
MANUAL

QorIQ Debugger and NEXUS
Trace

QorIQ Debugger and NEXUS Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 QorIQ .. 

 QorIQ Debugger and NEXUS Trace .. 1

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 7

 Warning .. 8

 Target Design Recommendations ... 9

 General 9

 Quick Start ... 10

 Troubleshooting .. 11

 SYStem.Up Errors 11

 FAQ ... 12

 Tool Configuration .. 13

 TRACE32 Debugger 13

 TRACE32 Debugger and Trace with Serial Preprocessor 14

 TRACE32 Debugger and Trace with PowerTrace Serial 16

 Aurora Traceport 16

 PCIe Traceport 19

 PowerPC QorIQ specific Implementations ... 20

 Breakpoints 20

 Software Breakpoints 20

 On-chip Breakpoints 20

 Breakpoints on Program Addresses 21

 Breakpoints on Data Addresses 22

 Breakpoints on Data Access at Program Address 22

 Breakpoints on Data Value 23

 Access Classes 24

 Access Classes to Memory and Memory Mapped Resources 24

 Access Classes to Other Addressable Core and Peripheral Resources 25
QorIQ Debugger and NEXUS Trace | 2©1989-2024 Lauterbach

 Cache 26

 Memory Coherency 26

 MESI States and Cache Status Flags 27

 Viewing Cache Contents 28

 Debugging Information 29

 Multicore Debugging 29

 General Information 29

 SMP Debugging 30

 AMP Debugging 31

 Synchronous Go of the Cores 34

 Synchronous Stop of the Cores 34

 Programming Flash on QorIQ Processors 38

 Programming the Reset Configuration Word (RCW) 39

 Trace Information 40

 Supported Trace Features 41

 Aurora HSTP Trace 42

 Nexus PCIe Trace 42

 On-chip Trace 44

 Trace initialization 45

 Trace Sink settings and processes - depending on the system state 45

 Trace Source settings and trace access - regardless of the system state 46

 CPU specific SYStem Commands ... 48

 SYStem.BdmClock Set debug clock frequency 48

 SYStem.CONFIG.state Display target configuration 49

 SYStem.CONFIG Configure debugger according to target topology 50

 SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector 53

 SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin 54

 SYStem.CONFIG.QACK Control QACK pin 54

 SYStem.CPU Select the CPU type 55

 SYStem.LOCK Lock and tristate the debug port 55

 SYStem.MemAccess Select run-time memory access method 55

 SYStem.Mode Select operation mode 57

 CPU specific SYStem.Option Commands ... 58

 SYStem.Option.Address32 Define address format display 58

 SYStem.Option.DCFREEZE Data cache state frozen while core halted 58

 SYStem.Option.DCREAD Read from data cache 59

 SYStem.Option.DUALPORT Implicitly use run-time memory access 60

 SYStem.Option.FREEZE Freeze system timers on debug events 60

 SYStem.Option.HOOK Compare PC to hook address 60

 SYStem.Option.HRCWOVerRide Override RCW during SYStem.Up 61

 SYStem.Option.ICFLUSH Invalidate instruction cache before go and step 61

 SYStem.Option.ICREAD Read from instruction cache 61

 SYStem.Option.IMASKASM Disable interrupts while single stepping 62
QorIQ Debugger and NEXUS Trace | 3©1989-2024 Lauterbach

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 62

 SYStem.Option.MACHINESPACES Address extension for guest OSes 62

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 63

 SYStem.Option.NoDebugStop Disable JTAG stop on debug events 65

 SYStem.Option.OVERLAY Enable overlay support 66

 SYStem.Option.RESetBehavior Set behavior when target reset detected 67

 SYStem.Option.SLOWRESET Relaxed reset timing 67

 SYStem.Option.STEPSOFT Use alternative method for ASM single step 68

 SYStem.Option.TranslationSPACE Identify user and hypervisor modes 68

 SYStem.Option.ZoneSPACES Enable symbol management for zones 69

 CPU specific MMU Commands .. 73

 MMU.DUMP Page wise display of MMU translation table 73

 MMU.FORMAT Define MMU table structure 76

 MMU.List Compact display of MMU translation table 81

 MMU.SCAN Load MMU table from CPU 83

 MMU.Set Set an MMU TLB entry 85

 CPU specific BenchMarkCounter Commands .. 86

 BMC.FREEZE Freeze counters while core halted 86

 BMC.Trace Trace performance monitor events 86

 BMC.<counter>.FREEZE Freeze counter in certain core states 87

 CPU specific TrOnchip Commands ... 88

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 88

 TrOnchip.RESet Reset on-chip trigger settings 89

 TrOnchip.Set Enable special on-chip breakpoints 89

 TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource 90

 TrOnchip.state View on-chip trigger setup window 91

 Nexus and Trace specific commands ... 92

 DDRTrace.List List DDR trace contents 92

 DQMTrace.List List DQM trace contents 92

 NEXUS.BTM Enable program trace messaging 93

 NEXUS.CoreENable Core specific trace configuration 93

 NEXUS.DDRConfig.ADDRessfilter Filter Nexus DDR messages 94

 NEXUS.DDRConfig.Controller Configure Nexus DDR message type 94

 NEXUS.DQM Enable data acquisition messaging 95

 NEXUS.LaneMapping Logical to physical lane mapping 96

 NEXUS.LaneMapping.APPLY Apply logical to physical lane mapping 96

 NEXUS.LaneMapping.SetLane Configure logical to physical lane mapping 96

 NEXUS.OCeaNport.Mode Configure Nexus OCeaN message type 97

 NEXUS.OCeaNport<index>.TraceSELect Select Nexus OCeaN trace type 98

 NEXUS.OFF Switch the Nexus trace port off 98

 NEXUS.ON Switch the Nexus trace port on 99

 NEXUS.OTM Enable ownership trace messaging 99
QorIQ Debugger and NEXUS Trace | 4©1989-2024 Lauterbach

 NEXUS.PortMode Set Nexus trace port frequency 100

 NEXUS.PortSize Set trace port width 100

 NEXUS.POTD Disable periodic ownership trace 101

 NEXUS.PTCM Enable program trace correlation messages 101

 NEXUS.PTFGS Program trace mark 101

 NEXUS.PTFPMM Program trace mark 102

 NEXUS.PTFPR Program trace mark 102

 NEXUS.PTMARK Program trace mark 103

 NEXUS.RefClock Enable Aurora reference clock 103

 NEXUS.Register Display NEXUS trace control registers 103

 NEXUS.RESet Reset Nexus trace port settings 104

 NEXUS.SerDesCFG Enable SerDes PLL control register manipulation 104

 NEXUS.SerDesCFG.FRATE Select frequency of SerDes PLL VCO 104

 NEXUS.SerDesCFG.REFCLK Select frequency of SerDes reference clock 105

 NEXUS.Spen<messagetype> Enable message suppression 105

 NEXUS.STALL Stall the program execution when FIFO level is reached 106

 NEXUS.state Display Nexus port configuration window 107

 NEXUS.SupprTHReshold Set fill level for message suppression 107

 NEXUS.TimeStamps Append target timestamps to Nexus messages 108

 NEXUS.USEPORT Define used PCIe controller for PCIe trace 108

 NEXUS.WTM Enable watchpoint messaging 108

 OCeaNTrace.List List OCeaN trace contents 109

 Onchip specific Commands ... 110

 Onchip.TBARange Configure on-chip trace base address range 110

 Filters and Triggers for the Nexus Trace .. 111

 JTAG Connector .. 113

 Mechanical Description 113

 JTAG Connector QorIQ (COP) 113

 Aurora HSTP Connectors 114

 Samtec22 (Power.org) 114

 Samtec46 (Power.org) 114

 Samtec70 (Power.org) 115
QorIQ Debugger and NEXUS Trace | 5©1989-2024 Lauterbach

QorIQ Debugger and NEXUS Trace

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the following
CPU families:

• QorIQ Series with e500mc cores (P204X, P30XX, P40XX)

• QorIQ Series with e5500 cores (P50XX, T10XX)

• QorIQ Series with e6500 cores (T2XXX, T4XXX, B4XXX)

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.
QorIQ Debugger and NEXUS Trace | 6©1989-2024 Lauterbach

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known QorIQ based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/powerpc64bit/ subfolder of the system directory of
TRACE32.
QorIQ Debugger and NEXUS Trace | 7©1989-2024 Lauterbach

Warning

Signal Level

ESD Protection

P204X
P30XX
P40XX
P50XX
T10XX
T2XXX
T4XXX
B4XXX

The debugger drives the output pins of the BDM/JTAG/COP connector with the
same level as detected on the VCCS pin. If the IO pins of the processor are 3.3 V
compatible then the VCCS should be connected to 3.3 V.
See also System.up Errors.

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
QorIQ Debugger and NEXUS Trace | 8©1989-2024 Lauterbach

Target Design Recommendations

General

• Locate JTAG/COP and Aurora NEXUS connectors as close as possible to the processor to
minimize the capacitive influence of the trace length and cross coupling of noise onto the JTAG
signals. Do not put any termination (e.g. R/C/RC) on the JTAG lines.

• Connect TDI, TDO, TMS and TCK directly to the CPU. Buffers on the JTAG lines will add delays
and will reduce the maximum possible JTAG frequency. If you need to use buffers, select ones
with little delay. Most CPUs will support JTAG above 20 MHz, and you might want to use high
frequencies for optimized download performance.

• For optimal operation, the debugger should be able to reset the target board completely
(processor external peripherals, e.g. memory controllers) with the COP connector signal
HRESET (respectively the CPU pin PORESET). For further details please see the QorIQ
documents “Integrated Processor Hardware Specifications”, part “Hardware design
considerations”.

• In order to start debugging right from reset, the debugger must be able to control the COP
connector signals TRST and HRESET independent of each other.
QorIQ Debugger and NEXUS Trace | 9©1989-2024 Lauterbach

Quick Start

Starting up the Debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACE32 software was started.

2. Select the CPU type to load the CPU specific settings. If your CPU is not listed, you should
request a software update that handles this CPU.

3. Specify that on-chip breakpoints should be used by the debugger if a program breakpoint is set
to the boot page (read-only memory):

4. Enter active debug mode.

This command resets the CPU (HRESET), enters debug mode and stops all cores of the CPU at the
reset vector. See also SYStem.Up Errors if problems occur.

5. After SYStem.Up, only the boot page is visible for the CPU. Specify Local Access Windows
(LAWs) and initialize MMU TLBs to configure which memory is visible to the CPU at which
address. In the example, we map the P4080 internal SRAM (CoreNet platform cache) to logical
address 0x00000000. See MMU.Set.TLB and Data.Set for details.

6. Load the program.

The option of the Data.LOAD command depends on the file format generated by the compiler. A detailed
description of the Data.LOAD command is given in the “General Commands Reference”.

B::

SYStem.CPU P4080

MAP.BOnchip 0xFFFFF000--0xFFFFFFFF

SYStem.Up

Data.Set ANC:iobase.address()+0x0C00 %LONG %BE 0x00000000
Data.Set ANC:iobase.address()+0x0C04 %LONG %BE 0x00000000
Data.Set ANC:iobase.address()+0x0C08 %LONG %BE 0x81000013
MMU.Set.TLB1 1. 0x80000500 0x00000002 0x00000015 0x00000000

;Set
;LAW 0
;and
;TLB 1

Data.LOAD.ELf demo.elf ;(ELF specifies the format,
;demo.elf is the file name)
QorIQ Debugger and NEXUS Trace | 10©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command, there can be several reasons. The
following chapters list possible errors and explain how to fix them.

Target Power Fail

The Target has no power, the debug cable is not connected or not connected properly. Check if the
JTAG VCC pin is driven by the target. The voltage of the pin must be identical to the debug voltage of
the JTAG signals. It is recommended to connect VCC directly to the pin, or via a resistor < 5 kOhm.

Debugger Configuration Error

The debugger was not able to determine the connected processor. There are three possible reasons for
this error. In all cases, please check the AREA window for more information:

• The connected processor is not supported by the used software. Please check if the processor is
supported by the debugger. Processors that appeared later than the debugger software version
are usually not supported. Please download and install the latest software from our website, or
contact technical support to get a newer software. Please also check if the processor or the
software update is covered by your current licence.

• A JTAG communication error prevented correct determination of the connected processor.
Please check if the debugger is properly connected to the target.

Target Reset Fail

On SYStem.Up, the debugger will assert HRESET in order to stop the CPU at the reset address. A
target reset fail means, that an unexpected reset behavior caused an error:

• The reset is asserted longer than 500ms and is not visible on the JTAG connector. Try
SYStem.Option.SLOWRESET, and check signal level of the JTAG HRESET pin.

• The target reset is permanently asserted. Check target reset circuitry and reset pull-up.

• A chip external watchdog caused a reset after the debugger asserted reset. Disable the
watchdog and try again.
QorIQ Debugger and NEXUS Trace | 11©1989-2024 Lauterbach

Emulation Debug Port Fail

An emulation debug port fail can have a variety of reasons. Please check the AREA window for a detailed
error message. Here is a collection of frequent issues:

• JTAG communication error. Please check the signals on the debug connector.

• Problems related with Reset can not always be detected as those. Please check Target Reset
Fail.

CPU Setting Error

• The detected quantity of cores does not fit to the CPUs default. Most QorIQ CPUs offer the
possibility to completely disable cores (typically via the dedicated TEST_SEL pin). If any of the
cores are disabled you have to configure the debugger to restrict the access to the active cores
using the CORE.ASSIGN command.

FAQ

Please refer to https://support.lauterbach.com/kb.

; e.g. P2041, TEST_SEL wired to high level.
; -> Just the first two cores are active.
SYStem.CPU P2041
SYStem.Up ;Expected 4 active cores -> Error message

CORE.ASSIGN 1,2 ;Configure the active usable cores
SYStem.Up ;Debugging possible
QorIQ Debugger and NEXUS Trace | 12©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Tool Configuration

QorIQ development boards typically offer one of the following connector options:

• JTAG connector only

• JTAG connector and Aurora connector (Power.org 22-, 46- or 70-pin connector)

• Aurora connector only (Power.org 22-, 46- or 70-pin connector)

Depending on your board, you might need to adjust some board specific settings to define which connector
you want to use. Please refer to the configuration sheet of your board for further details.

If you want to start debugging right away, then simply check the two configuration options and use the
working one. For the working configuration option, TRACE32 accepts the SYStem.Up command without
displaying an error message.

TRACE32 Debugger

A QorIQ development board that allows only debugging, typically comes with a JTAG connector.

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
QorIQ Debugger and NEXUS Trace | 13©1989-2024 Lauterbach

TRACE32 Debugger and Trace with Serial Preprocessor

The TRACE32 PREPROCESSOR SERIAL for the QorIQ has a 40-pin connector. If you are using a
Power.org defined connector (22-, 46- or 70-pin) on your target you will need a fitting Aurora converter to
connect TRACE32 PREPROCESSOR SERIAL.

All Lauterbach Aurora converters provide a JTAG connector and a Samtec40 connector for the tool side and
a Power.org connector for the target side. Depending on your board design you have to use either:

• The board JTAG connector to connect the TRACE32 Debug Cable and the Lauterbach Aurora
converter to connect the TRACE32 Serial Preprocessor.

• Or you use the Aurora converter to connect both, the TRACE32 Debug Cable and the TRACE32
Serial Preprocessor.

JTAG and Aurora Connector

POWER DEBUG PRO

��������	

��������	

POWER TRACE II

POWER DEBUG PRO
POWER TRACE II

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable

A
ur

or
a

C
on

ne
ct

or

JT
A

G
S

am
te

c4
0Preprocessor
QorIQ Debugger and NEXUS Trace | 14©1989-2024 Lauterbach

Aurora Connector Only

POWER DEBUG PRO

��������	

��������	

POWER TRACE II

POWER DEBUG PRO
POWER TRACE II

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

Debug Cable

A
ur

or
a

C
on

ne
ct

or

JT
A

G
S

am
te

c4
0Preprocessor
QorIQ Debugger and NEXUS Trace | 15©1989-2024 Lauterbach

TRACE32 Debugger and Trace with PowerTrace Serial

If you are interested in general information on PowerTrace Serial, please refer to “PowerTrace Serial User’s
Guide” (serialtrace_user.pdf).

