACTICE scripts
PMACRO.RESet ; Unregisters all GLOBALON commands and
 ; deletes all global PRACTICE macros

END ; Ends all active PRACTICE scripts

; Unregisters the action for the SYSDOWN event
GLOBALON SYSDOWN ; Do not include the DO <action> here!

General Commands Reference Guide G | 9©1989-2024 Lauterbach

Go

Go Debug control, program execution, and real-time emulation

See also

■ Go.direct ■ Go.Asm ■ Go.Back ■ Go.BackEntry
■ Go.BackTillWarning ■ Go.Change ■ Go.Hll ■ Go.Java
■ Go.Mix ■ Go.MONitor ■ Go.Next ■ Go.Return
■ Go.Till ■ Go.TillWarning ■ Go.Up ■ Break
■ List ■ Step

▲ ’Release Information’ in ’Legacy Release History’

Debug Control for Debuggers

The command Go starts the program execution on the chip/core. By default the program is executed in real-
time, but there are features within TRACE32 that suspend the real-time execution. Examples are:

• Intrusive breakpoint

• Performance analysis via StopAndGo

.

Restarting from Breakpoint

When interrupts are pending and the program execution is started from a breakpoint, it is possible that the
processor/core executes the interrupt service routine and returns to the same breakpoint location afterward.
The debugging seems to stick on the breakpoints.

To avoid this behavior, TRACE32 executes a single step when the program execution is started on a
breakpoint if required. However, this strategy does not solve the problem completely. To completely solve the
issue, you have to disable the interrupts will single stepping on assembler level with the TRACE32 command
SYStem.Option.IMASKASM ON.

SYStem.Option.IMASKASM ON is not a default setting, because it may disturb debugging parts of the
program (e.g. a boot loader) that enable/disable interrupts.

NOTE: Go is not equivalent to the SYStem.Mode Go command.

SYStem.Mode Go resets the processor/chip, enables the on-chip debug logic,
and then starts the program execution.

Go command in the toolbar
General Commands Reference Guide G | 10©1989-2024 Lauterbach

Go.Asm Start the program execution and switch to Asm mode

Starts the program execution and switches the debug mode to Asm mode.

Format: Go.Asm [<address> [/<breaktype> …]] …

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

SingleCORE (SMP debugging only)

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
General Commands Reference Guide G | 11©1989-2024 Lauterbach

If one or more addresses are specified, temporary breakpoints are set before the program execution is
started.

See also

■ Go ■ Go.direct

Go.Asm

Break

; switch to debug mode assembler and
; start the program execution
; stop the program execution

Go.Asm d_add ; set a temporary Program breakpoint to
; the label d_add, switch to debug mode
; assembler and start the program
; execution

Go.Asm D:0x40004128 /Write ; set a temporary Write breakpoint to
; the address D:0x40004128, switch to
; debug mode assembler and start the
; program execution
General Commands Reference Guide G | 12©1989-2024 Lauterbach

Go.Back Run backwards (CTS)

Re-runs the recorded trace information backward until the specified point (only for trace-based debugging -
CTS).

Format: Go.Back [<address> [/<breaktype> …]] …

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
General Commands Reference Guide G | 13©1989-2024 Lauterbach

Example:

See also

■ Go ■ Go.direct ■ CTS

▲ ’Release Information’ in ’Legacy Release History’

Go.BackEntry Run backwards until function entry (CTS)

Re-runs the recorded trace information backward until the entry of the current function (only for trace-based
debugging - CTS).

Example:

See also

■ Go ■ Go.direct

▲ ’Release Information’ in ’Legacy Release History’

Trace.List ; open a Trace Listing

CTS.GOTO -22918643. ; specify record -22918643. as CTS
; starting point

Go.Back func13 ; re-run the recorded trace information
; backward until the entry to func13

Format: Go.BackEntry /Endless

Trace.List ; open a Trace Listing

CTS.GOTO -22918643. ; specify record -22918643. as CTS
; starting point

Go.BackEntry ; re-run the recorded trace information
; backward until the entry of the current
; function
General Commands Reference Guide G | 14©1989-2024 Lauterbach

Go.BackTillWarning Run backwards until warning (CTS)

Re-runs the recorded trace information backward until the previous warning (only for trace-based debugging
- CTS). An explanation for the warning is given in the message area. A full example is given at
Go.TillWarning.

