
MANUAL

MIPS Debugger and Trace

MIPS Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 MIPS .. 

 MIPS Debugger and Trace ... 1

 Introduction ... 5

 Brief Overview of Documents for New Users 5

 Demo and Start-up Scripts 5

 WARNING ... 6

 Quick Start of the EJTAG Debugger .. 7

 Troubleshooting .. 8

 SYStem.Up Errors 8

 FAQ ... 9

 CPU specific Implementations ... 10

 Breakpoints 10

 Instruction Breakpoints (Software Breakpoints) 10

 Instruction Breakpoints in ROM (On-chip Breakpoints) 10

 Breakpoints on Read/Write Access to Data(On-chip Breakpoints) 10

 Example for Standard Breakpoints 11

 Trigger 12

 Runtime Measurement 12

 Register 12

 Memory Classes 13

 SPR Memory Overlay 14

 MIPS specific SYStem Commands .. 16

 SYStem.CONFIG Configure debugger according to target topology 16

 SYStem.CPU Select the used CPU 28

 SYStem.DETECT.CORENUMBER Detect core number 29

 SYStem.JtagClock Define JTAG clock 30

 SYStem.LOCK Tristate the JTAG port 31

 SYStem.MemAccess Select run-time memory access method 31

 SYStem.Mode Establish the communication with the target 33
MIPS Debugger and Trace | 2©1989-2024 Lauterbach

 SYStem.Option.Address32 Define address format display 34

 SYStem.Option.DCFREEZE Freeze data cache 34

 SYStem.Option.DCREAD Use DCACHE for data read 35

 SYStem.Option.DisMode Define disassembler mode 35

 SYStem.Option.Endianness Define endianness of target memory 37

 SYStem.Option.EnReset Control target system reset 37

 SYStem.Option.EnTRST Control TAP reset 37

 SYStem.Option.HoldReset Set system reset hold time 38

 SYStem.Option.FlowTrace Define operating mode of RISC TRACE 38

 SYStem.Option.FREEZE Freeze system timer in stop mode 38

 SYStem.Option.ICFLUSH Flush of instruction cache during step and go 39

 SYStem.Option.ICREAD Use ICACHE for program read 39

 SYStem.Option.IMASKASM Disable interrupts while ASM single stepping 39

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 40

 SYStem.Option.KEYCODE Define key code to unsecure processor 40

 SYStem.Option.MCBreaksynch Select break synchronization method 40

 SYStem.Option.MMUPhysLogMemaccess Memory access preferences 41

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 41

 SYStem.Option.MonBase Base address for monitor download routine 43

 SYStem.Option.OVERLAY Enable overlay support 43

 SYStem.Option.PROTECTION Sends an unsecure sequence to the core 44

 SYStem.Option.ResBreak Halt the core after reset 44

 SYStem.Option.STEPONCHIP Use onchip breakpoints for ASM stepping 44

 SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping 45

 SYStem.Option.TURBO Enable fast download 45

 SYStem.Option.UnProtect Unprotect memory addresses 45

 SYStem.Option.WaitReset Set system reset wait time 46

 SYStem.Option.WATCHDOG Disable hardware watchdogs 46

 SYStem.RESetOut Assert nRESET/nSRST on JTAG connector 47

 On-chip Breakpoints ... 48

 TrOnchip.AddressMask Define an address mask 48

 TrOnchip.CORERESET Halt at reset vector after core reset 48

 TrOnchip.RESet Set on-chip trigger to default state 48

 TrOnchip.StepVector Halt on exception vector during step 48

 TrOnchip.UseWatch Use watchpoints 49

 TrOnchip.state Display on-chip trigger window 49

 CPU specific MMU Commands .. 50

 MMU.DUMP Page wise display of MMU translation table 50

 MMU.FORMAT Define MMU table structure 51

 MMU.List Compact display of MMU translation table 55

 MMU.SCAN Load MMU table from CPU 56

 MMU.Set Set MMU registers 57

 MMU.TLB.Set Set MMU registers 58
MIPS Debugger and Trace | 3©1989-2024 Lauterbach

 MMU.TLBSET Set MMU registers 58

 TCB ... 59

 TCB Control 59

 Configuring your FPGA .. 61

 Using JTAG for FPGA configuration 61

 EJTAG Connector ... 62

 Mechanical Description of the 14-pin EJTAG Connector 62

 Electrical Description of the 14-pin EJTAG Connector 63

 Mechanical Description of the 24-pin EJTAG Connector 64

 Electrical Description of the 24-pin EJTAG Connector 65

 Recommended JTAG Circuit on Target 66

 Technical Data Debugger ... 67

 Operation Voltage 67

 Mechanical Dimensions 67

 Technical Data Trace .. 69

 Operation Voltage 69

 Mechanical Dimensions 70
MIPS Debugger and Trace | 4©1989-2024 Lauterbach

MIPS Debugger and Trace

Version 06-Jun-2024

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known MIPS based hardware.
MIPS Debugger and Trace | 5©1989-2024 Lauterbach

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/mips/ and ~~/demo/mips64/ subfolders of the system
directory of TRACE32.

WARNING

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
MIPS Debugger and Trace | 6©1989-2024 Lauterbach

Quick Start of the EJTAG Debugger

All default settings should be fine. Therefore the only required command should be SYStem.Up. This
command resets the processor, establish connection via EJTAG, and requests the processor to enter debug
mode. After this command is executed, it is possible to access memory and registers.

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

Reset ; Only required if you do not start
; immediately after booting

WinCLEAR ; Clear all windows

MAP.BOnchip 0x100000++0xfffff ; Specify where ROM/Flash is, on-chip
; breakpoints will be automatically
; used there

SYStem.Up ; Reset the target and enter debug mode

Data.LOAD.Ieee demo.abs ; Load the application program

PER.view ; Show clearly arranged peripherals
; in window *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch flags ast ; Open watch window for variables *)

Break.Set 0x1000 /Program ; Set software breakpoint to address
; 1000 (address 1000 outside of BOnchip
; range)

Break.Set 0x101000 /Program ; Set on-chip breakpoint to address
; 101000 (address 101000 is within
; BOnchip range)
MIPS Debugger and Trace | 7©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this can have many reasons.

A first test, the JTAG Chain Diagnostics, determines if there is a basic electrical problem with the JTAG
interface. For this test, a area window has to be opened and the SYStem.Mode must be down. The
following command sequence starts the diagnostics:

General electrical problems with the JTAG interface:

• The target has no power.

• The target is in reset.

• The processor has no clock.

• The EJTAG connection is not done properly (see EJTAG connector).

• On the board can be switched between JTAG and EJTAG and JTAG is active. E.g. a jumper is
wrongly set or a resistor must be removed.

• Selected JTAG frequency is too high.

• The target’s JTAG circuit is incompatible with LAUTERBACH JTAG adapter. See recommended
JTAG schematics for more information.

Advanced problems:

• The wrong processor type is selected in the SYStem.CPU list.

• The target is a multicore device. See SYStem.CONFIG for more information.

• The JTAG frequency is too high or no RTCK is available.

• The target is in an unrecoverable state. Re-power the target and try again.

diag 10000 1
diag 16001

In this example, no reasonable values for JTAG
chain properties could be detected. There seems to
be a general electrical problem with the JTAG port.

The diagnostics has detected some reasonable
values for the JTAG chain. There seems to be a
more advanced problem.
MIPS Debugger and Trace | 8©1989-2024 Lauterbach

FAQ

Please refer to https://support.lauterbach.com/kb.
MIPS Debugger and Trace | 9©1989-2024 Lauterbach

https://support.lauterbach.com/kb

CPU specific Implementations

Breakpoints

Onchip instruction and data breakpoints and software breakpoints are supported.

Instruction Breakpoints (Software Breakpoints)

The program code will be patched to force the processor entering debug mode when reaching this
instruction. Therefore unlimited number of software breakpoints are available. But there is the need to modify
the program memory (RAM).

It is not allowed to place a software breakpoint on an instruction in a delay slot of a branch or jump
instruction.

Instruction Breakpoints in ROM (On-chip Breakpoints)

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM (FLASH,
EPROM) on the target. If a breakpoint is set into a location mapped as BOnchip on-chip breakpoints will be
used. Depending on the used processor type 0 to 15 on-chip breakpoints are available.

Breakpoints on Read/Write Access to Data(On-chip Breakpoints)

Breakpoints on data can be set with the options /Write or /Read of the Break.Set command. Depending on
the used processor type 0 to 15 data breakpoints are available.

