LAUTERBACH A

Xtensa Debugger and Trace

Xtensa Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
G 1= T r=
Xtensa Debugger and Traceccociiciiicssmmmmminrirnssss s ssss s s s s r s snnnnns 1

L 1= (o 5

Y £ Yo 11T £ o) o T 6

Brief Overview of Documents for New Users 6

Demo and Start-up Scripts 6
L= T 11 ' 7
Quick Start of the JTAG Debugger ... ssssss s 8
TroubleShOOtINGccccciiiiicr s e 11
SYStem.Up Errors 11

O 11
Xtensa Specific Implementations ... ——————————— 12
Breakpoints 12
Software Breakpoints 12

On-chip Breakpoints for Instructions 12

On-chip Breakpoints for Data 12
Example for Standard Breakpoints 13

Runtime Measurement 14
Memory Classes 14
MAP.BUSS8 Bus width mapping 14
MAP.BUS16 Bus width mapping 15
MAP.BUS32 Bus width mapping 15

CPU specific SYStem Commandscccccciiiimmnimninississsissss s ssssss s ssssssssssasssssnes 16
SYStem.CONFIG.state Display target configuration 16
SYStem.CONFIG Configure debugger according to target topology 17
<parameters> describing the “DebugPort” 22
<parameters> describing the “JTAG” scan chain and signal behavior 24
<parameters> describing a system level TAP “MultiTap” 27
<parameters> configuring a CoreSight Debug Access Port “AP” 28
©1989-2024 Lauterbach Xtensa Debugger and Trace 2

<parameters> describing debug and trace “Components” 34
<parameters> which are “Deprecated” 40
SYStem.CPU Select the used CPU 41
SYStem.JtagClock Define JTAG frequency 42
SYStem.LOCK Tristate the JTAG port 44
SYStem.MemAccess Select run-time memory access method 44
SYStem.Mode Establish the communication with the target 45
SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 45
SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 46
SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 46
SYStem.Option. AXIHPROT Select AXI-AP HPROT bits 46
SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2 47
SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 48
SYStem.Option.DAPNOIRCHECK No DAP instruction register check 48
SYStem.Option.DEBUGPORTOptions Options for debug port handling 49
SYStem.Option.DAPREMAP Rearrange DAP memory map 50
SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2 50
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 51
SYStem.Option.DISableHwWatchDOG Disable watchdog when core stops 51
SYStem.Option.DisMode Define disassembler mode 52
SYStem.Option.Endianness Specify the byte ordering 52
SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 53
SYStem.Option.EnTRST Allow debugger to drive TRST 53
SYStem.Option.IMASKASM Disable interrupts while single stepping 53
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 54
SYStem.Option.IntelSOC Slave core is part of Intel® SoC 54
SYStem.Option. MMUSPACES Separate address spaces by space IDs 54
SYStem.Option.PWROVR Specifies power override bit 55
SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint 55
SYStem.Option.ResetDetection Supervise reset 56
SYStem.Option.RUNSTALLMASKASM Disable RunStall while step 56
SYStem.Option.SnoopAddressPC Program counter snoop address 56
SYStem.Option.SPILLLOC Temporary memory 57
SYStem.Option.TriggerHwWatchDOG Trigger hardware watchdog 57
SYStem.Option.WindowVectorBase VECBASE initial value 57
SYStem.Option.WinRegOption Windowed register option 58
SYStem.TIE TIE library files 59
SYStem.TIE.AddCoreLibrary Add library file 59
SYStem.TIE.CMList Instructions to display custom registers 59
SYStem.TIE.DELete Remove all library files 60
SYStem.TIE.DISable Unload and disable TIE instructions 60
SYStem.TIE.ENAble Load and enable TIE instructions 60
SYStem.TIE.GENper Generate peripheral file 61
©1989-2024 Lauterbach Xtensa Debugger and Trace 3

SYStem.TIE.GETArchOPTions Detect architectural options from libraries 61

SYStem.TIE.ToolLibraryPath Specify path for library tools 62
SYStem.TIE.RESet Reset TIE 62
Xtensa Specific Benchmarking Commandsccccccmiinmmmmmnnneessmmnesssss s 63
BMC.<counter>.EVENT Assign event to counter 63
BMC.<counter>.KRNLCNT Set compare operator 64
BMC.<counter>.TRACELEVEL Set counting threshold 64
BMC.<counter>.TRACESCOPE Set counting threshold 65
CPU specific TERM.METHOD Commandcccociirmmminsmmnnsnissessssssss s ssssss sssssssssssns 66
TERM.METHOD.BRK1_14 Define communication protocol 66
CPU specific TrOnchip Commandsccccceeciciiiisssscccmmnrnnnsnsssssssssssssssssssssssssssssssssssssnnes 67
TrOnchip.BIEN Break-out relay enable 67
TrOnchip.BOEN Break-in relay enable 67
TrOnchip.CTIEN Cross-trigger input enable 68
TrOnchip.CTOWS Cross-trigger output enable when trace stop completes 68
TrOnchip.CTOWT Cross-trigger output enable when trace stop triggered 68
TrOnchip.PTIEN Processor trigger input enable 69
TrOnchip.PTOWS Processor trigger output enable 69
TrOnchip.PTOWT Processor trigger output enable 69
TrOnchip.RESet Reset on-chip trigger settings 70
TrOnchip.state Display on-chip trigger window 70
CPU specific MMU COMMANAS cccoeememminiriiseninsissssmmmms s sssmmmss s s e s s mmmnes 71
MMU.DUMP Page wise display of MMU translation table 71
MMU.List Compact display of MMU translation table 73
MMU.SCAN Load MMU table from CPU 74
CPU specific NEXUS COMMANAS ccccurirmrinimmmismsissasssssmsssssssssssssssssssssasassssssnssasssssnssnes 76
NEXUS.CLOCK Specify the frequency of the timestamp counter 76
NEXUS.ON Switch the NEXUS trace port on 76
NEXUS.RESet Reset NEXUS trace port settings 77
NEXUS.TracelD Specify the trace ID 77
NEXUS.TImeMode Generate timestamps to the trace data 77
017 X 0o T T 1= 1 o o 78
IDC20A Debug Cable 78
14-Pin Debug Cable 79

©1989-2024 Lauterbach Xtensa Debugger and Trace | 4

Xtensa Debugger and Trace

Version 06-Jun-2024

History

17-Nov-22 Chapter Xtensa Specific Benchmarking Commands’ added.

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 5

Introduction

This manual serves as a guideline for debugging Xtensa cores and describes all processor-specific
TRACES2 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Xtensa based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

J or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/xtensa/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach Xtensa Debuggerand Trace | 6

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

Xtensa Debugger and Trace |

7

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU <cpu_type>
SYStem.Option.Endianness [AUTO | Little | Big]

SYStem.Option.SOFTLONG [ON | OFF]

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip 0x060000000++3FFFF

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM.

4. Specify ranges where the access width is restricted.

MAP.BUS32 0x060000000++1FFFF

If a memory location can only be accessed with a certain bus width you can use MAP.BUSS8 /
MAP.BUS16 / MAP.BUS32 to force the debugger to use solely the according load or store
instructions. This allows for example to have a byte-by-byte dump of a 32-bit wide memory area,
where a byte access would cause an exception.

5. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 8

6. Load the program.

Data.LOAD <file> /LONG

; load the compiler output.
;the option /LONG tells the
;debugger to use 32 bit accesses

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General

Commands Reference”.

A typical start sequence without EPROM simulator is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>.