See also

■ Go ■ Go.direct ■ CTS.state

Go.Change Run program until content changes

Starts the program execution. Whenever a breakpoint is hit, check if <content> changed. If <content> has
not changed, re-start program execution automatically.

Example:

See also

■ Go ■ Go.direct

Format: Go.BackTillWarning

Format: Go.Change <content>

Break.Set 0x100
Break.Set 0x200
Go.Change Register(R31)

; set a Program breakpoint at address 0x100
; set a Program breakpoint at address 0x200
; starts the program execution
; check at each breakpoint hit if the
; content of register R31 changed
; if not, re-start the program execution
; automatically
General Commands Reference Guide G | 15©1989-2024 Lauterbach

Go.direct Start the program execution
[Examples]

Starts the program execution. If one or more addresses are specified temporary breakpoints are set, before
the program execution is started.

Format: Go.direct [<address> [/<breaktype> …]] …

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

SingleCORE (SMP debugging only)

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

SingleCORE SMP debugging only:
Start program execution only on the currently selected core.
General Commands Reference Guide G | 16©1989-2024 Lauterbach

Examples:

The Cores field of the TRACE32 state line displays the number of the currently selected core.

See also

■ Go ■ Go.Asm ■ Go.Back ■ Go.BackEntry
■ Go.BackTillWarning ■ Go.Change ■ Go.Hll ■ Go.Java
■ Go.Mix ■ Go.MONitor ■ Go.Next ■ Go.Return
■ Go.Till ■ Go.TillWarning ■ Go.Up ■ Break.direct
■ Register.view ❏ Register() ❏ STATE.RUN()

▲ ’Release Information’ in ’Legacy Release History’

Go ; start program execution

Go func0 func12 ; set temporary breakpoints to the entry of
; function func0 and func12 and then start the
; program execution
; temporary breakpoints are only valid until the
; program execution stops the next time

CORE.select 1. ; select core 1

Go /SingleCORE ; start program execution on
; core 1. only
General Commands Reference Guide G | 17©1989-2024 Lauterbach

Go.Hll Start the program execution and switch to HLL mode

Starts the program execution and switches the debug mode to HLL mode. If one or more addresses are
specified, temporary breakpoints are set before the program execution is started.

See also

■ Go ■ Go.direct

Format: Go.Hll [<address> [/<breaktype> …]] …

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

SingleCORE (SMP debugging only)

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
General Commands Reference Guide G | 18©1989-2024 Lauterbach

Go.Java Run program until JAVA code starts

Starts the program execution and stops at the first JAVA byte code to be executed. This command can be
used to switch from native debugging to JAVA byte code debugging.

See also

■ Go ■ Go.direct

Format: Go.Java
General Commands Reference Guide G | 19©1989-2024 Lauterbach

Go.Mix Start the program execution and switch to "Mix" mode

Starts the program execution and switches the debug mode to Mix mode. If one or more addresses are
specified temporary breakpoints are set, before the program execution is started.

See also

■ Go ■ Go.direct

Format: Go.Mix [<address> [/<breaktype> …]] …

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

SingleCORE (SMP debugging only)

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
General Commands Reference Guide G | 20©1989-2024 Lauterbach

Go.MONitor Switch to run mode debugging

Starts the program execution and switches to run mode debugging. In run mode debugging all debug events
are handled by a so-called debug monitor.

Please be aware that run-mode debugging has to be configured, before it can be used. Typical commands
are:

The command Break.MONitor can be used to switch back to stop mode debugging if this is possible within
your debug environment.

See also

■ Go ■ Go.direct ■ Break.MONitor ■ Break.SetMONitor

Go.Next Run program until next line

Start the program execution and set a temporary breakpoint set to the next assembler or HLL line. This
command can be used to leave a loop or to overstep a subroutine call instruction (see also the command
Step.Over.)

See also

■ Go ■ Go.direct

Format: Go.MONitor

SYStem.PORT 10.1.2.99:2345

Go.MONitor

; configure the TCP/IP
; communication to the debug
; monitor

SYStem.MemAccess GdbMON

Go.MONitor

; use Debug Communication Channel
; (DCC) to communicate with GDB

Format: Go.Next
General Commands Reference Guide G | 21©1989-2024 Lauterbach

Go.Return Run to function epilog

The first Go.Return stops at the function epilog, the second Go.Return stops at the return of the function.
Stopping at the function epilog first has the advantage that the local variables are still valid at this point.

