
MANUAL

MPC5xx/8xx Debugger and Trace

MPC5xx/8xx Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 PQ/MPC500 .. 

 MPC5xx/8xx Debugger and Trace ... 1

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 6

 Warning .. 7

 Quick Start ... 8

 Target Design Requirement/Recommendations .. 10

 General 10

 RESET Configuration 11

 BDM Termination 12

 General Restrictions 13

 Troubleshooting 14

 SYStem.Up Errors 14

 FAQ ... 14

 Configuration ... 15

 Breakpoints .. 17

 Software Breakpoints 17

 On-chip Breakpoints 17

 On-chip Breakpoints on InstructionsROM or FLASH 18

 On-chip Breakpoints on Read or Write Accesses 18

 Example for Breakpoints 18

 Simultaneous FLASH Programming for MPC555 19

 Memory Classes .. 20

 Memory Coherency MPC8xx 20

 Trace Extension ... 21

 MPC555/MPC553 Pin Multiplexing 21

 Troubleshooting MPC500/MPC800 RISC Trace 22
MPC5xx/8xx Debugger and Trace | 2©1989-2024 Lauterbach

 Used Options for RiscTrace 22

 General SYStem Commands .. 23

 SYStem.BdmClock Define the BDM clock speed 23

 SYStem.CONFIG Configure debugger according to target topology 23

 SYStem.CPU Select CPU type 23

 SYStem.MemAccess Select run-time memory access method 24

 SYStem.Mode Establish the communication with the CPU 24

 CPU specific SYStem Commands ... 26

 SYStem.Option.BASE Set base address for on-chip peripherals 26

 SYStem.LOADVOC Load vocabulary for code compression 26

 SYStem.Option.BRKNOMSK Allow program stop in a non-recoverable state 26

 SYStem.Option.CCOMP Enable code compression 27

 SYStem.Option.CLEARBE Clear MSR[BE] on step/go 27

 SYStem.Option.CLOCKX2 Select clock for real-time trace 27

 SYStem.Option.CSxxx CS setting for program flow trace 28

 SYStem.Option.DCFREEZE Freeze contents of cache while debugging 28

 SYStem.Option.DCREAD Use DCACHE for data read 29

 SYStem.Option.DUALPORT Run-time memory access for all windows 29

 SYStem.Option.FAILSAVE Special error handling for debug port 29

 SYStem.Option.FREEZE Stop timer in debug mode 30

 SYStem.Option.FreezePin Use alternative signal on the BDM connector 30

 SYStem.Option.IBUS Configure the show cycles for the I-BUS 30

 SYStem.Option.ICFLUSH Flush branch target cache before program start 31

 SYStem.Option.ICREAD Use ICACHE for program read 32

 SYStem.Option.IMASKASM Disable interrupts while single stepping 32

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 32

 SYStem.Option.LittleEnd Selection of little endian mode 33

 SYStem.Option.MMUSPACES Enable space IDs 33

 SYStem.Option.NODATA The external data bus is not connected to trace 34

 SYStem.Option.NOTRAP Use alternative instruction to enter debug mode 34

 SYStem.Option.OVERLAY Enable overlay support 35

 SYStem.Option.PPCLittleEnd Control for PPC little endian 35

 SYStem.Option.SCRATCH Scratch for FPU access 36

 SYStem.Option.SIUMCR SIUMCR setting for the trace 36

 SYStem.Option.SLOWLOAD Alternative data load algorithm 36

 SYStem.Option.SLOWRESET Activate SLOWRESET 36

 SYStem.Option.STEPSOFT Use alternative method for ASM single step 37

 SYStem.Option.VECTORS Define ranges for not-standard interupt vectors 37

 SYStem.Option.VFLS Use VFLS pins for run/stop detection 37

 SYStem.Option.WATCHDOG Enable software watchdog after SYStem.Up 37

 SYStem.state Display SYStem window 38

 CPU specific MMU commands ... 39
MPC5xx/8xx Debugger and Trace | 3©1989-2024 Lauterbach

 MMU.DUMP Page wise display of MMU translation table 39

 MMU.List Compact display of MMU translation table 41

 MMU.SCAN Load MMU table from CPU 42

 MMU.Set Set an MMU TLB entry 44

 CPU specific TrOnchip Commands ... 45

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 45

 TrOnchip.DISable Disable NEXUS trace register control 45

 TrOnchip.ENable Enable NEXUS trace register control 45

 TrOnchip.G/H Define data selector 46

 TrOnchip.IWx I-Bus watchpoint 46

 TrOnchip.IWx.Count Event counter for I-Bus watchpoint 46

 TrOnchip.IWx.Ibus Instructions address for I-Bus watchpoint 47

 TrOnchip.IWx.Watch Activate I-Bus watchpoint pin 47

 TrOnchip.LWx L-Bus watchpoint 47

 TrOnchip.LW0.Count Event counter for L-Bus watchpoint 47

 TrOnchip.LW0.CYcle Cycle type for L-Bus watchpoint 48

 TrOnchip.LW0.Data Data selector for L-Bus watchpoint 48

 TrOnchip.LW0.Ibus Instructions address for I-Bus watchpoint 48

 TrOnchip.LW0.Lbus Instructions address for L-Bus watchpoint 49

 TrOnchip.LW0.Watch Activate L-Bus watchpoint pin 49

 TrOnchip.RESet Reset on-chip trigger unit 49

 TrOnchip.Set Stop program execution at specified exception 50

 TrOnchip.TEnable Set filter for the trace 51

 TrOnchip.TOFF Switch the sampling to the trace to OFF 51

 TrOnchip.TON Switch the sampling to the trace to ON 51

 TrOnchip.TTrigger Set a trigger for the trace 52

 TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource 52

 TrOnchip.state Display on-chip trigger window 52

 BDM Connector ... 53

 10 pin BDM Connector MPC500/MPC800 53

 Software Trace as a Flow Trace 54

 Background 54

 Software Trace Format 54

 How to use the Software Trace 55
MPC5xx/8xx Debugger and Trace | 4©1989-2024 Lauterbach

MPC5xx/8xx Debugger and Trace

Version 06-Jun-2024
MPC5xx/8xx Debugger and Trace | 5©1989-2024 Lauterbach

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known MPC5xx/8xx based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/powerpc/ subfolder of the system directory of TRACE32.
MPC5xx/8xx Debugger and Trace | 6©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
MPC5xx/8xx Debugger and Trace | 7©1989-2024 Lauterbach

Quick Start

Starting up the BDM Debugger is done by the following steps:

1. Select the device prompt B: for the TRACE32 ICD-Debugger, if the device prompt is not active
after starting the TRACE32 software.

2. Select the CPU type to load the CPU specific settings.

The default CPU is the MPC860.

3. Inform the debugger where’s FLASH/ROM on the target, this is necessary for the use of the on-
chip breakpoints.

On-chip breakpoints are now used, if a program or spot breakpoint is set within the specified address
range. A list of all available on-chip breakpoints for your architecture can be found under On-chip
Breakpoints.

4. Enter debug mode.

This command resets the CPU, enables the debug mode and stops the CPU at the first opfetch (reset
vector). After this command is possible to access memory and registers.

