LAUTERBACH A

TRACE32 as GDB Front-End

TRACE32 as GDB Front-End

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
(€1 = =TT o oo o =
TRACE32 as GDB Front-ENdcccciceminimninmninis s s s s s s s sss s ssssssssssss sassmsnas 1
L 1= (o 4
Lo X o 11 T T o 5
Documentation Updates 5
Related Documents 6
Supported ArchiteCtUres ... s e nnnes 6
QLI Y0 T T o 7
Configuration File 7
T32Start 7
[0aY o1 =T34 o TS (1] o O SS 8
Debugging Virtual Targets 8
Example: Connecting to QEMU 8
Protocol Extensions 9
GNU GDBserver 10
Connection Setup 11
Multi-Process Debugging 14
UndoDB Reversible Debugger 15
KGDB 16
Lo 10 o= ¢ Lo T {3 T 17
GDB Front-End SYStem COmMmMaNdScccccoiiiiiiiiisssssmsmmssnnnrsssssssssssssmmssssssssssssssssssssssmmssnssnns 18
SYStem.CPU Select target CPU 18
SYStem.Mode Establish communication to debug agent 18
SYStem.Option.IMASKASM Disable interrupts while single stepping 19
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 19
SYStem.Option.MMUSPACES Separate address spaces by space IDs 19
SYStem.Option.OVERLAY Enable overlay support 20
SYStem.RESetOut Resettarget 20
SYStem.GDBconfig.BREAKSOFT Use software breakpoint 20
SYStem.GDBconfig.EXTENDED Enable/disable gdb extended mode 21
SYStem.GDBconfig. GDBSERVER Remote target is a gdbserver 21
SYStem.GDBconfig.INFERIORID Set inferior ID 21
©1989-2024 Lauterbach TRACE32 as GDB Front-End 2

SYStem.GDBconfig.MONITOR Send monitor command to GDB Back-End 22
SYStem.GDBconfig.NONSTOP Enable/disable non-stop mode 22
SYStem.PORT Set communication settings 22
SYStem.GDBSIGnal Define signal handling 23

GDB Front-End TASK COMMANAScoiiimiiiiminiennisesnssassssssss s ssss s s sss s snssnssassss snsamssnsssnss 24
©1989-2024 Lauterbach TRACE32 as GDB Front-End | 3

TRACE32 as GDB Front-End

Version 06-Jun-2024

History

15-dan-19 Revised manual.

06-May-14 Manual was renamed. The old name was monitor_gdb.pdf.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 4

Introduction

The TRACE32 GDB Front-End is a software debugger solution which communicates via Ethernet or RS232
with a gdbserver /gdbstub using the GDB Remote Serial Protocol (RSP).

The TRACE32 GDB Front-End can be used:

. To connect to the GNU gdbserver in order to debug Linux user-space processes.

U To debug the Linux kernel via KGDB.

. To connect to any kind of virtual target or debugger implementing a gdbstub (e.g. QEMU)

J As a front end for the UndoDB reversible debugger
The TRACE32 GDB Front-End operates in two different modes: Run Mode and Stop Mode.

Run Mode is used when debugging a Linux user-space process using the GNU gdbserver or the UndoDB
target server. In this case, only the selected task is stopped when a breakpoint is hit. The kernel and all other
processes continue to run. In Run Mode, a single program may have more than one unit of execution, called
threads, that share one memory address space. Each thread has its own registers and execution stack. The
debugger gets and displays the information about the running tasks from the gdbserver by using the
dedicated Remote Serial Protocol packets.

On the other hand, multiple virtual targets (e.g. QEMU) support the GDB Remote Serial Protocol as a
debugging protocol. In this case, we talk about Stop Mode debugging since the TRACE32 GDB Front-End
controls the whole target system and not a single process. A breakpoint will thus cause the target system to
stop completely. In order to support Symmetrical Multi-Processing (SMP) debugging over the GDB interface,
the TRACE32 GDB Front-End considers each core from an SMP system as a thread of execution. Thus, all
the RSP packets relative to the multi-thread handling are used for multi-core handling. Moreover, some
virtual targets support different core clusters which are considered as GDB inferiors. The GDB packets for
multi-process handling are used for this purpose.