B3 3
WinCLEAR
MAP.BOnchip 0x60000000++0xfffff

MAP.BUS32 0x50000000++0x1f£fff

SYStem.Up

Data.LOAD.elf xtensa_project
Register.Set pc _ResetVector

Register.Set al Ox63FFFFFC

List.Mix
Register.view /SpotLight

Frame.view /Locals /Caller

Var .Watch %SpotLight flags ast

Break.Set 0x60100000 /Program

Break.Set 0x60001000 /Program

7

I

Select the ICD device prompt
Clear all windows
Specify where FLASH/ROM is

Force the debugger to access this ;
area 32 bit wide

Reset the target and enter debug
mode

Load the application
Set the PC to start point

Set the stack pointer to address
0x63FFFFFC

Open source code window)
Open register window =)

Open the stack frame with
local variables)

Open watch window for variables *)

Set software breakpoint to address
0x60100000 (address 0x60100000
outside of BOnchip range)

Set on-chip breakpoint
to address 0x60001000 (address
0x60001000 is within BOnchip range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 9

NOTE:] Special registers can be viewed in the peripheral file with the command
PER <path>/per_xtensa.per. To add your specific registers you can
do a copy of this file and modify it using the command:

PER.Program <path>/my per xtensa.per

. The Register.view window can be resized to view additional registers by
pressing on the small field on the right bottom of the window

©1989-2024 Lauterbach Xtensa Debugger and Trace | 10

Troubleshooting

SYStem.Up Errors

The SYStem.UP command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

. The target has no power.
. The target is in reset.
. The Xtensa core is not enabled.

. There is logic added to the JTAG state machine.
o There are additional loads or capacities on the JTAG lines.

J There is a short circuit on at least one of the output lines of the core.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 11

https://support.lauterbach.com/kb

Xtensa Specific Implementations

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is patched by a breakpoint code.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. The
parameter NIBREAK of the Debug Option Architectural Addition defines the number of available instruction
breakpoints. On-chip breakpoints are usually needed for instructions in FLASH/ROM.

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM / FLASH
on the target.

On-chip Breakpoints for Data

To stop the CPU at a read or write access to a memory location on-chip breakpoints are required. When the
CPU attempts to access a memory cell, an exception stops code execution before the memory cell is
accessed. The parameter NDBREAK of the Debug Option (Architectural Option of the Xtensa core) defines
the number of available data breakpoints.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 12

Example for Standard Breakpoints

Assume you have a target with NIBREAK=2, NDBREAK=2 and
° FLASH from 0x0--0xfffff

. RAM from 0x100000--0x11f£fff
The command to configure TRACES32 correctly for this configuration is:
Map.BOnchip 0x0--0Oxfffff

The following standard breakpoint combinations are possible.

1. Unlimited breakpoints in RAM and one breakpoint in ROM/FLASH

Break.Set 0x100000 /Program ; Software breakpoint 1
Break.Set 0x101000 /Program ; Software breakpoint 2
Break.Set addr /Program ; Software breakpoint 3
Break.Set 0x100 /Program ; On-chip instruction breakpoint
2. Unlimited breakpoints in RAM and one breakpoint on a read or write access

Break.Set 0x100000 /Program ; Software breakpoint 1
Break.Set 0x101000 /Program ; Software breakpoint 2
Break.Set addr /Program ; Software breakpoint 3
Break.Set 0x108000 /Write ; On-chip data breakpoint

3. Two breakpoints in ROM/FLASH

Break.Set 0x100 /Program ; On-chip instruction breakpoint 1

Break.Set 0x200 /Program ; On-chip instruction breakpoint 2
4. Two breakpoints on a read or write access

Break.Set 0x108000 /Write ; On-chip data breakpoint 1

Break.Set 0x108010 /Read ; On-chip data breakpoint 2

©1989-2024 Lauterbach Xtensa Debugger and Trace | 13

Runtime Measurement

The command RunTime allows run time measurement based on polling the CPU run status by software.
Therefore the result will be about few milliseconds higher than the real value.

Memory Classes

The following ARM specific memory classes are available.

Memory Class Description
P Program Memory
D Data Memory
VM Virtual Memory (memory on the debug system)
E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

To access a memory class, write the class in front of the address.
Example:

Data.dump D:0--3

Normally there is no need to use the following memory classes: P, D since program and data memory space
are not separated.

MAP.BUS8 Bus width mapping

Format: MAP.BUS8 [<address_range>]

This command is used to force the debugger to access the specified range with Load / Store 8-bit
commands. So if you do a 32-bit wide memory dump (Data.dump <address> /Long) the debugger reads
byte-by-byte while the window shows the information in 32-bit words.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 14

MAP.BUS16 Bus width mapping

Format: MAP.BUS16 [<address_range>]

This command is used to force the debugger to access the specified range with Load / Store 16-bit
commands. So if you do a 8-bit wide memory dump (Data.dump <address> /Byte) the debugger reads
word-by-word while the window shows the information byte-by-byte.

As a follow the debugger might read more than the dump window shows, so if a memory cell is sensitive on
read accesses you might touch it unintentional.

MAP.BUS32 Bus width mapping

Format: MAP.BUS32 [<address_range>]

This command is used to force the debugger to access the specified range with Load / Store 32-bit

commands. So if you do a 8-bit wide memory dump (Data.dump <address> /Byte) the debugger reads 32-
bit values while the window shows the information byte-by-byte.

As a follow the debugger might read more than the dump window shows, so if a memory cell is sensitive on
read accesses you might touch it unintentional.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 15

CPU specific SYStem Commands

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | MultiTap | AccessPorts | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab>

Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.

Jtag

The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap

Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 16

AccessPorts

This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.
SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>

SYStem.MultiCore <parameter> (deprecated)
<parameter>: CJTAGFLAGS <flags>

(DebugPort) CJTAGTCA <value>

CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
Slave [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]
<parameter>: DAP2DRPOST <bits>
(JTAG) DAP2DRPRE <bits>
DAP2IRPOST <bits>
DAP2IRPRE <bits>
DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
DRPOST <bits>
DRPRE <bits>

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 17

<parameter>:
(JTAG cont.)

<parameter>:
(Multitap)

<parameter>:
(AccessPorts

)

IRPOST <bits>
IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
IcepickBC | IcepickCC | IcepickDD | STCLTAP1 | STCLTAP2 |
STCLTAP3 |
MSMTAP <irlength> <irvalue> <drlength> <drvalue>
JtagSEQuence <sub_cmd>]

AHBAPN.Base <address>
AHBAPN.HPROT [<value> | <name>]
AHBAPN.Port <port>
AHBAPN.RESet

AHBAPN.view

AHBAPN.XtorName <name>

APBAPN.Base <address>
APBAPN.Port <port>
APBAPN.RESet
APBAPN.view
APBAPN.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPNn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet

AXIAPn.view

AXIAPNn.XtorName <name>

DAP2JTAGPORT <port>

DEBUGAPN.Port <port>
DEBUGAPN.RESet
DEBUGAPN.view
DEBUGAPN.XtorName <name>

JTAGAPN.Base <address>
JTAGAPN.Port <port>
JTAGAPnN.CorePort <port>
JTAGAPN.RESet
JTAGAPN.view
JTAGAPN.XtorName <name>

©1989-2024 Lauterbach

Xtensa Debugger and Trace |

18

<parameter>:
(AccessPorts
cont.)