This works in detail as follows:

The debug information for a function includes the epilog and exit information (command sYmbol.INFO);
epilog shows the start address of the function epilog, exit shows the address of the return of the function.

Format: Go.Return
General Commands Reference Guide G | 22©1989-2024 Lauterbach

Go get_dht
…

Step.single
Step.single
Go.Return

; set a temporary breakpoint to the function
; get_dht and start the program execution
; -> the program execution is stopped at the
; function entry

; step inside function

; set a temporary breakpoint to the start address
; of the function epilog and start the program
; execution
; -> the program execution is stopped at the
; function epilog, here all local variables are
; still valid

Go.Return ; set a temporary breakpoint to the return of the
; function and start the program execution
; -> the program execution is stopped at the
; function exit, since the function epilog
; already cleaned the frame pointer, local
; variables are no longer valid
General Commands Reference Guide G | 23©1989-2024 Lauterbach

See also

■ Go ■ Go.direct

▲ ’Release Information’ in ’Legacy Release History’

Go.Return ; if the command Go.Return is used when the
; the instruction pointer is already at the
; return of the function, an error message is
; generated
General Commands Reference Guide G | 24©1989-2024 Lauterbach

Go.Till Run program until expression becomes true

Starts the program execution. Whenever a breakpoint is hit, Go.Till checks if the <boolean_expression>
became true. If not, Go.Till re-starts the program execution automatically.

Example:

See also

■ Go ■ Go.direct

Format: Go.Till <boolean_expression>

Break.Set 0x100

Break.Set 0x200

Go.Till Data.Byte(D:0x100)==0x0

; set a Program breakpoint at
; address 0x100
; set a Program breakpoint at
; address 0x200
; start the program execution,
; check at each breakpoint hit if
; the content of the byte at
; address 0x100 is 0
; if not, re-start the program
; execution automatically
General Commands Reference Guide G | 25©1989-2024 Lauterbach

Go.TillWarning Run program until warning (CTS)

Re-runs the recorded program flow until the next warning (only for trace-based debugging - CTS).

An example for a warning is given in the message area.

See also

■ Go ■ Go.direct ■ CTS.state

Format: Go.TillWarning

AREA.view ; open message area

Trace.List ; open a Trace Listing

CTS.GOTO -17281536. ; specify record -17281536. as CTS
; starting point

CTS.state ; open the CTS state window and
; and check for warnings

Go.TillWarning ; re-run the recorded program
; until the next warning
General Commands Reference Guide G | 26©1989-2024 Lauterbach

Go.Up Run up to caller

Starts the program execution in order to return to the caller function. A temporary breakpoints is set directly
behind the function call in the caller function.

Without arguments it returns to the function that called the current function (level 1).

<level>

With a <level> argument it starts the program execution in order to return 3 levels up in the call hierarchy
(see also command Frame.view).

<address>

With an <address> argument it returns to the first function on the call stack, which includes the given
address. The address can be defined symbolically, by the name of the function, or by a line number within
the function.

See also

■ Go ■ Go.direct

Format: Go.Up [<level> | <address>]

Go.Up ; return to the caller of the current function

Go.Up 3. ; return three levels up in the function nesting

Go.Up main ; return to function main
General Commands Reference Guide G | 27©1989-2024 Lauterbach

GROUP

GROUP Group functions, modules, or tasks

The GROUP command group allows to structure application programs consisting of a huge number of
functions/modules/tasks to ease the evaluation of the trace contents and the debugging process.

See also

■ GROUP.COLOR ■ GROUP.Create ■ GROUP.CreateFunctions ■ GROUP.CreateLabels
■ GROUP.CreateModules ■ GROUP.CreatePrograms ■ GROUP.CreateSources ■ GROUP.CreateTASK
■ GROUP.Delete ■ GROUP.DeleteTASK ■ GROUP.DISable ■ GROUP.ENable
■ GROUP.HIDE ■ GROUP.List ■ GROUP.Merge ■ GROUP.RESet
■ GROUP.SEParate ■ GROUP.SHOW ❏ GROUP.EXIST()

▲ ’CPU Load Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
▲ ’GROUP Function’ in ’General Function Reference’

Features

ENable

TRACE32 PowerView provides the following features if a group is enabled:

• The source code of all group members is marked with the color assigned to the group.
General Commands Reference Guide G | 28©1989-2024 Lauterbach

• The trace information recorded for the group members is marked with the color assigned to the
group.