NOTE: Demo scripts for the TRACE32 GDB Front-End are available in the TRACE32
installation directory under ~~/demo/etc/gdb

Documentation Updates

The latest version of this document is available for download from:
www.lauterbach.com/pdf/frontend_gdb.pdf

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 5

http://www.lauterbach.com/pdf/frontend_gdb.pdf

Related Documents

. For information about using TRACE32 PowerView as a GDB Back-End, please refer to “TRACE32
as GDB Back-End” (backend_gdb.pdf).

. For information about Linux Integrated Run and Stop Mode Debugging, please refer to “Run
Mode Debugging Manual Linux” (rtos_linux_run.pdf).

. For information about debugging virtual targets via interfaces other than GDB (e.g. MCD or
CADI) please refer to “Virtual Targets User’s Guide” (virtual_targets.pdf).

Supported Architectures

The TRACE32 GDB Front-End is available for the following architectures:
. 68K/ColdFire

. 8051/XC800/M51

. ARM (32- and 64-bit)

. GTM

. Hexagon

. Intel x86/x86 64

. MIPS32/MIPS64

. NIOS-II

. PowerArchitecture (32- and 64-bit)
. RISC-V (32- and 64-bit)

J SuperH

. TriCore

. V850/RH850

o Xtensa

Other architectures can be supported on demand. Please send your request to support@lauterbach.com

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 6

TRACE32 Setup

Configuration File

To configure TRACE32 as GDB Front-End, you need to add the following lines to your TRACE32
configuration file. The default configuration file is config.t32 and is located in the TRACES32 system directory.

<- mandatory empty line

PBI=GDB
<- mandatory empty line

Example configuration for Windows:

PBI=GDB

SYS=C:\T32
TMP=C: \Temp

SCREEN=
FONT=SMALL

For more information about the TRACES32 configuration, please refer to “Training Basic Debugging”
(training_debugger.pdf).

T32Start

In case you are using the t32start utility to start the TRACE32 GDB Front-End, you need to add a GDB
Debugger to your configuration.

~ -] Configuration Tree

> -] Settings
Leff] Configur=ts: -
4 Add =t Podbus Device Chain
[= Start Ctrl+5 uTrace(R)
File M E MO Server
Clipboard vk Simulator
[d] Create Config Files /k GDB Debugger
[#] Create Start Link ... h Host Process Debugger
Select ltern by 1D ... k MCILib Debugger
‘m Delete bk Serial Rom Monitor
& Clear Subitems @ Start Arbitrary Program
Setup 4 MNote
URL

Please refer to the “T32Start” (app_t32start.fm) manual for more information about the t32start utility.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 7

Connection Setup

This chapter describes the needed configurations in order to establish a debug communication between
theTRACE32 GDB Front-End and the following targets:

Virtual targets with QEMU as example
GNU GDBserver

UndoDB reversible febugger

KGDB

Debugging Virtual Targets

Multiple virtual targets includes a gdbstub and can thus be debugged using the TRACE32 GDB Front-End.

We describe in the following the needed steps to establish a debug communication with QEMU.

Example: Connecting to QEMU

The following steps are required to establish a debug connection with the QEMU emulator.

1.

Start QEMU using the -gdb tcp: :<port_number> command line option or -s for the default
port number 1234.

Start TRACE32 as GDB Front-End.

Select the target CPU from the SYStem.state window or using the SYStem.CPU command

SYStem.CPU ZYNQ-ULTRASCALE+-APU

Define the communication parameters in TRACE32 using the SYStem.PORT command.

Example for localhost and default port number 1234:

SYStem.PORT localhost:1234

Set the remote target type using the command SYStem.GDBconfig GDBSERVER OFF.