5. Configure the IBUS.

6. Set the special function registers to prepare your target memory for program loading.

B:

SYStem.CPU MPC563

MAP.BOnchip 0x100000++0x0fffff

SYStem.Up

SYStem.Option.IBUS
NONE

; No show cycles are performed.
; Recommended for BDM debugger only.

SYStem.Option.IBUS IND ; Show cycles are generated for all
; indirect changes in the program flow.
; Recommended if a RISC Trace or
; PowerTrace module is connected.

Data.Set SPR:027E %Long 0x800
MPC5xx/8xx Debugger and Trace | 8©1989-2024 Lauterbach

7. Load the program.

The load command depends on the file format generated by your compiler. A full description of the
Data.Load command is given in the “General Commands Reference”.

The start-up sequence can be automated using the script language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed
with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command. Refer to the PEDIT command to write a script and to the DO command to start a script.

Data.LOAD.Elf
diabp555.x

; Load ELF file

B:: ; Select the ICD-Debugger device
; prompt

WinCLEAR ; Delete all windows

MAP.BOnchip 0x100000++0x0fffff ; Specify where’s FLASH/ROM

SYStem.CPU 0x563 ; Select the processor type

SYStem.Up ; Reset the target and enter debug
; mode

Data.LOAD.Elf diabp563.x ; Load the application

Register.Set PC main ; Set the PC to the function main

List.Mix ; Open a source listing *)

Register.view /SpotLight ; Open the register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; Open watch window for variables *)

PER.view ; Open a window for the special
; function registers

Break.Set sieve ; Set breakpoint to function sieve

Break.Set 0x1000 /Program ; Set a software breakpoint to address
; 1000 (address 1000 is in RAM)

Break.Set 0x101000 /Program ; Set an on-chip breakpoint to address
; 101000 (address 101000 is in FLASH)
MPC5xx/8xx Debugger and Trace | 9©1989-2024 Lauterbach

Target Design Requirement/Recommendations

General

• Locate the BDM connector as close as possible to the processor to minimize the capacitive
influence of the line length and cross coupling of noise onto the BDM signals.

Ensure that the debugger signal (HRESET) is connected directly to the HRESET of the processor. This will
provide the ability for the debugger to drive and sense the status of HRESET. The target design should only
drive the HRESET with open collector, open drain. HRESET should not be tied to PORESET, because the
debugger drives the HRESET and DSCK to enable BDM operation.

• The TRACE32 internal buffer/level shifter will be supplied via the VCCS pin. Therefore it is
necessary to reduce the VCCS pull-up on the target board to a value smaller 10 .

• Pull up all inputs by 10 k resistors to VREF, except RSTI/. (Refer to the Freescale
Semiconductor recommendation AN2289/D)

• Connect all pins as recommended in AN2289/D.

• Do not use any cable extender.
MPC5xx/8xx Debugger and Trace | 10©1989-2024 Lauterbach

RESET Configuration

At HRESET the Hard Reset Configuration bits will be sampled. Depending on the RSTCONF pin the
external or the internal configuration word is sampled.

The multifunction I/O pins (VFLS0/1) have to be configured correctly for the debugging. Drive actively the
following pins:

There are two signal schemes possible to indicate the processor status to the debugger. Option A is
recommended but Option B is also supported for the BDM functionality.
Option B is used as an alternative to eliminate pin conflicts. Option B is typically used if:

• the internal watchpoints are used

• the amount of signals must be reduced to a minimum

• the target design uses PCMCIA Port B.

Option A: Using the VFLS pins

MPC800: (DBGC=[11]; DBPC=0; FRC=x)
MPC500: (DBGC=[00,10]; DBPC=0; GPC=x)

RSTCONF Configuration Word

0 DATA[0..31] pins

1 internal data default word (0x0000 0000)

MPC5xx DBGC(D9,D10) and DBPC(D11)

MPC8xx DBGC(D9,D10) and DBPC(D11,D12)

Comment Signal Name PIN PIN Signal Name Comment

IPB0/IWP0/VFLS0 1 2 /SRESET

GND 3 4 DSCK/TCK

GND 5 6 IP_BI/IWP1/VFLS1

HRESET 7 8 DSDI/TDI

VCCS 9 10 DSDO/TDO
MPC5xx/8xx Debugger and Trace | 11©1989-2024 Lauterbach

Option B: Using the FREEZE pin

MPC800: (DBGC=[11]; DBPC=0; FRC=0)
MPC500: (DBGC=[00,10]; DBPC=0; GPC=[10,11])

When the PowerPC’s development port (BDM) is used, the JTAG functionality is disabled.

BDM Termination

Comment Signal Name PIN PIN Signal Name Comment

FRZ/IRQ6 1 2 /SRESET

GND 3 4 DSCK/TCK

GND 5 6 FRZ/IRQ6

HRESET 7 8 DSDI/TDI

VCCS 9 10 DSDO/TDO

If option B is used, the SYStem.Option.FreezePin must be switched on

T32
PU/PD

Target
PU/PD

Signal
Name

PIN PIN Signal
Name

Target
PU/PD

T32
PU/PD

- 47kPU FRZ/VFLS
0

1 2 /SRESET 10kPU -

- - GND 3 4 DSCK 10kPD 4k7PD

- - GND 5 6 FRZ/VFLS
1

47kPU -

10kPU 10kPU HRESET 7 8 DSDI 10kPD 4k7PD

- <10 VCCS 9 10 DSDO >10k -
MPC5xx/8xx Debugger and Trace | 12©1989-2024 Lauterbach

General Restrictions

The CPU handles the debug mode similar to an exception.

SYStem.Option.BRKNOMSK OFF: The program execution is not stopped as long as the processor is in a
non-recoverable state (RI bit cleared in the Machine Status register).

SYStem.Option.BRKNOMSK ON: The program execution can be stopped by a breakpoint even if the
processor is in a non-recoverable state. Since the debug exception overwrites SRR0 and SRR1 it is not
advisable to continue the debugging process.

MPC5xx The CPU handles the debug mode similar to an exception. Therefore
stopping during the non-recoverable state of the CPU will cause the
SRR0/1 registers to be lost. Breakpoints should not be placed at the start
and end of exception handlers to avoid this problem. Asynchronous
breakpoints can be disabled when the CPU is in non-recoverable state
(SYStem.Option.BRKNOMSK command). Executing a GO command is
not allowed when the CPU is in non-recoverable state. Single stepping on
assembler level is allowed.
MPC5xx/8xx Debugger and Trace | 13©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons:

• The target has no power.

• The pull-up resistor between the JTAG/COP[VCCS] pin and the target VCC is too large.

• The target is in reset: The debugger controls the processor reset and use the RESET line to
reset the CPU on every SYStem.Up.

• There is logic added to the JTAG/COP state machine: The debugger supports only one
processor on one JTAG chain. Only the debugged processor has to be between TDI and TDO in
the scan chain. No further devices or processors are allowed.

• There are additional loads or capacities on the JTAG lines.

FAQ

Please refer to https://support.lauterbach.com/kb.

Target power fail The target has no power.