<parameter>:
(COmponents)

MEMORYAPN.HPROT [<value> | <name>]
MEMORYAPN.Port <port>
MEMORYAPN.RESet

MEMORYAPN.view
MEMORYAPN.XtorName <name>

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTIl.Base <address>

CTI.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 |
Qv1i]

CTI.RESet

CTl.view

ETB.ATBSource <source>

ETB.Base <address>

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETB.view

ETF.ATBSource <source>

ETF.Base <address>

ETF.Name <string>

ETF.NoFlush [ON | OFF]

ETF.RESet

ETF.Size <size>

ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETF.view

ETR.ATBSource <source>

ETR.Base <address>

ETR.CATUBase <address>

ETR.Name <string>

ETR.NoFlush [ON | OFF]

ETR.RESet

ETR.Size <size>

ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETR.view

ETS.ATBSource <source>
ETS.Base <address>
ETS.Name <string>

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 19

<parameter>:
(COmponents
cont.)

<parameter>:
(Deprecated)

ETS.NoFlush [ON | OFF]

ETS.RESet

ETS.Size <size>

ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI

ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet

FUNNEL.view

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet

REP.view

TRAX.RESet
TRAX.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet

TPIU.Type [CoreSight | Generic]
TPIU.view

COREBASE <address>
CTIBASE <address>
CTICONFIG [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |

QVv1i]
DEBUGBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
FUNNEL2BASE <address>
FUNNELBASE <address>
TPIUBASE <address>
TPIUFUNNELBASE <address>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DAP2COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>

]

©1989-2024 Lauterbach

Xtensa Debugger and Trace |

20

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 21

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags>

CJTAGTCA <value>

CORE <core> <chip>

CORE <core> <chip>

(cont.)

Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.

Bit 1: Target has no “keeper”.

Bit 2: Inverted meaning of SREDGE register.

Bit 3: Old command opcodes.

Bit 4: Unlock cJTAG via APFC register.

Default: 0

Selects the TCA (TAP Controller Address) to address a device in a
c¢JTAG Star-2 configuration. The Star-2 configuration requires a
unique TCA for each device on the debug port.

The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 22

DEBUGPORT It specifies which probe cable shall be used e.g. “DebugCableA” or
[DebugCable0 | DebugCa- “DebugCableB”. At the moment only the CombiProbe allows to
bleA | DebugCableB] connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
[JTAG | SWD | CJTAG] “CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

SWDPIdleHigh Keep SWDIO line high when idle. Only for Serialwire Debug mode.

[ON | OFF] Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.
SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.
Default: none set (any address accepted).

DAP2SWDPTargetSel Device address of the second CoreSight DAP (DAP2) in case of a
<value> multidrop serial wire debug port (SWD).

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.

Please note:

. nTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 23

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

... DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

... IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 24

Slave [ON | OFF]

TAPState <state>

TCKLevel <level>

TriState [ON | OFF]

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.

Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).
For CortexM: Please check also
SYStem.Option.DISableSOFTRES [ON | OFF]

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

] NTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 25

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.

-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 26

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

MULTITAP Selects the type and version of the MULTITAP.

[NONE | IcepickA | IcepickB

| IcepickC | IcepickD | In case of MSMTAP you need to add parameters which specify
IcepickM | which IR pattern and DR pattern needed to be shifted by the
IcepickBB | IcepickBC | debugger to initialize the MSMTAP. Please note some of these
IcepickCC | IcepickDD | parameters need a decimal input (dot at the end).
STCLTAP1|STCLTAP2|

STCLTAP3 | MSMTAP IcepickXY means that there is an Icepick version “X” which
<irlength> <irvalue> includes a subsystem with an Icepick of version “Y”.

<drlength> <drvalue>
JtagSEQuence <sub_cmd>] For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 27

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from ARM which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCle...) to:

1.

Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

ROM table

Memory
Access Port
(MEM-AP) CoreSight

Component

ROM table
Access Port
(MEM-AP)
CoreSight
Component
JTAG

Access Port
(JTAG-AP)

DAP

©1989-2024 Lauterbach Xtensa Debugger and Trace | 28

Example 2: SoC-600

SoC-600

Debug

link(s) ROM table

I
NO-9/ZE E

| | CoreSight
. Component

ROM table
Memory System 2

* | CoreSight
CoreSight - Component
Component
ROM table
ROM tabl expected

(va-v9/2¢€) da

H9-v9/Ce

Memory System 1

. Component

; C%%;?)iiﬁ;:;t (possible) Memory System 3

AHBAPN.HPROT [<value> | Default: 0.

<name>] Selects the value used for the HPROT bits in the Control Status
SYStem.Option.AHBH- Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
PROT [<value> | <name>] memory class.

(deprecated)

AXIAPNn.HPROT [<value> | Default: 0.

<name>) This option selects the value used for the HPROT bits in the Control
SYStem.Option.AXIHPROT Status Word (CSW) of a CoreSight AXI Access Port, when using
[<value> | <name>] (depre- the AXIl: memory class.

cated)

MEMORYAPN.HPROT Default: 0.

[<value> | <name>] This option selects the value used for the HPROT bits in the Control

Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 29

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF] (deprecated)

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: OFF.

Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]
>Domain) of an Access Port, when using the AXI: memory class.

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

<name>
DeviceSYStem
NonCacheableSYStem

ReadAllocateNonShareable

Description

=0x30: Domain=0x3, Cache=0x0
=0x32: Domain=0x3, Cache=0x2
=0x06: Domain=0x0, Cache=0x6

ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable
WriteAllocateOuterShareable
ReadWriteAllocateNonShareable
ReadWriteAllocatelnnerShareable

ReadWriteAllocateOuterShareable

=0x16:
=0x26:
=0x0A:
=0x1A:
=0x2A:
=0xOE:
=0x1E:
=0x2E:

Domain=0x1, Cache=0x6
Domain=0x2, Cache=0x6
Domain=0x0, Cache=0xA
Domain=0x1, Cache=0xA
Domain=0x2, Cache=0xA
Domain=0x0, Cache=0xE
Domain=0x1, Cache=0xE

Domain=0x2, Cache=0xE

©1989-2024 Lauterbach

Xtensa Debugger and Trace

30

AHBAPN.XtorName AHB bus transactor name that shall be used for “AHBN:” access
<name> class.

APBAPN.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access

class.
DEBUGAPN.XtorName APB bus transactor name identifying the bus where the debug
<name> register can be found. Used for “DAP:” access class.
MEMORYAPN.XtorName AHB bus transactor name identifying the bus where system
<hame> memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.
... .RESet Undo the configuration for this access port. This does not cause

a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 31

S0C-400 Specific Commands

AHBAPN.Port <port>
AHBACCESSPORT <port>
(deprecated)

APBAPN.Port <port>
APBACCESSPORT <port>
(deprecated))

AXIAPN.Port <port>
AXIACCESSPORT <port>
(deprecated)

DAP2JTAGPORT <port>

DEBUGAPN.Port <port>
DEBUGACCESSPORT
<port> (deprecated)

JTAGAPnN.CorePort <port>
COREJTAGPORT <port>
(deprecated)
DAP2COREJTAGPORT
<port> (deprecated)

JTAGAPN.Port <port>
JTAGACCESSPORT <port>
(deprecated)

MEMORYAPN.Port <port>
MEMORYACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBnN:” access class. Default: <port>=0.

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn;” access class. Default: port not available.

JTAG-AP port number (0-7) for an (other) DAP which is
connected to a JTAG-AP.