NOTE: For all MIPS cores with VPEs it is only possible to set onchip breakpoints on active
VPEs. Setting an onchip breakpoint during SMP debugging with inactive VPEs a
warning will be displayed. To guarantee that all TCs on all VPEs will halt at the
onchip breakpoint the user should set an instruction breakpoint after creation of all
TCs on all VPEs.
MIPS Debugger and Trace | 10©1989-2024 Lauterbach

Example for Standard Breakpoints

Assume you have a target with FLASH from 0 to fffff and RAM from 100000 to 11ffff. The command to
configure TRACE32 correctly for this configuration is:

Map.BOnchip 0x0--0xfffff

The following standard breakpoint combinations are possible.

1. Instruction breakpoints in RAM and one breakpoint in ROM

2. Instruction breakpoints in RAM and one data breakpoint

3. Two instruction breakpoints in ROM

4. Two data breakpoints

5. One breakpoint in ROM and one data breakpoint

Break.Set 0x100000 /Program ; software breakpoint 1

Break.Set 0x101000 /Program ; software breakpoint 2

Break.Set addr /Program ; software breakpoint 3 to x

Break.Set 0x100 /Program ; on-chip breakpoint

Break.Set 0x100000 /Program ; software breakpoint 1

Break.Set 0x101000 /Program ; software breakpoint 2

Break.Set addr /Program ; software breakpoint 3 to x

Break.Set 0x108000 /Write ; write data breakpoint

Break.Set 0x100 /Program ; on-chip breakpoint 1

Break.Set 0x200 /Program ; on-chip breakpoint 2

Break.Set 0x108000 /Write ; write data breakpoint

Break.Set 0x108010 /Read ; read data breakpoint

Break.Set 0x100 /Program ; Hardware Breakpoint

Break.Set 0x108010 /Read ; Read Watchpoint
MIPS Debugger and Trace | 11©1989-2024 Lauterbach

Trigger

A bidirectional trigger system allows the following two events:

• trigger an external system (e.g. logic analyzer) if the MIPS breaks (TrBus.Out

• break emulation if an external trigger is asserted (TrBus.Set)

The location of the bidirectional trigger connector which is on the host interface (PODPC, PODPAR,
PODETH) is shown in the ICD Debugger Users Guide.

The trigger system has the following specific restriction:

• If a terminal window is open the response time of the trigger system is undefined. It is
recommended not to use the trigger system and terminal window at the same time.

Runtime Measurement

The function RunTime allows run time measurement. The measurement is done by software control.
Therefore the result is not an exact value.

Register

In the register window the 32 general-purpose registers of the core are named R0 - R31. You can change
the default names to “ZERO”, “AT”, “V0”, “V1”, … with the command SETUP.DIS ,,,,,,,,, SPECIAL
(9 commas to skip don´t care parameters).

If implemented, GPR shadow register sets can be displayed with the command Register.view /REGSET.

Register.view /REGSET Current ; shows the GPR registers R0-R31 of
; the current context.
; it is equivalent to the command
; Register.view

Register.view /REGSET Previous ; in case of a register set change
; e.g caused by an exception, it
; shows the register set of the
; previous context.

Register.view /REGSET 15. ; shows GPR register set 15.
MIPS Debugger and Trace | 12©1989-2024 Lauterbach

Memory Classes

The following MIPS specific memory classes are available.

To access a memory class, write the class in front of the address.

Memory Class Description

AP Program Memory physically addressed

EAP Run-time Program Memory (access also during running CPU), physically
addressed

EP Run-time Program Memory (access also during running CPU), virtually
addressed

P Program Memory virtually addressed

AD Data Cache / Memory physically addressed.

D Data Memory virtually addressed

EAD Data Memory via DMA (access also during running CPU), physically
addressed

ED Data Memory via DMA (access also during running CPU), virtually
addressed

CBU CBUS Register (only for MDED)

CC0 Coprocessor 0 Control Register (only for Lexra cores)

CP0 Coprocessor 0 Register

CP1 Coprocessor 1 Register (if implemented)

CP2 Coprocessor 2 Register (if implemented)

CP3 Coprocessor 3 Register (if implemented)

DBG Debug Memory Class (gives additional information)

E Emulation Memory, Pseudo Dualport Access to Memory
(see SYStem.MemAccess and SYStem.CpuAccess)

ECBU CBUS Register (only for MDED) (access also during running CPU)

VM Virtual Memory (memory on the debug system)

IC Virtually addressed Instruction Cache

AIC Physically addressed Instruction Cache

DC Virtually addressed Data Cache

ADC Physically addressed Data Cache

NC Uncached memory access.

ANC Physically addressed Data Memory without Cache
MIPS Debugger and Trace | 13©1989-2024 Lauterbach

Examples:

“Data.dump CP0:0--3” displays the register 0 (Index), 1 (Random), 2 (EntryLo0), 3 (EntryLo1) of the System
Control Coprocessor (=CP0).

The register number can have values between 0 and 31. The value of “select” must be multiplied by 32 and
added to the register number. “Data.dump CP0:0x30--0x30” displays the Config1 register (register number:
0x10; select: 0x01). Select is 0 for the registers mentioned above.

Virtual Memory could be helpful, if the memory of the target should not be used e.g. to load and examine a
program.

ICD-MIPS64: For the memory classes CPx and DBG are only 64-bit (QUAD) write accesses possible.

SPR Memory Overlay

In case Target Scratch Pad RAM is available and enabled all TRACE32 accesses for the defined SPR
address range are automatically redirected to the referring physical memory.

TRACE32 PowerView does not support a SPR memory class which forces SPR memory access!

If SPR is implemented, the current SPR settings could be seen and changed within Cache Control
peripheral window. It could be found within MIPS drop down list in the tool bar.

Instruction SPR accesses are handled only for virtual addresses within KSEG0 and KSEG1 and for physical
addresses!
MIPS Debugger and Trace | 14©1989-2024 Lauterbach

Following examples refer to the ISPR and DSPR settings in the CACHE window above and a 1:1 virtual to
physical address mapping for KUSEG.

Data.Set D:0x80008000 0x11 ; Write 0x11 to the first address
; of the data SPR via KSEG0 access.

Data.Set P:0xA0008000 0x22 ; Write 0x22 to the first address
; of the instruction SPR via KSEG1
; access.

Data.In AM:0x8000 ; Read first address of instruction
; SPR via physical access.

Data.In M:0x8000 ; Read from virtual SDRAM address
; 0x8000 via USEG access, because
; ISPR accesses are only handled
; for KSEG0 and KSEG1.

Data.In D:0x8000 ; Read from first data SPR address.
MIPS Debugger and Trace | 15©1989-2024 Lauterbach

MIPS specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <sub_cmd> <parameter> … <parameter>
SYStem.MultiCore (deprecated)

<sub_cmd>: CORE <core> <chip>
CORENUMBER <number>
BaseCoreNumber <number>
BaseCoreOrder DESCENDING | ASCENDING
CMTap ON | OFF

IRPRE <bits> … <bits>
IRPOST <bits> … <bits>
DRPRE <bits> … <bits>
DRPOST <bits> … <bits>
DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
CHIPIRPRE <bits>
CHIPIRPOST<bits>
CHIPDRPRE <bits>
CHIPDRPOST <bits>
DMAIRPRE <bits> … <bits>
DMAIRPOST <bits> … <bits>
DMADRPRE <bits> … <bits>
DMADRPOST <bits> … <bits>

BYPASS <pattern>

CJTAGFLAGS <flags>
CJTAGTCA <value>

DEBUGPORTTYPE [JTAG | SWD | CJTAG]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
TAPState <state>
TCKLevel 0 | 1
TriState ON | OFF
Slave ON | OFF
state

BaseCore.Base <address>
BaseCore.RESet
BaseCore.view
GcrBaseAddress <address>
MIPS Debugger and Trace | 16©1989-2024 Lauterbach

The four parameter IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
MIPS TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. MIPS
+ DSP). The information is required before the debugger can be activated e.g. by a SYStem.Up.

Debugging an SMP system, there are more than one core for which the Jtag chain must be defined within
one TRACE32 PowerView instance. So the pre- and post bits will be defined for all cores within one
command e.g. an SMP system with 3 cores must be configured as follows:

SYStem.CONFIG IRPRE 0. 5. 10. means core 0 has 0, core 1 has 5 and core 2 has 10 IRPRE bits.
SYStem.CONFIG IRPOST 10. 5. 0. means core 0 has 10, core 1 has 5 and core 2 has 0 IRPRE bits.
SYStem.CONFIGDRPRE 0. 1. 2. means core 0 has 0, core 1 has 1 and core 2 has 2 IRPRE bits.
SYStem.CONFIGDROST 2. 1. 0. means core 0 has 2, core 1 has 1 and core 2 has 0 IRPRE bits

If the CPU is defined in the CPU selection list, the configuration of the pre- and post-coordinates is
predefined in the TRACE32 software, so there’s nothing to be done by the user.