SYStem.GDBconfig GDBSERVER OFF

Establish the communication to the QEMU gdbstub using the SYStem.Mode Attach command

SYStem.Mode Attach

©1989-2024 Lauterbach TRACE32 as GDB Front-End |

8

Protocol Extensions

The Remote Serial Protocol does not provide a way to distinguish between different memory types. When
the TRACE32 GDB Front-End is used in Stop Mode to debug a virtual target, the memory address is not
always sufficient to identify a unique physical memory location. Depending on the access mode, the same
memory address could refer to different physical memory locations (e.g. secure/non-secure memory for
ARM architecture).

To overcome these limitations, Lauterbach has defined the following protocol extensions:

. A packet to read <length> addressable memory of type defined by <access_class> starting at
address <address>.

gtrace32 .memory:<access_class>, <address>,<length>

J A packet to write <length> addressable memory of type defined by <access_class> starting at
address <address>. The data is given by <values>; each byte is transmitted as a two-digit
hexadecimal number.

Qtrace32.memory:<access_class>, <address>, <length>, <values>

If the TRACES32 software version implements this protocol extension, it should include the string
”qgtrace32.memory+;Qtrace32.memory+” in the reply to the “qSupported” packet.

The available access classes depend on the processor architecture in
use. Therefore refer to the Access Class/Memory Class section of your
Processor Architecture Manual for more details.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 9

GNU GDBserver

The gdbserver can be started in one of two different modes:

1. Single-process mode, also called target remote mode. In this case, the program to debug has
to be specified on the gdbserver command line, or the --attach command line option has to be
used to attach to a running process by specifying its PID.

Example 1: Start the gdbserver to debug the process /bin/hello from the start:

gdbserver :2345 /bin/hello

Example 2: Attach to the running process with PID 123

gdbserver --attach :2345 123

2. Multi-process mode, also called target extended-remote mode. In this case, the gdbserver
can be started without supplying an initial command to run or PID to attach. The --multi
command line option has to be used.

Example:

gdbserver --multi :2345

In multi-process mode, the GDB extended mode has to be enabled. This can be configured in
TRACES2 using the command SYStem.GDBconfig EXTENDED ON.

Moreover, GDB supports two different modes for debugging multi-threaded processes: Non-Stop Mode
and All-Stop Mode.

In All-Stop Mode, all threads of execution stop when the program stops. In Non-Stop Mode it is possible to
stop single threads while other threads continue to execute. You can select the mode in TRACES32 using the
command SYStem.GDBconfig NONSTOP which is per default set to OFF.

For more information about the different command line options and debug modes, please refer to the
gdbserver documentation.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 10

Connection Setup

The following steps are required to establish the communication with the gdbserver:

1. Select the target CPU from the SYStem.state window or using the SYStem.CPU command.

SYStem.CPU CortexA9

2. Enable the address extension in TRACE32 PowerView using the command
SYStem.Option.MMUSPACES ON. This step is only required if the gdbserver has been
started in multi-process mode.

SYStem.Option.MMUSPACES ON

3. Define the communication parameters in TRACE32 using the SYStem.PORT command.

Example for target IP address 192.168.188.50 and port number 2345:

SYStem.PORT 192.168.188.50:2345

4. Set the remote target type to gdbserver using the command SYStem.GDBconfig.GDBSERVER
ON. If this command is not used, the TRACE32 GDB Front-End tries to detect what kind of
remote target is used.

SYStem.GDBconfig.GDBSERVER ON

5. Use software breakpoints for assembly single stepping. This is required if Linux-3.x or newer is
running on the target.

SYStem.Option.STEPSOFT ON

6. Enable the Non-Stop mode if it is required to stop single threads.

SYStem.GDBconfig.NONSTOP ON

7. If the gdbserver has been started in multi-process mode, the extended mode has to be
enabled using the command SYStem.GDBconfig.EXTENDED ON, otherwise TRACE32 will
return the error “the target is not running”.