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 32

S0C-600 Specific Commands

AHBAPN.Base <address>

APBAPN.Base <address>

AXIAPNn.Base <address>

JTAGAPN.Base <address>

This command informs the debugger about the start address of
the register block of the “AHBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

This command informs the debugger about the start address of
the register block of the “APBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

This command informs the debugger about the start address of
the register block of the “AXIAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

This command informs the debugger about the start address of
the register block of the “JTAGAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 33

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and

trace components your chip includes and which you intend to use with the debugger’s help.

& B::5YStem, CONFIG.state /COmponents

| DebugPort ” Jtag ” DAP " COmponent5|

(=[O sl

’- Select components to display -

’)

CTIL
Base 10:0x300

E] Config

CROSSBREAK =

B B::S¥Stem.CONFIG state /COmponents

Debugport | ITAG Multitap DAP

(=[O sl

Components

l— Mew Component -

- Mew Component -
CcMI1
COREDEBUG
CTI

DRM

DTM

DWT

EPM

ETB1
ETB2AXI
ETF1

ETR1
FUNNEL1L
HTM
ICE
1™
ocp
PMI
RTP
sC
STM1
TPIU

B B::S¥Stem.CONFIG state /COmponents

Debugport | ITAG Multitap DAP

(=[O sl

Components

’— Mew Component -

ETM

Base E]

Each configuration can be done by a command in a script file as well. Then you do not need to enter

everything again on the next debug session. If you press the button with the three dots you get the

corresponding command in the command line where you can view and maybe copy it into a script file.

B::|5Y5.CONFIG.ETM. Base

ddress:

DAP : 00000000

[rokl

] [<address>] [<valus=>]

©1989-2024 Lauterbach

Xtensa Debugger and Trace

34

You can have several of the following components: ETB, ETF, ETR, FUNNEL.
Example: FUNNEL1, FUNNEL2, FUNNELS,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which

is “EDAP:” in most cases.

... .ATBSource <source>

... .BASE <address>

Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>" or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>".

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

For a list of possible components including a short description
see Components and Available Commands.

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETB.BASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Buffer (ETB) starts at address 0x8011c000 and is accessible via
APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components COREBEBUG, CTI, ETB, ETF, ETR a list
of base addresses to specify one component per core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 35

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:

1. Configures the ETF base address and access for each core

SYStem.CONFIG.ETF.Base DAP:0x80001000 \
APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs

SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

... .NoFlush [ON | OFF] Deactivates an ETB flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

... .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

... .Size <size> Specifies the size of the Embedded Trace Buffer. The ETB size
can normally be read out by the debugger. Therefore this
command is only needed if this can not be done for any reason.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 36

... .STackMode [NotAvailbale

| TRGETM | FULLTIDRM |

NOTSET | FULLSTORP |

FULLCTI]

... .view

CTl.Config <type>

ETR.CATUBase <address>

Specifies the which method is used to implement the Stack mode
of the on-chip trace.

NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTls to the
on-chip trace.

FULLTIDRM: trigger mechanism for T| devices.

NOTSET: the method is derived by other GUIs or hardware.
detection.

FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostlnit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

Base address of the CoreSight Address Translation Unit (CATU).

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 37

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

FUNNEL.PROGrammable Default is ON. If set to ON the peripheral is controlled by

[ON | OFF] TRACES2 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACES32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELSs that don't have registers or when those registers are
read-only. TRACES32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

TPIU.Type [CoreSight | Selects the type of the Trace Port Interface Unit (TPIU).
Generic]
CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
... .ATBSource,Base, ,RESet,TracelD.

COREDEBUG.Base <address>

COREDEBUG.RESet

Core Debug Register - ARM debug register, e.g. on Cortex-A/R

Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTl.Base <address>

CTl.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 | QV1]

CTI.RESet

Cross Trigger Interface (CTI) - ARM CoreSight module

If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

ETB.ATBSource <source>

ETB.Base <address>

ETB.RESet

ETB.Size <size>

Embedded Trace Buffer (ETB) - ARM CoreSight module

Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 38

ETF.ATBSource <source>

ETF.Base <address>

ETF.RESet

Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETR.ATBSource <source>

ETR.Base <address>

ETR.CATUBase <address>

ETR.RESet

Embedded Trace Router (ETR) - ARM CoreSight module

Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

ETS.ATBSource <source>

ETS.Base <address>

ETS.RESet

Embedded Trace Streamer (ETS) - ARM CoreSight module

FUNNEL.ATBSource <sourcelist>

FUNNEL.Base <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable [ON | OFF]

FUNNEL.RESet

CoreSight Trace Funnel (CSTF) - ARM CoreSight module

Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>

REP.Base <address>

REP.Name <string>

REP.RESet

CoreSight Replicator - ARM CoreSight module

This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPIlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

TPIU.ATBSource <source>

TPIU.Base <address>

TPIU.RESet

TPIU.Type [CoreSight | Generic]

Trace Port Interface Unit (TPIU) - ARM CoreSight module

Trace sink sending the trace off-chip on a parallel trace port (chip pins).

©1989-2024 Lauterbach Xtensa Debugger and Trace | 39

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

... BASE <address>

... PORT <port>

CTICONFIG <type>

view

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

For a list of possible components including a short description
see Components and Available Commands.

Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

On an SMP debug session some of these commands can have a
list of <port> parameter.

For a list of possible components including a short description
see Components and Available Commands.

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostlnit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 40

Deprecated and New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

<parameter>: <parameter>:

(Deprecated) (New)

COREBASE <address> COREDEBUG.Base <address>
CTIBASE <address> CTI.Base <address>
DEBUGBASE <address> COREDEBUG.Base <address>
ETBBASE <address> ETB1.Base <address>
ETBFUNNELBASE <address> FUNNEL4.Base <address>
ETFBASE <address> ETF1.Base <address>
FUNNEL2BASE <address> FUNNEL2.Base <address>
FUNNELBASE <address> FUNNEL1.Base <address>
TPIUBASE <address> TPIU.Base <address>
TPIUFUNNELBASE <address> FUNNEL3.Base <address>
view state

(1) Further “<component>.ATBSource <source>" commands might be needed to describe the full trace data
path from trace source to trace sink.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpus: XTENSA | DC108MINI | DC212GP | DC232L | DC330HIFI | DC545CK |
DC570T

Selects the processor type. IF XTENSA is selected the debugger detects the architectural options from the
CPU.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 41

SYStem.JtagClock

Define JTAG frequency

Format:

<frequency>:

SYStem.JtagClock [<frequency> | RTCK]
SYStem.BdmClock <frequency> (deprecated)

10000. ... 40000000.
1250000. | 2500000. | 5000000. | 10000000. (on obsolete ICD hardware)

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

<frequency>

. The debugger cannot select all frequencies accurately. It chooses
the next possible frequency and displays the real value in the SYS-
tem.state window.

. Besides a decimal number like “100000.” short forms like “10kHz”
or “15MHz” can also be used. The short forms imply a decimal

value, although no “” is used.

RTCK

The JTAG interface of Xtensa does not offer RTCK (Returned TCK).
However, in multicore applications with ARM, RTCK can be used to
control the JTAG clock.

On some processor derivatives, there is the need to synchronize the
processor clock and the JTAG clock. In this case RTCK shall be selected.
Synchronization is maintained, because the debugger does not progress
to the next TCK edge until after an RTCK edge is received.

In case you have a processor derivative requiring a synchronization of
the processor clock and the JTAG clock, but your target does not provide
an RTCK signal, you need to select a fix JTAG clock below 1/6 of the
processor clock (ARM7, ARM9), below 1/8 of the processor clock
(ARM11), respectively.