Emulation debug port fail HRESET/ is permanently active
MPC5xx/8xx Debugger and Trace | 14©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Configuration

PODBUS IN

TRIGGER

POWER
7-9 V

U
SB

PODBUS OUT

POWER

SELECT

EMULATE

RECORD

TRIGGER

ETH
ERN

ET

CON ERR

TRANSMIT

RECEIVE

COLLISION

C B A

D
EB

U
G

 C
A

B
LE

POWER TRACE ETHERNET

��������	

POWER TRACE / ETHERNET

SWITCH PC or
Workstation

100 MBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable

Tr
ac

e
C

on
ne

ct
or

Preprocessor
MPC5xx/8xx Debugger and Trace | 15©1989-2024 Lauterbach

POWER DEBUG PRO

��������	

��������	

POWER TRACE II

POWER DEBUG PRO
POWER TRACE II

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable

Tr
ac

e
C

on
ne

ct
or

Preprocessor
MPC5xx/8xx Debugger and Trace | 16©1989-2024 Lauterbach

Breakpoints

There are two types of breakpoints available: software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

Software breakpoints are the default breakpoints on instructions. Software breakpoints can be set to any
instruction address in RAM and after some preparations also to instructions in FLASH. For more
information, refer to the command FLASH.AUTO.

There is no restriction in the number of software breakpoints. Please consider that increasing the number of
software breakpoints will reduce the debug speed.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32:

• CPU family

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used for Program
breakpoints.

• Read/write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

• Data breakpoints: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

CPU Family On-chip
Breakpoints

Instruction
Breakpoints

Read/write
Breakpoints

Data
Breakpoints

MPC500/800 4 Instruction
2 Read/Write

4 2 2
MPC5xx/8xx Debugger and Trace | 17©1989-2024 Lauterbach

On-chip Breakpoints on InstructionsROM or FLASH

If a breakpoint is set to an instruction, a software breakpoint is used by default. If your code is in FLASH,
ROM etc. you can advise TRACE32 to automatically use on-chip breakpoint for specific address ranges by
using the command MAP.BOnchip <range>.

On-chip Breakpoints on Read or Write Accesses

On-chip breakpoints are always used, if a Read or Write breakpoint is set. For the MPC5xx/8xx it is also
possible to define a specific data value. Refer to the Break.Set command for more information.

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The
command to configure TRACE32 correctly for this configuration is:

The following breakpoint combinations are possible.

Software breakpoints:

On-chip breakpoints:

Map.BOnchip 0x0--0x0FFFFF

Break.Set 0x100000 /Program ; Software Breakpoint 1

Break.Set 0x101000 /Program ; Software Breakpoint 2

Break.Set 0xx /Program ; Software Breakpoint 3

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2

Break.Set flags /Write ; On-chip Breakpoint 3

Var.Break.Set \flags[3] /Write /DATA.Byte 0x1 ; On-chip Breakpoint 4
MPC5xx/8xx Debugger and Trace | 18©1989-2024 Lauterbach

Simultaneous FLASH Programming for MPC555

Simultaneous programming of the internal FLASH is supported for the masks K1, K2, K3 and M of the
MPC555.

The MPC555 supports simultaneous programming of all 14 flash modules.

• 8 64-byte pages in the 8 blocks of FLASH module A

• 6 64-byte pages in the 6 blocks of FLASH module B

Using simultaneous FLASH programming is up to 7 times faster!

Programming Procedure

1. Load the application program into the virtual memory of TRACE32-ICD.

For the simultaneous FLASH programming the code can not directly be loaded from the host. The
code has to be loaded into the virtual memory (VM) of TRACE32-ICD first.

TRACE32-PowerView can recognize empty 64-byte pages and skip them while programming. For
this reason the virtual memory should be initialized with 0xff.

2. Start the simultaneous programming.

If your application program also contains code for the external FLASH, this code has to be loaded
separately.

; initialize the virtual memory of TRACE32-ICD with 0xff
Data.Set VM:<start_address_internal_flash>++0x6ffff %Long
0xffffffff

; load the code for the internal FLASH into the virtual memory
Data.LOAD.Elf <file> <start_address_internal_flash>++0x6ffff /VM

FLASH.MultiProgram <start_address_internal_flash>++0x6ffff
MPC5xx/8xx Debugger and Trace | 19©1989-2024 Lauterbach

Memory Classes

The following memory classes are available:

If the cache is disabled, memory accesses to the memory classes IC or DC are realized by TRACE32-ICD
as reads and writes to physical memory.

Memory Coherency MPC8xx

Memory coherency on access to the following memory classes. If data will be set to DC, IC, NC, D or P the
D-Cache, I-Cache or physical memory will be updated.

See also SYStem.Option.ICREAD and SYStem.Option.DCREAD.

Memory Class Description

P Program

D Data

SPR Special Purpose Register

IC Instruction Cache (MPC8xx only)

DC Data Cache (MPC8xx only)

NC No Cache (only physically memory)

CP Compressed Program

D-Cache I-Cache Physical Memory

DC: Yes No Yes

IC: No Yes Yes

NC: No No Yes

D: Yes Yes Yes

P: Yes Yes Yes
MPC5xx/8xx Debugger and Trace | 20©1989-2024 Lauterbach

Trace Extension

MPC555/MPC553 Pin Multiplexing

CLKOUT Always required.

A8..A29 Are always required.

D0..D11 Are required for tracing in compressed mode.

WR Is required.

STS Is not present when SIUMCR.DBGC== 00. In this case it is assumed that
the program trace show cycle for indirect change of flow is appearing
directly at the same clock where the indirect change of flow is shown.
This should be always the case when running only with internal
memories and having only indirect program show cycles active (no data
cycles or data show cycles).

PTR Is not present when SIUMCR.GPC !=00. In this case ALL program cycles
are assumed to be program trace cycles. This is always the case when
the program is running from internal memory and only indirect show
cycles are enabled. When external program memory is used the trace
may not be able to take the correct cycle as target for the indirect branch.

AT(2) Is taken from the WE2/AT2 line when SIUMCR.ATWC==1 (AT0-3 lines
enabled) or taken from the dedicated AT(2) line when
SIUMCR.ATWC==0 (WE0-3 lines enabled) and SIUMCR.MLRC ==x1
(AT(2) function enabled). When non of the two variants is possible the
debugger will assume that ALL cycles are program cycles (no data
cycles). The program flow trace will not be affected by this, as long as the
PTR line is available. When the AT(2) and PTR lines are both not
available the trace will only work when the code is running from internal
memory and only “indirect change of flow” show cycles are enabled.

VF0,VF1 Is taken from SIU when SIUMCR.DBGC==10, otherwise from the MIOS
pins. MIOS must be configured when MIOS pins are used. If none of the
pins are available then the program flow trace will not work. Direct cycle
tracing in fully serialized mode with show cycles for all cycles will still
work.

VFLS0,VFLS1 Is taken from SIU when SIUMCR.DBGC==x0, otherwise from the MIOS
pins. MIOS must be configured when MIOS pins are used.

LWPx, IWPx Optional lines. Only used when selective tracing features should be used.
MPC5xx/8xx Debugger and Trace | 21©1989-2024 Lauterbach

Troubleshooting MPC500/MPC800 RISC Trace

Target is not running with trace attached

Some trace adapters use drivers with “Bus Hold” feature. This resistor (about 20 k) can pull the lines
connected to the trace to VCC or Ground. If the target is using high impedance resistors to select a specific
level for the reset configuration it may not work. In this case make either the resistors on the target smaller or
disable the external reset configuration. Pulling down the TS line may also cause such effects. Use a pull-up
resistor (about 10 k) in this case.