Aurora Traceport

The TRACE32 POWER TRACE SERIAL for the QorIQ has a 40-pin connector. If you are using a Power.org
defined connector (22-, 46- or 70-pin) on your target you will need a fitting Aurora converter to connect
TRACE32 POWER TRACE SERIAL.

All Lauterbach Aurora converters provide a JTAG connector and a Samtec40 connector for the tool side and
a Power.org connector for the target side. Depending on your board design you have to use either:

• The board JTAG connector to connect the TRACE32 Debug Cable and the Lauterbach Aurora
converter to connect TRACE32 POWER TRACE SERIAL.

• Or you use the Aurora converter to connect both, the TRACE32 Debug Cable and TRACE32
POWER TRACE SERIAL.
QorIQ Debugger and NEXUS Trace | 16©1989-2024 Lauterbach

JTAG and Aurora Connector

POWER DEBUG PRO

��������	

��������	

POWER TRACE SERIAL

POWER DEBUG PRO
POWER TRACE SERIAL

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable

A
ur

or
a

C
on

ne
ct

or

JT
A

G
S

am
te

c4
0

QorIQ Debugger and NEXUS Trace | 17©1989-2024 Lauterbach

Aurora Connector Only

POWER DEBUG PRO

POWER TRACE SERIAL

POWER DEBUG PRO
POWER TRACE SERIAL

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

Debug Cable

Au
ro
ra

Co
nn

ec
to
r

JT
AG

Sa
m
te
c4
0

QorIQ Debugger and NEXUS Trace | 18©1989-2024 Lauterbach

PCIe Traceport

If your board does not provide an Aurora traceport, it is also possible to convey the NEXUS core trace
information off-chip via the PCIe interface.

The TRACE32 POWER TRACE SERIAL for the QorIQ needs additionally a TRACE32 License for PCI
Express in this case, and probably a Lauterbach Slot-Card-Converter.

POWER DEBUG PRO

��������	

��������	

POWER TRACE SERIAL

POWER DEBUG PRO
POWER TRACE SERIAL

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
QorIQ Debugger and NEXUS Trace | 19©1989-2024 Lauterbach

PowerPC QorIQ specific Implementations

Breakpoints

There are two types of breakpoints available: ONCHIP breakpoints and SOFTware breakpoints.

Software Breakpoints

To set a software breakpoint, before resuming the CPU, the debugger replaces the instruction at the
breakpoint address with a DNH instruction.

On-chip Breakpoints

To set breakpoints on code in read-only memory, only the on-chip instruction address breakpoints are
available. With the command MAP.BOnchip <range> it is possible to declare memory address ranges for
use with on-chip breakpoints to the debugger. The number of breakpoints is then limited by the number of
available on-chip instruction address breakpoints.

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction address breakpoints: Number of on-chip breakpoints that can be used to set
program breakpoints into ROM/FLASH/EEPROM.

• Data address breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

Core type
(CPU types):

On-chip
Breakpoints

Instruction Address
Breakpoints

Data Address
Breakpoints

e500mc
(P204X,
P30XX,
P40XX),

e5500
(P5XXX,
T10XX)

2 instruction
2 read/write
no counters

2 single breakpoints
-- or --
1 exact breakpoint
range

2 single breakpoints
-- or --
1 exact breakpoint range
-- or --
2 ranges up to 4kB each
MAP.BOnchip (exact or
extended range)
-- or --
1 range up to 4kB (exact or
extended range) and 1
single breakpoint
QorIQ Debugger and NEXUS Trace | 20©1989-2024 Lauterbach

You can see the currently set breakpoints with the command Break.List.

If no more on-chip breakpoints are available, you will get an error message when trying to set a new on-chip
breakpoint.

Breakpoints on Program Addresses

The debugger sets software and on-chip breakpoints to the effective address. If a breakpoint is set on a
program address, the debugger will first try to set a software breakpoint. If writing the software breakpoint
fails (translation error or bus error), then an on-chip breakpoint will be set instead. If a memory range must
not be written by the debugger, it can be declared for on-chip breakpoint usage using MAP.BOnchip.
Alternatively, it is also possible to force a single breakpoint to on-chip using the command Break.Set with
option /Onchip:

Core type
(CPU types):

On-chip
Breakpoints

Instruction Address
Breakpoints

Data Address
Breakpoints

e6500
(T2XXX,
T4XXX,
B4XXX)

8 instruction
2 read/write
no counters

8 single breakpoints
-- or --
4 exact breakpoint
ranges

2 single breakpoints
-- or --
1 exact breakpoint range
-- or --
2 ranges up to 4kB each
(exact or extended range)
-- or --
1 range up to 4kB (exact or
extended range) and 1
single breakpoint

NOTE: • “exact or extended range”: To use the increased number of data address
breakpoint ranges with up to 4kB each, either TrOnchip.CONVert must
be enabled or exact 4kB ranges must be used.

• Setting on-chip breakpoints with physical (real) address (Access Class
Attribute “A:”) is possible to simplify the usage for 1:1 translations and the
peripheral handling. In any case the resulting hardware address compar-
ison is based on effective addresses, TRACE32 will not convert physical
to logical (effective) addresses!

Map.BOnchip 0xF8000000--0xFFFFFFFF ;use on-chip breakpoints in FLASH
Break.Set 0xFFFFF064 ;debugger sets on-chip breakpoint

Break.Set my_func1 ;debugger sets on-chip or sw breakp.
Break.Set my_func1 /Onchip ;debugger sets on-chip breakpoint
QorIQ Debugger and NEXUS Trace | 21©1989-2024 Lauterbach

Breakpoints can be configured to stop if the break event occurred a given number of times. For all QorIQ
CPUs no on-chip counter will be used.

Breakpoints on Data Addresses

Data address breakpoints cause a debug event when a certain address or address range is read or written
by the core. A data address breakpoint to a single address has a granularity of 1 byte.

Similar to program address breakpoints, data address breakpoints can be configured to stop if the break
event occurred a given number of times:

Data address breakpoint limitations:

1. The source of the data access (read and/or write) must be the core, as the data address
breakpoints are part of the core. Any other accesses from on-chip or off-chip peripherals (DMA
etc.) will not be recognized by the data address breakpoints.

2. The data being targeted must be qualified by an address in memory. It is not possible to set a
data address breakpoint to GPR, SPR etc.

Breakpoints on Data Access at Program Address

A normal data access breakpoint as described above hits on all data accesses to the memory address or
address range, independent of the program address which caused the access. It is also possible to set a
data address breakpoint which only hits if the access is performed from a specified program address. The
specified program address must be a load or store instruction.

;stop on the 20th call of function foo
Break.Set foo /Onchip /COUNT 20.

Break.Set 0xC3F80004 /Read ;break when core reads from 0xC3F80004
Break.Set 0xC3F80004 /Write ;break when core writes to 0xC3F80004
Break.Set 0xC3F80004 /ReadWrite ;break on read or write access

Break.Set 0xC3F80000--0xC3F80023 /Write ;break address range

;stop on the 8th write to arrayindex
Break.Set arrayindex /Write /COUNT 20.

;Break if the instruction at address 0x40001148 reads from variable count
 Break.Set 0x40001148 /MemoryRead count

;Break if the instruction at address 0x40001148 writes to range
 Break.Set 0x40001148 /MemoryWrite 0xFFFFF000--0xFFFFFFFF
QorIQ Debugger and NEXUS Trace | 22©1989-2024 Lauterbach

The program address can also be an address range or a range of debug symbols:

Breakpoints on Data Value

The e500mc and e5500 cores do not support on-chip breakpoints on data values, but TRACE32 supports
them by software emulation. When a data value breakpoint is set, the debugger will use one of the data
address breakpoints. When the core hits that breakpoint, the target application will stop and the debugger
will evaluate if the data value matches. If the value matches, the debugger will stop execution, if it does not
match, the debugger will restart the application. Using software emulated data value breakpoints will cause
the target application to slow down.

Examples for setting data value breakpoints:

;Break on all accesses to count from code of the address range
 Break.Set 0x40000100--0x400001ff /MemoryReadWrite count

;Break if variable nMyIntVar is written by an interrupt handler
;(debug symbols IVORxx_Handler loaded from debug symbols)
 Break.Set IVOR0_Handler--IVOR15_Handler /MemoryWrite nMyIntVar

;Break if variable nTestValue is written within function test_func
 Break.Set sYmbol.RANGE(test_func) /MemoryWrite nTestValue

;Break if variable nTestValue is written outside of test_func
 Break.Set sYmbol.RANGE(test_func) /EXclude /MemoryWrite nTestValue

;Break when the value 0x1233 is written to the 16-bit word at 0x40000200
 Break.Set 0x40000200 /Write /Data.Word 0x1233

;Break when a value not equal 0x98 is written to the 8-bit variable xval
 Break.Set xval /Write /Data.Byte !0x98

;Break when decimal 32-bit value 4000 is written
;to variable count within function foo
 Break.Set sYmbol.RANGE(foo) /MemoryWrite count /Data.Long 4000.
QorIQ Debugger and NEXUS Trace | 23©1989-2024 Lauterbach

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual
Memory.

Addresses in TRACE32 PowerView consist of:

• An access class, which consists of one or more letters/numbers followed by a colon (:)

• A number that determines the actual address

Here are some examples:

Access Classes to Memory and Memory Mapped Resources

The following memory access classes are available:

In addition to the access classes, there are access class attributes.

Examples:

Command: Effect:

Data.List P:0x1000 Opens a List window displaying program memory

Data.dump D:0xFF800000 /LONG Opens a DUMP window at data address 0xFF800000

Data.Set SPR:415. %Long 0x00003300 Write value 0x00003300 to the SPR IVOR15

PRINT Data.Long(ANC:0xFFF00100) Print data value at physical address 0xFFF00100

Access Class Description

P Program (memory as seen by core’s instruction fetch)

D Data (memory as seen by core’s data access)

IC L1 Instruction Cache (or L1 Unified cache)

DC L1 Data Cache

L2 L2 Cache

NC No Cache (access with caching inhibited)

Command: Effect:

Data.List SP:0x1000 Opens a List window, displaying supervisor program memory

Data.Set ED:0x3330 0x4F Write 0x4F to address 0x3330 using real-time memory access
QorIQ Debugger and NEXUS Trace | 24©1989-2024 Lauterbach

The following access class attributes are available:

If an access class attribute is specified without an access class, TRACE32 PowerView will automatically add
the default access class of the used command. For example, Data.List U:0x100 will be expanded to
Data.List UP:0x100.

The guest and hypervisor privilege level access classes H, HS, HU, G, GS and GU are important if
SYStem.Option.ZoneSPACES is set to ON.

Access Classes to Other Addressable Core and Peripheral Resources

The following access classes are used to access registers which are not mapped into the processor’s
memory address space.

SPR and PMR registers are addressed by specifying the register number after the access class.

Access Class Attribute Description

E Use real-time memory access

A Given address is physical (bypass MMU)

U TS (translation space) == 1 (user memory)

S TS (translation space) == 0 (supervisor memory)

H Hypervisor privilege level based access.
The H access class is a generic placeholder for either the HS or the
HU access class or a combination of both.

HS Hypervisor-supervisor access.
Access to supervisor memory with hypervisor privilege level.

HU Hypervisor-user access.
Access to user memory with hypervisor privilege level.

G Guest privilege level based access.
The G access class is a generic placeholder for either the GS or the
GU access class or a combination of both.

GS Guest-supervisor access.
Access to supervisor memory with guest privilege level.

GU Guest-user access.
Access to user memory with guest privilege level.

Access Class Description

SPR Special Purpose Register (SPR) access

PMR Performance Monitor Register (PMR) access

DBG Special debug register access, e.g. Reset Configuration Word
(RCW) register access
QorIQ Debugger and NEXUS Trace | 25©1989-2024 Lauterbach

The access class DBG, which covers a wide variety of accesses, has a special encoding. The encoding as
listed below is valid only for the QorIQ debugger.

Cache

Memory Coherency

The following table describes which memory will be updated depending on the selected access class:

DBG access mask Description

DBG:0x0100000R Access to the 16 RCW registers to set another RCW before the
(next) SYStem.Up.

R: Nexus register ID (0x0-0xF)

For further details, please refer to Programming the Reset
Configuration Word.

Access Class D-Cache I-Cache L2 Cache Memory (uncached)

DC: updated not updated not updated not updated

IC: not updated updated not updated not updated

L2: not updated not updated updated not updated

NC: not updated not updated not updated updated

D: updated not updated updated updated

P: not updated updated (*) updated updated

(*) Depending on the debugger configuration, the coherency of the instruction cache will not be
achieved by updating the instruction cache, but by invalidating the instruction cache. See
SYStem.Option.ICFLUSH for details.
QorIQ Debugger and NEXUS Trace | 26©1989-2024 Lauterbach

MESI States and Cache Status Flags

The data cache logic of Power Architecture cores is described as states of the MESI protocol. The
combinations for the MESI states are just available for DC and the unified L2 cache and thus the MESI state
is just displayed for these cache windows in the column “#”.

State translation table:

 The debugger also displays the cache state using the following cache line status flags:

• valid (IC, DC, L2)

• locked (IC, DC, L2)

• dirty (DC, L2)

• shared (DC, L2)

• noncoherent (L2)

• cast-out (DC)

• plru (IC, DC, L2)

MESI state (#) Flag

M (modified) V(alid) && D(irty)

E (exclusive) V(alid) && NOT D(irty)

S (shared) V(alid) && S(hared)

I (invalid) NOT V(alid)
QorIQ Debugger and NEXUS Trace | 27©1989-2024 Lauterbach

Viewing Cache Contents

The cache contents can be viewed using the CACHE.DUMP command.

The meaning of the data fields in the CACHE.DUMP windows is explained in the following table:

;Command ; Cache
CACHE.DUMP IC ; L1 instruction cache
CACHE.DUMP DC ; L1 data dache
CACHE.DUMP L2 ; L2 (unified cache)

A MESI state, cache line status bits

B Cache line data

Data field Meaning

address Physical address of the cache line. The address is composed of
cache tag and set index.

set
way

Set and way index of the cache

#, v, l, d, s, n, c, u Status bits of the cache line: # (MESI state), v(alid), l(ocked), d(irty),
s(hared), n(oncoherent), c(ast-out), (pseudo least recently) u(sed)

00 04 08 ... Address offsets within cache line corresponding to the cached data

address (right field) Debug symbol assigned to address

BA
QorIQ Debugger and NEXUS Trace | 28©1989-2024 Lauterbach

Debugging Information

Multicore Debugging

General Information

All QorIQ processors contain multiple cores that can be debugged as an SMP or an AMP system
configuration. After the CPU has been selected, all physical cores / physical threads are assigned to this
TRACE32 instance per default. The user can then choose which logical core is displayed by TRACE32.
The resulting relationship between physical and logical cores is shown below:

• Processors with physical e500mc and e5500 cores, e.g. P4080:

• Processors with physical e6500 cores and physical threads, e.g. T2080:

To choose a physical core or physical thread, you have the following options:

• Open the TargetSystem.state window, and double-click the logical core.

• Open the CORE.SHOWACTIVE window, and click the logical core.

• Right-click the status line core number box to display the list of logical cores, and click the logical
core you want.

• Use the CORE.select <logical_core_index> command.

TRACE32 handles cores and threads with a unique TRACE32 instance related logical number.

CORE 1

CORE 2

TRACE32CPU
Physical Core Index Logical Core Index

1

2

0

1

etc. etc. etc.

CORE 2

Thread 2

Thread 1

CORE 1

Thread 2

Thread 1

TRACE32
Physical Thread Index Logical Thread IndexPhys. Core

Index

CPU

etc.