When RTCK is selected, the frequency depends on the processor clock and
on the propagation delays. The maximum reachable frequency is about
16 MHz.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 42

ARTCK

Accelerated method to control the debug clock by the RTCK signal
(Accelerated Returned TCK). This option is only relevant for JTAG debug
ports.

For designs using a very low processor clock we offer a different mode
(ARTCK).

In ARTCK mode, the debugger uses a fixed frequency for TCK, independent
of the RTCK signal. This frequency must be specified by the user and has to
be below 1/3 of the processor clock speed. TDI and TMS will be delayed by
1/2 TCK clock cycle. TDO will be sampled with RTCK.

CTCK

With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by a signal which derives from
TCK/SWCLK, but which is timely compensated regarding the debugger-
internal driver propagation delays (Compensation by TCK). This feature
can be used with a debug cable version 3 or newer. If it is selected,
although the debug cable is not suitable, a fixed frequency will be
selected instead (minimum of 10 MHz and selected clock).

CRTCK

With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by the RTCK signal. This compensates
the debugger-internal driver propagation delays, the delays on the cable and
on the target (Compensation by RTCK). This feature requires that the target
provides an RTCK signal. In contrast to the RTCK option, the TCK/SWCLK
is always output with the selected, fixed frequency.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 43

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the Xtensa core JTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and
SYStem.CONFIG TCKLevel must be set properly. They define the TAP state and TCK level which is
selected when the debugger switches to tristate mode.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied | DAP
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

DAP A run-time memory access is done via the ARM CoreSight v2 Debug
Access Port (DAP). This is only possible if a DAP is available on the chip
and if the memory bus is connected to it.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 44

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
Up
Down Disables the debugger (default). The state of the CPU remains

unchanged. The JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Go Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
external trigger.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

The automatic endian detection does not work in this case. Set the
SYStem.Option.Endianness to Little or Big before executing
SYStem.Mode Attach.

StandBy Not available for Xtensa.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all register are
set to the default level.

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits

Format: SYStem.Option.AHBHPROT <value> (deprecated)
Use SYStem.CONFIG.AHBAPNn.HPROT instead.

Default: 0

©1989-2024 Lauterbach Xtensa Debugger and Trace | 45

Selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AHB Access
Port, when using the AHB: memory class.

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Format: SYStem.Option.AXIACEEnable [ON | OFF] (deprecated)
Use SYStem.CONFIG.AXIAPn.ACEEnable instead.

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Format: SYStem.Option.AXICACHEFLAGS <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.CacheFlags instead.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSWI[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory

class.
SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
Format: SYStem.Option.AXIHPROT <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.HPROT instead.
Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AXI
Access Port, when using the AXI: memory class.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 46

SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2

Format: SYStem.Option.DAP2DBGPWRUPREQ [ON | AlwaysON]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start.

ON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is not released at the end of the debug session, and
the control bit is set to 0.

OFF Debug power is not requested and not checked by the debugger.
The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAP2DBGPWRUPREQ is set
to AlwaysON.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 47

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is not released at the end of the debug session, and
the control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked
by the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to

AlwaysON.
SYStem.Option.DAPNOIRCHECK No DAP instruction register check
Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 48

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll

Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None

There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd

Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd

Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant

state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOwW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 49

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2
Format: SYStem.Option.DAP2SYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is not released at the end of the debug session, and
the control bit remains at 1.

ON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session
start, and the control bit is set to 0.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 50

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.

SYStem.Option.DISableHwWatchDOG Disable watchdog when core stops

Format: SYStem.Option.DISableHwWatchDOG [ON | OFF]

Some SoCs contain a hardware watchdog. If this option is active, the debugger disables the watchdog when
the core stops, e.g. due to breakpoint.

ON Disables watchdog.

OFF ldle.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 51

SYStem.Option.DisMode

Define disassembler mode

Format:

<mode>:

SYStem.Option.DisMode <mode>

INTernal
LIBrary
INTbeforeLIB
LiIBbeforeINT

Defines the disassembler mode.

INTernal

LIBrary

INTbeforeLIB

LiIBbeforelNT

Use TRACES32 internal disassembiler.

Use disassembler from TIE library defined with SYStem.TIE commands,
see example below.

Prefer TRACE32 internal disassembler, use TIE library as fallback.

Prefer TIE library, use TRACES32 internal disassembler as fallback.

Example:

SYStem.TIE.DELete ; Delete all already added files

SYStem.TIE.AddCorelLibrary libisa-core-hw.dll ; Add TIE library files

SYStem.TIE.AddCoreLibrary libisa-core.dll

SYStem.TIE.AddCoreLibrary libisa-DC_330HiFi.dll

SYStem.TIE.ENAble ; Load and enable TIE Instructions

SYStem.Option.DisMode LIBbeforeINT ; set disassembler preference
SYStem.Option.Endianness Specify the byte ordering

Format: SYStem.Option.Endianness [AUTO | Little | Big]

Default: AUTO.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 52

The instructions for the JTAG connection to the Xtensa core depend on the byte ordering. If AUTO is
selected, the debugger detects the endianness when leaving down state. This does not work for
SYStem.Mode Attach.

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)

[SYStem.state window> EnReset]

Format: SYStem.Option.EnReset [ON | OFF]

Default: ON.

If this option is disabled the debugger will never drive the nRESET (nSRST) line on the JTAG connector. This
is necessary if NRESET (nSRST) is no open collector or tristate signal.

From the view of the core, it is not necessary that NRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.EnTRST Allow debugger to drive TRST
Format: SYStem.Option.EnTRST [ON | OFF]
Default: ON.

If this option is disabled, the nTRST line is never driven by the debugger (permanent high). Instead the
debugger attempts to capture the same effect to the TAP controller by consecutive TCK pulses with TMS

high.
SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 53

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC
Format: SYStem.Option.IntelSOC [ON | OFF]
Default: OFF.

Informs the debugger that the core is part of an Intel® SoC. When enabled, all IR and DR pre/post settings
are handled automatically, no manual configuration is necessary.

Requires that the debugger for this core is slave in a multicore setup with x86 as the master debugger and
that SYStem.Option.CLTAPOnly is enabled in the x86 debugger.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 54

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC002082A belonging to memory space with

;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.PWROVR Specifies power override bit

Format: SYStem.Option.PWROVR [ON | OFF] (deprecated)

Specifies the power override bit when a certain derivative providing this function is selected.

SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint
Format: SYStem.Option.SOFTLONG [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 55

This option instructs the debugger to use 32-bit accesses to patch the software breakpoint code.

MAP.BUS8 / MAP.BUS16 / MAP.BUS32 does not influence the access used for patching the software
breakpoint code. So if you use MAP.BUS32 for code area you have to activate this option.

SYStem.Option.ResetDetection Supervise reset
Format: SYStem.Option.ResetDetection [ON | OFF]
Default: ON.

Selects if the debugger takes account of an external target reset.

ON External resets are supervised.

OFF External resets are ignored.
SYStem.Option.RUNSTALLMASKASM Disable RunStall while step

Format: SYStem.Option.RUNSTALLMASKASM [AUTO | ON | OFF]

Default: AUTO.

If enabled, the RunStallinEn bit of the Debug Control Register (DCR) is cleared during assembler
single-step operations. This is required for some multicore CPUs.

AUTO AUTO enables this option for some pre-defined CPUs.