Nothing recorded (number of records in Analyzer.state window remains 0)

Check that CLKOUT is available on the trace probe. Check that VFLS0 and VFLS1 are correctly configured.

No cycle information displayed in Analyzer.List

Check the TS and STS signals.

Cycle type information in Analyzer.List is wrong

Check the RW and AT lines (CT lines for MPC50x).

Address information is wrong for DRAM accesses

Define DRAM areas with MAP.DMUX command.

Flowtrace (Analyzer.List /FT) gives no useful results

Make sure that indirect branch program trace cycles are enabled (SYStem.Option.ICTL IND). Check that
PTR signal is correctly recorded in trace. Check for presence of VF0, VF1 and VF2 signals. Make sure that
program has executed an indirect branch while sampling data for the trace.

Used Options for RiscTrace

• SYStem.Option.NODATA ON /OFF

• SYStem.Option.SIUMCR ON /OFF

• SIUMCR Register [DBGC,GPC] (Peripheral Window)
MPC5xx/8xx Debugger and Trace | 22©1989-2024 Lauterbach

General SYStem Commands

SYStem.BdmClock Define the BDM clock speed

Selects the frequency for the debug interface. A fixed frequency or a divided external clock can be used.

SYStem.CONFIG Configure debugger according to target topology

The SYSTem.CONFIG command group is not supported for the MPC5xx/8xx.

SYStem.CPU Select CPU type

Selects the processor type.

Format: SYStem.BdmClock <rate>

<rate>: EXT/4 | EXT/8 | EXT/16 | <fixed>

<fixed>: 1MHz … 20MHz

Format: SYStem.CPU <cpu>
MPC5xx/8xx Debugger and Trace | 23©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method
.

SYStem.Mode Establish the communication with the CPU

Selects the target reset mode.

Format: SYStem.MemAccess | Denied | StopAndGo

Denied No run-time memory access is possible for the MPC5xx/8xx family.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each
stop takes some time depending on the speed of the JTAG port, the
number of the assigned cores, and the operations that should be
performed.

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
StandBy
Up
Go
NoDebug

Down Disables the debugger.

StandBy This mode is used to start debugging from power-on. The debugger will
wait until power-on is detected, then bring the CPU into debug mode, set
all debug and trace registers and start the CPU. In order to halt the CPU
at the first instruction, place an on-chip breakpoint to the reset address
(Break.Set 0x100 /Onchip)

Up Resets the CPU, enables the debug mode and stops the CPU at the first
opfetch (reset vector). All register are set to the default value.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.
MPC5xx/8xx Debugger and Trace | 24©1989-2024 Lauterbach

NoDebug Resets the target with debug mode disabled. In this mode no debugging
is possible. The CPU state keeps in the state of NoDebug.

Attach Not supported.
MPC5xx/8xx Debugger and Trace | 25©1989-2024 Lauterbach

CPU specific SYStem Commands

SYStem.Option.BASE Set base address for on-chip peripherals

Sets base address for on-chip peripherals. MPC800 only.

SYStem.LOADVOC Load vocabulary for code compression

Loads the vocabulary for code compression. This is usually not required, since the vocabulary is already in
the ELF file.

SYStem.Option.BRKNOMSK Allow program stop in a non-recoverable state

The CPU handles debug events similar to exceptions. When a debug event (normally a break) OR an
exception occurs, the CPU copies the MSR (Machine Status Register) into SRR1 (Machine Status
Save/Restore Register 1) and the IP (Instruction Pointer) into SRR0 (Machine Status Save/Restore Register
1). This means that after an exception occurred, the old values of IP and MSR are as backup in the SRR0
and SRR1 registers. If now a break happens, these values will be overwritten by the new MSR and IP
values. So, it is possible to return to the exception routine and stop the processor, but it’s not possible to
return to the main program and continue the user application! The status after the start of the exception
routine is called non recoverable state.

If one wants to break in a non recoverable state, you must switch the option BrkNoMsk to on.

Format: SYStem.Option.Base [AUTO | <value>]

Format: SYStem.LOADVOC <file>

Format: SYStem.Option.BRKNOMSK [ON | OFF]

ON The program execution can be stopped by a breakpoint even if the
processor is in a non-recoverable state. Since the debug exception
overwrites SRR0 and SRR1 it is not advisable to continue the debugging
process.

OFF The program execution is not stopped as long as the processor is in a
non-recoverable state (RI bit cleared in the Machine Status register).
MPC5xx/8xx Debugger and Trace | 26©1989-2024 Lauterbach

SYStem.Option.CCOMP Enable code compression

If the code compression unit of the MPC5xx is used, this option must be switched on before the program is
loaded. Then correct disassembly is possible.

SYStem.Option.CLEARBE Clear MSR[BE] on step/go

If the option CLEARBE is switched on, the BE bit of the MSR register will be cleared before every Go or
Step.

SYStem.Option.CLOCKX2 Select clock for real-time trace

This option selects the clock for the Real-Time Trace. Option available for the TRACE32-ICD Risc Trace
Module.

Format: SYStem.Option.CCOMP [ON | OFF]

Format: SYStem.Option.CLEARBE [ON | OFF]

Format: SYStem.Option.CLOCKX2 [ON | OFF]
MPC5xx/8xx Debugger and Trace | 27©1989-2024 Lauterbach

SYStem.Option.CSxxx CS setting for program flow trace
Available on: MPC505, MPC509

For the flow trace functionality, it is necessary for the software to know the settings of the CS unit. The values
of these options must be the same values as the register values of the chip.

SYStem.Option.DCFREEZE Freeze contents of cache while debugging

If this feature is enabled the status of the data caches is preserved while debugging. This feature should be
used in combination with SYStem.Option.DCREAD in order to read data as seen by the core. Otherwise all
memory accesses are as for access class NC.
If disabled, the debugger might modify the caches contents with each data access e.g. a Data.dump
window.

Format:
(MPC505,
MPC509)

SYStem.Option.CBTOR [<value>]
SYStem.Option.CSBTBAR [<value>]
SYStem.Option.CSBTSBBAR [<value>]
SYStem.Option.CS0OR [<value>]
SYStem.Option.CS1OR [<value>]
SYStem.Option.CS2OR [<value>]
SYStem.Option.CS3OR [<value>]
SYStem.Option.CS4OR [<value>]
SYStem.Option.CS5OR [<value>]
SYStem.Option.CS6OR [<value>]
SYStem.Option.CS7OR [<value>]
SYStem.Option.CS8OR [<value>]
SYStem.Option.CS9OR [<value>]
SYStem.Option.CS10OR [<value>]
SYStem.Option.CS11OR [<value>]
SYStem.Option.CS1BAR [<value>]
SYStem.Option.CS2BAR [<value>]
SYStem.Option.CS3BAR [<value>]
SYStem.Option.CS4BAR [<value>]
SYStem.Option.CS5BAR [<value>]

Format:
(MPC850)

SYStem.Option.CS0BR [<value>]
SYStem.Option.CS1BR [<value>]
SYStem.Option.CS2BR [<value>]
SYStem.Option.CS3BR [<value>]
SYStem.Option.CS4BR [<value>]
SYStem.Option.CS5BR [<value>]
SYStem.Option.CS6BR [<value>]
SYStem.Option.CS7BR [<value>]

Format: SYStem.Option.DCFREEZE [ON | OFF]
MPC5xx/8xx Debugger and Trace | 28©1989-2024 Lauterbach

For caches that use hardware coherency (e.g. MESI protocol), the DCFREEZE feature is not supported.
This respects multicore architectures that use non-shared caches.