1 0

2 1

3 2

4 3

1

2

etc. etc.
QorIQ Debugger and NEXUS Trace | 29©1989-2024 Lauterbach

Example for the T2080 processor with e6500 cores including two physical threads for each physical
core:

SMP Debugging

For all QorIQ processors SMP (symmetric multiprocessing) debugging is selected by default. No further
configuration is needed if you want to debug all of the cores. If you want to specify which physical cores and
threads you want to debug, use the commands CORE.NUMber or CORE.ASSIGN.

As soon as the debugger is connected (SYStem.Up, SYStem.Attach etc.), it is possible to switch to any
assigned core using the CORE.select <logical_core_index> command. The currently selected core is
displayed in the status line. If the cores are running and one of the cores hits a breakpoint, the debugger’s
view will automatically switch to this core. Further, all other assigned cores will be stopped nearly
simultaneously. When resuming program execution (Go, HLL Step), all assigned cores will start
simultaneously. If you step in assembler mode, just the selected core will execute the code.

A Physical core index 1, both threads (see CORE.ASSIGN 1. 2.)

B Physical core index 2, only thread 1 (see CORE.ASSIGN 3.)

C Physical core index 3, only thread 2 (see CORE.ASSIGN 6.)

D Physical core index 4, both threads (see CORE.ASSIGN 7. 8.)

A

D

B
C

QorIQ Debugger and NEXUS Trace | 30©1989-2024 Lauterbach

AMP Debugging

There is a complete demo for debugging QorIQ processors on AMP mode in
~~/demo/powerpc/hardware/qoriq_p204x/all_boards/demo_amp_4cores_sram.
For AMP (asymmetric multiprocessing) debugging, a separate instance of PowerView has to be started
for each core or each core compound. It is recommended to use T32Start to start the PowerView instances.
Optionally, all other instances can also be started by PRACTICE script (see the demo mentioned above).

Each PowerView instance has to be configured to address at least one of the cores or rather the right core
compound. This is done using the commands SYStem.CONFIG.CORE and either CORE.ASSIGN or
CORE.NUMber.

SYStem.Option.DCFREEZE has to be turned OFF to maintain cache coherency for the times when one of
the cores is running and the others stopped.
QorIQ Debugger and NEXUS Trace | 31©1989-2024 Lauterbach

The following commands show the basic setup commands for two PowerView instances using all cores of
the P4080. Using the command CORE.ASSIGN any of the cores can be assigned to a specific PowerView
instance:

If you just want to assign sequential cores to PowerView, you can also use the CORE.NUMber command,
as in the example below.

• In this case, the SYStem.CONFIG.CORE command specifies the number of the start core, e.g. start
at core 5.

• The CORE.NUMber command then specifies the number of cores in the sequence, e.g. 4 cores
starting at core 5 inclusive.

In order to synchronously run and halt the cores of the two PowerView instances, use the SYnch
commands.

The cores of one core compound (or rather one PowerView instance with multiple cores) behave like
described in section “SMP Debugging”.

; CORE 0,1,5 and 6 setup
script:

; CORE 2,3,4 and 7 setup script:

SYStem.CPU P4080 SYStem.CPU P4080

SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 2. 1.

CORE.ASSIGN 1,2,7,6 CORE.ASSIGN 3,4,5,8

SYStem.Up

SYStem.Mode.ATTACH

; CORE 0-3 setup script: ; CORE 4-7 setup script:

SYStem.CPU P4080 SYStem.CPU P4080

SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 5. 1.

CORE.NUMBER 4. CORE.NUMBER 4.

SYStem.Up

SYStem.Mode.ATTACH
QorIQ Debugger and NEXUS Trace | 32©1989-2024 Lauterbach

QorIQ Debugger and NEXUS Trace | 33©1989-2024 Lauterbach

Synchronous Go of the Cores

In SMP mode all cores assigned to the PowerView instance will be started simultaneously.

Also in AMP mode all cores can be started simultaneously, depending on the SYnch settings.

Synchronous Stop of the Cores

All QorIQ processors implement a break switch on silicon. If SYnch is configured to synchronous break in
AMP mode (or always if SMP mode is selected), the core(s) that did not hit a breakpoint will be stopped by
the processor hardware. This implementation causes a delay between all cores typically in the range of 5-50
instruction cycles.

Nevertheless, the hardware based synchronous break mechanism may be limited if more than one
instance of PowerView handles multiple cores. Depending on the SYNCH.MasterBreak and
SYNCH.SlaveBreak settings not all cores can be stopped synchronously by the hardware in all cases. The
AMP synchronous break across instances of PowerView will always be handled by the hardware. The
synchronous break of an SMP core compound inside of an AMP system may be handled by TRACE32,
which typically leads to an increased break delay of the cores up to several milliseconds.

Please see the following two examples 1 and 2 in addition to the table below to get further information.
AMP-3

AMP1 AMP2 AMP3

1st PowerView Inst. 2nd PowerView Inst. 3rd PowerView Inst.

1

SMP-3

2 3

MasterBreak

SlaveBreak

6

SMP-3

7 8

MasterBreak

SlaveBreak

4

SMP-2

5

MasterBreak

SlaveBreak

1

QorIQ Debugger and NEXUS Trace | 34©1989-2024 Lauterbach

• Hardware based SMP synchronous halt. If one of these cores stops, all of them will

stop simultaneously.

• Hardware based AMP synchronous halt. If any of the MasterBreak related cores stops,

all of the SlaveBreak related cores will stop simultaneously.

• TRACE32 based SMP synchronous halt. If one of these cores stops, all others will be

stopped by TRACE32 with increased delay.

AMP-3

AMP1 AMP2 AMP3

1st PowerView Inst. 2nd PowerView Inst. 3rd PowerView Inst.

1

SMP-3

2 3

MasterBreak

SlaveBreak

6

SMP-3

7 8

MasterBreak

SlaveBreak

4

SMP-2

5

MasterBreak

SlaveBreak

2

QorIQ Debugger and NEXUS Trace | 35©1989-2024 Lauterbach

• n >= 2

• MB = SYNCH.MasterBreak activated

• SB = SYNCH.SlaveBreak activated

The table above is also valid for more than three PowerView instances.

PowerView instance 1 PowerView instance 2 PowerView instance 3

Core
count

SYnch
settings

HW
synch.
stop

Core
count

SYnch
settings

HW
synch.
stop

Core
count

SYnch
settings

HW
synch.
stop

1 any YES 1 any YES 1 any YES

n any YES 1 any YES 1 any YES

n
Off
MB
SB

YES n
Off
MB
SB

NO
SMP

1 any YES

n
Off
MB
SB

YES n MB && SB YES 1 any YES

n MB && SB YES n any YES 1 any YES

n
Off
MB
SB

YES n
Off
MB
SB

NO
SMP

n
Off
MB
SB

NO
SMP

n
Off
MB
SB

YES n
Off
MB
SB

NO
SMP

n MB && SB YES

n
Off
MB
SB

YES n MB && SB YES n
Off
MB
SB

NO
SMP

n
Off
MB
SB

YES n MB && SB YES n MB && SB YES

n MB && SB YES n
Off
MB
SB

YES n
Off
MB
SB

NO
SMP

n MB && SB YES n
Off
MB
SB

YES n MB && SB YES

n MB && SB YES n MB && SB YES n
Off
MB
SB

YES

n MB && SB YES n MB && SB YES n MB && SB YES

1

2

QorIQ Debugger and NEXUS Trace | 36©1989-2024 Lauterbach

It explains that in any case the first PowerView instance with

• multiple cores assigned

• and turned off SYNCH.MasterBreak and / or SYNCH.SlaveBreak

will use the Hardware break switch for its SMP core compound.

All other PowerView instances (with the same requirements) will break its SMP related cores using a
debugger based break mechanism.
QorIQ Debugger and NEXUS Trace | 37©1989-2024 Lauterbach

Programming Flash on QorIQ Processors

Demo scripts for NOR FLASH and NAND FLASH are available in the following folders:

• ~~/demo/powerpc/hardware/qoriq_p204x/

• ~~/demo/powerpc/hardware/qoriq_p3/

• ~~/demo/powerpc/hardware/qoriq_p4/

• ~~/demo/powerpc64bit/hardware/qoriq_p5/

• ~~/demo/powerpc64bit/hardware/qoriq_t1/

• ~~/demo/powerpc64bit/hardware/qoriq_t2/

• ~~/demo/powerpc64bit/hardware/qoriq_t4/

• ~~/demo/powerpc64bit/hardware/qoriq_b4/

For NOR FLASH on eLBC or IFC, there are ready-to-use flash scripts, i.e. you do not need to modify them.
These scripts can be found in the all_boards subfolders.

Some boards with faulty NOR FLASH FPGAs require a special handling with a slower flash algorithm.
These scripts can be found in the subfolders of the respective board (e.g. t4240qds).

Scripts for NAND flash programming have to be modified with regard to the target board’s characteristics
and used FLASH devices. Therefore reference scripts usable on evaluation boards are included in the
corresponding subfolder.
QorIQ Debugger and NEXUS Trace | 38©1989-2024 Lauterbach

Programming the Reset Configuration Word (RCW)

The RCW data is 512 bits long and is used by the pre-boot loader (PBL) to check consistency of the RCW
data and load it into the RCW status registers. These 16 registers are for example responsible for the initial
settings of the PLL configurations, SerDes lane assignments and settings, DDR configuration, and the boot
location. If the RCW is unprogrammed or inconsistent, no program code will be executed. The RCW is
typically part of the flash image, but it can also be generated using the debugger, e.g. if the SerDes lane
settings have to be changed to enable Aurora HSTP trace (e.g. P2041):

Scripts for programming the RCW are available in the demo folder, e.g.
~~/demo/powerpc/hardware/qoriq_p204x/p2041rdb/demo_set_rcw.cmm

;Enter prepare mode for restricted target access to read the current RCW
;for further adaptions
SYStem.Mode.Prepare
;Enable manipulation of the RCW
SYStem.Option.HRCWOVerRide ON
;Set user-defined RCW: SRDS_PRTCL for tracing purposes
Data.Set DBG:0x01000004 0x509f40C0
;Reset CPU with the user-defined RCW
SYStem.Up
;Disable manipulation of the RCW again
SYStem.Option.HRCWOVerRide OFF
...
;Reset CPU with the RCW from the target
SYStem.Up

NOTE: • The RCW is adapted only when SYStem.Option.HRCWOVerRide is
enabled before a SYStem.Up. When this system option is disabled again,
all user-defined values will be lost and the original RCW will be used
again for the following SYStem.Up.

• The PBL data structure consists of the RCW data, a preamble, pre-boot
initialization commands and an end command including a CRC. If the
user wants to flash a new RCW, this complete structure needs to be
flashed including an appropriate CRC. Default values for Freescale
evaluation boards are given in the above mentioned RCW demo scripts.

• Comparing the board initialization from a flash based RCW with the
board initialization from a debugger set RCW might show PLL related
differences. This issue is a typical behavior for the QorIQ devices and
necessary to get the board into a working state again in every case.
Therefore, setting the RCW using a debugger should be considered to be
more like a help in need than a frequently-used method.
QorIQ Debugger and NEXUS Trace | 39©1989-2024 Lauterbach

Trace Information

The QorIQ processors offer two trace destination possibilities. You can instruct TRACE32 to prepare the
processor to send trace data to (1) the external Aurora HSTP port or (2) any other on-chip memory. The
following list compares the two trace sinks:

1. External Aurora HSTP port

- The Lauterbach Power Trace II module offers up to 4GByte, the POWER TRACE III module
offers up to 8 GByte, the POWER TRACE SERIAL offers 4GByte of trace memory.

- The maximum QorIQ lane speed is supported (6.25 GBaud/s). Some of the QorIQ processors
are restricted to a maximum of 5 or 6 GBaud/s.

- Timestamps are added automatically by the Lauterbach Power Trace module. If an accuracy
higher than ~4ns is required, you need to manually enable the QorIQ target timestamps in the
NEXUS.state window. This leads to a higher bandwidth consumption of about 30 percent.

- ETH GBit or USB3 connection for fast trace data transfer.

2. External NEXUS PCIe port

- Available only for the POWER TRACE SERIAL, which is connected to the Lauterbach PCIe
Slot-Card-Converter (see PCIe Traceport).

- Same advantages as using the external Aurora HSTP port, but uses a standard PCIe slot that
is available on most QorIQ target boards.

- Depending on the RCW setting and lane routing even more bandwidth than with the external
Aurora HSTP port.

3. On-chip memory

- Dedicated trace memory on the target is needed. Typically a part of the DDR-SDRAM is used
for tracing; max. 512Mb can be used due to QorIQ e500mc and e5500 processor restrictions
(e6500 processors offers more, dependent on the available memory).

- After halting and re-starting the core by the debugger, the onchip trace buffer will be reset.

- If timestamps are required, you need to manually enable the target timestamps in the
NEXUS.state window. This leads to a higher bandwidth consumption of about 30 percent.

- Slow readout of the On-chip trace memory through JTAG.

Most of the target-specific demo scripts include examples of how to use the two trace sinks. The demo
scripts reside in the following folders:

• ~~/demo/powerpc/hardware/qoriq_pxxxx

• ~~/demo/powerpc64bit/hardware/qoriq_xxxxx
QorIQ Debugger and NEXUS Trace | 40©1989-2024 Lauterbach

Per default, the external Aurora HSTP will be set if a PowerTrace module is detected, otherwise a small
onchip trace memory will be used in these demonstration scripts.

For more information about general trace commands see:

• ’Trace’ in ’General Commands Reference Guide T’

• ’Analyzer’ in ’General Commands Reference Guide A’

• ’Onchip Trace Commands’ in ’General Commands Reference Guide O’

• “Training Nexus Tracing” (training_nexus.pdf)

Supported Trace Features

All options are available in the NEXUS.state window and described in the Trace Source settings section.

The various PowerPC based QorIQ platforms also support In-Circuit Trace Messages, which are
independent of the cores. These messages are used by TRACE32 to analyze the following trace sources:

• DDR Trace: Includes memory controller ID, Read/Write address, ...**

• OCeaN Trace: PCIe/sRapidIO. includes address, port, transmitted data, ...**

NOTE: • The Trace.state window gives access to specific options of the trace
method.

• The NEXUS.state window gives access to advanced options for both trace
modes.

• The Trace.List window gives access to the recorded program trace data.

 Core
Feature

e500mc e5500 e6500

Program Trace Branch History Branch History Branch History

Data Trace Address and Value
(up to two 4kB
ranges), write only

Address and Value
(up to two 4kB
ranges), write only

Address and Value
(up to two 4kB
ranges), write only

Data acquisition
Trace

8bit Tag and 32bit
Value
(DEVENT/DDAM
registers)

8bit Tag and 32bit
Value
(DEVENT/DDAM
registers)

8bit Tag and 32bit
Value
(DEVENT/DDAM
registers)

Watchpoint Message Yes Yes Yes

Ownership Message 8bit PID / 32bit NPIDR 8bit PID / 32bit NPIDR 14bit PID / 32bit
NPIDR

Filters POTD, PTMARK POTD, PTMARK POTD, PTFPMM,
PTFPR, PTFGS
QorIQ Debugger and NEXUS Trace | 41©1989-2024 Lauterbach

**Both In-Circuit traces include much more information which is very dependent on the configured
Verbose/Terse modes in the NEXUS.state window and the used SoC. TRACE32 will analyze and display all
available DDR and OCeaN trace message data. Please check your SoC specific manuals to get more
information about the included trace data and the partly specific meaning.

Aurora HSTP Trace

Processors of the QorIQ series offer the possibility to select the external Aurora HSTP port as a trace
message destination. If a Power Trace module is connected, the processor will be automatically initialized
and configured to record the program trace via this port, using our highest recommended lane speed for the
set CPU.

Some QorIQ processors do not offer dedicated debug lanes (e.g. P2041). These lanes are configured by the
Reset Configuration Word of the processor. The user needs to adapt the SRDS_PRTCL field of the RCW if
no lane is configured for debug purposes. Please see Programming the Reset Configuration Word for
further details.