ON, OFF Use ON or OFF to explicitly enable or disable this option.
SYStem.Option.SnoopAddressPC Program counter snoop address

Format: SYStem.Option.SnoopAddressPC <address> | <addressrange> | <name>

Some SoCs allow to read the program counter during runtime. Use this option to tell the debugger where to
read the program counter.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 56

Example:

SYStem.Option.SnoopAddressPC EAXI:0x12345678

SYStem.Option.SPILLLOC Temporary memory

Format: SYStem.Option.SPILLLOC <start_address>

Tells the debugger where to find memory which can be used to store data and to execute small pieces of
code (max. 256 bytes).

Some configurations contain registers which cannot be accessed directly. They can only be accessed by
executing a sequence of instructions. For this task, a small area of RAM is required. The debugger saves the
contents before the memory is used and restores the original contents after usage. With this option, you can
specify the first address of the memory range the debugger can use.

SYStem.Option.TriggerHwWatchDOG Trigger hardware watchdog
Format: SYStem.Option.TriggerHwWatchDOG [ON | OFF]
Default: OFF.

Some SOCs contain a hardware watchdog. If this option is active, the debugger triggers the watchdog while
real time execution is stopped. Make sure to keep the watchdog timer period long enough, to give the
debugger a chance to meet the timing.

ON Idle.
OFF Trigger.
SYStem.Option.WindowVectorBase VECBASE initial value
Format: SYStem.Option.WindowVectorBase <address>

If the Relocatable Vector Option was added to a Xtensa configuration, the core contains a special register
VECBASE.

Specifies initial value of the special register VECBASE for simulation purposes.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 57

SYStem.Option.WinRegOption Windowed register option

Format: SYStem.Option.WinRegOption [/<option>]

<option>: AUTO | OFF | 32 | 64

Tells the debugger if the Architectural Option with the name Windowed Register Option was configured. It
tells you the number of physical registers. You can have:

32 32 core registers if this Architectural Option is not configured to have 32
registers.

64 64 core registers if this Architectural Option is not configured to have 32
registers.

AUTO The option AUTO tells the debugger to detect the used setting from the
hardware.

OFF 16 core registers if this Architectural Option is not configured.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 58

SYStem.TIE TIE library files

The SYStem.TIE command group is used to configure TRACE32 to deal with architectural extensions. One
important extension, the Tensilica Instruction Extension gave the name for this set of commands.

The Tensilica tool chain generates libraries for a custom configuration. These libraries can be used to extract
information on the usage of architectural options, additional instructions and registers.

SYStem.TIE.AddCoreLibrary Add library file

Format: SYStem.TIE.AddCoreLibrary <file>
SYStem.TIE.ADDtiedll <file> (deprecated)
SYStem.TIE.ADPerdll <file> (deprecated)

Adds TIE library file to the TRACES32, which can be used to improve disassembly for custom configurations.
It is important to add all needed library files. The TIE library files need to be added in the correct order, since
they are internally dependent. If any file is missing an error may appear after executing
SYStem.TIE.ENAble command.

The order is as follows:
First “1ibisa-core-hw.dll”, then “libisa-core.d11” and finally the remaining “libisa-*.d411”
libraries (if available).

On Linux systems it might be required to add the path to the LD_LIBRARY_PATH environment variable
before starting TRACE32.

Example:

SYStem.TIE.AddCoreLibrary libisa-core.dll

For a complete example see SYStem.TIE.ENAble command.

SYStem.TIE.CMList Instructions to display custom registers

Format: SYStem.TIE.CMList <file>

Generates the instructions the debugger needs to display custom registers, see example at
SYStem.TIE.GENper command.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 59

SYStem.TIE.DELete Remove all library files

Format:

SYStem.TIE.DELete
SYStem.TIE.DEPerdll (deprecated)

Removes all added TIE library files from TRACE32. This command is recommended before
SYStem.TIE.AddCoreLibrary to be sure that there are no other library files added.

SYStem.TIE.DISable Unload and disable TIE instructions

Format:

SYStem.TIE.DISable

All loaded TIE library files are unloaded from disassembler decoder. Instructions are decoded only by the
internal TRACE32 decoder. To restart decoding with TIE library files use the command
SYStem.TIE.ENAble.

SYStem.TIE.ENAble Load and enable TIE instructions

Format:

SYStem.TIE.ENAble

Loads all added TIE library files to the TRACE32 disassembler. From this moment all instructions are
decoded by internal TRACE32 decoder and TIE library files. Before you execute this command, it is
necessary to add all needed library files to the TRACE32 otherwise an error will appear and TIE library files
will not be loaded. To add the file use SYStem.TIE.AddCoreLibrary command. To set you disassembler
preference use SYStem.Option.DisMode command.

Example:

SYStem.
SYStem.
SYStem.
SYStem.
SYStem.

SYStem.

SYStem.

TIE.RESet

TIE.ToolLibraryPath "./tools/lib"

TIE.AddCoreLibrary libisa-core-hw.dll ; Add TIE library files
TIE.AddCoreLibrary libisa-core.dll

TIE.AddCoreLibrary libisa-DC_330HiFi.dll

TIE.ENAble ; Load and enable TIE Instructions
Option.DisMode LIBrary ; Set disassembler preference

©1989-2024 Lauterbach Xtensa Debugger and Trace | 60

SYStem.TIE.GENper Generate peripheral file

Format: SYStem.TIE.GENper <file>

Generates a custom peripheral file from the loaded libraries.
Example:

SYStem.TIE.ToolLibraryPath "./tools/lib"

SYStem.TIE.AddCorelLibrary libisa-core-hw.dll
SYStem.TIE.AddCorelLibrary libisa-core.dll

SYStem.TIE.GENper "my hifi2.per"
SYStem.TIE.CMList "my hifi2.cmm"

DO "my_ hifi2.cmm"
PER.view my _hifi2.per"

SYStem.TIE.GETArchOPTions Detect architectural options from libraries

Format: SYStem.TIE.GETArchOPTions <file>

Detects architectural options from the loaded libraries.
Example:

SYStem.TIE.ToolLibraryPath "./tools/lib"

SYStem.TIE.AddCoreLibrary libisa-core-hw.dll
SYStem.TIE.AddCoreLibrary libisa-core.dll

SYStem.TIE.GETArchOPTions

SYStem.Mode Up

©1989-2024 Lauterbach Xtensa Debugger and Trace | 61

SYStem.TIE.ToolLibraryPath Specify path for library tools

Format: SYStem.TIE.ToolLibraryPath <directory>
SYStem.TIE.LIBpath <directory> (deprecated)

Tells the debugger where to search for the tools to handle core specific libraries.

To extract information from delivered libraries a set of tools is needed. These tools can be found within

additional libraries like xtisa.dll, xtparams.dll and xtdebug.dll. TRACES32 needs to know where to find these
files.

Be aware that the same release revision is needed as you selected for your XGP request to Cadence®.

On Linux systems it might be required to add the path to the LD_LIBRARY_PATH environment variable
before starting TRACES32.

SYStem.TIE.RESet Reset TIE

Format: SYStem.TIE.RESet

Resets TIE to initial state.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 62

Xtensa Specific Benchmarking Commands

The BMC (BenchMark Counter) commands provide control of the on-chip performance counters. The
counters can be configured to count certain events in order to get statistics on the operation of the processor
and the memory system.

The counters of Xtensa cores can be read at run-time.

For further Information please refer to section “Performance Monitor for Xtensa LX Processors” or
“Performance Monitor for Xtensa NX Processors” within “xtensa_debug_guide.pdf”.