8. Establish the communication to the gdbserver using the SYStem.Mode Attach command:

SYStem.Mode Attach

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 11

9. If the gdbserver has been started in multi-process mode, the commands TASK.RUN and
TASK.Attach can be used to start a new process or attach to a running process.

Example:

; start the process hello
TASK.RUN /usr/bin/hello

; attach to the process sieve with PID 123

TASK.ATTACH 123.

10. Load the process debug symbols. In multi-process mode, the process space ID has to be
specified.

; single-process mode
Data.LOAD.El1f sieve /NoCODE /NoClear

; multi-process mode (0x7b i1s the space ID of the process sieve)
Data.LOAD.El1f sieve 0x7b:0 /NoCODE /NoClear

Typical Start-up Script for the Single-Process Mode

; Reset all commands
RESet

; Clear all TRACE32 PowerView windows
WinCLEAR

; Select the target CPU
SYStem.CPU *

; Set the target IP address and port number
SYStem.PORT 192.168.188.50:2345

; Set the target type to “gdbserver”
SYStem.GDBconfig GDBSERVER ON

; Use software breakpoints for assembly single stepping
SYStem.Option.STEPSOFT ON

; Attach to the gdbserver
SYStem.Mode Attach

; Load the debug symbols of process "sieve"
Data.LOAD.El1f sieve /NoCODE /NoClear

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 12

Typical Start-up Script for the Multi-Process Mode

; Reset all commands
RESet

; Clear all TRACE32 PowerView windows
WinCLEAR

; Select the target CPU
SYStem.CPU *

; Set the target IP address and port number
SYStem.PORT 192.168.188.50:2345

; Set the target type to “gdbserver”
SYStem.GDBconfig GDBSERVER ON

; Set the extended mode
SYStem.GDBconfig EXTENDED ON

; Use software breakpoints for assembly single stepping
SYStem.Option.STEPSOFT ON

; Attach to the gdbserver
SYStem.Mode Attach

; View the list of processes
TASK.List.tasks

; Start process sieve, wait 1l.s and read its space ID
TASK.RUN /bin/sieve

WAIT 1.s

&spaceid=TASK.SPACEID("sieve")

; Load the debug symbols of process "sieve"
Data.LOAD.El1f hello &spaceid:0 /NoCODE /NoClear

NOTE: The TRACE32 GDB Front-End for Intel x86 can be used together with the x86
gdbserver to debug native x86 Linux applications.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 13

Multi-Process Debugging

Processes of Linux may reside virtually on the same addresses. To distinguish those addresses, the
debugger uses an additional identifier called space ID (memory space ID) that specifies to which virtual
memory space an address refers to. The space ID is equal to the process ID. Threads of a particular
process use the same memory space. Consequently, threads of the same process have the same space ID.

The command SYStem.Option.MMUSPACES ON enables the additional space ID.

o B:TASK List = =R
magic [name id space traceid |[core [sel stop
[spi12] 654. 654 ‘?D?'_‘S-E\ ~
[spi3] 656. | 656. | 0x0290 [|
[spi4] 658. 658. | 0x0292 R
[kpsmoused] 691. 691. | 0x02B3 I
[irg/429-rtc0] 697. 697. | 0x02B9 \\\\\\\\
[1rg/434-mmc0] 714. | 714. | Ox02CA Space ID
[degerwq] 729. 729. | 0x02D9
sh 737. 737. | 0x02EL
sh 753. 753. | 0x02F1
busybox 756. 756. | Ox02F4
[kworker /0:2] 760. 760. | 0x02F8
gdbserver 762. 762. | Ox02FA
sieve 768. 768. | 0x0300 W W L]
helloloop 769. 769. | 0x0301 [
v

A source code listing for the process sieve is displayed as follows:

1 [BaList.Mix main] = =R
M Step | B Over | \AsDiverge « Return|| ¢ Up » Go || NN Break || | Mode |6 - Find:

addr/1ine |code label mnemonic comment
1 "~

548
NUR:0300g 0957C main: pl_.‘;}‘ {rd,ril,ri4}
NUR: 0300+ 0D009580 2dd T Space ID

NUR:0300:00009584 sub ri3,ri3,#

549
NUR:0300:00009588

mo r3,#0x0
NUR:0300:0000958C g str r3,[rll,#-0x18]
utr1pp1earray[0][0][0] =1;
viripplearray[1][0][0] = 2;
552 viripplearray[0][1][0] = 3;
NUR:0300:00009590 3 1dr r3,0x970D0
NUR:0300:00009594 mov r2,#0x1 v

A breakpoint to main in the process sieve can be set with one of the following commands:

Break.Set \\sieve\global\main
Break.Set 0x300:0x957C

Break.Set 786.:0x957C

Please be aware that process-specific breakpoints are set as soon as the process is started by Go.

©1989-2024 Lauterbach TRACE32 as GDB Front-End 14

UndoDB Reversible Debugger

The TRACES2 GDB Front-End can be used as a front end for the UndoDB reversible debugger. The
UndoDB target server allows to debug a Linux user space application as well as to records details of its
execution. In addition to controlling the debugging process, the TRACE32 GDB Front-End also takes over
the task of displaying the recorded data of the UndoDB target server in the TRACE32 PowerView user
interface. Like a trace recording, the user has the ability to debug the application going through the code
both forward and backward (“reverse-debugging”).

The TRACE32 GDB Front-End automatically detects if it is communicating with an UndoDB target server
and enables the reverse-debugging commands.

Go.Back Go back in program

Go.BackEntry Go back in program to function entry
Step.Back Step back

Step.BackChange Step back till expression changes
Step.BackOver Step back over call

Step.BackTill Step back till expression is true

In reverse-debugging mode, all control buttons in the List window are displayed in yellow. In addition, the
time of recording displayed in the TRACE32 PowerView state line is referenced in reverse.

/A TRACE32 GDE Front End =N X

File Edit View War Break Run CPU Misc Trace Ped Cov Window Help
(M ALt ee[rn[E e o HuE Ses @12

= [eaList] = fE =]
step |[. over][iDiverge][.+/Retun][= up | Go][IBreak][i/Step][-lover | . Entry . Go | $¥Mode | Find: sieve.c
addr/1ine source
int main()
546 ({
547 int j, trace_fd, ondempg = 0;
char™* p;
550 vtripplearray[0][0][0] = 1;
551 vtripplearray[1][0][0] = 2;
552 vtripplearray[0][1][0] = 3;
553 vtripplearray[0][0][1] = 4;
555 func2();
5 funcla); __ aaresescwseeas |
Bl Program Address
9| funcabO;
!
561 func2d(); e
jl Breakpoint...
563 funcptr = func3; 8 Breakpoints »
565 ast.count = 12345; fud] Display Memory 5
Lo 566 ast.left = * £ Bookmark...
567 ast.f1eldl = 1;
568 ast.Field? = 2; sl Togle Bookmark
#¢ Set PC Here
570) - ast = func4(ast); [4 Edit Source . ’E
« i
3 Viewlnfo
B::
trigger | [doviees][tmee [Data][wvar [Lst][PERF SYStem Step Go Break s¥Ymbol other seavious

UR:047D:000095E4 \\processl\sieve\main+0x4C reverse (215.) HLL UP

©1989-2024 Lauterbach TRACES32 as GDB Front-End |

15

KGDB

The TRACE32 GDB Front-End supports debugging the Linux kernel using KGDB. Please note that it is only
possible to debug the kernel space. Debugging the user-space as supported by the TRACE32 Stop Mode
Debugging for Linux is not possible.