SYStem.Option.DCREAD Use DCACHE for data read

Default: ON.

SYStem.Option.DUALPORT Run-time memory access for all windows

If SYStem.MemAccess NEXUS is ON and SYStem.Option.DUALPORT is ON, run-time memory access
is automatically activated for each displayed memory location and variable.

SYStem.Option.FAILSAVE Special error handling for debug port

The debug interface of the MPC8xx and MPC5xx returns the fatal error emulation debug port fail, when
reading incorrect communication data from the debug port. With this option, it is possible to suppress this
debug port fail, and recover the communication. This helps debugging in noisy environment.

Format: SYStem.Option.DCREAD [ON | OFF]

ON If data memory is displayed (memory class D:) the memory contents
from the D-cache is displayed if the D-cache is valid. If D-cache is not
valid the physical memory will be read. Typical command to display data
memory are: Data.dump, Var.Watch, Var.View.

OFF If data memory is displayed (memory class D:) the memory contents
from the physical memory is displayed.

Format: SYStem.Option.DUALPORT [ON | OFF]

Format: SYStem.Option.FAILSAVE [ON | OFF]
MPC5xx/8xx Debugger and Trace | 29©1989-2024 Lauterbach

SYStem.Option.FREEZE Stop timer in debug mode

Controls the internal CPU timer. If FREEZE is enabled, the timer will be stopped whenever the CPU enters
the debug mode.

SYStem.Option.FreezePin Use alternative signal on the BDM connector
Available on: MPC8xx

As default, this option is off and the debugger set all necessary setting for the SIMCR register for the most
frequently used option A. (VFLS0/1 pins are connected to BDM connector pin 1 and 6). The
SYStem.Option.FreezePin can prevent the debugger for resetting/overwriting the SIMCR register to the
default settings.

If option B is used (FREEZE pin is connected to the BDM connector) this SYStem.Option.FreezePin must
be switched on.

NOTE: For the MPC5xx family all necessary configuration for the correct BDM pin setting have to be done in
the RSTCONF word.

SYStem.Option.IBUS Configure the show cycles for the I-BUS

With this option, you can set the instruction fetch show cycle and serialize control bits of the IBUS support
control register.

Format: SYStem.Option.FREEZE [ON | OFF]

Format: SYStem.Option.FreezePin [ON | OFF]

Format: SYStem.Option.IBUS [<value>]

SERALL All fetch cycles are visible on the external bus. In this mode the processor
is fetch serialized. Therefore the processor performance is much lower
then working in regular mode.

SERCHG All cycles that follow a change in the program flow are visible on the
external bus. In this mode the processor is fetch serialized. Therefore the
processor performance is much lower then working in regular mode.
MPC5xx/8xx Debugger and Trace | 30©1989-2024 Lauterbach

SYStem.Option.ICFLUSH Flush branch target cache before program start
t

Invalidates the instruction cache and flush the data cache before starting the target program (Step or Go).
This is required when the CACHEs are enabled and software breakpoints are set to a cached location.

MPC5xx: Flushes the Instruction Prefetch Queue before starting the program execution by Step or Go

SERIND All cycles that follow an indirect change in the program flow are visible on
the external bus. In this mode the processor is fetch serialized. Therefore
the processor performance is much lower then working in regular mode.

SERNONE In this mode the processor is fetch serialized. Therefore the processor
performance is much lower then working in regular mode. No information
about the program flow is visible on the external bus.

CHG All cycles that follow a change in the program flow are visible on the
external bus. The performance degradation is small here.

IND All cycles that follow an indirect change in the program flow are visible on
the external bus. The performance degradation is small here.
This setting is recommended if a preprocessor for MPC500/800 is used.

NONE No show cycles are performed. (Recommended when only a BDM
debugger is used.)

RESERVED Should not be used.

Format: SYStem.Option.ICFLUSH [ON | OFF]
MPC5xx/8xx Debugger and Trace | 31©1989-2024 Lauterbach

SYStem.Option.ICREAD Use ICACHE for program read

Default: OFF.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

Format: SYStem.Option.ICREAD [ON | OFF]

ON If program memory is displayed (memory class P:) the memory contents
from the I-cache is shown if the I-cache is valid. If I-cache is not valid the
physical memory will be read. Typical command for program memory
display are: Data.List, Data.dump.

OFF If program memory is displayed (memory class P:) the memory contents
from the physical memory is displayed.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
MPC5xx/8xx Debugger and Trace | 32©1989-2024 Lauterbach

SYStem.Option.LittleEnd Selection of little endian mode

With this option data is displayed little endian style.

Normally, the PowerPC debugger displays data big endian style.

SYStem.Option.MMUSPACES Enable space IDs

Default: OFF.

Enables the usage of the MMU to support multiple address spaces. The command should not be used if
only one translation table is used. Enabling the option will extend the address scheme of the debugger by a
16-bit memory space identifier (space ID).

This option is needed for operating systems that run several applications at the same virtual address space
(e.g. Linux). The debugger uses this 16-bit memory space identifier to assign debug symbols to the memory
space of the according process.

If a debug session requires space IDs, then you must enable the option before loading the debug symbols.

Format: SYStem.Option.LittleEnd [ON | OFF]

Format: SYStem.Option.MMUSPACES [ON | OFF]
MPC5xx/8xx Debugger and Trace | 33©1989-2024 Lauterbach

SYStem.Option.NODATA The external data bus is not connected to trace

SYStem.Option.NOTRAP Use alternative instruction to enter debug mode

Default: OFF. By setting a software breakpoint the original code at the break location is patched by TRAP. If
the TRAP command is already used by the application software for another purpose, an illegal instruction is
patched instead of TRAP if the SYStem.Option.NOTRAP is ON.

Format: SYStem.Option.NODATA [ON | OFF]

ON No external data bus is connected to the trace connector.

OFF (default) The external data bus is connected to the trace connector.

Format: SYStem.Option.NOTRAP [ON | OFF]

ON With this setting the TRAP exception is no longer used for software
breakpoints. UNDEF 0 is used instead.
Use the command TrOnchip.Set PRIE OFF. With this setting the debug
mode is no longer entered when a TRAP occurs. See also the Debug
Enable Register in you processor manual.
Now your application can handle the TRAP instruction.

OFF The TRAP exception is used for software breakpoints.
MPC5xx/8xx Debugger and Trace | 34©1989-2024 Lauterbach

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

SYStem.Option.PPCLittleEnd Control for PPC little endian

Normally, the PowerPC debugger displays data big endian style.

With this option data is displayed in PPC little endian style.

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_id>:<address>

Format: SYStem.Option.LittleEnd [ON | OFF]
MPC5xx/8xx Debugger and Trace | 35©1989-2024 Lauterbach

SYStem.Option.SCRATCH Scratch for FPU access
Available on: MPC5xx

Reading the FPU registers of the MPC5xx requires two memory words in target memory. This option defines
which location is used. The content of the memory location will be restored after use. If AUTO is used, two
memory words of the on-chip RAM are used for reading the FPU registers.