Some chip vendors implement an extra Chip TAP for controlling, among other things, the JTAG chain
establishing. The position of the Chip TAP is determined by CHIPIRPRE, CHIPIRPOST, CHIPDRPRE and
CHIPDRPOST. The Chip TAP position must be defined for the fully established JTAG chain which is not
necessarily the case after reset!

To keep the JTAG chain with all TAPS alive a special bypass command has to be shifted in the IR register of
the chip TAP with each JTAG transaction. This bypass command is defined with the BYPASS parameter.

The position of an optional EJTAG DMA TAP could be defined with the parameters DMAIRPRE,
DMAIRPOST, DMADRPRE and DMADRPOST.

 TriState has to be used if more than one debugger are connected to the common JTAG port at the same
time. TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger
switches to tristate mode.

NOTE: nTRST must have a pull-up resistor on the target, EDBGRQ must have a pull-down
resistor.

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

CoreNumber Set number of cores per SMP system.

BaseCoreNumber Set number of base cores. For cores, consisting of a cluster of base
cores, the base core number has to be set for correct hardware resource
assignment within the debug driver.
MIPS Debugger and Trace | 17©1989-2024 Lauterbach

BaseCoreOrder Set ordering rule for base cores. Ascending order means that base core
0 is next to TDI, descending order means core 0 is next to TDO.
Ascending : TDI --> BaseCore 0 --> ... --> BaseCore n --> TDO
Descending : TDI --> BaseCore n --> ... --> BaseCore 0 --> TDO
Currently not used.

CoherenceMan-
agerTap

Set if this core has an additional coherence manager tap. If necessary
this option is set implicitly by the CPU selection. So that command is only
needed for bringing up new MIPS cores and therefore is not mentioned in
following configuration examples!

...IRPRE Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

...IRPOST Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

...DRPRE Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

...DRPOST Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

TAPState This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are
selectable.(default: 7 = Select-DR-Scan)

TCKLevel Level of TCK signal when all debuggers are tristated. (default: 0)

TriState The debugger switches to tristate mode after each JTAG access. Then
other debuggers can access the port. This option is required if more than
one debugger hardware is used share the same JTAG port. (default:
OFF)
MIPS Debugger and Trace | 18©1989-2024 Lauterbach

Slave Only one debugger (master) is allowed to control the signals nTRST and
nRST. If more than one debugger hardware is used to share the same
JTAG port, all except the master must have this option active. (default:
OFF)

CHIPIRPRE
CHIPIRPOST
CHIPDRPRE
CHIPDRPOST
CHIPIRLENGTH
CHIPIRPATTERN
CHIPDRLENGTH
CHIPDRPATTERN

Definition of a TAP in a scan chain that needs a different IR and DR
pattern than the default BYPASS (1...1) pattern.

BYPASS Special Chip TAP bypass pattern. (default: 0)

DMAIRPRE
DMAIRPOST
DMADRPRE
DMADRPOST

Definition of a DMA TAP in a scan chain.

state Show state.

GcrBaseAddress Set non default global control register base address. This command is
only available if the core has a coherence manager block. The default
Gcr Base Address is 0xBFBF8000.

CJTAGFLAGS
<flags>

Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.
Bit 1: Target has no “keeper”.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes.
Bit 4: Unlock cJTAG via APFC register.

Default: 0

CJTAGTCA <value> Selects the TCA (TAP Controller Address) to address a device in a
cJTAG Star-2 configuration. The Star-2 configuration requires a unique
TCA for each device on the debug port.

DEBUGPORTTYPE
[JTAG | SWD |
CJTAG]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”. It
assumes the selected type is supported by the target.

Default: JTAG.
MIPS Debugger and Trace | 19©1989-2024 Lauterbach

Example for configuration of a chip with 3 cores

Example for configuration of a Jtag daisy chain

TDI ---> ChipTAP ---> Mips1 ---> Mips2 ---> DMATAP ---> TDO

Instruction register length of

• ChipTap: 3 bit

• Mips1: 5 bit

• Mips2: 5 bit

• DMATap: 6 bit

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is stopped
(kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel
<value>

Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).

… .BASE <address> This command informs the debugger about the start address of the
register block of the component. And this way it notifies the existence of
the component. An on-chip debug and trace component typically
provides a control register block which needs to be accessed by the
debugger to control this component.

… .RESet Undo the configuration for this component. This does not cause a physical
reset for the component on the chip.

… .view Opens a window showing the current configuration of the component.

SYStem.CONFIG.CORE 1. 1.
SYStem.CONFIG.CORE 2. 1.
SYStem.CONFIG.CORE 3. 1.
MIPS Debugger and Trace | 20©1989-2024 Lauterbach

The example below shows the commands necessary for setting up the Mips 1 Core:

The example below shows the commands necessary for setting up the Mips 2 Core in a second TRACE32
PowerView instance:

Note:

While defining the Mips2 core in a second TRACE32 PowerView instance (AMP System) it will get the core
and chip coordinates 1, 2. But if the target is one chip with two cores inside we have to reassign the
coordinates of the Mips2 core to core2 chip1 which is done by SYStem.CONFIG.Core 2. 1.

If the chip has an additional Chip Tap and the device is not yet supported by our debugger following settings
have to be done before SYStem.Up.

SYStem.CONFIG.IRPRE 11. IR Mips2 Core + DMA TAP

SYStem.CONFIG.IRPOST 3. IR Chip TAP

SYStem.CONFIG.DRPRE 2. DR Mips2 Core + DMA TAP

SYStem.CONFIG.DRPOST 1. DR Chip TAP

SYStem.Up

SYStem.CONFIG.IRPRE 6. IR DMA TAP

SYStem.CONFIG.IRPOST 8. IR Chip TAP + Mips1 Core

SYStem.CONFIG.DRPRE 1. DR DMA TAP

SYStem.CONFIG.DRPOST 2. DR Chip TAP + Mips1 Core

SYStem.CONFIG.CORE 2. 1. Assign Mips2 core to chip1 core2

SYStem.Up

SYStem.CONFIG.CHIPIRPRE 16. IR Mips1 Core + Mips2 Core
+ DMA TAP

SYStem.CONFIG.CHIPIRPOST 0.

SYStem.CONFIG.BYPASS 3. Set special Chip TAP Bypass
pattern.
MIPS Debugger and Trace | 21©1989-2024 Lauterbach

If a chip provides EJTAG DMA access on an extra TAP these TAP could be defined with following
commands.

Configuration of Mips34K

Mips34k may be used as a single or a dual core. Each core/vpe has its own TAP. The Jtag scan chain for a
single MIPS34K core with two VPEs is

TDI ---> VPE0 ---> VPE1 ---> TDO

The Mips34k VPE0 and VPE1 TAP access is completely controlled within the T32 Mips debug driver.
Therefore a single core/vpe Mips34k is debugged as all other single core chips and no multi core settings
have to be set at all.

Depending on the number of opened PowerView instances and their Core-Chip assignment AMP
debugging is automatically determined and supported by the debugger.

Setup of an SMP system

• Start one TRACE32 instance

• Select MIPS34K in CPU selection list

• Set TAP coordinates to VPE0 of referring Mips34K core.

• Set total number of implemented cores (threads)

• Define number of cores (threads) which participate the SMP system.

See below the configuration for a Mips34K single SMP system.

SYStem.CONFIG.DMAIRPRE 0.

SYStem.CONFIG.DMAIRPOST 13. IR Chip TAP + Mips1 Core
+ Mips2 Core

SYStem.CONFIG.DMADRPRE 0.

SYStem.CONFIG.DMADRPOST 3. DR Chip TAP + Mips1 Core
+ Mips2 Core

SYStem.MEMACCESS DMA Enable DMA Access in Debugger.

SYStem.CPU MIPS34K ; select Mips34k core

SYStem.CONFIG.IRPRE 0.
SYStem.CONFIG.IRPOST 0.
SYStem.CONFIG.DRPRE 0.
SYStem.CONFIG.DRPOST 0.

; set TAP coordinates to VPE0 of
; Mips34K core (default values).
MIPS Debugger and Trace | 22©1989-2024 Lauterbach

PowerView shows always the context of the current core. A manual switching between the TCs (Thread
Context) could be done with the CORE command or with help of the core drop down list.