Example start-up script for Linux kernel debugging via KGDB:

; Reset all commands
RESet

; Clear all TRACE32 PowerView windows
WinCLEAR

; Select the CPU
SYStem.CPU *

; Enable address extension
SYStem.Option.MMUSPACES ON

; Set the communication parameter (serial port)
SYStem.PORT COM1 baud=115200 KGDB

; Attach to the KGDB stub in the Linux kernel
SYStem.Mode Attach

; Load the kernel symbols
Data.LOAD.El1f vmlinux /GNU /NoCODE

; Load the Linux Awareness (e.g Linux-3.x. for ARM)
TASK.CONFIG ~~/demo/arm/kernel/linux/linux-3.x/linux3.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/linux-3.x/linux.men

The program execution can be stopped by writing ‘g’ to thefile /proc/sysrg-trigger

echo g > /proc/sysrqg-trigger

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 16

Troubleshooting

No information available until yet.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 17

GDB Front-End SYStem Commands

SYStem.CPU

Select target CPU

Format:

SYStem.CPU <type>

Selects the processor type.

SYStem.Mode

Establish communication to debug agent

Format:

<mode>:

SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down
NoDebug
Attach

Up

Default: Down

Down

NoDebug

Attach

Up

Go
StandBy

The TRACE32 GDB Front-End has no connection to the gdbserver /
gdbstub.

When switching from Up to Down, the TRACE32 GDB Front-End sends
a GDB “kill” packet to the gdbserver / gdbstub.

The TRACE32 GDB Front-End has no connection to the gdbserver /
gdbstub.

When switching from Up to NoDebug, the TRACE32 GDB Front-End
detaches from the gdbserver / gdbstub.

The TRACES32 GDB Front-End establishes the connection to gdbserver /
gdbstub.

The TRACE32 GDB Front-End is connected to gdbserver / gdbstub.
Up cannot be used to establish the connection.

Not available.

©1989-2024 Lauterbach

TRACE32 as GDB Front-End | 18

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

SYStem.Option.MMUSPACES Separate address spaces by space IDs
Format: SYStem.Option.MMUSPACES [ON | OFF]
Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces. This options need
to be enabled if the gdbserver has been started in multi-process mode.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 19

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON

Data.List 0x2:0x11c4 ; Data.List <overlay_ id>:<address>
SYStem.RESetOut Reset target
Format: SYStem.RESetOut

Restarts the program being debugged by sending a GDB ‘R’ packet.

SYStem.GDBconfig.BREAKSOFT Use software breakpoint
Format: SYStem.GDBconfig.BREAKSOFT ON | OFF
Default: OFF.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 20

When set to ON, TRACE32 GDB Front-End sets breakpoints by patching the corresponding address by a
breakpoint instruction instead of sending a "z /z" RSP packet.

SYStem.GDBconfig.EXTENDED Enable/disable gdb extended mode

Format: SYStem.GDBconfig.EXTENDED ON | OFF
SYStem.Option.gdbEXTENDED ON | OFF (deprecated)

Default: OFF.

When set to ON, this command enables the GDB extended mode which makes the remote server
persistent. If the remote server is a gdbserver started in multi-process mode, the extended mode has to
be enabled. Otherwise TRACES32 will return the error “the target is not running” when establishing the

connection.
SYStem.GDBconfig.GDBSERVER Remote target is a gdbserver
Format: SYStem.GDBconfig.GDBSERVER ON | OFF | AUTO

Default: AUTO.

ON, OFF This option has to be set to ON if the TRACE32 GDB Front-End is
connected to a GNU gdbserver. Otherwise set to OFF.

AUTO The default value is AUTO which means that the TRACE32 GDB Front-End
tries to detect what kind of remote target is used.

SYStem.GDBconfig.INFERIORID Set inferior ID

Format: SYStem.GDBconfig.INFERIORID <id>

Sets the inferior ID in case of multiple inferiors are supported by the gdbstub.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 21

SYStem.GDBconfig.MONITOR Send monitor command to GDB Back-End

Format: SYStem.GDBconfig.MONITOR <string>

This command is used to send monitor commands to the GDB Back-End.