SYStem.Option.SIUMCR SIUMCR setting for the trace

In order to trace the program and data flow, it is necessary for the TRACE32 software to know the settings of
some peripheral pins. The value of this option must be the same value as the SIUMCR register of the chip.

SYStem.Option.SLOWLOAD Alternative data load algorithm

The debug interface of the MPC8xx and MPC5xx has a special mode for fast download of 32 bit data. For
some older versions of the chips, it might be necessary to switch to a slower download mode to get proper
results.

SYStem.Option.SLOWRESET Activate SLOWRESET

After the debugger resets the CPU (e.g. via SYStem.Up), the debugger senses HRESET for 2 … 3 s before
an error message is displayed.

Format: SYStem.Option.SCRATCH <address> | AUTO

Format: SYStem.Option.SIUMCR [<value>]

Format: SYStem.Option.SLOWLOAD [ON | OFF]

Format: SYStem.Option.SLOWRESET [ON | OFF]
MPC5xx/8xx Debugger and Trace | 36©1989-2024 Lauterbach

SYStem.Option.STEPSOFT Use alternative method for ASM single step

This method uses software breakpoints to perform an assembler single step instead of the processor’s built-
in single step feature. Works only for software in RAM. Do not turn ON unless advised by Lauterbach.

SYStem.Option.VECTORS Define ranges for not-standard interupt vectors

Defines the address ranges for not-standard interrupt vectors for the disassembler. This is necessary if the
interrupt vector table is relocated or if the enhanced interrupt control is used.

SYStem.Option.VFLS Use VFLS pins for run/stop detection

Uses VFLS pins for run/stop detection. Improves run-time measurement precision. See RunTime window.

SYStem.Option.WATCHDOG Enable software watchdog after SYStem.Up

If this option is switched off, the watchdog timer of the CPU is disabled after the SYStem.Up.

Otherwise the watchdog will be periodically reset by the debugger. Software Watchdog Timer (SWT) —
The SWT asserts a reset or non-maskable interrupt (as selected by the system protection control register) if
the software fails to service the SWT for a designated period of time (e.g, because the software is trapped in

Format: SYStem.Option.STEPSOFT [ON | OFF]

Format: SYStem.Option.VECTORS <range> [<range> | <range> …]

Format: SYStem.Option.VFLS [ON | OFF]

Format: SYStem.Option.WATCHDOG [ON | OFF]
MPC5xx/8xx Debugger and Trace | 37©1989-2024 Lauterbach

a loop or lost). After a system reset, this function is enabled with a maximum time-out period and asserts a
system reset if the time-out is reached. The SWT can be disabled or its time-out period can be changed in
the SYPCR. Once the SYPCR is written, it cannot be written again until a system reset.

SYStem.state Display SYStem window

Displays the SYStem.state window.

Software Watchdog Timer (SWT) — The SWT asserts a reset or non-
maskable interrupt (as selected by the system protection control register)
if the software fails to service the SWT for a designated period of time
(e.g, because the software is trapped in a loop or lost). After a system
reset, this function is enabled with a maximum time-out period and
asserts a system reset if the time-out is reached. The SWT can be
disabled or its time-out period can be changed in the SYPCR. Once the
SYPCR is written, it cannot be written again until a system reset.

Format: SYStem.state
MPC5xx/8xx Debugger and Trace | 38©1989-2024 Lauterbach

CPU specific MMU commands

This command is not necessary for the NEXUS debugger. It is only available to keep PRACTICE scripts
compatible for both the BDM and the NEXUS debugger.By setting a software breakpoint the original code at
the break location is patched by TRAP. If the TRAP command is already used by the application software for
another purpose, an illegal instruction is patched instead of TRAP if the SYStem.Option.NOTRAP is ON.

MMU.DUMP Page wise display of MMU translation table
Only available for MPC800 family.

Displays the contents of the CPU-specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation

table of the specified process
• else, this command displays the table the CPU currently uses for

MMU translation.
MPC5xx/8xx Debugger and Trace | 39©1989-2024 Lauterbach

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
MPC5xx/8xx Debugger and Trace | 40©1989-2024 Lauterbach

CPU specific tables in MMU.DUMP <table>

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.
In contrast to MMU.DUMP, multiple consecutive page table entries with identical page attributes are listed as
a single line, showing the total mapped address range.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
 [/<option>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.
MPC5xx/8xx Debugger and Trace | 41©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU
Only available for MPC800 family.

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, then page table
entries will only be loaded if their logical address matches with the given parameter.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: list

the translation table of the specified process and/or machine
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

<option> For description of the options, see MMU.DUMP.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>
MPC5xx/8xx Debugger and Trace | 42©1989-2024 Lauterbach

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

CPU specific Tables in MMU.SCAN <table>

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation

table of the specified process
• else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

ITLB Loads the instruction translation table from the CPU to the debugger-internal
translation table.

DTLB Loads the data translation table from the CPU to the debugger-internal
translation table.
MPC5xx/8xx Debugger and Trace | 43©1989-2024 Lauterbach

MMU.Set Set an MMU TLB entry

Sets the specified MMU TLB table entry in the CPU. The parameter <tlb> is not available for CPUs with only
one TLB table.

Formats: MMU.Set TLB1 <index> <mas1> <mas2> <mas3>
MMU.Set TLB2 <index> <mas0> <mas1> <mas2>
MMU.<table>.SET (deprecated)

<index> TLB entry index. From 0 to (number of TLB entries)-1 of the specified
TLB table

<mas0>
<mas1>
<mas2>
<mas3>

Values corresponding to the values that would be written to the MAS
registers in order to set a TLB (or MPU) entry. See the processor’s
reference manual for details on MAS registers.
For processors with a core MPU (MPC57XX/SPC57X series), use TLB2
to generate an MPU entry).
MPC5xx/8xx Debugger and Trace | 44©1989-2024 Lauterbach

CPU specific TrOnchip Commands

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

For on-chip-breakpoints see the corresponding chapter.

TrOnchip.DISable Disable NEXUS trace register control

Disables NEXUS register control by the debugger. By executing this command, the debugger will not write or
modify any registers of the NEXUS block. This option can be used to manually set up the NEXUS trace
registers. The NEXUS memory access is not affected by this command. To re-enable NEXUS register
control, use command TrOnchip.ENable. Per default, NEXUS register control is enabled.

TrOnchip.ENable Enable NEXUS trace register control

Enables NEXUS register control by the debugger. By default, NEXUS register control is enabled. This
command is only needed after disabling NEXUS register control using TrOnchip.DISable.

Format: TrOnchip.CONVert [ON | OFF]

ON (default) If all resources for the on-chip breakpoints are already used and if the
user wants to set an additional on-chip breakpoint, TRACE32 converts
an on-chip breakpoint set to a short address range (max. 4 bytes) to a
single address breakpoint to free additional resources.

OFF If all resources for the on-chip breakpoints are already used and if the
user wants to set an additional on-chip breakpoint, an error message is
displayed.

Format: TrOnchip.DISable

Format: TrOnchip.ENable
MPC5xx/8xx Debugger and Trace | 45©1989-2024 Lauterbach

TrOnchip.G/H Define data selector

Defines the two data selectors of the MPC500/800 family.