. Please note, due to influence of the Debugger the derived counter values could be slightly higher.
o Please note, the feature can only be used, if the performance monitor counters are configured within
the core.
BMC.<counter>.EVENT Assign event to counter
[build 147523 - DVD 09/2022]
Format: BMC.<counter>.EVENT <event>
<counter>: PMO | PM1 | ... (depending on configuration)
<event>: OFF | CYCLE | OVFL_PREV_COUNTER | ... (depending on NX/LX core, cmp
xtensa_debug_guide.pdf)

Performance Monitors - short PM - are implemented as 32-bit hardware counter. They collect information
about the throughput of the target processor and its pipeline stages. They count certain events, like cache
misses or CPU cycles. Further, they deliver information about the efficiency of the instruction or data cache,
the TLBs (translation look aside buffers) and some other performance values. This information may be
helpful in finding bottlenecks and tuning the application.

A list for countable events can be found in the document “xtensa_debug_guide.pdf” provided by Cadence.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 63

BMC.<counter>.KRNLCNT Set compare operator

[build 147766 - DVD 09/2022]

Format: BMC.<counter>.KRNLCNT <mode>
<counter>: PMO | PM1 | ... (depending on configuration)
<mode>: LESSEQUAL | GREATER

Depending on the selected mode, the performance monitors only count if

KRNLCNT on LX cores on NX cores
LESSEQUAL CINTLEVEL <= TRACELEVEL EXECLEVEL <= TRACESCOPE
GREATER CINTLEVEL > TRACELEVEL EXECLEVEL > TRACESCOPE

For further details please refer to “xtensa_debug_guide.pdf” provided by Cadence.

BMC.<counter>.TRACELEVEL Set counting threshold
[build 147783 - DVD 09/2022]
Format: BMC.<counter>.TRACELEVEL <val>
<counter>: PMO | PM1 | ... (depending on configuration)
<val>: ol1l...17
LX core only.
. CINTLEVEL is the Xtensa core’s current interrupt level as defined in the Xtensa Instruction Set

Architecture (ISA) Reference Manual

©1989-2024 Lauterbach Xtensa Debugger and Trace | 64

BMC.<counter>.TRACESCOPE Set counting threshold

[build 147783 - DVD 09/2022]

Format: BMC.<counter>.TRACESCOPE <val>
<counter>: PMO | PM1 | ... (depending on configuration)
<val>: 0l11...17
NX core only.
. EXECLEVEL is the Xtensa core’s current execution level as reported by the traceport. Refer to

operating system relationship with EXECLEVEL for more details.

. The Xtensa processor’s current execution level (EXECLEVEL) is a value reported on the Traceport
that classifies the code currently running in categories useful to track for profiling or tracing purposes,
such as: application thread, exception handler, interrupt handler, or dispatch code. For example, this
allows performance counters to selectively count at specified execution levels, using TRACESCOPE
and KRNLCNT fields described in Control Register.For further details please refer to
"xtensa_debug_guide.pdf' provided by Cadence.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 65

CPU specific TERM.METHOD Command

TERM.METHOD.BRK1_14 Define communication protocol
Format: TERM.METHOD.BRK1_14 [<address>]
BRK1_14 The command TERM.METHOD.BRK1_14 tells the debugger to use GNU

SYSCALL operations for terminal communication.

Use TERM.view to open the terminal window and to activate the

communication.

When an application reaches “break 1,14”, the application is stopped and the

debugger checks for the type of SYSCALL.

. When receiving a SYSCALL_WRITE operation, the debugger writes the
relevant information to the terminal window and returns to Go state, i.e.
starts to execute user code again.

. When receiving a SYSCALL_READ, the application remains stopped.
The debugger is waiting for some input to the terminal window. When you
press the Enter key, the application resumes operation.

The handling of "break 1,14" is only active when the TERM.view window is

open while TERM.METHOD BRK1_14 is selected. In all other cases, "break

1,14" is treated as a normal software break instruction.

For a description of the other options, see TERM.METHOD.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 66

CPU specific TrOnchip Commands

The TrOnchip command group provides full access to both ICE Breaker units called A and B. Most of the
features can also utilized easier by setting regular breakpoints (Break.Set command).

The TrOnchip commands are only visible if the debugger detects TRAX-PC hardware. They cannot be
modified when the onchip trace is disabled.

For the bit descriptions of the control registers, please refer to the Trace Solutions User’s Guide of the
chip/core manufacturer.

TrOnchip.BIEN Break-out relay enable

Format: TrOnchip.BIEN [ON | OFF]

Default: OFF.

Only available, when the TRAX Onchip Trace is configured and not disabled.
ON Enable.
OFF Disable.

TrOnchip.BOEN Break-in relay enable

Format: TrOnchip.BOEN [ON | OFF]

Default: OFF.

Only available, when the TRAX Onchip Trace is configured and not disabled.
ON Enable.
OFF Disable.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 67

TrOnchip.CTIEN Cross-trigger input enable

Format: TrOnchip.CTIEN [ON | OFF]

Default: OFF.

Only available, when the TRAX Onchip Trace is configured and not disabled.

ON Enable.
OFF Disable.
TrOnchip.CTOWS Cross-trigger output enable when trace stop completes
Format: TrOnchip.CTOWS [ON | OFF]
Default: OFF.

Only available, when the TRAX Onchip Trace is configured and not disabled.

ON Enable.
OFF Disable.
TrOnchip.CTOWT Cross-trigger output enable when trace stop triggered
Format: TrOnchip.CTOWT [ON | OFF]
Default: OFF.

Only available, when the TRAX Onchip Trace is configured and not disabled.
ON Enable.
OFF Disable.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 68

TrOnchip.PTIEN Processor trigger input enable

Format: TrOnchip.PTIEN [ON | OFF]

Default: OFF.

Only available, when the TRAX Onchip Trace is configured and not disabled.

ON Enable.
OFF Disable.
TrOnchip.PTOWS Processor trigger output enable
Format: TrOnchip.PTOWS [ON | OFF]
Default: OFF.

Enables the processor trigger output when trace stop completes.

Only available, when the TRAX Onchip Trace is configured and not disabled.

ON Enable.
OFF Disable.
TrOnchip.PTOWT Processor trigger output enable
Format: TrOnchip.PTOWT [ON | OFF]
Default: OFF.

Enables the processor trigger output when trace stop triggered.

Only available, when the TRAX Onchip Trace is configured and not disabled.
ON Enable.
OFF Disable.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 69

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets all TrOnchip settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 70

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.
. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 71

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific Tables

TLB

Displays the contents of the Translation Lookaside Buffer.

©1989-2024 Lauterbach

Xtensa Debugger and Trace |

72

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

o else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 73

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 74

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

©1989-2024 Lauterbach

Xtensa Debugger and Trace | 75

CPU specific NEXUS Commands

The Xtensa trace protocol is based on Nexus (R) commands, so the NEXUS command group is used to
configure the TRAX trace properties.

NEXUS.CLOCK Specify the frequency of the timestamp counter
Format: NEXUS.CLOCK <frequency>
Default: 0.

Specifies the frequency of the timestamp counter clock. An external logic block supplies the 64 lines
DebugExiTime (input lines of the Xttop Module) with a monotonically increasing 64-bit time value. The clock
of this counter is expected to be synchronous to the Xtensa clock (Signal CLK of the Xttop Module).

To calculate time values from the timestamp value within a trace packet, TRACES32 needs to know how
much time one counter tick takes.

Within a CoreSight environment, the external logic block typically is a CoreSight timestamp Interpolator.

NEXUS.ON Switch the NEXUS trace port on

Format: NEXUS.ON

Default: OFF.

This option controls the ATB enable (ATEN) in the Trax Control Register. The output of the TRAX trace
compressor is sent to the ATB interface to feed the funnel of a Coresight environment for example.