• All group members are marked with the color assigned to the group in all trace analysis windows.

• Additional group-based trace analyses commands are provided.

Trace.STATistic.GROUP Group-based run-time analysis.

Trace.Chart.GROUP Group time chart.

Trace.PROfileChart.GROUP Group profile chart.

MIPS.STATistic.GROUP MIPS statistic for groups.

MIPS.PROfileChart.GROUP MIPS profile chart for groups.
General Commands Reference Guide G | 29©1989-2024 Lauterbach

Merge

If a group is enabled, the following features are added by checking merge:

• The group represents its members in all trace analysis windows. No details about group
members are displayed.
General Commands Reference Guide G | 30©1989-2024 Lauterbach

Hide

If a group is enabled, the following features are added by checking hide:

• The trace information recorded for the group members is hidden.

• The group represents its members in all trace analysis windows. No details about group
members are displayed (same as merge).

• Step over group members during HLL single stepping.
General Commands Reference Guide G | 31©1989-2024 Lauterbach

GROUP.COLOR Define color for group indicator

Defines the color that is used to mark the group members.

The following color convention are used:

Example:

See also

■ GROUP.Create ■ GROUP

▲ ’PowerView - Screen Display’ in ’PowerView User’s Guide’

Format: GROUP.COLOR <group_name> <color>

<color>: NONE
BLACK
MAROON
GREEN
OLIVE
NAVY
PURPLE
TEAL
SILVER
GREY
RED
LIME
YELLOW
BLUE
FUCHSIA
AQUA
WHITE

RED To mark the OS kernel.

YELLOW To mark kernel drivers and libraries.

BLUE To mark virtual machine byte code e.g. Android/Dalvik.

GREEN To mark the application/application processes.

GROUP.COLOR "Layer 1" FUCHSIA ; Specify color
General Commands Reference Guide G | 32©1989-2024 Lauterbach

GROUP.Create Create a new group

The command GROUP.Create allows to create a new group. Group members can be defined by module
name, function name, etc. Without options, the GROUP.Create dialog window is opened.

Examples:

Format: GROUP.Create [<group_name> {<group_member>}] [/<option>]

<group_
member>:

<address_range> | <function> | <module> | <program> | <source>

<option>: ENable | DISable
SHOW | HIDE
SEParate | Merge
<color>

ENable
(default)

Enable the GROUP features.

DISable Disable the GROUP features.

SHOW
(default)

Display the instructions of the GROUP members together with the
GROUP indicator (COLOR).

HIDE Suppress the display of the instructions of the GROUP members in the
trace listing and step over the instructions of the GROUP members
during HLL single stepping. The group represents its members in all trace
analysis windows.

SEParate
(default)

Display the measurement results separately for each group member if a
trace analysis command is used.

Merge The group represents its members in all trace analysis windows. No details
about group members are displayed.

DIALOG Deprecated.

<color> Define the color for the GROUP indicator.

GROUP.Create ; open GROUP.Create dialog window
General Commands Reference Guide G | 33©1989-2024 Lauterbach

See also

■ GROUP.COLOR ■ GROUP.CreateFunctions ■ GROUP.CreateLabels ■ GROUP.CreateModules
■ GROUP.CreatePrograms ■ GROUP.CreateSources ■ GROUP.CreateTASK ■ GROUP
■ GROUP.Delete ■ GROUP.DeleteTASK ■ GROUP.DISable ■ GROUP.ENable
■ GROUP.HIDE ■ GROUP.List ■ GROUP.Merge ■ GROUP.RESet
■ GROUP.SEParate ■ GROUP.SHOW ■ <trace>.Chart.GROUP ■ <trace>.STATistic.GROUP

▲ ’Release Information’ in ’Legacy Release History’

GROUP.CreateFunctions Pool functions to group

Pools the functions to groups.