TrOnchip.IWx I-Bus watchpoint

TrOnchip.IWx.Count Event counter for I-Bus watchpoint

The occurrence of the specified I-Bus event can be counted.

Format: TrOnchip.G.Value <hexmask> | <float>
TrOnchip.H.Value <hexmask> | <float>
TrOnchip.G.Size [Byte | Word | Long]
TrOnchip.H.Size [Byte | Word | Long]
TrOnchip.G.Match [OFF | EQ | NE | GT | LT | GE | LE]
TrOnchip.H.Match [OFF | EQ | NE | GT | LT | GE | LE]

OFF Off

EQ Equal

NE Not equal

LE Lower equal

GE Greater equal

LT Lower then

GT Greater then

ULE Unsigned lower equal

UGE Unsigned greater equal

ULT Unsigned lower then

UGT Unsigned greater then

Format: TrOnchip.IW0.Count <count>
TrOnchip.IW1.Count <count>
MPC5xx/8xx Debugger and Trace | 46©1989-2024 Lauterbach

TrOnchip.IWx.Ibus Instructions address for I-Bus watchpoint

Defines the instruction for the I-Bus watchpoint.

TrOnchip.IWx.Watch Activate I-Bus watchpoint pin

TrOnchip.LWx L-Bus watchpoint

TrOnchip.LW0.Count Event counter for L-Bus watchpoint

The occurrence of the specified L-Bus event can be counted.

Format: TrOnchip.IW0.Ibus <selector>
TrOnchip.IW1.Ibus <selector>

<selector>: OFF
Alpha
Beta
Charly
Delta
Echo

Format: TrOnchip.IW0.Watch [ON | OFF]
TrOnchip.IW1.Watch [ON | OFF]

ON A pulse is generated on IWP0/IWP1/IWP2/IWP3 if the I-Bus watchpoint is
hit. The processor pins IWP0/IWP1/IWP2/IWP3 serve multiple functions.
Please check your target hardware to find out which pin can be used for the
trigger pulse. The smallest pulse length is one clock cycle.

OFF The program execution is stop on a hit of the L-Bus watchpoint.

Format: TrOnchip.LW0.Count <count>
TrOnchip.LW1.Count <count>
MPC5xx/8xx Debugger and Trace | 47©1989-2024 Lauterbach

TrOnchip.LW0.CYcle Cycle type for L-Bus watchpoint

Defines the cycle type for the L-Bus watchpoint.

TrOnchip.LW0.Data Data selector for L-Bus watchpoint

Defines the data selector for the L-Bus watchpoint.

TrOnchip.LW0.Ibus Instructions address for I-Bus watchpoint

Defines on which data address for the I-Bus watchpoint.

Format: TrOnchip.LW0.CYcle <cycle>
TrOnchip.LW1.CYcle <cycle>

<cycle>: Read
Write
Access

Format: TrOnchip.LW0.Data <selector>
TrOnchip.LW1.Data <selector>

<selector>: OFF
G
H
GANDH
GORH

Format: TrOnchip.LW0.Ibus <selector>
TrOnchip.LW1.Ibus <selector>

<selector>: OFF
Alpha
Beta
Charly
Delta
Echo
MPC5xx/8xx Debugger and Trace | 48©1989-2024 Lauterbach

TrOnchip.LW0.Lbus Instructions address for L-Bus watchpoint

Defines on which data address for the L-Bus watchpoint.

TrOnchip.LW0.Watch Activate L-Bus watchpoint pin

TrOnchip.RESet Reset on-chip trigger unit

Resets the on-chip trigger unit.

Format: TrOnchip.LW0.Lbus <selector>
TrOnchip.LW1.Lbus <selector>

<selector>: OFF
Alpha
Beta
Charly
Delta
Echo

Format: TrOnchip.LW0.Watch [ON | OFF]
TrOnchip.LW1.Watch [ON | OFF]

ON A pulse is generated on LWP0/LWP1 if the L-Bus watchpoint is hit. The
processor pins LWP0/LWP1 serve multiple functions. Please check your
target hardware to find out which pin can be used for the trigger pulse.
The smallest pulse length is one clock cycle.

OFF The program execution is stop on a hit of the L-Bus watchpoint.

Format: TrOnchip.RESet
MPC5xx/8xx Debugger and Trace | 49©1989-2024 Lauterbach

TrOnchip.Set Stop program execution at specified exception

The program execution is stopped at the specified exception. For details and availability of a debug event on
a specific processor, plesae refer to “Debug Enable Register (DER)” in the processor reference manual.

Format: TrOnchip.Set <item> [ON | OFF]

<item>: CHSTPE … SEIE

ALIE Alignment Interrupt Enable.

CHSTPE Checkstop Enable.

DECIE Decrementer Interrupt Enable.

DPIE Development Port Interrupt Enable.

DSEE Data Storage Exception Enable.

DTLBERE DTLB Error Interrupt Enable.

DTLBMSE DTLB Miss Interrupt Enable.

EBRKE External Breakpoint Interrupt Enable.

EXTIE External Interrupt Enable.

FPASEE Floating-point Assist Exception Enable.

FPUVIE Floating-point Unavailable Interrupt Enable.

IBRKE Instruction Breakpoint Interrupt Enable.

ISEE Instruction Storage Exception Enable.

ITLBERE ITLB Error Interrupt Enable.

ITLBMSE ITLB Miss Interrupt Enable.

LBRKE Load/store Breakpoint Enable.

MCEE Machine Check Exception Enable.

PRIE Program Interrupt Enable.

TRE Trace Exception Enable.
MPC5xx/8xx Debugger and Trace | 50©1989-2024 Lauterbach

If program execution is stopped by an exception, the name of the exception is shown in the command line of
TRACE32. Refer to the description of the Exception Cause Register in your processor manual for details.

TrOnchip.TEnable Set filter for the trace

Refer to the Break.Set command to set trace filters.

TrOnchip.TOFF Switch the sampling to the trace to OFF

Refer to the Break.Set command to set trace filters.

TrOnchip.TON Switch the sampling to the trace to ON

Refer to the Break.Set command to set trace filters.

RSTE Reset Interrupt Enable.

SEIE Software Emulation Interrupt Enable.

SYSIE System Interrupt Enable.

Format: TrOnchip.TEnable <par> (deprecated)

Format: TrOnchip.TOFF (deprecated)

Format: TrOnchip.TON EXT | Break (deprecated)
MPC5xx/8xx Debugger and Trace | 51©1989-2024 Lauterbach

TrOnchip.TTrigger Set a trigger for the trace

Refer to the Break.Set command to set a trigger for the trace.

TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource

Command is of no relevance for the MPC5xx/8xx family.

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

Format: TrOnchip.TTrigger <par> (deprecated)

Format: TrOnchip.VarCONVert [ON | OFF]

Format: TrOnchip.state

Only available if Preprocessor for MPC500/800 is used
MPC5xx/8xx Debugger and Trace | 52©1989-2024 Lauterbach

BDM Connector

10 pin BDM Connector MPC500/MPC800

The two signal names on pin 1. 2 and 6 have the same physical meaning. Only the use of the names differs
between MPC500 and MPC800.