ON Send trace data out on the ATB interface.

OFF No trace data is sent to the ATB interface.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 76

NEXUS.RESet Reset NEXUS trace port settings

Format: NEXUS.RESet

Resets NEXUS trace port settings to default settings.

NEXUS.TracelD Specify the trace ID

Format: NEXUS.TracelD </D> [0...127]

Default:1.
selects a unique number within your trace sources.
Default: AUTO.

The command NEXUS.TracelD sets the ATB-ID used by the TRAX trace logic, when emitting the trace
stream to the CoreSight ATB. The value gets written to the bitfield ATID of the TRAX Control register.

Every trace stream must have a different ID inside the same CoreSight ATB network. It is especially
important with AMP multicore configurations to ensure that every trace producer uses a different ID.

In SMP multicore configurations this command sets the ID of the first core, while the ID is incremented for
each consecutive core in the same SMP cluster.

NEXUS.TImeMode Generate timestamps to the trace data
Format: NEXUS.TImeMode <mode>
<mode> NexusTimeStamps
OFF

This option controls the TSEN bit of the Trax Control Register. It can be set only, if the TRAX Trace Buffer
Module of the Xtensa configuration is configured to generate timestamp information.

NexusTimeStamps The TRAX trace encoder generates time information

OFF No time information.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 77

JTAG Connection

IDC20A Debug Cable

Mechanical Description of the IDC20A Debug Cable:

Signal Pin Pin Signal
VTREF 1 2 VSUPPLY (not used)
TRST- 3 4 GND
TDI 5 6 GND
TMS 7 8 GND
TCK 9 10 GND
RTCK 11 12 GND
TDO 13 14 GND
SRST- 15 16 GND
(DBGRQ) 17 18 GND
(DBGACK) 19 20 GND

Electrical Description of the IDC20A Debug Cable:

o TCK, TMS, TDI and nTRST are driven by CMOS drivers which are supplied with a voltage
following the level at VCCS. Therefore the ICD can work in an voltage range of 1.8 ... 5.0 V. In
normal operation mode this driver is enabled, but it can be disabled to give another tool access to
the JTAG port. In environments where multiple tools can access the JTAG port, it is absolutely
required that there is a pull down resistor at TCK. This is to ensure that TCK is low during a hand-
over between different tools.

. TDO is ICD input only.

. VCCS is used as a sense line for the target voltage. It is also used to define the level which is
generated to supply the output drivers of the ICD interface to make an adaptation to the target
voltage (I(VCCS) appr. 3 mA).

J nRESET (= nSRST) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. The debugger will only assert a pulse on nRESET
when the SYStem.Up command is executed.

Be careful with Pin17 and Pin19.

J They are intended to carry the signals DBGRQ and DBGACK, when the Xtensa core is
embedded into an Arm based debug environment.

. Do not connect Pin17 and Pin 19 on the target side in other cases. Otherwise the hardware of
the debugger can get damaged. Pin 2, originally intended to supply debugger hardware with
power, is not in use and should not be connected to the target hardware either. Termination
circuitry on the debugger hardware makes sure that these pins are not floating.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 78

14-Pin Debug Cable

Mechanical Description of the 14-pin Debug Cable:

Signal Pin Pin Signal
TDI 1 2 GND
TDO 3 4 GND
TCK 5 6 GND
N/C 7 - KEY PIN
RESET- 9 10 TMS
VCCS 11 12 N/C
N/C 13 14 TRST-

Tensilica has specified Pin 8 as a mechanical KEY Pin to define the orientation of the connector. This is a
standard 14 pin double row (two rows of seven pins) connector (pin-to-pin spacing: 0.100 in.).

Electrical Description of the 14-pin Debug Cable:

. TCK, TMS, TDI and nTRST are driven by CMOS drivers which are supplied with a voltage
following the level at VCCS. Therefore the ICD can work in an voltage range of 1.8 ... 5.0 V. In
normal operation mode this driver is enabled, but it can be disabled to give another tool access to
the JTAG port. In environments where multiple tools can access the JTAG port, it is absolutely
required that there is a pull down resistor at TCK. This is to ensure that TCK is low during a hand-
over between different tools.

J TDO is ICD input only.

J VCCS is used as a sense line for the target voltage. It is also used to define the level which is
generated to supply the output drivers of the ICD interface to make an adaptation to the target
voltage (I(VCCS) appr. 3 mA).

. NnRESET (= nSRST) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. The debugger will only assert a pulse on nRESET
when the SYStem.Up command is executed.

©1989-2024 Lauterbach Xtensa Debugger and Trace | 79

	Xtensa Debugger and Trace
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start of the JTAG Debugger
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Xtensa Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Example for Standard Breakpoints

	Runtime Measurement
	Memory Classes
	MAP.BUS8 Bus width mapping
	MAP.BUS16 Bus width mapping
	MAP.BUS32 Bus width mapping

	CPU specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DISableHwWatchDOG Disable watchdog when core stops
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.Endianness Specify the byte ordering
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.EnTRST Allow debugger to drive TRST
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.PWROVR Specifies power override bit
	SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint
	SYStem.Option.ResetDetection Supervise reset
	SYStem.Option.RUNSTALLMASKASM Disable RunStall while step
	SYStem.Option.SnoopAddressPC Program counter snoop address
	SYStem.Option.SPILLLOC Temporary memory
	SYStem.Option.TriggerHwWatchDOG Trigger hardware watchdog
	SYStem.Option.WindowVectorBase VECBASE initial value
	SYStem.Option.WinRegOption Windowed register option
	SYStem.TIE TIE library files
	SYStem.TIE.AddCoreLibrary Add library file
	SYStem.TIE.CMList Instructions to display custom registers
	SYStem.TIE.DELete Remove all library files
	SYStem.TIE.DISable Unload and disable TIE instructions
	SYStem.TIE.ENAble Load and enable TIE instructions
	SYStem.TIE.GENper Generate peripheral file
	SYStem.TIE.GETArchOPTions Detect architectural options from libraries
	SYStem.TIE.ToolLibraryPath Specify path for library tools
	SYStem.TIE.RESet Reset TIE

	Xtensa Specific Benchmarking Commands
	BMC.<counter>.EVENT Assign event to counter
	BMC.<counter>.KRNLCNT Set compare operator
	BMC.<counter>.TRACELEVEL Set counting threshold
	BMC.<counter>.TRACESCOPE Set counting threshold

	CPU specific TERM.METHOD Command
	TERM.METHOD.BRK1_14 Define communication protocol

	CPU specific TrOnchip Commands
	TrOnchip.BIEN Break-out relay enable
	TrOnchip.BOEN Break-in relay enable
	TrOnchip.CTIEN Cross-trigger input enable
	TrOnchip.CTOWS Cross-trigger output enable when trace stop completes
	TrOnchip.CTOWT Cross-trigger output enable when trace stop triggered
	TrOnchip.PTIEN Processor trigger input enable
	TrOnchip.PTOWS Processor trigger output enable
	TrOnchip.PTOWT Processor trigger output enable
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.state Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	CPU specific NEXUS Commands
	NEXUS.CLOCK Specify the frequency of the timestamp counter
	NEXUS.ON Switch the NEXUS trace port on
	NEXUS.RESet Reset NEXUS trace port settings
	NEXUS.TraceID Specify the trace ID
	NEXUS.TImeMode Generate timestamps to the trace data

	JTAG Connection
	IDC20A Debug Cable
	14-Pin Debug Cable