SYStem.GDBconfig.NONSTOP Enable/disable non-stop mode

Format: SYStem.GDBconfig.NONSTOP ON | OFF
SYStem.Option.gdbNONSTOP ON | OFF (deprecated)

Default: OFF.

Enabling non-stop mode is only possible with gdbserver. Thus SYStem.GDBconfig.NONSTOP ON will
automatically set SYStem.GDBconfig.GDBSERVER to ON.

NOTE: Non-stop mode is supported for multi-thread debugging with the following
known limitations:
. Resuming from a breakpoint is not supported for non-current threads.
. For the Intel x86/x64 architecture, if a non-current thread hits a break-
point, a program counter alignment issue could occur.
Thus, it is always recommended to focus on debugging only one thread (current
thread) at a given time.

SYStem.PORT Set communication settings
Format: SYStem.PORT <settings>
<settings>: <com> BAUD=<baudrate>
<host>:<port>

Sets the communication parameters. You can use a serial or a TCP communication.

SYStem.PORT COM1 baud=9600

SYStem.PORT 10.1.2.99:2345

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 22

SYStem.GDBSIGnal Define signal handling
Format: SYStem.GDBSIGnal <mode> <signum>
<mode>: STOP | NOSTOP | PASS | NOPASS | PRINT | NOPRINT

Defines the gdbserver/TRACE32 behavior when the application sends the signal <signum>.

<signum>
NOPASS
NOPRINT
NOSTOP

PASS

PRINT

STOP

Signal number

Do not allow the program to see this signal.

No message is printed.

The signal is ignored and the application continue running.

Allow the program to see this signal; the program can handle the signal, or
else it may terminate if the signal is fatal and not handled.

A message is printed in the AREA window when the signal is received.

The debugger should stop on this signal.

©1989-2024 Lauterbach

TRACE32 as GDB Front-End |

23

GDB Front-End TASK Commands

The following TASK commands are available for the TRACE32 GDB Front-End:

TASK.List.tasks List the running processes on the target.
TASK.COPYUP Copy a file from the target to the host.
TASK.COPYDOWN Copy a file from the host to the target.

The following TASK commands can additionally be used for multi-process mode:

TASK select Select a task for debugging.
TASK.ATTACH Attach to a running process.
TASK.RUN Start a new process.

TASK.KILL Kill a running process.
TASK.DETACH Detach from a process.

TASK.Go Start the execution of a single task.
TASK.Break Stop the execution of a single task.

©1989-2024 Lauterbach TRACE32 as GDB Front-End | 24

	TRACE32 as GDB Front-End
	History
	Introduction
	Documentation Updates
	Related Documents

	Supported Architectures
	TRACE32 Setup
	Configuration File
	T32Start

	Connection Setup
	Debugging Virtual Targets
	Example: Connecting to QEMU
	Protocol Extensions

	GNU GDBserver
	Connection Setup
	Multi-Process Debugging

	UndoDB Reversible Debugger
	KGDB

	Troubleshooting
	GDB Front-End SYStem Commands
	SYStem.CPU Select target CPU
	SYStem.Mode Establish communication to debug agent
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.RESetOut Reset target
	SYStem.GDBconfig.BREAKSOFT Use software breakpoint
	SYStem.GDBconfig.EXTENDED Enable/disable gdb extended mode
	SYStem.GDBconfig.GDBSERVER Remote target is a gdbserver
	SYStem.GDBconfig.INFERIORID Set inferior ID
	SYStem.GDBconfig.MONITOR Send monitor command to GDB Back-End
	SYStem.GDBconfig.NONSTOP Enable/disable non-stop mode
	SYStem.PORT Set communication settings
	SYStem.GDBSIGnal Define signal handling

	GDB Front-End TASK Commands