Example:

GROUP.Create "kernel" \os_module1 \os_module2 \os_scheduler

GROUP.Create "Layer 1" 0x3F0000--0x3FA533 /LIME

GROUP.Create "INT" sYmbol.SECPRANGE(\.interrupt) /MAROON /HIDE

Format: GROUP.CreateFunctions <group_name> <pattern>|<function> [{/<option>}]

<option>: ENable | DISable
SHOW | HIDE
SEParate | Merge
DIALOG
<color>

<option> For a description of the options, refer to the GROUP.Create command.

; display symbol listing for all functions
sYmbol.List.Function

; pool all functions that match the specified name pattern to the
; group "group_A"
; assign color FUCHSIA to "group_A"
GROUP.CreateFunctions "group_A" jpeg_f* /FUCHSIA

; create group "group_B" that contains the function init_source
GROUP.CreateFunctions "group_B" init_source
General Commands Reference Guide G | 34©1989-2024 Lauterbach

See also

■ GROUP.Create ■ GROUP

GROUP.CreateLabels Use labels to pool address ranges to group

Pools address ranges to groups. Each address range starts at a label and ends at the next label.

; add function term_source to the group "group_B"
GROUP.CreateFunctions "group_B" term_source

; add function do_barray_io to the group "group_B"
; assign color TEAL to "group_B"
GROUP.CreateFunctions "group_B" do_barray_io /TEAL

; list group definition
GROUP.List

Format: GROUP.CreateLabels <group_name> <pattern> | <label> [{/<option>}]

<option>: ENable | DISable
SHOW | HIDE
SEParate | Merge

DIALOG
<color>

<option> For a description of the options, refer to the GROUP.Create command.
General Commands Reference Guide G | 35©1989-2024 Lauterbach

Example:

See also

■ GROUP.Create ■ GROUP

; pool all address ranges that start with a label of the specified name
; pattern to the group "Init"
GROUP.CreateLabels "Init" _*init*

; add address range that starts with label _start to the group "Init"
; assign color MAROON to the group "Init"
GROUP.CreateLabels "Init" _start /MAROON

; list group definition
GROUP.List
General Commands Reference Guide G | 36©1989-2024 Lauterbach

GROUP.CreateModules Pool modules to group

Pools modules to group.

Example:

See also

■ GROUP.Create ■ GROUP

Format: GROUP.CreateModules <group_name> <pattern | module> [{/<option>}]

<option>: ENable | DISable
SHOW | HIDE
SEParate | Merge
<color>

<option> For a description of the options, refer to the GROUP.Create command.

; display sYmbol listing for all functions
sYmbol.List.Module

; pool all modules that match the specified name pattern to the
; group "jd_group"
GROUP.CreateModules "jd_group" jd*

; add modules jmemmgr to group "jd_group"
; assign color FUCHSIA to group "jd_group"
GROUP.CreateModules "jd_group" jmemmgr /FUCHSIA

; list group definition
GROUP.List
General Commands Reference Guide G | 37©1989-2024 Lauterbach

GROUP.CreatePrograms Pool programs group

Pools the programs that correspond to the specified name pattern to a new group.

Example:

See also

■ GROUP.Create ■ GROUP

Format: GROUP.CreatePrograms <group_name> <pattern>|<program> [{/<option>}]

<option>: ENable | DISable
SHOW | HIDE
SEParate | Merge
<color>

<option> For a description of the options, refer to the GROUP.Create command.

; display symbol listing for all programs
sYmbol.List.Program

; pool all programs that match the specified name pattern to the
; group "my_programs"
GROUP.CreatePrograms "my_programs" j*

; add program im02_bf1x to group "my_programs"
; assign color OLIVE to group "my_programs"
GROUP.CreatePrograms "my_programs" im02_bf1x /OLIVE

; list group definition
GROUP.List
General Commands Reference Guide G | 38©1989-2024 Lauterbach

GROUP.CreateSources Pool source files to group

Pools the source files that correspond to the specified name pattern to a new group.

Example:

See also

■ GROUP.Create ■ GROUP

Format: GROUP.CreateSources <group_name> <pattern>|<source> [{/<option>}]

<option>: ENable | DISable
SHOW | HIDE
SEParate | Merge
<color>

<option> For a description of the options, refer to the GROUP.Create command.