The Aurora HSTP trace can be configured and accessed via the Analyzer.state window; alternatively, via
the Trace.state window if the trace method is set to Analyzer. Then, click the List button in the window you
have opened:

Nexus PCIe Trace

Not all boards offer the previously described Aurora port to give users the possibility to take advantage of
external PowerTrace modules. But most boards offer a standard PCIe slot that can also be used for the
connection of external tracing tools (see PCIe Traceport). The software configuration for this scenario is
more complex but can be done by scripts or even the OS that is running on the target board. These steps
should be followed in any case:

• Check the board schematics to know which SerDes lanes are routed to which PCIe slot.

• Check the processor reference manual, table “SerDes Lanes Assignments and Multiplexing” if
your current Reset Configuration Word already supports PCIe on lanes that are routed to a PCIe
slot. If this is not the case you can temporarily override the current RCW to set up the right lane
assignment to the PCIe slot of your choice.

• Especially on evaluation boards from Freescale / NXP also check the qixis CPLD settings to
ensure the lanes are really multiplexed the right way and the board is running in the right mode (if
there is e.g. a “standalone mode” available).

NOTE: The data trace is configured using the triggers of breakpoints. The breakpoint
has to be set up with “TraceData” as action and “Write” as type. More details are
explained in Filters and Triggers for the Nexus Trace.
QorIQ Debugger and NEXUS Trace | 42©1989-2024 Lauterbach

You now should know which PCIe controller (PCIe#) is connected to the PCIe slot of your choice to use it in
the following configuration of TRACE32:

Examples for manual PCIe configuration (please also see the comments inside the scripts) of some
evaluation boards are provided in the board specific subdirectories of the demo folder, e.g.

• ~~/demo/powerpc/hardware/qoriq_p204x/p2041rdb/demo_pcie_trace.cmm

• ~~/demo/powerpc64bit/hardware/qoriq_t2/t2080rdb/demo_pcie_trace.cmm

The Nexus PCIe trace can be configured and accessed via the Analyzer.state window; alternatively, via the
Trace.state window if the trace method is set to Analyzer. Then, click the List button in the window you
have opened:

;Ensure the Lauterbach PCIe Slot-Card-Converter is inserted in the right
PCIe slot and the board powered afterwards. The values in this example
are valid for the T2080RDB board from Freescale / NXP with usage of PCIe
slot J20.
SYStem.CPU T2080
;Uses the same trace method as Aurora HSTP
Trace.METHOD Analyzer
;Configure the traceport to use PCIe as target connection.
SYStem.CONFIG.TRACEPORT.Type PCIE
;Set the used PCIe controller on the target (PCIe1 ... PCIe4)
NEXUS.USEPORT PCIE1
;Now connect to the target. If you need to override the RCW this is the
line to insert the commands as described in the chapter
Programming the Reset Configuration Word
SYStem.Mode UP
;Ensure the T2080RDB is running in standalone mode (qixis)
DO
~~/demo/powerpc64bit/hardware/qoriq_t2/t2080rdb/qixis_config_pciestandal
onemode.cmm

Trace.Arm
;Check the AREA window for error messages and warnings. At this point the
PCIe configuration on the target will be missing and TRACE32 will inform
you with a warning. It might not be missing if you attached to a running
target with an OS that already initialized the PCIe controller before.
In case of software configuration during bootup let the target run until
the task is done and afterwards re-arm the trace.
;In case of manual configuration some example scripts for evaluation
boards are provided (see below)
Go
Break
;list the recorded trace
Trace.List
QorIQ Debugger and NEXUS Trace | 43©1989-2024 Lauterbach

On-chip Trace

Processors of the QorIQ series offer the possibility to select the memory bus as an on-chip trace message
destination. Therefore, the size of the trace buffer is not fixed but limited, dependent on the SoC, the
available memory size and Onchip.TBARange settings. Typically a part of the DDR-SDRAM is used for
tracing:

The on-chip trace can be configured and accessed via the Onchip.state window; alternatively via the
Trace.state window if the trace method is set to Onchip. Then, click the List button in the window you have
opened:

SYStem.CPU P2041

;Initialize memory controller, LAWs, MMU
DO ~~/demo/powerpc/hardware/qoriq_p204x/p2041rdb/init.cmm

;load application, e.g.
Data.LOAD ~~/demo/powerpc/compiler/diab/diabcc.x

;Set onchip trace base address range to the initialized DDR-SDRAM
Onchip.TBARange 0x100000--0x4100000 ;e.g. 64MB

;let the CPU run to function sieve, automatically record trace
Go sieve

;list the recorded trace
Onchip.List
QorIQ Debugger and NEXUS Trace | 44©1989-2024 Lauterbach

Trace initialization

Trace initialization is a two-step process:

1. Initialization of the receiver / message destination, called the Trace Sink

This step covers all target and debugger modules which are involved after a NEXUS message has
been produced. E.g. Aurora specific or Onchip specific settings, ...

2. Initialization of the transmitter(s), called the Trace Source(s)

This step covers all target modules which are necessary to produce a NEXUS Trace message. E.g.
Core Trace (Program Trace, ...), DDR Trace, ...

Trace Sink settings and processes - depending on the system state

1. After starting TRACE32 and selecting a QorIQ CPU: Debugger is in SYStem.Down state

- If a Lauterbach PowerTrace module is connected to the debugger, TRACE32 automatically
selects the trace method Analyzer.

- If no external trace module is connected, the trace method Onchip is selected as soon as a QorIQ
CPU is set in the SYStem.state window or after the CPU is set by the command:

- Trace method Onchip: While the debugger is in SYStem.Down, there is no target access, and
consequently the onchip trace is disabled (Onchip.DISable).

- Trace method Analyzer: In the Trace.state window, you have access to the sink settings of the
Lauterbach PowerTrace module, regardless of the system state. In the NEXUS.state window, you
can set the port size, but only while the debugger is in SYStem.Down state.

SYStem.CPU P2041 ;Set the QorIQ CPU P2041

;Set a QorIQ CPU always leads to an automatic selection of on-chip or
;Aurora HSTP trace, depending on the debug hardware configuration.

Set NEXUS.PortSize to the lane
number used on the target side.

NEXUS.PortMode and
NEXUS.SerDesCFG can be
changed in any system state and will
influence the target settings directly
in the state SYStem.Up or during the
next SYStem.Up process.
NEXUS.USEPORT (available for
POWER TRACE SERIAL only) is
available in case of PCIe-Trace to
define the used PCIe module#.

NEXUS.LaneMapping (available for
POWER TRACE SERIAL only)
changes the logical to physical lane
mapping, needed rarely.
QorIQ Debugger and NEXUS Trace | 45©1989-2024 Lauterbach

2. During a SYStem.Mode.Attach or SYStem.Up process

- If the trace method Analyzer is selected, the target CPU will be configured to bring the Aurora
HSTP channel up and to send trace data as configured in the NEXUS.state window (also
described in Trace Source settings).

- The process will fail if the NEXUS.state settings described before don’t match the target
settings (e.g. wrong SRDS_PRTCL field settings of the RCW). Please observe the AREA.view
window in case of problems and follow the instructions or contact our support.

3. Active system: Debugger is in SYStem.Up state

- If the trace method Analyzer is selected, any change in the NEXUS.state window will lead to the
same initializing procedure again as during the SYStem.Up process.

- The trace method Onchip will be disabled until an appropriate Onchip.TBARange is set.
TRACE32 will access and check if this range is really available and configure the target to use
this memory area as trace message destination. These range addresses are physical
addresses in any case. Onchip.DISable automatically switches to Onchip.OFF if the range is
accepted.

Trace Source settings and trace access - regardless of the system state

Unlike the trace sink settings, the trace source settings can be adapted regardless of the system state. The
configuration will be modified directly in the SYStem.Up state or during the next SYStem.Mode.Attach or
SYStem.Up process.

The main trace sources are available on the tabs in the NEXUS.state window:

1. Cores

- NEXUS.BTM (branch history trace messages)

- NEXUS.DQM (data acquisition trace messages)

NEXUS.BTM controls the
program trace

NEXUS.DQM controls the
data acquisition trace

DQMTrace.List displays the recorded DQM trace.

Trace.List, Analyzer.List, Onchip.List display the recorded program trace.

DQMTrace.FindAll displays the consolidated DQM trace messages
without gaps*)
QorIQ Debugger and NEXUS Trace | 46©1989-2024 Lauterbach

2. DDR (DDR controller debug trace)

3. OCeaN (On Chip Network debug trace)

*) A consolidated trace listing can be useful if different trace sources are combined. Finding all relevant
trace messages matching the search criteria is more time consuming than displaying the default listing
of the whole trace contents.

NOTE: The number of DDR memory controllers varies depending on the QorIQ CPU.
The look of this window and the available commands regarding the memory
controller number vary consequently.

NEXUS.DDRConfig.Controller1
controls the DDR trace for the DDR
controller 1.

NEXUS.DDRConfig.ADDRessfilt
er3 restricts the addresses /
ranges which produce DDR trace
messages for DDR controller 3.

DDRTrace.List displays the recorded DDR trace.

DDRTrace.FindAll displays the consolidated DDR trace messages
without gaps*)

NEXUS.OCeaNport1.Mode controls the OCeaN
trace message format for port 1

NEXUS.OCeaNport1.TraceSELect configures an
OCeaN trace source of port 1 to produce OCeaN
trace messages.

OCeaNTrace.List displays the recorded OCeaN trace.

OCeaNTrace.FindAll displays the consolidated OCeaN trace messages
without gaps*)
QorIQ Debugger and NEXUS Trace | 47©1989-2024 Lauterbach

CPU specific SYStem Commands

SYStem.BdmClock Set debug clock frequency

Selects the frequency for the debug interface. For multicore debugging, it is recommended to set the same
JTAG frequency for all cores.

Format: SYStem.BdmClock <rate>

<rate>: 100000. … 50000000.
100kHz … 50MHz

NOTE: The recommended maximum JTAG frequency is 1/10th of the core frequency.

The maximum JTAG frequency for multicore debugging of QorIQ processors is
typically about 20 to 25MHz.

The maximum JTAG frequency for single core debugging of QorIQ processors
is typically about 50MHz.
QorIQ Debugger and NEXUS Trace | 48©1989-2024 Lauterbach

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.
QorIQ Debugger and NEXUS Trace | 49©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one processor in the JTAG chain. The
information is required before the debugger can be activated e.g. by a SYStem.Up. See example below.

TriState has to be used if (and only if) more than one debugger is connected to the common JTAG port at the
same time. TAPState and TCKLevel define the TAP state and TCK level which is selected when the
debugger switches to tristate mode.

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>
(JTAG):

DRPRE
DRPOST
IRPRE
IRPOST

CHIPDRLENGTH <bits>
CHIPDRPATTERN [Standard | Alternate <pattern>]
CHIPDRPOST <bits>
CHIPDRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN [Standard | Alternate <pattern>]
CHIPIRPOST<bits>
CHIPIRPRE <bits>

TAPState
TCKLevel
TriState
Slave

NOTE: When using the TriState mode, nTRST must have a pull-up resistor on the target. In
TriState mode, a pull-down is recommended for TCK, but targets with pull-up are
also supported.

… DRPOST <bits> (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

… DRPRE <bits> (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.
QorIQ Debugger and NEXUS Trace | 50©1989-2024 Lauterbach

… IRPOST <bits> (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

… IRPRE <bits> (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

CHIPDRLENGTH
<bits>

Number of Data Register (DR) bits which needs to get a certain BYPASS
pattern.

CHIPDRPATTERN
[Standard | Alter-
nate <pattern>]

Data Register (DR) pattern which shall be used for BYPASS instead of
the standard (1...1) pattern.

CHIPIRLENGTH
<bits>

Number of Instruction Register (IR) bits which needs to get a certain
BYPASS pattern.

CHIPIRPATTERN
[Standard | Alter-
nate <pattern>]

Instruction Register (IR) pattern which shall be used for BYPASS instead
of the standard pattern.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If two or more debuggers share the same JTAG port, this
option is required. The debugger switches to tristate mode after each
JTAG access. Then other debuggers can access the port.

Slave (default: OFF) If two or more debuggers share the same JTAG port, all
except one must have this option active. Only one debugger - the
“master” - is allowed to control the signals nTRST and nSRST (nRESET).
QorIQ Debugger and NEXUS Trace | 51©1989-2024 Lauterbach

Daisy-Chain Example

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag ; optional: open the window

SYStem.CONFIG IRPRE 6. ; IRPRE: There is only one TAP.
 ; So type just the IR bits of TAP4, i.e. 6.

SYStem.CONFIG IRPOST 12. ; IRPOST: Add up the IR bits of TAP1, TAP2
 ; and TAP3, i.e. 4. + 3. + 5. = 12.

SYStem.CONFIG DRPRE 1. ; DRPRE: There is only one TAP which is
 ; in BYPASS mode.
 ; So type just the DR of TAP4, i.e. 1.

SYStem.CONFIG DRPOST 3. ; DRPOST: Add up one DR bit per TAP which
 ; is in BYPASS mode, i.e. 1. + 1. + 1. = 3.
 ; This completes the configuration.

Chip

IRPOST IRPRE

4

1

TAP1

IR

DR

3

1

TAP2

IR

DR

5

1

TAP3

IR

DR

6

1

TAP4

IR

DR
TDI TDO

DRPOST DRPRE

IR: Instruction register length DR: Data register length Chip: The chip you want to debug
QorIQ Debugger and NEXUS Trace | 52©1989-2024 Lauterbach

TapStates

SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector

Default: HIGH.

Controls the level of pin 8 (/CHKSTP_IN or /PRESENT) of the debug connector.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Format: SYStem.CONFIG.CHKSTPIN LOW | HIIGH
QorIQ Debugger and NEXUS Trace | 53©1989-2024 Lauterbach

SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin

Default: HIGH.

Configures the driver strength of the TCK pin.

Available for debug cables with serial number C15040204231 and higher.

SYStem.CONFIG.QACK Control QACK pin

Controls the level and function of pin 2 (/QACK) of the debug connector. Default: TRISTATE.

Format: SYStem.CONFIG DriverStrength <signal> <LOW | MID | HIGH>

<signal>: TCK

Format: SYStem.CONFIG QACK TRISTATE | QREQ | LOW | HIGH

TRISTATE Pin is disabled (tristate).

QREQ Pin is driven to level of QREQ (pin 5).

LOW Pin is driven to GND permanently.

HIGH Pin is driven to JTAG_VREF permanently.
QorIQ Debugger and NEXUS Trace | 54©1989-2024 Lauterbach

SYStem.CPU Select the CPU type

Selects the CPU type. If the needed CPU type is not available in the CPU selection of the SYStem.CPU
window, or if the command results in an error, consider the following points:

• Check if the licence of the debug cable includes the desired CPU type. You will find the
information in the VERSION.view window.

• Check the VERSION.view window to see which version is installed. CPUs that appeared later
than the software release are usually not supported. Please check
http://www.lauterbach.com/download_trace32.html for updates. If the needed CPU appeared
after the release date of the debugger software, please contact technical support and request a
software update.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus.

Format: SYStem.CPU <cpu>

<cpu>: P2040 | P2041 | P3041 | P4040 | …

Format: SYStem.LOCK [ON | OFF]

Format: SYStem.MemAccess <mode>

<mode>: Denied | SAP | StopAndGo
QorIQ Debugger and NEXUS Trace | 55©1989-2024 Lauterbach

http://www.lauterbach.com/download_trace32.html

The run-time memory access has to be activated for each window by using the access class E: (e.g.
Data.dump E:0x100) or by using the format option %E (e.g. Var.View %E var1).

It is also possible to activate this non-intrusive memory access for all memory ranges displayed on the
TRACE32 screen by using the setting SYStem.Option.DUALPORT ON.

Denied Memory access is disabled while the CPU is executing code.

SAP The debugger performs memory accesses via the dedicated System
Access Port. This memory access will snoop data cache and L2 cache if
a access class for data (“D:”) is used.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
QorIQ Debugger and NEXUS Trace | 56©1989-2024 Lauterbach

SYStem.Mode Select operation mode

Select target reset mode.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down | NoDebug | Prepare | Go | Attach | Up

Down Disables the debugger. The state of the CPU remains unchanged.