Setup oa a Multi TAP system:

The Mips34k may be used together with additional TAP’s in the Jtag chain.

TDI ---> Chip TAP --> VPE0 ---> VPE1 ---> DMA Tap --> TDO

See below the configuration for a Mips34K system with additional Chip- (IR width=7 bit) and DMA TAP(IR
width=6 bit) in the Jtag chain.

Configuration of Mips1004K / 1004KMT / InterAptiv

The Mips1004k core is a cluster of up to 4 Mips 1004K base cores which are derived from the MIPS34K
core. Therefore the configuration is mainly the same and only the differences will be described here. The
Jtag scan chain for a MIPS1004K core with 4 base cores and two VPEs each is

 Base Core 3 (BC3) Base Core 0 (BC0)

TDI ---> VPE0 ---> VPE1 ---> ---> VPE0 ---> VPE1 ---> TDO

SYStem.CONFIG.CoreNumber 9. ; set total number of cores
(threads).

Core.Number 9. : assign all available cores
(threads) to one SMP system

SYStem.Up ; bring up debugger

SYStem.CPU MIPS34K ; select Mips34k core

SYStem.CONFIG.IRPRE 6.
SYStem.CONFIG.IRPOST 7.
SYStem.CONFIG.DRPRE 1.
SYStem.CONFIG.DRPOST 1.

; set TAP coordinates to VPE0 of
; Mips34K core (default values).

SYStem.Up ; bring up debugger
MIPS Debugger and Trace | 23©1989-2024 Lauterbach

Since PRID Revision 0x2f the Mips 1004K core has additional multithreading capability an extra Coherence
Manager TAP and an opposite numbering of the Base Cores. In that Case CPU selection has to be
MIPS1004KMT instead. Below the Jtag Scan Chain for Mips1004KMT with same properties as above could
be seen.

 Base Core 3 (BC0) Base Core 0 (BC3) Coherence Manager

TDI ---> VPE0 ---> VPE1 ---> ---> VPE0 ---> VPE1 ---> CM ---> TDO

From debug configuration point of view the MIPSInterAptiv is equivalent to Mips1004KMT. So the following
description is also valid for this core.

Setup of a single core system:

• Start one TRACE32 instance

• Select MIPS1004K /MIPS1004KMT in CPU selection list

• Set TAP coordinates to VPE0 of referring Mips1004K core.

• Set number of Base cores.

• Set total number of implemented cores

• Set number of cores which participate the system to 1.

See below the configuration for a Mips1004K single SMP system.

SYStem.CPU MIPS1004K / MIPS1004KMT ; select Mips1004k core

SYStem.CONFIG.IRPRE 0.
SYStem.CONFIG.IRPOST 0.
SYStem.CONFIG.DRPRE 0.
SYStem.CONFIG.DRPOST 0.

; set TAP base coordinates of
; Mips1004K core (default
; values).

SYStem.CONFIG.BCN 4. ; set number of Base Cores within
; MIPS 1004k core (default)

SYStem.CONFIG.CoreNumber 8. ; set total number of cores

Core.Number 1. ; assign one core to system
; (default)

SYStem.Up ; bring up debugger
MIPS Debugger and Trace | 24©1989-2024 Lauterbach

Setup of an SMP system:

• Start one TRACE32 instance

• Select MIPS1004K / 1004KMT in CPU selection list

• Set TAP coordinates to VPE0 of referring Mips1004K core.

• Set number of Base cores.

• Set total number of implemented cores

• Define number of cores which participate the SMP system.

See below the configuration for a Mips1004K single SMP system.

Setup of an AMP system:

Start two or more PowerView instances.

• Select CPU MIPS1004K / MIPS1004KMT in all PowerView instances.

• Set TAP coordinates to referring Mips1004K core in all PowerView instances.

• Assign all other cores to the first Mips1004K core.

• Set number of Base Cores.

• Bring up the TRACE32 PowerView instances.

See below command sequence to bring up MIPS1004K with 4 Base Cores and 2 VPEs each as AMP
system:

SYStem.CPU MIPS1004K / MIPS1004KMT ; select Mips1004k core

SYStem.CONFIG.IRPRE 0.
SYStem.CONFIG.IRPOST 0.
SYStem.CONFIG.DRPRE 0.
SYStem.CONFIG.DRPOST 0.

; set TAP base coordinates of
; Mips1004K core (default
; values).

SYStem.CONFIG.BCN 4. ; set number of Base Cores within
; MIPS 1004k core (default)

SYStem.CONFIG.CoreNumber 8. ; set total number of cores

Core.Number 8. ; assign all available cores to
; SMP system

SYStem.Up ; bring up debugger

PV1 for BC0 VPE0 PV2 for BC0 VPE1 PV8 for BC3 VPE1

SYStem.CPU MIPS1004K

SYStem.CONFIG.CORE 1. 1.
MIPS Debugger and Trace | 25©1989-2024 Lauterbach

SYStem.CPU MIPS1004K

SYStem.CONFIG.CORE 2. 1.

SYStem.CONFIG.Slave On

SYStem.MODE NODEBUG

...

SYStem.CPU MIPS1004K

SYStem.CONFIG.CORE 8. 1.

SYStem.CONFIG.Slave On

SYStem.MODE NODEBUG

SYStem.Up

GO (start booting of
 all VPE’s within
 Base Cores BC0 to
 BC3)

SYStem.MODE ATTACH

...

SYStem.MODE ATTACH
MIPS Debugger and Trace | 26©1989-2024 Lauterbach

TapStates

■ SYStem.LOCK

Displays the Instruction TLB or Data TLB MMU entries.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
MIPS Debugger and Trace | 27©1989-2024 Lauterbach

SYStem.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpu>: ICD-MIPS32:

MIPS4K | MIPS4KC | MIPS4KEC |
MIPSM14K | MIPSM14KC |
MIPS24K | MIPS24KE |
MIPS34K |
MIPS74K |
MIPS1004K |
ADM5120 | ADM8686 |
AU1000 | AU1100 | AU1200 | AU1500 | AU1550
BCM1101 | BCM1103 | BCM1113 | BCM3349 | BCM3380 | BCM35230 |
BCM3549 | BCM3556 | BCM4704 | BCM471x | BCM4748 | BCM5331x |
BCM5350 | BCM5354 | BCM5358 | BCM5365 | BCM56xxx | BCM5836 |
BCM63268 | BCM6328 | BCM6338 | BCM6345 | BCM6348 | BCM6358 |
BCM6362 | BCM6368 | BCM6369 | BCM6550 | BCM6816 | BCM7111 |
BCM7312 | BCM7317 | BCM7318 | BCM7325 | BCM7335 | BCM7400 |
BCM7401 | BCM7402 | BCM7405 | BCM7407 | BCM7413 | BCM7420 |
C7108 |
COACH12 |
F731940 |
FALCON |
HIDTV_PRO_QX |
IKF6833 | IKF6834 | IKF6836 IKF6850 | IKF6860 |
LX4X80 | LX4189 | LX5180 | LX5280 |
MDEB | MDED |
MP32,
MSP20xx | MSP71xx |
PIC32MX |
PNX8330 | PNX8331 | PNX8332 | PNX8335 | PNX8541 | PNX8542 | PNX8543
| PNX8932 | PNX8935 | PNX85500_MIPS4K | PNX85500_MIPS24K |
PSB21553 | PSB21653 |
RT3052 | RT3662,
RC32334 | RC32355 |
VGCA | VGCB | VCTH | VCTV |
WP3

(For ICD-MIPS64, see next page.)
MIPS Debugger and Trace | 28©1989-2024 Lauterbach

Selects the processor type.

Default selection:

• MIPS4K if the JTAG Debugger for MIPS4K is used.

• MIPS5K if the JTAG Debugger for MIPS5K is used.

SYStem.DETECT.CORENUMBER Detect core number

MIPS64 only.

Detects the core number of the target and set up TRACE32 accordingly.

<cpu>: ICD-MIPS64:

MIPS5K
BCM1125 | BCM1250 | BCM1255 | BCM1280 | BCM1455 | BCM1480 |
BCM7038 |
CN30XX | CN31XX | CN38XX | CN50XX | CN54XX | CN55XX | CN56XX |
CN57XX | CN58XX | CN63XX |
MSP8510 |
PXB4261 |
RM9000 |
TX4938 |
WIN1XX | WIN7XX

Format: SYStem.DETECT.CORENUMBER
MIPS Debugger and Trace | 29©1989-2024 Lauterbach

SYStem.JtagClock Define JTAG clock

Default frequency: 2 MHz.