; display symbol listing for all sources
sYmbol.List.SOURCE

; pool all sources that match the specified name pattern to the
; group "my_sources"
GROUP.CreateSources "my_sources" *\mpc5xxx\mpc5646c_jpeg\jq*.c

; add all sources that match the specified name pattern to the group
; "my_sources"
; assign color LIME to group "my_sources"
GROUP.CreateSources "my_sources" *\mpc5xxx\mpc5646c_jpeg\ji*.c /LIME

; list group definition
GROUP.List
General Commands Reference Guide G | 39©1989-2024 Lauterbach

GROUP.CreateTASK Pool tasks to group

Pools tasks to a group. The grouping of tasks affects only the following commands:

Format: GROUP.CreateTASK <group_name> {<task>} [{/<option>}]

<task>: <task_magic> | <task_id> | "<task_name>"

<option>: ENable | DISable
SEParate | Merge
<color>

Trace.STATistic.TASK Display task activity statistic.

Trace.Chart.TASK Display a task activity chart.

Trace.STATistic.TASKState Display task state statistic.

Trace.Chart.TASKState Display task state time chart.

Trace.PROfileChart.TASK Display a task activity graph.

MIPS.STATistic.TASK Display the MIPS per task numerically.

MIPS.PROfileChart.TASK Display the MIPS per task graphically.

<option> For a description of the options, refer to the GROUP.Create command.

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

<task_name> This command supports task name with wildcard. If using wildcard in
task_name, it will search the corresponding tasks and list them to the
group.
General Commands Reference Guide G | 40©1989-2024 Lauterbach

Example for Linux:

; display task list
TASK.List

; pool specified tasks to group "migration0-2"
; use <task_name> to specify tasks
; assign color LIME to group "migration0-2"
GROUP.CreateTASK "migration0-2" "migration/0:11" "migration/1:14" \

 "migration/2:19" /LIME

; pool specified tasks to group "mmcgd"
; use <task_name> to specify tasks
; assign color BLUE to group "mmcgd"
GROUP.CreateTASK "mmcgd" "mmcgd*" /BLUE

; pool specified tasks to group "migration0-2"
; use <task_magic> to specify tasks
; assign color LIME to group "migration0-2"
GROUP.CreateTASK "migration0-2" 0xFFFF800012A10D80 0xFFFF800012A41B00 \

 0xFFFF800012A45E80 /LIME

; pool specified tasks to group "migration0-2"
; use <task_id> to specify tasks
; assign color LIME to group "migration0-2"
GROUP.CreateTASK "migration0-2" 11. 14. 19. /LIME

; list group definition
GROUP.List
General Commands Reference Guide G | 41©1989-2024 Lauterbach

See also

■ GROUP.Create ■ GROUP ■ GROUP.DeleteTASK
General Commands Reference Guide G | 42©1989-2024 Lauterbach

GROUP.Delete Delete the specified group

Deletes the specified GROUP. If no group is specified, then all GROUPs are deleted.

Example:

See also

■ GROUP ■ GROUP.Create

GROUP.DeleteTASK Delete specified task from group

Deletes the specified task from a group of tasks based on the task’s magic number, ID, or name. If no group
is specified, then all GROUPs are deleted.

Example:

Format: GROUP.Delete [<group_name> | <range> | <address>]

GROUP.Delete "kernel" ; delete the "kernel" group

GROUP.Delete 0x3F0000--0x3FA533 ; delete group in the address range

Format: GROUP.DeleteTASK [<task_magic> | <task_id> | "<task_name>"]

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

TASK.List.tasks ;list all task names including their magic numbers
 ;and IDs

GROUP.List ;display an overview of all groups

;create a task group named 'myTaskGroup' and add three tasks to it
GROUP.CreateTASK "myTaskGroup" "adbd:1545" "adbd:1546" "adbd:1547"

;for demo purposes, let's delete two tasks based on magic number and ID
GROUP.DeleteTASK 0xEFF7B040 ;magic number of task
GROUP.DeleteTASK 1546. ;ID of task
General Commands Reference Guide G | 43©1989-2024 Lauterbach

See also

■ GROUP ■ GROUP.Create ■ GROUP.CreateTASK

GROUP.DISable Disable a group

Disables a group.

See also

■ GROUP ■ GROUP.Create

A The magic numbers, names and IDs of the tasks are displayed in the TASK.List.tasks window.

B Result: Two of the three tasks have been deleted from the group named ‘myTaskGroup’.