NoDebug Resets the target with debug mode disabled. In this mode no debugging
is possible. The CPU state keeps in the state of NoDebug.

Prepare Nearly disabled debugger. The state of the CPU remains unchanged, but
dedicated access to the debug logic is possible. This state is needed to
set a temporary new RCW when the current configuration is invalid. For
further details please refer to Programming the Reset Configuration
Word.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. Now, the processor can be stopped with the Break
command or any break condition.

Attach Connect to the processor without resetting target/processor. Use this
command to connect to the processor without changing its current state.

Up Resets the target/processor and sets the CPU to debug mode. After
execution of this command the CPU is stopped and prepared for
debugging.

StandBy Not available.
QorIQ Debugger and NEXUS Trace | 57©1989-2024 Lauterbach

CPU specific SYStem.Option Commands

SYStem.Option.Address32 Define address format display

Default: AUTO.

Selects the number of displayed address digits in various windows, e.g. List.auto or Data.dump.

SYStem.Option.DCFREEZE Data cache state frozen while core halted

Default: OFF.

If OFF, the debugger will maintain D/L2 cache coherency by performing cache snoops for memory
accesses. During the cache snoop, the processor will flush (clean and invalidate) dirty lines from data
caches before the debugger’s memory access takes place. This setting allows better data throughput and is
recommended for normal application level debugging. In order to see changes to the cache state caused by
debugging in the CACHE.DUMP window, use the command CACHE.RELOAD.

If ON, the debugger will maintain cache coherency by reading or writing directly to the cache. This method
guarantees that the D/L2 cache tags and status bits (valid, dirty) remain unaffected by the memory accesses
of the debugger. This setting is recommended for low-level and cache debugging.

Format: SYStem.Option.Address32 [ON | OFF | AUTO | NARROW]

ON Display all addresses as 32-bit values. 64-bit addresses are truncated.

OFF Display all addresses as 64-bit values.

AUTO Number of displayed digits depends on address size.

NARROW 32-bit display with extendible address field.

Format: SYStem.Option.DCFREEZE [ON | OFF]
QorIQ Debugger and NEXUS Trace | 58©1989-2024 Lauterbach

SYStem.Option.DCREAD Read from data cache

Default: ON.

If enabled, Data.dump windows for access class D: (data) and variable windows display the memory values
from the d-cache or L2 cache, if valid. If data is not available in cache, physical memory will be read.

Format: SYStem.Option.DCREAD [ON | OFF]
QorIQ Debugger and NEXUS Trace | 59©1989-2024 Lauterbach

SYStem.Option.DUALPORT Implicitly use run-time memory access

Default: OFF.

Forces all list, dump and view windows to use the access class E: (e.g. Data.dump E:0x100) or to use the
format option %E (e.g. Var.View %E var1) without being specified. Use this option if you want all windows to
be updated while the processor is executing code. This setting has no effect if
SYStem.Option.MemAccess is disabled.

Please note that while the CPU is running, MMU address translation cannot be accessed by the debugger.
Only physical address accesses are possible. Use the access class modifier “A:” to declare that the physical
address is accessed. Alternatively, declare the address translation in the debugger-based MMU manually
using TRANSlation.Create.

SYStem.Option.FREEZE Freeze system timers on debug events

Default: OFF.

Enabling this option will instruct the debugger to set the FT bit in the DBCR0 register. This bit will cause the
CPU to stop the system timers (TBU/TBL and DEC) upon all debug events that can be defined in DBCR0.
The system timers will not be frozen on events like EVTI or the breakpoint instruction. Die timers/clocks or
watchdogs of the on-chip peripherals are not affected by this option.

SYStem.Option.HOOK Compare PC to hook address

The command defines the hook address. After program break the hook address is compared against the
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to
determine the right break address by the debugger.

Format: SYStem.Option.DUALPORT [ON | OFF]

Format: SYStem.Option.FREEZE [ON | OFF]

Format: SYStem.Option.HOOK <address> | <address_range>
QorIQ Debugger and NEXUS Trace | 60©1989-2024 Lauterbach

SYStem.Option.HRCWOVerRide Override RCW during SYStem.Up

Default: OFF.

Override the hard Reset Configuration Word on SYStem.Up via JTAG.

SYStem.Option.ICFLUSH Invalidate instruction cache before go and step

Default: ON.

Invalidates the instruction cache before starting the target program (Step or Go). If this option is disabled, the
debugger will update memory and instruction cache for program memory downloads, modifications and
breakpoints. Disabling this option might cause performance decrease on memory accesses.

SYStem.Option.ICREAD Read from instruction cache

Default: OFF:

If enabled, Data.List window and Data.dump window for access class P: (program memory) display the
memory values from the instruction/unified cache or L2 cache if valid. If the data is not available in cache, the
physical memory will be displayed.

Format: SYStem.Option.HRCWOVerRide [ON | OFF]

ON Every time this option is enabled, the current RCW configuration is read and
set to the corresponding RCWSR registers. You can now change the entire
RCW or just any of the 16 words. For further details please refer to
Programming the Reset Configuration Word.
The user-set values will be set every time a SYStem.Up is performed.

OFF No more overriding of the RCW when a SYStem.Up is performed.

Format: SYStem.Option.CFLUSH [ON | OFF]

Format: SYStem.Option.ICREAD [ON | OFF]
QorIQ Debugger and NEXUS Trace | 61©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step, the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.MACHINESPACES Address extension for guest OSes

Default: OFF

Enables the TRACE32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.MACHINESPACES [ON | OFF]
QorIQ Debugger and NEXUS Trace | 62©1989-2024 Lauterbach

If SYStem.Option.MACHINESPACES is set to ON:

• Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACE32 currently supports machine IDs up to 30.

• The debugger address translation (MMU and TRANSlation command groups) can be individually
configured for each virtual machine.

• Individual symbol sets can be loaded for each virtual machine.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.
QorIQ Debugger and NEXUS Trace | 63©1989-2024 Lauterbach

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

NOTE: The option can only be enabled when there are no symbols loaded.

Address dependent windows (e.g. Data.List) need to be closed and opened again
after this setting is changed.
QorIQ Debugger and NEXUS Trace | 64©1989-2024 Lauterbach

SYStem.Option.NoDebugStop Disable JTAG stop on debug events

Default: OFF.

This setting affects the handling of on-chip debug events.

Enable this option if the CPU should not stop for JTAG on debug events, in order to allow a target application
to use the debug interrupt. Typical usages for this option are run-mode debugging (e.g. with
t32server/gdbserver) or setting up the system for a branch trace via LOGGER (trace data in target RAM).

Format: SYStem.Option.NoDebugStop [ON | OFF]

ON The CPU will be configured to not stop for JTAG, but to enter the debug
interrupt, like it does when no JTAG debugger is used.

OFF If a JTAG debugger is used, the CPU is configured to stop for JTAG upon
debug events.
QorIQ Debugger and NEXUS Trace | 65©1989-2024 Lauterbach

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_id>:<address>
QorIQ Debugger and NEXUS Trace | 66©1989-2024 Lauterbach

SYStem.Option.RESetBehavior Set behavior when target reset detected

Defines the debugger’s action when a reset is detected. Default setting is Disabled. The reset can only be
detected and actions taken if it is visible to the debugger’s reset pin.

SYStem.Option.SLOWRESET Relaxed reset timing

Default: OFF.

This system option defines how the debugger will test JTAG_HRESET. For some system mode changes,
the debugger will assert JTAG_HRESET.

Format: SYStem.Option.RESetBehavior <mode>

<mode>: Disabled
AsyncHalt

Disabled No actions to the processor take place when a reset is detected.
Information about the reset will be printed to the message AREA.

AsyncHalt Halt core as soon as possible after reset was detected. The core will halt
shortly after the reset event.

Format: SYStem.Option.SLOWRESET [ON | OFF]

ON If this system option is enabled, the debugger will not read JTAG_HRESET,
but instead waits 4 s and then assumes that the boards HRESET is
released.

OFF Per default (OFF), the debugger will release RESET and then read the
HRESET signal until the HRESET pin is released. Reset circuits of some
target boards prevent that the current level of HRESET can be determined
via JTAG_HRESET.
QorIQ Debugger and NEXUS Trace | 67©1989-2024 Lauterbach

SYStem.Option.STEPSOFT Use alternative method for ASM single step

Default: OFF.

This method uses software breakpoints to perform an assembler single step instead of the processor’s built-
in single step feature. Works only for software in RAM. Do not turn ON, unless advised by Lauterbach.

SYStem.Option.TranslationSPACE Identify user and hypervisor modes

Default: ON.

This system option configures the debugger how to distinguish between user and supervisor modes.

In bare-metal applications or uncomplex operating systems typically the MSR[IS] bit is used to isolate user
from supervisor address space. There is no way to get the information about this bit within the trace
information, the program trace will be decoded using the current context of the cores.

In complex or hypervisor systems, typically the MSR[PR] bit is used to handle user and supervisor modes.
This bit will also be included in ownership trace messages. TRACE32 will therefore be able to decode the
program trace depending on this privilege information, which doesn’t have to be compliant to the current
context of cores.

a) SYStem.Option.TranslationSPACE ON (default)

b) SYStem.Option.TranslationSPACE OFF

Format: SYStem.Option.STEPSOFT [ON | OFF]

Format: SYStem.Option.TranslationSPACE [ON | OFF]

Mode MSR.GS bit MSR.IS bit

Hypervisor-supervisor mode 0 0

Hypervisor-user 0 1

Guest-supervisor 1 0

Guest-user 1 1

Mode MSR.GS bit MSR.PR bit

Hypervisor-supervisor mode 0 0
QorIQ Debugger and NEXUS Trace | 68©1989-2024 Lauterbach

SYStem.Option.ZoneSPACES Enable symbol management for zones
[Example]

Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if separate symbol sets and MMU
translation tables are used for the CPU operation modes:

• Hypervisor-supervisor mode

• Hypervisor-user mode

• Guest-supervisor mode

• Guest-user mode

Within TRACE32, these CPU operation modes are referred to as zones. For information about the status
bits controlling these modes, see SYStem.Option.TranslationSPACE.

Hypervisor-user 0 1

Guest-supervisor 1 0

Guest-user 1 1

Format: SYStem.Option.ZoneSPACES [ON | OFF]

NOTE: For an explanation of the TRACE32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

Mode MSR.GS bit MSR.PR bit
QorIQ Debugger and NEXUS Trace | 69©1989-2024 Lauterbach

In each CPU operation mode (zone), the CPU’s TLB may contain separate translations, and a kernel or
hypervisor may uses separate MMU translation tables for memory accesses and separate register sets.
Consequently, in each zone, different code and data can be visible on the same logical address.

SYStem.Option.ZoneSPACES ON in Detail

SYStem.Option.ZoneSPACES is usually set to ON if you need to debug virtualized systems with guest and
hypervisor. For both guest and hypervisor, TRACE32 also separates between supervisor mode and user
mode. Typical scenarios use separate symbol sets for the hypervisor-supervisor mode, the guest-supervisor
and the guest-user mode. The hypervisor-user mode is rarely used. The symbol sets are loaded to the
access classes HS: (hypervisor-supervisor mode, GS: (guest-supervisor mode) and GU: (guest-user
mode).

If SYStem.Option.ZoneSPACES is ON, TRACE32 enforces any memory address specified in a TRACE32
command to have an access class which clearly indicates to which of the four zones the memory address
belongs.

If an address specified in a command uses an anonymous access class such as D:, P: or C:, the access
class of the current PC context is used to complete the access class of the addresses. Also, if an incomplete
access class where either the guest/hypervisor information is missing (such as SP: or UP:) or the
supervisor/user information is missing (such as GP: or HP:), the missing information will automatically be
expanded from the access class of the current PC context.

Example: If the CPU is currently in user mode, a memory access with the access class GP: will be
expanded by TRACE32 to become GUP:

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s effective address
will be translated to the physical address with the correct MMU translation table.

OFF TRACE32 does not separate symbols by access class. Loading two or
more symbol sets with overlapping address ranges will result in
unpredictable behavior. Loaded symbols are independent of the CPU
mode.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.
QorIQ Debugger and NEXUS Trace | 70©1989-2024 Lauterbach

Example 1

In this script, SYStem.Option.ZoneSPACES is used for a simple host and guest debugging.

Effect on the TRANSlation command group: SYStem.Option.ZoneSPACES ON enforces separate
address spaces for the four zones HS:, HU:, GS: and GU:. Commands affecting the address translation,
such as TRANSlation.Create, TRANSlation.COMMON, TRANSlation.Protect or MMU.FORMAT, must
be executed individually for each of the four zones.
It is, however, possible to use the generic access classes G: and H: as “joker”. This simplifies the scripts if
identical translations for GS: and GU: are needed or identical translations for HS: and HU: are needed.

SYStem.Option.ZoneSPACES ON

; 1. Load the Xen hypervisor symbols to the hypervisor-supervisor
; access class HS:
Data.LOAD.ELF xen-syms HS:0x0 /NoCODE

; 2. Load the vmlinux kernel symbols to the guest-supervisor access class
; GS:
Data.LOAD.ELF vmlinux GS:0x0 /NoCODE

; 3. Load the guest application symbols (the ‘sieve’ application in this
; example) to the guest-user access class GU:
Data.LOAD.ELF sieve GU:0x0 /NoCODE
QorIQ Debugger and NEXUS Trace | 71©1989-2024 Lauterbach

Example 2

SYStem.Option.ZoneSPACES ON
; show the list of static translations created by the commands
; TRANSlation.Create and TRANSlation.COMMON
TRANSlation.List

;1. the command
TRANSlation.Create G:0x80000000--0x8FFFFFFF 0x0
; is equivalent to the commands
TRANSlation.Create GS:0x80000000--0x8FFFFFFF 0x0
TRANSlation.Create GU:0x80000000--0x8FFFFFFF 0x0

;2. the command
TRANSlation.Create H:0xA0000000--0xAFFFFFFF 0x0
; is equivalent to the commands
TRANSlation.Create HS:0xA0000000--0xAFFFFFFF 0x0
TRANSlation.Create HU:0xA0000000--0xAFFFFFFF 0x0

;3. the command
TRANSlation.COMMON G:0xC00000000--0xFFFFFFFF
; is equivalent to the commands
TRANSlation.COMMON GS:0xC00000000--0xFFFFFFFF
TRANSlation.COMMON GU:0xC00000000--0xFFFFFFFF

QorIQ Debugger and NEXUS Trace | 72©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>] [/<option>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: dis-

plays the translation table of the specified process and/or machine
• else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.
QorIQ Debugger and NEXUS Trace | 73©1989-2024 Lauterbach

CPU specific Tables in MMU.DUMP <table>

Additionally, if both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON,
then these CPU specific tables are available:

Additionally, if only SYStem.Option.ZoneSPACES is set to ON, then these CPU specific tables are
available:

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

MACHINE
<machine_magic> |
<machine_id> |
<machine_name>

This option is only available if SYStem.Option.MACHINESPACES is set
to ON.
Dumps a page table of a virtual machine. The MACHINE option applies
to PageTable and KernelPageTable and some <cpu_specific_tables>.

The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List.MACHINES window.

TLB0 Displays the contents of TLB0.

TLB1 Displays the contents of TLB1.

TLB1PT
<tlb1_index>

Displays the indirect page table which is associated with the TLB1 entry
<tlb1_index>.

SupervisorPT Displays the supervisor mode page table of the machine specified with
option MACHINE.

UserPT Displays the user mode page table of the machine specified with the option
MACHINE.

HSPageTable Displays the page table which is defined for the hypervisor supervisor mode.

HUPageTable Displays the page table which is defined for the hypervisor user mode.

GSPageTable Displays the page table which is defined for the guest supervisor mode.
QorIQ Debugger and NEXUS Trace | 74©1989-2024 Lauterbach

GUPageTable Displays the page table which is defined for the guest user mode.
QorIQ Debugger and NEXUS Trace | 75©1989-2024 Lauterbach

MMU.FORMAT Define MMU table structure
[Examples]

Default <format>: STD.