Selects the EJTAG port frequency (TCK). The frequency affects e.g. the download speed and scrolling
speed in dump windows.

It could be required to reduce the EJTAG frequency if there are buffers, additional loads or high capacities on
the EJTAG lines or if the target voltage (VIO) is very low. A very high frequency will not work on all systems
and will result in an erroneous data transfer. Therefore we recommend to use the default setting if possible.

Example:

Format: SYStem.JtagClock [<frequency> | RTCK]
SYStem.BdmClock (deprecated)

<frequency>: 5 kHz … 25 MHz.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.

If you want to enter a decimal value, please do not forget the dot “.” at the
end of the number. Otherwise it is taken hexadecimal. Besides a decimal
number like “100000.” short forms like “10kHz” or “15MHz” can also be
used. The short forms imply a decimal value, although no “.” is used.

RTCK The JTAG clock is controlled by the RTCK signal (Returned TCK). This
signal isn’t a standard pin of the Mips Jtag connector.

SYStem.JtagClock RTCK

The clock mode RTCK cannot be used if a common debug cable with 14-
pin flat cable (LA-7760) is used. A special dongle must be ordered. And it
is required that the target provides an RTCK signal.
MIPS Debugger and Trace | 30©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the EJTAG port will be performed by the debugger. While locked the
EJTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is to give
EJTAG access to a debugger for another core if the EJTAG port of both cores are multiplexed.

It must be ensured that the state of the MIPS core EJTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over between two debuggers, a pull-up or pull-down resistor on
TCK and a pull-up resistor on /TRST is required. In case you use a pull-up at TCK, you have to inform the
debugger about that -> “SYStem.CONFIG TCKLevel 1”. VIO and GND should be kept connected or be re-
connected first.

There is an additional plug on the debug cable on the debugger side. This signal can be used to detect if the
EJTAG connector is tristated. If tristated also this signal is tristated, it is pulled low otherwise.

SYStem.MemAccess Select run-time memory access method

This option declares how memory access can take place while the CPU is executing code (run-time memory
access). The run-time memory access has to be activated for each window by using the memory class E:
(e.g. Data.Dump ED:0x800000) or by using the format option %E (e.g. Var.View %E var1).

Format: SYStem.LOCK [ON | OFF]

Format: SYStem.MemAccess <mode>

<mode>: Enable
Denied
StopAndGo
DMA
DAP

Enable
CPU (deprecated)

not possible.

Denied Dualport access is blocked.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
MIPS Debugger and Trace | 31©1989-2024 Lauterbach

DMA Direct memory access/dual port access allowed.

DAP A run-time memory access is done via the CoreSight v2 Debug Access
Port (DAP). This is only possible if a DAP is available on the chip and if
the memory bus is connected to it.
NOTE: The debugger accesses the memory bus and cannot see caches.

Data.dump ED:0x80000100

Data.dump EAD:0x100

Var.View %E flags
MIPS Debugger and Trace | 32©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
Up
StandBy

Down (default) (Disables the debugger and keeps the CPU in reset.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
EJTAG port is tristated.

Go Resets the target and enables the debugger. The CPU is running.
Program execution can be stopped by the break command or external
trigger. This command is only allowed if SYStem.Option.FlowTrace is
OFF.

Attach No reset is performed. The CPU keeps running. Program execution can
be stopped by the break command or external trigger. This command is
only allowed when CPU is in NoDebug mode and when
SYStem.Option.FlowTrace is OFF.

Up Resets the target and sets the CPU to debug mode. After the execution
of this command the CPU is stopped and all registers are set to the
default level.

StandBy Not implemented.
MIPS Debugger and Trace | 33©1989-2024 Lauterbach

SYStem.Option.Address32 Define address format display

Default: AUTO.

Selects the number of displayed address digits in various windows, e.g. List.auto or Data.dump.

SYStem.Option.DCFREEZE Freeze data cache

Default: OFF.

This option has no function for the MIPS architecture.

If DCFREEZE is set on, the debugger leaves the data cache as far as possible unchanged. I.e. if data is
written by the debugger, it will be written into the data cache if the corresponding line is loaded and valid in
the data cache. If no cache line contains the address or the line isn’t valid, the data will be written into main
memory. This option has only effect for virtual addressing. If physical addresses are used, they will always
be handled as if dcfreeze is set.

Format: SYStem.Option.Address32 [ON | OFF | AUTO | NARROW]

ON Display all addresses as 32-bit values. 64-bit addresses are truncated.

OFF Display all addresses as 64-bit values.

AUTO Number of displayed digits depends on address size.

NARROW 32-bit display with extendible address field.

Format: SYStem.Option.DCFREEZE [ON | OFF]
MIPS Debugger and Trace | 34©1989-2024 Lauterbach

SYStem.Option.DCREAD Use DCACHE for data read

SYStem.Option.DisMode Define disassembler mode

Default: AUTO.

This command specifies the selected disassembler.

Format: SYStem.Option.DCREAD [ON | OFF]

ON (default) If data memory is displayed (memory class AD:) the memory contents
from the D-cache is read via dedicated cache opcodes. If D-cache is not
valid the physical memory is read.

OFF If data memory is displayed (memory class AD:) the memory contents
from the D-cache is read via mapping to KSEG0 for addresses < 0x2000000
respectively via cached TLB entry for larger addresses. If D-cache is not
valid the physical memory is read.

Format: SYStem.Option.DisMode <mode>

<mode>: AUTO
ACCESS
MIPS32
MIPS16
MICROMIPS
NANOMIPS
MIPSR6

AUTO Automatic selection of disassembler mode. The information provided by
the compiler output format is used for the disassembler selection. If no
information is available it has the same behavior as ACCESS. (default)

ACCESS Disassembler mode will be selected by entered access class.

MIPS32 The MIPS32 disassembler is used.

MIPS16 The MIPS16 disassembler is used.

MICROMIPS The microMIPS disassembler is used.
MIPS Debugger and Trace | 35©1989-2024 Lauterbach

NANOMIPS The nanoMIPS disassembler is used.

MIPSR6 The MIPS R6 disassembler is used.
MIPS Debugger and Trace | 36©1989-2024 Lauterbach

SYStem.Option.Endianness Define endianness of target memory

Default: AUTO.

This option selects the byte ordering mechanism. If it is set to AUTO, the kernel mode endianness will be
detected and selected.

SYStem.Option.EnReset Control target system reset

Default: ON.

During SYStem.Up the target is reset by the debugger. If the target reset is to be inhibited for some reason
in general, this can be done with the command SYStem.Option.EnReset OFF. Note that it is recommended
to leave the option ON because it ensures a more robust startup of the debug session. Consider using
SYStem.Mode.Attach instead of SYStem.Up if you don’t want to issue a target reset during the startup of
the debug session.
Note that for multicore debug sessions only the master session issues a system reset.

SYStem.Option.EnTRST Control TAP reset

Default: ON.

To set the debug interface in a defined state the TAP is reset by driving the TRST pin low and additionally
holding TMS low for five 5 TCKs. By setting the EnTRST option to OFF only the TMS method is used. The
reason for introducing this command was that in some target systems several chips were connected to the
TRST line, which must not be reset together with the debug TAP.

Format: SYStem.Option.Endianness [AUTO | Little | Big]

Format: SYStem.Option.EnReset [ON | OFF]

Format: SYStem.Option.EnTRST [ON | OFF]
MIPS Debugger and Trace | 37©1989-2024 Lauterbach

SYStem.Option.HoldReset Set system reset hold time

Default: 300ms

With this option the default reset hold time could be set to a user-defined value.

SYStem.Option.FlowTrace Define operating mode of RISC TRACE

Default: OFF.

Flow Trace must be switched to ON or Real-Time, if a Trace module is used.Using no trace FlowTrace must
be switched off, otherwise a correct working of the debugger can’t be guaranteed.

On Real-Time the processor is not stalled if the trace port can not output all data in real time, trace data get
lost. On ON the processor will be stalled until all trace data have been transferred.

SYStem.Option.FREEZE Freeze system timer in stop mode

Enabling this option will lead the debugger to stop the target CPU system timer since entering stop mode.

Format: SYStem.Option.HoldReset [<time>]

Format: SYStem.Option.FlowTrace [ON | Real-Time | OFF]

Format: SYStem.Option.FREEZE [ON | OFF]

nRST

 hold time wait time

CPU State reset running debug
MIPS Debugger and Trace | 38©1989-2024 Lauterbach

SYStem.Option.ICFLUSH Flush of instruction cache during step and go

Default: OFF.

If this option is ON the instruction cache will be invalidated automatically before debug mode will be left (in
case of a Step or a Go).