Format: GROUP.DISable [<group_name> | <range> | <address>]

GROUP.DISable "kernel"

GROUP.DISable 0x3F0000--0x3FA533

A

B

General Commands Reference Guide G | 44©1989-2024 Lauterbach

GROUP.ENable Enable a group

Enables a group. For details, refer to Features.

Examples:

See also

■ GROUP ■ GROUP.Create

GROUP.HIDE Hide group from debugging

Hides a group. For details, refer to Features.

Example:

See also

■ GROUP ■ GROUP.Create

▲ ’Release Information’ in ’Legacy Release History’

Format: GROUP.ENable [<group_name> | <range> | <address>]

GROUP.ENable "kernel"

GROUP.ENable 0x3F0000--0x3FA533

Format: GROUP.HIDE [<group_name> | <range> | <address>]

GROUP.HIDE "kernel"

Trace.List

GROUP.SHOW "kernel"
General Commands Reference Guide G | 45©1989-2024 Lauterbach

GROUP.List List all specified groups

Displays all group definitions.

See also

■ GROUP ■ GROUP.Create

GROUP.Merge Merge group members in statistic

Merges group members in all trace analysis windows. For details, refer to Features.

Example:

See also

■ GROUP ■ GROUP.Create

Format: GROUP.List

Format: GROUP.Merge <name>

GROUP.Merge "layer 1"

Trace.STATistic.Func

GROUP.SEParate "layer 1"
General Commands Reference Guide G | 46©1989-2024 Lauterbach

GROUP.RESet Clear all group specifications

Resets all group settings to default.

Example:

See also

■ GROUP ■ GROUP.Create

GROUP.SEParate Separate group members in statistic

Displays details about group members in all trace analysis windows (default). For details, refer to Features.

Example:

See also

■ GROUP ■ GROUP.Create

Format: GROUP.RESet

GROUP.RESet

Format: GROUP.SEParate <name>

GROUP.SEParate "layer 1"

Trace.STATistic.Func

GROUP.Merge "layer 1"
General Commands Reference Guide G | 47©1989-2024 Lauterbach

GROUP.SHOW Show group for debugging

Shows a group. For details, refer to Features.

Example:

See also

■ GROUP ■ GROUP.Create

Format: GROUP.SHOW [<group_name> | <range> | <address>]

GROUP.SHOW "kernel"

Trace.List

GROUP.HIDE "kernel"
General Commands Reference Guide G | 48©1989-2024 Lauterbach

	General Commands Reference Guide G
	History
	GLOBALON
	GLOBALON Global event-controlled PRACTICE script execution

	Go
	Go Debug control, program execution, and real-time emulation
	Debug Control for Debuggers
	Go.Asm Start the program execution and switch to Asm mode
	Go.Back Run backwards (CTS)
	Go.BackEntry Run backwards until function entry (CTS)
	Go.BackTillWarning Run backwards until warning (CTS)
	Go.Change Run program until content changes
	Go.direct Start the program execution
	Go.Hll Start the program execution and switch to HLL mode
	Go.Java Run program until JAVA code starts
	Go.Mix Start the program execution and switch to "Mix" mode
	Go.MONitor Switch to run mode debugging
	Go.Next Run program until next line
	Go.Return Run to function epilog
	Go.Till Run program until expression becomes true
	Go.TillWarning Run program until warning (CTS)
	Go.Up Run up to caller

	GROUP
	GROUP Group functions, modules, or tasks
	Features
	GROUP.COLOR Define color for group indicator
	GROUP.Create Create a new group
	GROUP.CreateFunctions Pool functions to group
	GROUP.CreateLabels Use labels to pool address ranges to group
	GROUP.CreateModules Pool modules to group
	GROUP.CreatePrograms Pool programs group
	GROUP.CreateSources Pool source files to group
	GROUP.CreateTASK Pool tasks to group
	GROUP.Delete Delete the specified group
	GROUP.DeleteTASK Delete specified task from group
	GROUP.DISable Disable a group
	GROUP.ENable Enable a group
	GROUP.HIDE Hide group from debugging
	GROUP.List List all specified groups
	GROUP.Merge Merge group members in statistic
	GROUP.RESet Clear all group specifications
	GROUP.SEParate Separate group members in statistic
	GROUP.SHOW Show group for debugging