Defines the information needed for the page table walks, which are performed by TRACE32 for debugger
address translation, page table dumps, or page table scans.

<format>

<format> is to be replaced with a CPU architecture specific keyword which defines the structure of the MMU
page tables used by the kernel. By default, TRACE32 assumes that the MMU format is STD, unless you
specify the MMU.FORMAT <format> explicitly.

Format: MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]] [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Hypervisormode | Guestmode | Supervisormode | Usermode

<format> Description

DEOS DEOS OS (32 bit) specific MMU format

DEOS64 DEOS OS (64 bit) specific MMU format

EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers

LINUX64_E6 Use LINUX64_E6 for e6500 core devices

LINUXE5 Linux with 64-bit PTEs, e500 core

LINUXEXT Linux with 64-bit PTEs, no e500 core

LYNXOS LynxOS format, virtual table pointers

LYNXOSPHYS LynxOS format, physical table pointers

OSE OSE format for load modules

PIKEOS.E500 PIKEOS specific format for PowerPC e500 core (formerly named
PIKEOSE5).Works for PikeOS 4.1 and older. For e500 cores with PikeOS
4.2 and newer use E500MC format.*/
QorIQ Debugger and NEXUS Trace | 76©1989-2024 Lauterbach

<base_address>

<base_address> defines the start address of the default page table which is usually the kernel page table.
The kernel page table contains translations for mapped address ranges owned by the kernel.

The debugger address translation uses the default page table if no process specific page table (task
page table) is available to translate an address.

<base_address> can be left empty by typing a comma or set to zero if there is no default page table
available in the system.

<logical_kernel_address_range> and <physical_kernel_address> for the Default Translation

The arguments <logical_kernel_address_range> and <physical_kernel_address> define a linear logical-to-
physical address translation for the kernel addresses, called kernel translation or default translation. This
translation should cover all statically mapped logical address ranges of kernel code or kernel data.

For the <physical_kernel_address> you just need to specify the start address.

PIKEOS.E500MC PIKEOS specific format for PowerPC e500mc core (PPC64 only).Can also
be used with PikeOS 4.2 and newer on PPC32 e500 cores.*/

PIKEOS.E500MC4G PIKEOS specific format for PowerPC e500mc core addressing 4GB of
memory.Has no common address range.*/

PIKEOS.E5500 PIKEOS specific format for PowerPC e5500 core

PIKEOS.OEA PIKEOS specific format for PowerPC core (formerly named PIKEOS) */

QNX QNX standard format

QNXBIG QNX format with 64-bit table entries

STD Standard format defined by the CPU

VX653 MMU format for VXWORKS 653

VXWORKS.E500 VxWorks specific format for PowerPC e500 core

VXWORKS.E500MC VxWorks specific format for PowerPC e500mc core with 36 bit physical
addresses (PPC64 only)

VXWORKS.E500_64 VxWorks specific format for PowerPC e500 core (PPC64 only)

VXWORKS.E6500 VxWorks specific format for PowerPC e6500 core

NOTE: If no kernel translation is specified for a given memory access, TRACE32 tries to
use static address translations defined by the command TRANSlation.Create. The
kernel translation is shown in the TRANSlation.List window.

<format> Description
QorIQ Debugger and NEXUS Trace | 77©1989-2024 Lauterbach

<options>

If both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON, then these
options are available:

• MACHINE

• Supervisormode

• Usermode

If only SYStem.Option.ZoneSPACES is set to ON, then these options are available:

• Hypervisormode

• Guestmode

• Supervisormode

• Usermode

Supervisormode If SYStem.Option.MACHINESPACES is set to OFF:
Specifies the format, default page table, and default translation for one or
both supervisor zones (access class HS: or GS:). Can be combined with
the Hypervisormode or Guestmode option.

If SYStem.Option.MACHINESPACES is set to ON:
Specifies the format, default page table, and default translation for the
supervisor mode zone of the machine selected with the MACHINE
option.

For an example, see below.

Usermode If SYStem.Option.MACHINESPACES is set to OFF:
Specifies the format, default page table, and default translation for one or
both user mode zones (access class HU: or GU:). Can be combined with
the Hypervisormode or Guestmode option.

If SYStem.Option.MACHINESPACES is set to ON:
Specifies the format, default page table, and default translation for the
user mode zone of the machine which is selected with the MACHINE
option.

Hypervisormode Specifies the format, default page table, and default translation for one or
both hypervisor zones (access class HS: or HU:). Can be combined with
the Supervisormode or Usermode option.

For an example, see below.

Guestmode Specifies the format, default page table, and default translation for one or
both guest zones (access class GS: or GU:). Can be combined with the
Supervisormode or Usermode option.

MACHINE For a description of the MACHINE option, see MMU.DUMP.
QorIQ Debugger and NEXUS Trace | 78©1989-2024 Lauterbach

If only SYStem.Option.MACHINESPACES is set to ON, then these option is available:

• MACHINE

Examples for Page Tables in Virtualized Systems
[Back to MMU.FORMAT]

Example 1: This script shows how to define separate default page tables and separate default
translations for various zones (without Hypervisor Awareness and without machine IDs).
The backslash \ is used as a line continuation character. No white space permitted after the backslash.

NOTE: • The MMU format and default page table base address of each zone can be
viewed with the command TRANSlation.state.

• The default translation of each zone can be viewed with the command
TRANSlation.List

; enable symbol management for zones
SYStem.Option.ZoneSPACES ON

; define the format for the hypervisor-supervisor zone (access class HS:)
MMU.FORMAT STD HS:0xC8000000 HS:0x80000000++0x0FFFFFFF \
 A:0x00000000 /Hypervisormode /Supervisormode

; define the format for the hypervisor-user zone (access class HU:)
MMU.FORMAT STD HU:0x34000000 HU:0x30000000++0x0FFFFFFF \
 A:0x00800000 /Hypervisormode /Usermode

; define the format for guest-supervisor zone (access class GS:)
MMU.FORMAT VX653 GS:0xA4000000 GS:0xA0000000++0x0FFFFFFF \
 A:0x10000000 /Guestmode /Supervisormode

; define the format for guest-user zone (access class GU:)
MMU.FORMAT VX653 GU:0x22000000 GU:0x20000000++0x1FFFFFFF \
 A:0x18000000 /Guestmode /Usermode

; show the result of the format definition
TRANSlation.state
TRANSlation.List
QorIQ Debugger and NEXUS Trace | 79©1989-2024 Lauterbach

Example 2: This script shows how to define separate default page tables and separate default
translations for various zones (with Hypervisor Awareness and with machine IDs).
The backslash \ is used as a line continuation character. No white space permitted after the backslash.

; enable symbol management for zones
SYStem.Option.ZoneSPACES ON

; enable address extension for guest OSes
SYStem.Option.MACHINESPACES ON

; define the format for the supervisor zone of machine 0
; (access class HS:)
MMU.FORMAT STD HS:0:::0xC8000000 HS:0:::0x80000000++0x0FFFFFFF \
 A:0x00000000 /MACHINE 0 /Supervisormode

; define the format for the supervisor zone of machine 1
; (access class GS:)
MMU.FORMAT STD GS:1:::0xA4000000 GS:1:::0xA0000000++0x0FFFFFFF \
 A:0x10000000 /MACHINE 1 /Supervisormode

; define the format for the guest-user zone of machine 1
; (access class GU:)
MMU.FORMAT VX653 GU:1:::0x22000000 GU:1:::0x20000000++0x1FFFFFFF \
 A:0x18000000 /MACHINE 1 /Usermode

; define the format for both the guest-supervisor zone and the guest-user
; zone of machine 2 concurrently (access class G:)
MMU.FORMAT VX653 G:0xB8000000 G:0xB0000000++0x1FFFFFFF \
 A:0x40000000 /MACHINE 2

; show the result of the format definition
TRANSlation.state
TRANSlation.List
QorIQ Debugger and NEXUS Trace | 80©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
 [/<option>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: list

the translation table of the specified process and/or machine
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.
QorIQ Debugger and NEXUS Trace | 81©1989-2024 Lauterbach

CPU specific Tables in MMU.List <table>

Additionally, if both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON,
then these CPU specific tables are available:

Additionally, if only SYStem.Option.ZoneSPACES is set to ON, then these CPU specific tables are
available:

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

MACHINE For a description of the MACHINE option, see MMU.DUMP.

TLB1PT
<tlb1_index>

Displays the indirect page table which is associated with the TLB1 entry
<tlb1_index>.

SupervisorPT Displays the supervisor mode page table of the machine specified with
option MACHINE.

UserPT Displays the user mode page table of the machine specified with the option
MACHINE.

HSPageTable Displays the page table which is defined for the hypervisor supervisor mode.

HUPageTable Displays the page table which is defined for the hypervisor user mode.

GSPageTable Displays the page table which is defined for the guest supervisor mode.

GUPageTable Displays the page table which is defined for the guest user mode.
QorIQ Debugger and NEXUS Trace | 82©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>] [/<option>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID and/or machine ID: loads

the translation table of the specified process and/or machine
• else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process
and copies its address translation into the debugger-internal static
translation table.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.
QorIQ Debugger and NEXUS Trace | 83©1989-2024 Lauterbach

CPU specific Tables in MMU.SCAN <table>

Additionally, if both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON,
then these CPU specific tables are available:

Additonally, if only SYStem.Option.ZoneSPACES is set to ON, then these CPU specific tables are
available:

ALL Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

MACHINE For a description of the MACHINE option, see MMU.DUMP.

TLB0 Loads the TLB0 from the CPU to the debugger-internal translation table.

TLB1 Loads the TLB1 from the CPU to the debugger-internal translation table.

SupervisorPT Displays the supervisor mode page table of the machine specified with
option MACHINE.

UserPT Displays the user mode page table of the machine specified with the option
MACHINE.

HSPageTable Displays the page table which is defined for the hypervisor supervisor mode.

HUPageTable Displays the page table which is defined for the hypervisor user mode.

GSPageTable Displays the page table which is defined for the guest supervisor mode.

GUPageTable Displays the page table which is defined for the guest user mode.
QorIQ Debugger and NEXUS Trace | 84©1989-2024 Lauterbach

MMU.Set Set an MMU TLB entry

Sets the specified MMU TLB table entry in the CPU. The parameter <tlb> is not available for CPUs with only
one TLB table.

Formats: MMU.Set TLB0 <index> <mas1> <mas2> <mas3> <mas7> <mas8>
MMU.Set TLB1 <index> <mas1> <mas2> <mas3> <mas7> <mas8>
MMU.<table>.SET (deprecated)

<index> TLB entry index. From 0 to (number of TLB entries)-1 of the specified
TLB table

<mas1>
<mas2>
<mas3>
<mas7>
<mas8>

Values corresponding to the values that would be written to the MAS
registers in order to set a TLB entry. See the processor’s reference
manual for details on MAS registers.
QorIQ Debugger and NEXUS Trace | 85©1989-2024 Lauterbach

CPU specific BenchMarkCounter Commands

The BenchMarkCounter features are based on the core’s performance monitor, accessed through the
performance monitor registers (PMR).

BMC.FREEZE Freeze counters while core halted

Default: ON.

Enable this setting to prevent that actions of the debugger have influence on the performance counter. As
this feature software controlled (no on-chip feature), some events (especially clock cycle measurements)
may be counted inaccurate even if this setting is set ON.

BMC.Trace Trace performance monitor events

This feature configured the processor to generate watchpoint hit messages upon performance monitor
events. The frequency of the watchpoint messages can be controlled with the <periodicity> parameter.
If <periodicity> is e.g. set to 2^8, the processor will generate a watchpoint hit message every 256
events.

NOTE: • Chips with e6500 cores provide PMR access while the core is running.
Otherwise, PMR access is only possible while the core is halted.

• For information about architecture-independent BMC commands, refer to
“BMC” (general_ref_b.pdf).

• For information about architecture-specific BMC commands, see command
descriptions below.

• For a description of events that can be assigned to BMC.<counter>.EVENT
<event>, please check Freescale’s core reference manual.

Format: BMC.FREEZE [ON | OFF]

Format: BMC.Trace [ON | OFF] <periodicity>

<periodicity>: 2^0 | 2^1 | 2^4 | 2^8 | 2^14 | 2^20 | 2^31
QorIQ Debugger and NEXUS Trace | 86©1989-2024 Lauterbach

BMC.<counter>.FREEZE Freeze counter in certain core states

Halts the selected performance counter if one or more of the enabled states (i.e. states set to ON) match the
current state of the core. If contradicting states are enabled (e.g. SUPERVISOR and USER), the counter will
be permanently frozen. The table below explains the meaning of the individual states.

Format: BMC.<counter>.FREEZE <state> [ON | OFF]

<state>: USER | SUPERVISOR | MASKSET | MASKCLEAR | GUEST | HYPERVISOR

<state> Dependency in core

USER Counter frozen if MSR[PR]==1

SUPERVISOR Counter frozen if MSR[PR]==0

MASKSET Counter frozen if MSR[PMM]==1

MASKCLEAR Counter frozen if MSR[PMM]==0

GUEST Freeze counters in guest state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 1.

HYPERVISOR Freeze counters in hypervisor state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 0.
QorIQ Debugger and NEXUS Trace | 87©1989-2024 Lauterbach

CPU specific TrOnchip Commands

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Default: ON.

This command influences the behavior when there are no more on-chip resources for exact data address
range breakpoints available. The QorIQ processors offer the possibility to set one exact data address
range breakpoint or up to two data address range breakpoints with a maximum of up to 4kB each. These
ranges are not exact in all cases, depending on the maskable start and end address. Using this command
the user can allow or prohibit a conversion to ranges which exceed the exact one in cases it is necessary. In
all other cases the exact range setting will be preferred.

Format: TrOnchip.CONVert [ON | OFF]

ON Data address range breakpoints which do not exceed 4kB can be
converted to ranges which exceed the exact range. This offers the
possibility to use up to two data address range breakpoints with
maximum 4kB each instead of just one exact data address range
breakpoint. It is also possible to use one data address breakpoint in
combination with one (non-exact) max. 4kB large data address range
breakpoint.
Please be aware, that the range breakpoint is still listed as the original,
exact range breakpoint in the Break.List window.
Use the Data.View command to verify the extended data address range
breakpoints.

OFF When there is already a data address breakpoint set, an error message is
displayed when the user wants to set a new data address range breakpoint.

When there is already a data address range breakpoint set, an error
message is displayed when the user wants to set a new data address
breakpoint or data address range breakpoint.
QorIQ Debugger and NEXUS Trace | 88©1989-2024 Lauterbach

Example:

TrOnchip.RESet Reset on-chip trigger settings

Resets the on-chip trigger system to the default state.

TrOnchip.Set Enable special on-chip breakpoints

Default: All events OFF.

Enables the specified on-chip trigger facility to stop the CPU on the following break events:

TrOnchip.CONVert ON
Break.Set 0x6020++0x1f /Write
Break.Set 0x7024++0x1f /Write
Data.View 0x6020
Data.View 0x7000

Break.RESet
TrOnchip.CONVert OFF
Break.Set 0x6020++0x1f /Write
Break.Set 0x7024++0x1f /Write

;Enable conversion of data ranges
;First range, <4kB
;Second range, <4kB
;First range, exact conversion
;Second range extended to
;0x7000--0x707F because of address
masking.

;Start example without CONVert
;No conversion allowed
;First range, exact range set
;Second rang won’t be set, an error
message is displayed.

Format: TrOnchip.RESet

Format: TrOnchip.Set <event> [ON | OFF]

<event>: BRT
IRPT
RET
CIRPT
CRET

BRT Break on branch taken event.

IRPT Break on interrupt entry.
QorIQ Debugger and NEXUS Trace | 89©1989-2024 Lauterbach

TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource

Default: ON.

Example:

RET Break on return from interrupt.

CIRPT Break on critical interrupt entry.

CRET Break on return from critical interrupt.

Format: TrOnchip.VarCONVert [ON | OFF]

ON After a data address breakpoint is set to an HLL variable all on-chip
breakpoints are spent to cover all the bytes of the variable as a range. As
soon as a new data address breakpoint is set the data address
breakpoint to the HLL variable is converted to a single data address
breakpoint.