SYStem.Option.ICREAD Use ICACHE for program read

SYStem.Option.IMASKASM Disable interrupts while ASM single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

Format: SYStem.Option.ICFLUSH [ON | OFF]

Format: SYStem.Option.ICREAD [ON | OFF]

ON If program memory is displayed (memory class AP:) the memory
contents from the I-cache is shown if the I-cache is valid. If I-cache is not
valid the physical memory will be read. Typical command for program
memory display are: Data.List, Data.dump.

OFF (default) If program memory is displayed (memory class AP:) the memory
contents from the physical memory is displayed.

Format: SYStem.Option.IMASKASM [ON | OFF]
MIPS Debugger and Trace | 39©1989-2024 Lauterbach

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.KEYCODE Define key code to unsecure processor

Default: 0, means no key required.

Some processors have a security feature and require a key to unsecure the processor in order to allow
debugging. The processor will use the specified key on the next debugger start-up (e.g. SYStem.Up) and
forgets it immediately. For the next start-up the keycode must be specified again.

SYStem.Option.MCBreaksynch Select break synchronization method

Default: MCBU for CPUs with hardware MultiCore Breakpoint Unit support, SOFT otherwise.

In SMP mode all cores in an SMP system are required to stop synchronously when a breakpoint is hit. In
CPUs with a MultiCore Breakpoint Unit (MCBU) the other cores can be stopped through a dedicated
hardware interrupt once a core hits a breakpoint. In CPUs without MCBU a TRACE32 software loop is used
to stop all SMP cores upon entry of debug mode. Since the hardware synchronization is much faster than
the software solution it is used by default on CPUs that support it. However, if more than one SMP system is
running on one CPU but the MCBU features only one synchronization channel, it might be necessary to set
the MultiCore Break Synchronization of all but the first SMP system to SOFT. Thus, the breaking behavior of
the SMP systems can be decoupled.
This option is not available for all CPUs.

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.KEYCODE <key>

Format: SYStem.Option.MCBreaksynch [MCBU | SOFT]
MIPS Debugger and Trace | 40©1989-2024 Lauterbach

SYStem.Option.MMUPhysLogMemaccess Memory access preferences
MIPS 32 only

Default: ON.

Controls whether TRACE32 prefers a cached logical memory access over a (potentially uncached) physical
memory access to keep caches updated and coherent.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

Format: SYStem.Option.MMUPhysLogMemaccess [ON | OFF]

NOTE: This option should usually not be changed.

ON A cached logical memory access is used.

OFF A (potentially uncached) physical memory access is used.

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)
MIPS Debugger and Trace | 41©1989-2024 Lauterbach

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A
MIPS Debugger and Trace | 42©1989-2024 Lauterbach

SYStem.Option.MonBase Base address for monitor download routine

Default: 0.

This option selects an available memory area, where the debugger can load and execute a small program
(48 bytes) to realize a fast download. See SYStem.Option.TURBO.

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

Format: SYStem.Option.MonBase <address>

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_id>:<address>
MIPS Debugger and Trace | 43©1989-2024 Lauterbach

SYStem.Option.PROTECTION Sends an unsecure sequence to the core

This option was made for unsecure protected debug interfaces. It sends the key pattern in the file in a certain
way to the core in order to gain the right to debug the core.

SYStem.Option.ResBreak Halt the core after reset

Default: ON.

The common system-up procedure is that the debugger resets the target and forces the core into debug
mode before any program will run. A prerequisite is that the TAP controller may be enabled during an
asserted nRST line. Some cores have unwanted correlations between nRST and nTRST, so it isn’t possible
for the debugger to communicate with the core during reset. For those cores/boards (BCMxxxx and
LX4x80/MDEB) nRST must be deasserted before the TAP may be reset. Thus will be done by the debugger,
if ResBreak is switched off. For resetting all register values and allow debugging from the ResetVector an
additional Reset pulse is asserted.

System.Option.ResBreak OFF:

SYStem.Option.STEPONCHIP Use onchip breakpoints for ASM stepping

Default: OFF.

If this option is ON, onchip breakpoints are used for single stepping on assembler level instead of using the
hardware single step feature of the CPU.

Format: SYStem.Option.PROTECTION <file>

Format: SYStem.Option.ResBreak [ON | OFF]

Format: SYStem.Option.STEPONCHIP [ON | OFF]

nRST

 hold time wait time hold time wait time

CPU State reset debugrunning reset running
MIPS Debugger and Trace | 44©1989-2024 Lauterbach

Use of STEPONCHIP ON:

On some CPUs the MIPS hardware single step feature does not function correctly in certain address
ranges, e.g. due to hardware issues. The STEPONCHIP ON option allows to workaround such problems.
Please note that STEPONCHIP ON has no effect if option STEPSOFT ON is used.

SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping

Default: OFF.

If this option is ON, software breakpoints are used for single stepping on assembler level.

Use of STEPSOFT ON for HLL debugging:

In several cases, the debugger executes an assembler single step by itself (e.g. continue on a breakpoint). If
this single step results in a jump to an exception, the exception release come back to the breakpoint and the
core stops at there again. STEPSOFT ON avoids this.

SYStem.Option.TURBO Enable fast download

Default: OFF.

If TURBO is on, a fast download is possible. It will be assumed that the memory is uncached and can be
accessed without errors. A program running on the target will be used to realize this fast download. A small
program will be loaded at the location specified by SYStem.Option.MonBase. This mode should be
switched off after the download command is used, since it includes no error checks.

See SYStem.Option.MonBase.

SYStem.Option.UnProtect Unprotect memory addresses

Default: OFF.

Format: SYStem.Option.STEPSOFT [ON | OFF]

Format: SYStem.Option.TURBO [ON | OFF]

Format: SYStem.Option.UnProtect [ON | OFF]
MIPS Debugger and Trace | 45©1989-2024 Lauterbach

If UnProtect is on, access to all addresses with entries in the TLB are possible. I.e. a write access is
possible, although the access is set to ”read only” in the target TLB. This option is often necessary for
application debugging on Linux. If Linux marks pages as “read-only”, setting a SW-breakpoint on those
addresses will fail. To enable SW-breakpoint UnProtect must be switched on.

SYStem.Option.WaitReset Set system reset wait time

Default: 300ms

With this option the default reset wait time could be set to a user-defined value. That could be become
necesssary if the nRST hold time becomes extended by an onboard reset controller.

SYStem.Option.WATCHDOG Disable hardware watchdogs
Cavium OCTEON only

Default: ON.

If set to ON, the hardware watchdog of CAVIUM OCTEON cores will be disabled upon debug mode entry.
The debugger will set the watchdog mode in the CIU WATCHDOG registers to OFF.

Format: SYStem.Option.WaitReset [<time>]

Format: SYStem.Option.WATCHDOG [ON | OFF]

nRST

 hold time wait time

CPU State reset running debug
MIPS Debugger and Trace | 46©1989-2024 Lauterbach

SYStem.RESetOut Assert nRESET/nSRST on JTAG connector
[SYStem.state window > RESetOut]

If possible (nRESET/nSRST is open collector), this command asserts the nRESET/nSRST line on the JTAG
connector. While the CPU is in debug mode, this function will be ignored. Use the SYStem.Up command if
you want to reset the CPU in debug mode.

Format: SYStem.RESetOut
MIPS Debugger and Trace | 47©1989-2024 Lauterbach

On-chip Breakpoints

TrOnchip.AddressMask Define an address mask

TrOnchip.CORERESET Halt at reset vector after core reset

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.StepVector Halt on exception vector during step

Default: OFF.

Stepvector ON/OFF determines the behavior of a single step, when an exception or an interrupt occurs. If
StepVector is ON, the core halts on the exception/interrupt routine, otherwise the core halts on the next
instruction (after the instruction where the single step is performed).

Format: TrOnchip.AddressMask <value> | <bitmask>

Format: TrOnchip.CORERESET [ON | OFF]

OFF (default) Don’t stop the program execution at reset vector after any core reset.

ON Stop the program execution at reset vector after any core reset

Format: TrOnchip.RESet

Format: TrOnchip.StepVector [ON | OFF]
MIPS Debugger and Trace | 48©1989-2024 Lauterbach

TrOnchip.UseWatch Use watchpoints

Watchpoints instead of onchip breakpoints are used.

Default: OFF.

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

Format: TrOnchip.UseWatch [ON | OFF]

Format: TrOnchip.state
MIPS Debugger and Trace | 49©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation

table of the specified process
• else, this command displays the table the CPU currently uses for

MMU translation.
MIPS Debugger and Trace | 50©1989-2024 Lauterbach

CPU specific tables in MMU.DUMP <table>

MMU.FORMAT Define MMU table structure
[Examples]

Default <format>: STD.