Signal Pin Pin Signal
VFLS0\FREEZE 1 2 SRESET-\RESETIN-

GND 3 4 DSCK
GND 5 6 VFLS1\FREEZE

RESETOUT-\HRESET- 7 8 DSDI
VDD 9 10 DSDO
MPC5xx/8xx Debugger and Trace | 53©1989-2024 Lauterbach

Software Trace as a Flow Trace

This section shows you, how to set up a flow trace for the MPC5xx/8xx by using the TRACE32-ICD software
trace.

Background

The MPC5xx/8xx has a Trace Exception. The Trace Exception occurs:

• if MSR[SE]=1 and any instruction other then rfi is successfully completed

• if MSR[BE]=1 and a branch is completed

If the Trace Exception causes the processor to enter into the debug mode or if the Trace Exception is
handled by an interrupt service routine, can be decided by setting the TRE (Trace interrupt enable bit) bit in
the DER (Debug Enable Register).

To configure the MPC5xx/8xx to support a software trace as flow trace:

• MSR[BE]=1 and MSR[SE]=0 has to be set

• DER[TRE]=0 has to be set

In consequence of this single stepping is not possible while a software trace as flow trace is used.

The time base facility (TB) of the MPC5xx/8xx can be used as source for the timestamp unit.

Software Trace Format

Software Trace Record Description FlowTrace

Flags (16-bit) 0xF000: Flow trace record

Timestamp (48-bit) Timestamp from Time Base

Address (32-bit) Branch destination address

Address (32-bit) 0x0000
MPC5xx/8xx Debugger and Trace | 54©1989-2024 Lauterbach

How to use the Software Trace

1. Add a definition for the LOGGER Description Block and the Software Trace to your application.

2. Add a interrupt service routine for the Trace Exception to your application.

The main tasks of the interrupt service routine are:

- handle the flags in the software trace

- read the Time Base and enter it as timestamp (optional)

- enter the branch destination address

- maintain the software trace by the logger description block

An example can be found in the TRACE32 demo folder:

3. Set the MSR register.

4. Disable the Trace Exception in DER.

5. Enter the start address of the logger description block in the LOGGER.state window or using the
command LOGGER.ADDRESS

6. Enable timestamps by selecting LOGGER.TimeStamp.Up and set the timestamp rate with the
command LOGGER.TimeStamp.Rate

7. Select LOGGER.Mode FlowTrace ON (software trace is used to sample program flow).

8. Initialize the software trace

Prior to the initialization the chip selects have to be configured in order to get access to the target
RAM.

~~/demo/powerpc/etc/logger/mpc500/logdemo.c

Register.Set MSR 0x0202

TrOnchip.Set TRE OFF

LOGGER.TimeStamp Up ; timestamp base counts upwards
LOGGER.TimeStamp.Rate 1000000. ; frequency of the time base in Hz

LOGGER.Init
MPC5xx/8xx Debugger and Trace | 55©1989-2024 Lauterbach

9. Select the trace method LOGGER

10. Start the user program by Go and stop it again. Display the software trace with Trace.List.

Trace.METHOD LOGGER
MPC5xx/8xx Debugger and Trace | 56©1989-2024 Lauterbach

	MPC5xx/8xx Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Target Design Requirement/Recommendations
	General
	RESET Configuration
	BDM Termination
	General Restrictions
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	On-chip Breakpoints on InstructionsROM or FLASH
	On-chip Breakpoints on Read or Write Accesses
	Example for Breakpoints
	Simultaneous FLASH Programming for MPC555

	Memory Classes
	Memory Coherency MPC8xx

	Trace Extension
	MPC555/MPC553 Pin Multiplexing
	Troubleshooting MPC500/MPC800 RISC Trace
	Used Options for RiscTrace

	General SYStem Commands
	SYStem.BdmClock Define the BDM clock speed
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select CPU type
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the CPU

	CPU specific SYStem Commands
	SYStem.Option.BASE Set base address for on-chip peripherals
	SYStem.LOADVOC Load vocabulary for code compression
	SYStem.Option.BRKNOMSK Allow program stop in a non-recoverable state
	SYStem.Option.CCOMP Enable code compression
	SYStem.Option.CLEARBE Clear MSR[BE] on step/go
	SYStem.Option.CLOCKX2 Select clock for real-time trace
	SYStem.Option.CSxxx CS setting for program flow trace
	SYStem.Option.DCFREEZE Freeze contents of cache while debugging
	SYStem.Option.DCREAD Use DCACHE for data read
	SYStem.Option.DUALPORT Run-time memory access for all windows
	SYStem.Option.FAILSAVE Special error handling for debug port
	SYStem.Option.FREEZE Stop timer in debug mode
	SYStem.Option.FreezePin Use alternative signal on the BDM connector
	SYStem.Option.IBUS Configure the show cycles for the I-BUS
	SYStem.Option.ICFLUSH Flush branch target cache before program start
	SYStem.Option.ICREAD Use ICACHE for program read
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.LittleEnd Selection of little endian mode
	SYStem.Option.MMUSPACES Enable space IDs
	SYStem.Option.NODATA The external data bus is not connected to trace
	SYStem.Option.NOTRAP Use alternative instruction to enter debug mode
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PPCLittleEnd Control for PPC little endian
	SYStem.Option.SCRATCH Scratch for FPU access
	SYStem.Option.SIUMCR SIUMCR setting for the trace
	SYStem.Option.SLOWLOAD Alternative data load algorithm
	SYStem.Option.SLOWRESET Activate SLOWRESET
	SYStem.Option.STEPSOFT Use alternative method for ASM single step
	SYStem.Option.VECTORS Define ranges for not-standard interupt vectors
	SYStem.Option.VFLS Use VFLS pins for run/stop detection
	SYStem.Option.WATCHDOG Enable software watchdog after SYStem.Up
	SYStem.state Display SYStem window

	CPU specific MMU commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set an MMU TLB entry

	CPU specific TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.DISable Disable NEXUS trace register control
	TrOnchip.ENable Enable NEXUS trace register control
	TrOnchip.G/H Define data selector
	TrOnchip.IWx I-Bus watchpoint
	TrOnchip.IWx.Count Event counter for I-Bus watchpoint
	TrOnchip.IWx.Ibus Instructions address for I-Bus watchpoint
	TrOnchip.IWx.Watch Activate I-Bus watchpoint pin
	TrOnchip.LWx L-Bus watchpoint
	TrOnchip.LW0.Count Event counter for L-Bus watchpoint
	TrOnchip.LW0.CYcle Cycle type for L-Bus watchpoint
	TrOnchip.LW0.Data Data selector for L-Bus watchpoint
	TrOnchip.LW0.Ibus Instructions address for I-Bus watchpoint
	TrOnchip.LW0.Lbus Instructions address for L-Bus watchpoint
	TrOnchip.LW0.Watch Activate L-Bus watchpoint pin
	TrOnchip.RESet Reset on-chip trigger unit
	TrOnchip.Set Stop program execution at specified exception
	TrOnchip.TEnable Set filter for the trace
	TrOnchip.TOFF Switch the sampling to the trace to OFF
	TrOnchip.TON Switch the sampling to the trace to ON
	TrOnchip.TTrigger Set a trigger for the trace
	TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource
	TrOnchip.state Display on-chip trigger window

	BDM Connector
	10 pin BDM Connector MPC500/MPC800
	Software Trace as a Flow Trace
	Background
	Software Trace Format
	How to use the Software Trace