OFF An error message is displayed when the user wants to set a new data
address breakpoint after all on-chip breakpoints are spent by a data address
breakpoint to an HLL variable.

TrOnchip.VarCONVert ON
Var.Break.Set static_int1
TrOnchip.VarCONVert OFF
Var.Break.Set static_int2
Break.List ;byte address for static_int1

;address range for static_int2
QorIQ Debugger and NEXUS Trace | 90©1989-2024 Lauterbach

TrOnchip.state View on-chip trigger setup window

Display the trigger setup dialog window.

Format: TrOnchip.state
QorIQ Debugger and NEXUS Trace | 91©1989-2024 Lauterbach

Nexus and Trace specific commands

DDRTrace.List List DDR trace contents

Opens a window showing the recorded DDR trace data.

For information about how to access other trace listings, see chapter Trace Sources.

DQMTrace.List List DQM trace contents

Opens a window showing the recorded DQM (data acquisition message) trace data.

For information about how to access other trace listings, see chapter Trace Sources.

Format: DDRTrace.List [<items>…]

<items>: [DEFault | DDR | DDRSYNC | DDRMID | DDRSIZE | …]

<items> The <items> define the columns to be displayed in the DDR trace listing. You
can combine any of the available <items>.
The availability of <items> is dependent on the CPU and even its revision.

DEFault By default, just the basic information is displayed, which includes the
address and read / write information.

DDR Displays all details included in the DDR trace message.
All other <items> display only a subset of the DDR trace message.

Format: DQMTrace.List [<items>…]

<items>: [DEFault | Address | CYcle | Data | …]

<items> The <items> define the columns to be displayed in the DQM trace listing.
You can combine any of the available <items>.

DEFault By default, all DQM trace message included information is displayed, which
includes the DEVENT register value in the Address column and the DDAM
register value in the Data column.
QorIQ Debugger and NEXUS Trace | 92©1989-2024 Lauterbach

NEXUS.BTM Enable program trace messaging

Default: ON.

Global control for Nexus program trace messaging.

For core specific trace control, please see the NEXUS.CoreENable command.

NEXUS.CoreENable Core specific trace configuration

Access to core specific trace configuration.

Default: All cores of the CPU are enabled and the program trace is just managed by the global setting of
NEXUS.BTM. For e.g. a CPU with eight cores the default <core numbers> setting is <0,1,2,3,4,5,6,7>.

To disable the generation of trace messages for specific cores exclude them from the <core numbers> list.

Format: NEXUS.BTM [ON | OFF]

ON Program trace messaging enabled.

OFF Program trace messaging disabled.

Format: NEXUS.CoreENable [<core_numbers>]
QorIQ Debugger and NEXUS Trace | 93©1989-2024 Lauterbach

NEXUS.DDRConfig.ADDRessfilter Filter Nexus DDR messages

Default: inactive.

Activates filters to restrict the generation of DDR trace messages.

NEXUS.DDRConfig.Controller Configure Nexus DDR message type

Default: OFF.

Enables Nexus DDR trace and configures the type of Nexus DDR trace messages.

Format: NEXUS.DDRConfig.ADDRessfilter<index> [<address> | <range> |
 <bitmask>]

<index> 1, 2
There are two filters available, valid for all DDR memory controllers.

<address>
<range>
<bitmask>

Restrict the DDR trace message generation to the specified physical
address, range or bitmask.

without the optional
arguments:
<address>, <range>,
<bitmask>

Apply this command without an address, range or bitmask to all filters to
enable Nexus DDR messages for every address (if a mode is selected by
NEXUS.DDRConfig.Controller).

Format: NEXUS.DDRConfig.Controller<index> [Terse | Verbose | OFF]

<index> 1, 2, 3
The index specifies the DDR memory controller.
The number of DDR memory controllers varies depending on the QorIQ
CPU.

OFF DDR trace deactivated for this memory controller.

Terse
Verbose

Terse trace messages need less bandwidth but do not offer as detailed
information as the verbose trace messages. Please refer to the appropriate
reference manual of the CPU for further details.
QorIQ Debugger and NEXUS Trace | 94©1989-2024 Lauterbach

NEXUS.DQM Enable data acquisition messaging

Default: OFF.

Set to ON to enable data acquisition messaging.

Format: NEXUS.DQM [ON | OFF]

NOTE: When instrumented software uses the DEVENT and DDAM registers, the
corresponding IDTAG and DQDATA values are transmitted within a data acquisition
message.
This message is produced at the time a core writes to the DDAM register using a
mtspr instruction.
QorIQ Debugger and NEXUS Trace | 95©1989-2024 Lauterbach

NEXUS.LaneMapping Logical to physical lane mapping
POWER TRACE SERIAL only

Using the NEXUS.LaneMapping command group, you can configure the mapping of logical to physical
Aurora trace lanes.

NEXUS.LaneMapping.APPLY Apply logical to physical lane mapping
POWER TRACE SERIAL only

Apply the current mapping of logical to physical Aurora trace lanes, defined by
NEXUS.LaneMapping.SetLane.

NEXUS.LaneMapping.SetLane Configure logical to physical lane mapping
POWER TRACE SERIAL only

Default: 1:1 configuration.

Maps the logical Aurora trace lanes to the physical ones. This command takes effect only if
NEXUS.LaneMapping APPLY is used afterwards.

NOTE: This configuration is typically needed if the routing of the target lanes to the trace
port is disordered (which is rarely the case).

Format: NEXUS.LaneMapping.APPLY

Format: NEXUS.LaneMapping.SetLane <logical_id> <physical_id>
QorIQ Debugger and NEXUS Trace | 96©1989-2024 Lauterbach

NEXUS.OCeaNport.Mode Configure Nexus OCeaN message type

Default: Terse.

Configure the type of Nexus OCeaN messages.

Format: NEXUS.OCeaNport<index>.Mode [Terse | Verbose]

<index> 1, 2
The index specifies the OCeaN port.

Terse
Verbose

Terse trace messages offer less detailed address information than the
verbose trace messages, but information about the source. Please refer to
the appropriate reference manual of the CPU for further details.
QorIQ Debugger and NEXUS Trace | 97©1989-2024 Lauterbach

NEXUS.OCeaNport<index>.TraceSELect Select Nexus OCeaN trace type

Default: OFF.

Default: OFF.

Select the sources which produce Nexus OCeaN messages.

NEXUS.OFF Switch the Nexus trace port off

Default: ON.

Turn off if you neither want to use the Onchip nor the HSTP trace.

Format: NEXUS.OCeaNport1.TraceSELect <source>

<source>: OFF
P0OUT-CHB
P1OUT-PCIE1
P1OUT
P2OUT-PCIE2SRIO1
P2OUT
P3OUT-PCIE3
P3OUT
P4OUT-SRIO2
P4OUT

Format: NEXUS.OCeaNport2.TraceSELect <source>

<source>: OFF
P0IN-CHB
P1IN-PCIE1
P1IN
P2IN-PCIE2SRIO1
P2IN
P3IN-PCIE3
P3IN
P4IN-SRIO2
P4IN

Format: NEXUS.OFF
QorIQ Debugger and NEXUS Trace | 98©1989-2024 Lauterbach

NEXUS.ON Switch the Nexus trace port on

The Nexus trace port is switched on. All trace registers are configured by the debugger.

NEXUS.OTM Enable ownership trace messaging

Default: OFF.

Controls ownership trace messaging.

Format: NEXUS.ON

Format: NEXUS.OTM [ON | PID0 | NPIDR | OFF]

OFF Ownership trace messaging is disabled.

ON
PID0

Enable ownership trace messaging. An OTM is generated if the
application writes to the PID0 register.

NPIDR Enable ownership trace messaging. An OTM is generated if the
application writes to the NPIDR register.

NOTE: Enable ownership trace messaging in order to get trace information about task
switches. Some operating systems use a set of OTMs to transfer task switch
information to the trace tool. In this case periodic ownership trace must be
disabled using NEXUS.POTD ON.
QorIQ Debugger and NEXUS Trace | 99©1989-2024 Lauterbach

NEXUS.PortMode Set Nexus trace port frequency

Sets the Nexus trace port frequency. For Aurora Nexus, the setting is a fixed bit rate which is independent of
the system frequency.

NEXUS.PortSize Set trace port width

Default: Varied, depending on the processor.

Sets the Nexus port width to the number of used Aurora lanes. The setting can only be changed if no debug
session is active (SYStem.Down).

Format: NEXUS.PortMode <mode>

<mode>: 625MBPS | 750MBPS | 850MBPS | 1000MBPS | 1250MBPS | 1500MBPS |
1700MBPS | 2000MBPS | 2500MBPS | 3000MBPS | 3125MBPS |
3400MBPS | 4000MBPS | 4250MBPS | 5000MBPS | 6000MBPS | 6250MBPS

NOTES: Depending on the processor, bit rates may be unsupported. Set the bit rate
according to the processor’s data sheet. You will get a warning if a set bit rate is
not supported by your processor.

QorIQ processors usually do not need an external reference clock for Aurora
operation. Nevertheless if needed, the Aurora preprocessor can provide that
clock signal. It is enabled using NEXUS.RefClock ON.

Format: NEXUS.PortSize <port_size>

<port_size>: 1Lane | 2Lane

NOTE: Depending on the processor there are no dedicated debug lanes available. In
this case you need to set an appropriate RCW (SRDS_PRTCL field) to
configure one or more lanes for debugging purposes. Please refer to
Programming the Reset Configuration Word for further details.
QorIQ Debugger and NEXUS Trace | 100©1989-2024 Lauterbach

NEXUS.POTD Disable periodic ownership trace

Default: OFF.

When enabled, the core is configured to suppress periodic ownership trace messages. A periodic ownership
trace message is an OTM, which is generated without a write access to the PID register once every 256
messages. Enable this option, when the OTM is used to generate trace information about task switches.

NEXUS.PTCM Enable program trace correlation messages

Default: OFF.

Enables a program trace correlation message (PTCM) for the specified event. These program trace
correlation messages are not needed to reconstruct the program flow, but give additional information which
can increase the precision of statistic measurements.

NEXUS.PTFGS Program trace mark

Default: OFF.

Controls the influence of MSR[GS] in program trace messaging. Only available for e6500.

Format: NEXUS.POTD [ON | OFF]

Format: NEXUS.PTCM.<event> [ON | OFF]

<event>: BL_HTM

BL_HTM Core generates PTCM on Branch and Link occurrence (EVCODE 0xA).
Enable this PTCM to improve function profiling.

Format: NEXUS.PTFGS [OFF | GS0 | GS1]

OFF Ignore MSR[GS] for masking program trace messages.

GS0 Generate program trace messages only when MSR[GS] = 0

GS1 Generate program trace messages only when MSR[GS] = 1
QorIQ Debugger and NEXUS Trace | 101©1989-2024 Lauterbach

NEXUS.PTFPMM Program trace mark

Default: OFF.

Controls the influence of MSR[PMM] in program trace messaging. Only available for e6500.

NEXUS.PTFPR Program trace mark

Default: OFF.

Controls the influence of MSR[PR] in program trace messaging. Only available for e6500.

Format: NEXUS.PTFPMM [OFF | PMM0 | PMM1]

OFF Ignore MSR[PMM] for masking program trace messages.

PMM0 Generate program trace messages only when MSR[PMM] = 0

PMM1 Generate program trace messages only when MSR[PMM] = 1

Format: NEXUS.PTFPR [OFF | PR0 | PR1]

OFF Ignore MSR[PR] for masking program trace messages.

PR0 Generate program trace messages only when MSR[PR] = 0

PR1 Generate program trace messages only when MSR[PR] = 1
QorIQ Debugger and NEXUS Trace | 102©1989-2024 Lauterbach

NEXUS.PTMARK Program trace mark

Default: OFF.

Controls the influence of MSR[PMM] in program trace messaging.

NEXUS.RefClock Enable Aurora reference clock

Default: OFF.

Typically this settings should not be changed for QorIQ processors.

When set to ON, the preprocessor provides the reference clock for the Aurora Nexus block on the processor.
Only enable when the processor requires this reference clock and when no module provides the Aurora
clock source for the processor.

NEXUS.Register Display NEXUS trace control registers

This command opens a window which shows the NEXUS configuration and status registers.

Format: NEXUS.PTMARK [ON | OFF]

OFF Ignore MSR[PMM] for masking program trace messages.

ON Mask (disable) program trace messages when MSR[PMM] = 0, unmask
(enable) program trace messages when MSR[PMM] = 1

Format: NEXUS.RefClock [ON | OFF]

Format: NEXUS.Register
QorIQ Debugger and NEXUS Trace | 103©1989-2024 Lauterbach

NEXUS.RESet Reset Nexus trace port settings

Resets Nexus trace port settings to default settings.

NEXUS.SerDesCFG Enable SerDes PLL control register manipulation

Default: ON.

Enables the SerDes PLL control register manipulation.

NEXUS.SerDesCFG.FRATE Select frequency of SerDes PLL VCO

Default: DEFault.

Sets the FRATE field of the SerDes PLL control register. This value sets the frequency of PLL VCO as
described in the reference manual of the CPU.

Format: NEXUS.RESet

Format: NEXUS.SerDesCFG [ON | OFF]

ON The SerDes PLL control register will be modified according to the
NEXUS.SerDesCFG.REFCLK and NEXUS.SerDesCFG.FRATE settings.

OFF The SerDes PLL control register is not touched.

Format: NEXUS.SerDesCFG.FRATE <mode>

<mode>: DEFault | 3GHz | 3.125GHz | 4GHz | 5GHz | 6GHz | 6.25GHz

<mode> Sets the appropriate FRATE field value of the SerDes PLL control register
according to the CPU reference manual.
The available <mode> values are dependent on the CPU.

DEFault This setting uses values compatible with the corresponding Freescale
evaluation boards.
QorIQ Debugger and NEXUS Trace | 104©1989-2024 Lauterbach

NEXUS.SerDesCFG.REFCLK Select frequency of SerDes reference clock

Sets the RFCLK field of the SerDes PLL control register. This value selects the SerDes reference clock
frequency as described in the CPU reference manual.

NEXUS.Spen<messagetype> Enable message suppression

Default: OFF.

NOTE: The value of the NEXUS.SerDesCFG.FRATE (or the corresponding bit field in
the SerDes PLL control register) must be divisible by the NEXUS.PortMode
setting, otherwise the Aurora channel won’t come up because of different lane
frequencies of the transmitter and the receiver. In this case a warning will be
displayed in the message line and the AREA.view window.

Format: NEXUS.SerDesCFG.REFCLK <mode>

<mode>: DEFault | 100MHz | 125MHz | 150MHz | 156.25MHz | 161.13MHz

DEFault This setting uses values compatible with the corresponding Freescale
evaluation boards.

<mode> Sets the appropriate RFCLK field value of the SerDes PLL control register
according to the CPU reference manual.
The available <mode> values are dependent on the CPU.

NOTE: The value of the NEXUS.SerDesCFG.REFCLK (or the corresponding bit field
in the SerDes PLL control register) must be adjusted to your board settings,
otherwise the Aurora channel won’t come up because the PLL won’t lock. In this
case a warning will be displayed in the message line and the AREA.view
window.

Format: NEXUS.SpenDQM [ON | OFF]
NEXUS.SpenWTM [ON | OFF]
NEXUS.SpenPTM [ON | OFF]
NEXUS.SpenDTM [ON | OFF]
NEXUS.SpenOTM [ON | OFF]
QorIQ Debugger and NEXUS Trace | 105©1989-2024 Lauterbach

Configures the core to suppress one or more message types (DQM, WTM, PTM, DTM and OTM) when the
on-chip Nexus message FIFO reaches a certain fill level. Enabling one of these options will in most cases
cause problems in trace analysis, because the trace message stream contains no information about if and
when messages have been suppressed. The fill level at which message suppression occurs can be
configured via the command NEXUS.SupprTHReshold.

NEXUS.STALL Stall the program execution when FIFO level is reached

Default: OFF.