Defines the information needed for the page table walks, which are performed by TRACE32 for debugger
address translation, page table dumps, or page table scans.

Format 1 is the normal, CPU-architecture independent command syntax. This format does not require the
additional input parameter <base_address_highrange> of format 2.

Format 2: For MIPS64, there are four MMU.FORMAT <format> keywords which require the additional input
parameter <base_address_highrange>. These keywords are LINUX64, LINUX64RIXI, LINUX64HTLB, and
LINUX64HTLBP16.

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

TLB Displays the contents of the Translation Lookaside Buffer.
Displays the actual target TLB. Lines which are invalid will be displayed
as empty lines. On the right side of table the contents of the belonging
CP0 registers (pagemask, entryhi, entrylo0 and entrylo1) are displayed.

Format 1: MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Format 2:
MIPS64 only

MMU.FORMAT <format> [<base_address> [<base_address_highrange>
 [<logical_kernel_address_range> <physical_kernel_address>]]]
MIPS Debugger and Trace | 51©1989-2024 Lauterbach

<format>

<format> is to be replaced with a CPU architecture specific keyword which defines the structure of the MMU
page tables used by the kernel. By default, TRACE32 assumes that the MMU format is STD, unless you
specify the MMU.FORMAT <format> explicitly.

The table below indicates if a <format> requires the additional parameter <base_address_highrange>.

<format> Description

EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.

LINUX32 Linux 32-bit, page size 4kB

LINUX32P16 Linux 32-bit, page size 16kB

LINUX32P16R2 Linux 32-bit, page size 16kB, used on MIPS32 R2 or R6 (internally
identical to format LINUX32P16R41)

LINUX32P16R2 Deprecated: internally identical to format LINUX32P16R41

LINUX32R4K Linux 32-bit, page size 4kB, like LINUX32 but different page flags

LINUX32RIXI Linux 32-bit with RI/XI bits

LINUX64 Linux 64-bit with 64-bit PTEs, page size 4kB. Separate page table for high
address range can be specified with optional extra parameter
<base_address_highrange>.

LINUX64HTLB Linux 64-bit with 64-bit PTEs, page size 4kB for huge TLB. Uses separate
sub table for addresses > 0xFFFFFFFFC0000000.

LINUX64HTLBP16 Linux 64-bit like LINUX64HTLB but pag esize 16kB.

LINUX64P16 Linux 64-bit with 64-bit PTEs, page size 16kB. Depth 3 levels.

LINUX64P64 Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 3 levels.

LINUX64P64LT Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 2 levels with large
level 1 table (used for BROADCOM(R) XLP SDK 3.7.10 and alike)

LINUX64RIXI Linux 64-bit with 64-bit PTEs with RI/XI bits, page size 4kB. Separate
page table for high address range can be specified with optional extra
parameter <base_address_highrange>.

LINUXBIG Linux 32-bit with 64-bit PTEs on MIPS32

LINUXBIG64 Linux 32-bit with 64-bit PTEs on MIPS64

STD Standard format defined by the CPU

WINCE6 Format used by Windows CE6
MIPS Debugger and Trace | 52©1989-2024 Lauterbach

<base_address>

<base_address> defines the start address of the default page table which is usually the kernel page table.
The kernel page table contains translations for mapped address ranges owned by the kernel.

The debugger address translation uses the default page table if no process specific page table (task
page table) is available to translate an address.

<base_address> can be left empty by typing a comma or set to zero if there is no default page table
available in the system.

<base_address_highrange>

Using <base_address_highrange>, you can specify a second page table responsible for the translation of
addresses >= 0xFFFFFFFF00000000. Then, two page tables are in use:

• Addresses in range 0x0--0xFFFFFFFEFFFFFFFF will be translated with the page table defined
by the argument <base_address>.

• Addresses in range 0xFFFFFFFF00000000--0xFFFFFFFFFFFFFFFF will be translated with the
page table defined by the argument <base_address_highrange>.

<logical_kernel_address_range> and <physical_kernel_address> for the Default Translation

The arguments <logical_kernel_address_range> and <physical_kernel_address> define a linear logical-to-
physical address translation for the kernel addresses, called kernel translation or default translation. This
translation should cover all statically mapped logical address ranges of kernel code or kernel data.

For the <physical_kernel_address> you just need to specify the start address.

Examples

Examples of Format 1:

NOTE: If no kernel translation is specified for a given memory access, TRACE32 tries to
use static address translations defined by the command TRANSlation.Create. The
kernel translation is shown in the TRANSlation.List window.

NOTE: A backslash \ is used as a line continuation character in PRACTICE script files
(*.cmm). No white space permitted after the backslash.

; <format> <base_address> <logical_range> <phys_range>
MMU.FORMAT LINUX swapper_pg_dir

MMU.FORMAT LINUX swapper_pg_dir \
 0xC000000000000000--0xc00000007FFFFFFF 0x20000000
MIPS Debugger and Trace | 53©1989-2024 Lauterbach

Examples of Format 2 with <base_address_highrange>:

Examples of Format 2 without <base_address_highrange>:

In this example, not only the <base_address_highrange> is omitted but also all remaining parameters.

If you need all parameters of Format 2 except for <base_address_highrange>, then use two commas to
specify an empty input parameter.

; <format> <base_address> <base_address_highrange>
MMU.FORMAT LINUX64 swapper_pg_dir module_pg_dir

MMU.FORMAT LINUX64 swapper_pg_dir module_pg_dir \
 0xC000000000000000--0xc00000007FFFFFFF 0x20000000
; <logical_range> <phys_range>

; <format> <base_address> <base_address_highrange>
MMU.FORMAT LINUX64 swapper_pg_dir

; <format> <base_address> <base_address_highrange>
MMU.FORMAT LINUX64 swapper_pg_dir

MMU.FORMAT LINUX64 swapper_pg_dir ,, \
 0xC000000000000000--0xC00000007FFFFFFF 0x20000000
; <logical_range> <phys_range>
MIPS Debugger and Trace | 54©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

PageTable Lists the current MMU translation of the CPU.
This command reads all tables the CPU currently uses for MMU
translation and lists the address translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
MIPS Debugger and Trace | 55©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation

table of the specified process
• else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.
MIPS Debugger and Trace | 56©1989-2024 Lauterbach

CPU specific Tables in MMU.SCAN <table>

MMU.Set Set MMU registers

Sets the specified MMU TLB table entry in the CPU.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

TLB Loads the translation table from the CPU to the debugger-internal translation
table.

Format: MMU.Set TLB <index> <pagemask> <entryhi> <entrylo0> <entrylo1>

TLB Writes data to the processor’s TLB. (Translation Lookaside Buffer)

<index> Index of entry in target TLB.

<pagemask> Content of pagemask register.

<entryhi> Content of entryhi register.

<entrylo0> Content of entrylo0 register.

<entrylo1> Content of entrylo1 register.
MIPS Debugger and Trace | 57©1989-2024 Lauterbach

MMU.TLB.Set Set MMU registers

Same command with same parameters as MMU.Set TLB. See command description above.

MMU.TLBSET Set MMU registers

Command obsolete. Use MMU.Set TLB instead. Sets the specified MMU TLB table entry in the CPU.
MIPS Debugger and Trace | 58©1989-2024 Lauterbach

TCB

The abbreviation TCB stands for Trace Control Block, and is the HW control interface to the MIPS hardware
trace block. For details please refer to the MIPS Trace specifications. In the following TCB specific controlling
and the referring commands are described.

TCB Control

The TCB triggering and filtering can be done in two ways:

• GUI based by the settings in the TCB.state combined with the breakpoint windows.

• Command line based by the TCB and Break.Set commands.

The triggering of the trace is controlled by the TraceOn and TraceOFF option of the break.set command. The
trace trigger is non intrusive and therefore each break action use one onchip breakpoint resource. The
number of available onchip breakpoints is implementation dependent and could be found in the instruction
and data breakpoint status register.

Onchip trace filtering by data, CPU operation mode and, in case of multi thread or core devices, by CPU and
tc number could be done with the TCB commands. In the example below, the TCB broadcasts only trace
information for hardware thread 1 in user mode.

Break.Set 0x4dd84 /Program /TraceON ; start broadcasting the
; instruction flow after
; the instruction at the
; address 0x4dd84 was executed
; by the hardware thread 3

Break.Set 0x4ffa8 /Program /TraceOFF ; stop broadcasting the
; instruction flow after
; the instruction at the
; address 0x4dd84 was executed
; by the hardware thread 3

TCB.TRACETC TC1 ; broadcast trace information
; only if TC1 execute
; instructions.