Stall the program execution whenever the configured on-chip Nexus-FIFO (internal buffer) fill level is
reached. If this option is enabled, the Nexus port controller (NPC) will stop the core’s execution pipeline if the
set fill level of the buffer is reached, e.g. fill level 1/2.
In the meantime, the NPC sends the messages of the buffer to the defined trace sink. The NPC will start the
core’s execution pipeline again if the next lower fill level of the buffer is reached, e.g. fill level 1/4.

Enabling this command will affect (delay) the instruction execution timing of the CPU. This system option,
which is a representation of a feature of the processor, will remarkably reduce the amount FIFO
OVERFLOW errors, but can not avoid them completely.

Format: NEXUS.STALL [OFF | 1/4 | 1/2 | 3/4]
QorIQ Debugger and NEXUS Trace | 106©1989-2024 Lauterbach

NEXUS.state Display Nexus port configuration window

Displays the Nexus trace port configuration window.

NEXUS.SupprTHReshold Set fill level for message suppression

Sets the Nexus message FIFO fill level, at which messages will be suppressed by the core. The message
types which will be suppressed are configured via the NEXUS.Suppr<message> command.

Format: NEXUS.state [/<tab>]

<tab>: Cores | DDR | OCeaN

<tab> Opens the NEXUS.state window on the specified tab.

Format: NEXUS.SupprTHReshold [1/4 | 1/2 | 3/4]
QorIQ Debugger and NEXUS Trace | 107©1989-2024 Lauterbach

NEXUS.TimeStamps Append target timestamps to Nexus messages

Default: OFF.

NEXUS.USEPORT Define used PCIe controller for PCIe trace

Default: PCIE1.

Defines the PCIe controller that will be used for PCIe tracing (see Nexus PCIe Trace).

NEXUS.WTM Enable watchpoint messaging
#

Default: OFF.

Format: NEXUS.TimeStamps [ON | OFF]

ON All Nexus messages will be extended with a target counter timestamp.
Use this option to increase the timestamp accuracy.

OFF No timestamp will be appended to the Nexus messages. Use this option
to save bandwidth.

NOTE: If you uses the external Aurora HSTP, all messages will get a timestamp from the
serial preprocessor, independent of this option.

Format: NEXUS.USEPORT [PCIE1 | PCIE2 | PCIE3 | PCIE4]

Format: NEXUS.WTM [ON | OFF]

ON Nexus outputs watchpoint messages.

OFF No watchpoint messages are output by Nexus.

NOTE: When a watchpoint is set via a Break.Set command, the NEXUS.WTM setting will
be internally overridden to ON.
QorIQ Debugger and NEXUS Trace | 108©1989-2024 Lauterbach

OCeaNTrace.List List OCeaN trace contents

Opens a window showing the recorded OCeaN trace data.

For information about how to access other trace listings, see chapter Trace Sources.

Format: OCeaNTrace.List [<items>...]

<items>: [DEFault | OCeaN | OCeaNSYNC | OCeaNMID | ...]

<items> The <items> define the columns to be displayed in the OCeaN trace listing.
You can combine any of the available <items>.

DEFault By default, just the basic information is displayed, which includes the
address, the transmitted data and the message type including the source
port.

OCeaN Displays all details included in the OCeaN trace message.
All other <items> display only a subset of the OCeaN trace message.
QorIQ Debugger and NEXUS Trace | 109©1989-2024 Lauterbach

Onchip specific Commands

Onchip.TBARange Configure on-chip trace base address range

Define the address range for the onchip trace buffer. The address range is always based on physical
addresses and thus is not dependent on the MMU, but on the LAW settings. The user-defined address
range will always be adapted to correct aligned 64byte block size.

Format: Onchip.TBARange <address_range>
Onchip.TBAddress <address_range> (deprecated)

NOTE: Setting a TBARange includes a fast read-write validation of this memory. A
warning will be displayed and the TBARange is reset if this memory access
fails.
The maximum onchip trace size for QorIQ processors is restricted to 512MB
(exact (2^29)-1 byte).
QorIQ Debugger and NEXUS Trace | 110©1989-2024 Lauterbach

Filters and Triggers for the Nexus Trace

This section describes filters and triggers provided by the processor.

The internal watchpoints of the QorIQ processors can be used to control the output of the trace data. The
following actions for the Nexus trace are provided through the Break.Set command:

Examples for exclusive selective tracing. TraceEnable enables tracing exclusively for the selected events.
All other program and data trace messaging is disabled.

Examples for data trace messaging (TraceData):

Actions for the Trace (provided by the CPU)

TraceEnable Configure the trace source to only generate a trace message if the
specified event occurs. Complete program flow or data trace is disabled.
If more than one TraceEnable action is set, all TraceEnable actions will
generate a trace message.

TraceData Use this action to configure data access trace messaging to an address
range or single address.
The QorIQ processors offer just the possibility to trace write accesses. In
order to use the TraceData action it has to be combined with /Write.
Please also note the data trace restrictions in Supported Trace Features.
There is no need to enable NEXUS.BTM to use the data trace.

TraceON
TraceOFF

If the specified event occurs, program and data trace messaging is
started (TraceON) or ends (TraceOFF). In order to perform event based
trace start/end to program trace and data trace separately, use Alpha-
Echo actions.

WATCH Set a watchpoint on the event. The CPU will trigger the EVTO pin if the
event occurs and generate a watchpoint hit message if the trace port is
enabled.

;Only generate a trace message when the instruction
;at address 0x00008230 is executed.
 Break.Set 0x00008230 /Program /TraceEnable

;Only generate a trace message when the core writes to variable flags[3].
 Var.Break.Set flags[3] /Write /TraceEnable

;Enable data trace for write accesses for one specific address
 Break.Set 0x10000000 /Write /TraceData
;Enable data trace for the maximum address range (8kB, consisting of
2x4kB ranges. Possible only if no other onchip DAC resources are used.)
 Break.Set 0x10000000--0x10001FFF /Write /TraceData
;Enable data trace for write accesses to the array flags
 Var.Break.Set flags /Write /TraceData
QorIQ Debugger and NEXUS Trace | 111©1989-2024 Lauterbach

Examples to turn on/off trace recording based on debug/trace events. TraceON/TraceOFF control program
and data trace depending on NEXUS.BTM/DTM setting:

;Enable program/data trace when func2 is entered
;Disable program/data trace when last instruction of func2 is executed.
 Break.Set sYmbol.BEGIN(func2) /Program /TraceON
 Break.Set sYmbol.END(func2)&0xFFFFFFFC /Program /TraceOFF

;Enable program/data trace when variable flags[3] is written
 Var.Break.Set flags[3] /Write /TraceON

;Disable program/data trace data when 16-bit value 0x1122 is
;written to address 0x40000230
 Break.Set 0x40000230 /Write /Data.Word 0x1122

;Enable program/data trace only when a specific task is active
;NOTE: RTOS support must be set up correctly
 &magic=0x40001280 ;set &magic to the task of interest
 Break.Set task.config(magic) /Write /Data &magic /TraceON
 Break.Set task.config(magic) /Write /Data !&magic /TraceOFF
QorIQ Debugger and NEXUS Trace | 112©1989-2024 Lauterbach

JTAG Connector

Mechanical Description

JTAG Connector QorIQ (COP)

This is a standard 16 pin double row (two rows of eight pins) connector (pin-to-pin spacing: 0.100 in.).
(Signals in brackets are not necessary for basic debugging, but it is recommended to take them into
consideration for future designs.)

Signal Pin Pin Signal
TDO 1 2 N/C
TDI 3 4 TRST-

(RUNSTOP-) 5 6 JTAG-VREF
TCK 7 8 (CHKSTPIN-)
TMS 9 10 N/C

(SRESET-) 11 12 GND
PORESET- 13 14 N/C (KEY PIN)

(CKSTOPOUT-) 15 16 GND
QorIQ Debugger and NEXUS Trace | 113©1989-2024 Lauterbach

Aurora HSTP Connectors

Samtec22 (Power.org)

Samtec46 (Power.org)

Signal Pin Pin Signal
TXP0 1 2 JTAG-VREF
TXN0 3 4 TCK
GND 5 6 TMS
TXP1 7 8 TDI
TXN1 9 10 TDO
GND 11 12 TRST-
TXP2 13 14 (VENDOR-IO0)
TXN2 15 16 (VENDOR-IO1)
GND 17 18 (VENDOR-IO2)
TXP3 19 20 (VENDOR-IO3)
TXN3 21 22 PORESET-

Signal Pin Pin Signal
TXP0 1 2 JTAG-VREF
TXN0 3 4 TCK
GND 5 6 TMS
TXP1 7 8 TDI
TXN1 9 10 TDO
GND 11 12 TRST-
TXP2 13 14 (VENDOR-IO0)
TXN2 15 16 (VENDOR-IO1)
GND 17 18 (VENDOR-IO2)
TXP3 19 20 (VENDOR-IO3)
TXN3 21 22 PORESET-
GND 23 24 GND

(TXP4) 25 26 (CLKP)
(TXN4) 27 28 (CLKN)

GND 29 30 GND
(TXP5) 31 32 (VENDOR-IO4)
(TXN5) 33 34 (VENDOR-IO5)

GND 35 36 GND
(TXP6) 37 38 N/C
(TXN6) 39 40 N/C

GND 41 42 GND
(TXP7) 43 44 N/C
(TXN7) 45 46 N/C
QorIQ Debugger and NEXUS Trace | 114©1989-2024 Lauterbach

Samtec70 (Power.org)

Signal Pin Pin Signal
TXP0 1 2 JTAG-VREF
TXN0 3 4 TCK
GND 5 6 TMS
TXP1 7 8 TDI
TXN1 9 10 TDO
GND 11 12 TRST-

(RXP0) 13 14 (VENDOR-IO0)
(RXN0) 15 16 (VENDOR-IO1)

GND 17 18 (VENDOR-IO2)
(RXP1) 19 20 (VENDOR-IO3)
(RXN1) 21 22 PORESET-

GND 23 24 GND
TXP2 25 26 (CLKP)
TXN2 27 28 (CLKN)
GND 29 30 GND
TXP3 31 32 (VENDOR-IO4)
TXN3 33 34 (VENDOR-IO5)
GND 35 36 GND

(RXP2) 37 38 N/C
(RXN2) 39 40 N/C

GND 41 42 GND
(RXP3) 43 44 N/C
(RXN3) 45 46 N/C

GND 47 48 GND
(TXP4) 49 50 N/C
(TXN4) 51 52 N/C

GND 53 54 GND
(TXP5) 55 56 N/C
(TXN5) 57 58 N/C

GND 59 60 GND
(TXP6) 61 62 N/C
(TXN6) 63 64 N/C

GND 65 66 GND
(TXP7) 67 68 N/C
(TXN7) 69 70 N/C
QorIQ Debugger and NEXUS Trace | 115©1989-2024 Lauterbach

	QorIQ Debugger and NEXUS Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Target Design Recommendations
	General

	Quick Start
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Tool Configuration
	TRACE32 Debugger
	TRACE32 Debugger and Trace with Serial Preprocessor
	TRACE32 Debugger and Trace with PowerTrace Serial
	Aurora Traceport
	PCIe Traceport

	PowerPC QorIQ specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoints on Program Addresses
	Breakpoints on Data Addresses
	Breakpoints on Data Access at Program Address
	Breakpoints on Data Value

	Access Classes
	Access Classes to Memory and Memory Mapped Resources
	Access Classes to Other Addressable Core and Peripheral Resources

	Cache
	Memory Coherency
	MESI States and Cache Status Flags
	Viewing Cache Contents

	Debugging Information
	Multicore Debugging
	General Information
	SMP Debugging
	AMP Debugging
	Synchronous Stop of the Cores

	Programming Flash on QorIQ Processors
	Programming the Reset Configuration Word (RCW)

	Trace Information
	Supported Trace Features
	Aurora HSTP Trace
	Nexus PCIe Trace
	On-chip Trace
	Trace initialization
	Trace Sink settings and processes - depending on the system state
	Trace Source settings and trace access - regardless of the system state

	CPU specific SYStem Commands
	SYStem.BdmClock Set debug clock frequency
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector
	SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin
	SYStem.CONFIG.QACK Control QACK pin
	SYStem.CPU Select the CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode

	CPU specific SYStem.Option Commands
	SYStem.Option.Address32 Define address format display
	SYStem.Option.DCFREEZE Data cache state frozen while core halted
	SYStem.Option.DCREAD Read from data cache
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.FREEZE Freeze system timers on debug events
	SYStem.Option.HOOK Compare PC to hook address
	SYStem.Option.HRCWOVerRide Override RCW during SYStem.Up
	SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
	SYStem.Option.ICREAD Read from instruction cache
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.NoDebugStop Disable JTAG stop on debug events
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.RESetBehavior Set behavior when target reset detected
	SYStem.Option.SLOWRESET Relaxed reset timing
	SYStem.Option.STEPSOFT Use alternative method for ASM single step
	SYStem.Option.TranslationSPACE Identify user and hypervisor modes
	SYStem.Option.ZoneSPACES Enable symbol management for zones

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.FORMAT Define MMU table structure
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set an MMU TLB entry

	CPU specific BenchMarkCounter Commands
	BMC.FREEZE Freeze counters while core halted
	BMC.Trace Trace performance monitor events
	BMC.<counter>.FREEZE Freeze counter in certain core states

	CPU specific TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.Set Enable special on-chip breakpoints
	TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource
	TrOnchip.state View on-chip trigger setup window

	Nexus and Trace specific commands
	DDRTrace.List List DDR trace contents
	DQMTrace.List List DQM trace contents
	NEXUS.BTM Enable program trace messaging
	NEXUS.CoreENable Core specific trace configuration
	NEXUS.DDRConfig.ADDRessfilter Filter Nexus DDR messages
	NEXUS.DDRConfig.Controller Configure Nexus DDR message type
	NEXUS.DQM Enable data acquisition messaging
	NEXUS.LaneMapping Logical to physical lane mapping
	NEXUS.LaneMapping.APPLY Apply logical to physical lane mapping
	NEXUS.LaneMapping.SetLane Configure logical to physical lane mapping
	NEXUS.OCeaNport.Mode Configure Nexus OCeaN message type
	NEXUS.OCeaNport<index>.TraceSELect Select Nexus OCeaN trace type
	NEXUS.OFF Switch the Nexus trace port off
	NEXUS.ON Switch the Nexus trace port on
	NEXUS.OTM Enable ownership trace messaging
	NEXUS.PortMode Set Nexus trace port frequency
	NEXUS.PortSize Set trace port width
	NEXUS.POTD Disable periodic ownership trace
	NEXUS.PTCM Enable program trace correlation messages
	NEXUS.PTFGS Program trace mark
	NEXUS.PTFPMM Program trace mark
	NEXUS.PTFPR Program trace mark
	NEXUS.PTMARK Program trace mark
	NEXUS.RefClock Enable Aurora reference clock
	NEXUS.Register Display NEXUS trace control registers
	NEXUS.RESet Reset Nexus trace port settings
	NEXUS.SerDesCFG Enable SerDes PLL control register manipulation
	NEXUS.SerDesCFG.FRATE Select frequency of SerDes PLL VCO
	NEXUS.SerDesCFG.REFCLK Select frequency of SerDes reference clock
	NEXUS.Spen<messagetype> Enable message suppression
	NEXUS.STALL Stall the program execution when FIFO level is reached
	NEXUS.state Display Nexus port configuration window
	NEXUS.SupprTHReshold Set fill level for message suppression
	NEXUS.TimeStamps Append target timestamps to Nexus messages
	NEXUS.USEPORT Define used PCIe controller for PCIe trace
	NEXUS.WTM Enable watchpoint messaging
	OCeaNTrace.List List OCeaN trace contents

	Onchip specific Commands
	Onchip.TBARange Configure on-chip trace base address range

	Filters and Triggers for the Nexus Trace
	JTAG Connector
	Mechanical Description
	JTAG Connector QorIQ (COP)
	Aurora HSTP Connectors
	Samtec22 (Power.org)
	Samtec46 (Power.org)
	Samtec70 (Power.org)