TCB.TRACEKE OFF ; switch off broadcasting in
; kernel mode.

TCB.TRACESV OFF ; switch off broadcasting in
; supervisor mode.

TCB.TRACEEX OFF ; switch off broadcasting in
; exception mode.
MIPS Debugger and Trace | 59©1989-2024 Lauterbach

In case of combined trace trigger and CPU operation mode filtering, the operation mode filtering has no
effect!

A description of all TCB commands can be found in “General Commands Reference Guide T”
(general_ref_t.pdf).
MIPS Debugger and Trace | 60©1989-2024 Lauterbach

Configuring your FPGA

Before you can start debugging, your FPGA has to contain a valid design. The design has to include a Mips
core, for which JTAG debugging is enabled.

You can use the debugger to configure your FPGA, if you provide a suitable BIT file.

Using JTAG for FPGA configuration

Dependant on the above mentioned conditions FPGA configuration is possible with a TRACE32 command.

Be sure to have correct multicore settings before configuring the FPGA
(The settings are identical when connecting to the Mips core), otherwise
the configuration will fail.

Also ensure that the debugger is in SYStem.down mode, before
configuring your FPGA. Configuring the FPGA will break the
communication link between the debugger and the Mips core, if your
debugger is in SYStem.Up mode.

It is recommended to configure the target with the config option “JTAG
dedicated” i.e. not using a mode where JTAG overrides other
configurations like MSI, SPI etc. In the latter case configuration via
TRACE32 may fail silently (no error message), though configuration via
Xilinx Impact works.
MIPS Debugger and Trace | 61©1989-2024 Lauterbach

EJTAG Connector

Mechanical Description of the 14-pin EJTAG Connector

This connector is defined by MIPS in the EJTAG specification revision 2.5 and we recommend this
connector for all future designs. Our debugger is supplied with this connector:

This connector does not provide trace signals, since the new EJTAG specification revision 2.5 does not yet
include a trace definition. The trace feature will currently be redefined by MIPS. We expect that an additional
connector will be specified for the trace signals.

This is a standard 14 pin double row connector (pin-to-pin spacing: 0.100 in.).

On target side a common pin strip with or without housing, for example SAMTEC: TSW-107-23-L-D can be
used. Pin12 should be removed to provide mechanical keying.

Signal Pin Pin Signal
TRST- 1 2 GND

TDI 3 4 GND
TDO 5 6 GND
TMS 7 8 GND
TCK 9 10 GND
RST- 11 - Key
DINT 13 14 VIO (Reference Voltage)
MIPS Debugger and Trace | 62©1989-2024 Lauterbach

Electrical Description of the 14-pin EJTAG Connector

• The input and output signals are connected to a supply translating transceiver (74ALVC164245).
Therefore the ICD can work in an voltage range of (1.5 V) 1.8 … 3.3 V (3.6 V). Please note that a
5 V supply environment is not supported! This would cause damage on the ICD. Please contact
us for alternate solutions if you need to work with 5V.

• VIO is used as a sense line for the target voltage. It is also used as supply voltage for the supply
translating transceiver of the ICD interface to make an adaptation to the target voltage
(1.5 V) 1.8 … 3.3 V (3.6 V).

• nTRST, TDI, TMS, TCK are driven by the supply translating transceiver. In normal operation
mode this driver is enabled, but it can be disabled to give another tool access to the EJTAG port.
In environments where multiple tools can access the EJTAG port, it is absolutely required that
there is a pull down resistor at TCK. This is to ensure that TCK is low during a hand-over
between different tools.

• TDO is an ICD input. It is connected to the supply translating transceiver.

• nRST is used by the debugger to reset the target CPU or to detect a reset on the target. It is
driven by an open collector buffer. A 47 k pull-up resistor is included in the ICD connector. The
debugger will only assert a pulse on nRST when the SYStem.UP, the SYStem.Mode Go or the
SYStem.RESetOUT command is executed. If it is ensured that the MIPS is able to enter debug
mode every time (no hang-up condition), the nRST line is optional.

• DINT is driven by the supply translating transceiver. This line is optional. It allows to halt the
program execution by an external trigger signal.

• key pin is blocked to avoid wrong connection

There is an additional plug in the connector on the debug cable to the debug interface. This signal is tristated
if the EJTAG connector is tristated by the debugger and it is pulled low otherwise. This signal is normally not
required, but can be used to detect the tristate state if more than one debug tools are connected to the same
EJTAG port.
MIPS Debugger and Trace | 63©1989-2024 Lauterbach

Mechanical Description of the 24-pin EJTAG Connector

This connector is used on IDT boards. It provides the debugger signals plus the signals required for the
trace. This debug interface is based on an older MIPS EJTAG specification revision 1.5.3.. This interface is
not available for ICD-MIPS64.

An adapter is available if only the debugger should be connected. If debugger and trace is used, the
debugger can be plugged on the trace probe. The trace probe uses this connector type.

The connector on the tool side is the 1,27 mm pitch sockets from
SAMTEC: SFMC-112-T1-S-D

As an appropriate connector on the target side can for example be used
SAMTEC: FTSH-112-… (LIF) or FW-112-… (LIF) or DIS5-112-…

Signal Pin Pin Signal
TRST- 1 2 GND

TDI/DINT 3 4 GND
TDO/TPC 5 6 GND

TMS 7 8 GND
TCK 9 10 GND
RST- 11 12 GND

PCST[0] 13 14 GND
PCST[1] 15 16 GND
PCST[2] 17 18 GND

DCLK 19 20 GND
DEBUGBOOT 21 22 GND

VIO (Reference Voltage) 23 24 GND
MIPS Debugger and Trace | 64©1989-2024 Lauterbach

Electrical Description of the 24-pin EJTAG Connector

• The input and output signals are connected to a supply translating transceiver (74ALVC164245).
Therefore the ICD can work in an voltage range of (1.5 V) 1.8 … 3.3 V (3.6 V). Please note that a
5 V supply environment is not supported! This would cause damage on the ICD. Please contact
us for alternate solutions if you need to work with 5 V.

• VIO is used as a sense line for the target voltage. It is also used as supply voltage for the supply
translating transceiver of the ICD interface to make an adaptation to the target voltage
(1.5 V) 1.8 … 3.3 V (3.6 V).

• nTRST, TDI/DINT, TMS, TCK are driven by the supply translating transceiver. In normal
operation mode this driver is enabled, but it can be disabled to give another tool access to the
EJTAG port. In environments where multiple tools can access the EJTAG port, it is absolutely
required that there is a pull down resistor at TCK. This is to ensure that TCK is low during a hand-
over between different tools.

• TDO/TPC is an ICD input. It is connected to the supply translating transceiver.

• nRST is used by the debugger to reset the target CPU or to detect a reset on the target. It is
driven by an open collector buffer. A 47 k pull-up resistor is included in the ICD connector. The
debugger will only assert a pulse on nRST when the SYStem.UP, the SYStem.Mode Go or the
SYStem.RESetOUT command is executed. If it is ensured that the MIPS is able to enter debug
mode every time (no hang-up condition), the nRST line is optional.

• Debugboot is driven by the supply translating transceiver. This line is optional. This line is
currently not used, but will probably be used in the future for additional features.

• The signals DCLK, PCST0, PCST1, PCST2 are only connected to the trace tool if a trace tool is
used. Otherwise they are not required. TDO/TPC is used by the trace and the debugger (see
above).

There is an additional plug in the connector on the debug cable to the debug interface. This signal is tristated
if the EJTAG connector is tristated by the debugger and it is pulled low otherwise. This signal is normally not
required, but can be used to detect the tristate state if more than one debug tools are connected to the same
EJTAG port.
MIPS Debugger and Trace | 65©1989-2024 Lauterbach

Recommended JTAG Circuit on Target

MIPS recommends to configure the electrical JTAG connection as shown in the schematic below.
LAUTERBACH’s JTAG adapters are conform to this proposal.

Referring to MIPS specification, the recommended pull-up/pull-down resistor is 1 k, the recommended
serial resistor is 33 .

On some evaluation boards, there is a pull-up resistor on VIO. Since the
LAUTERBACH JTAG adapter is supplied by target’s VIO, a pull-up resistor is not
allowed. In such a case, this resistor has to be bridged.
MIPS Debugger and Trace | 66©1989-2024 Lauterbach

Technical Data Debugger

Operation Voltage

Mechanical Dimensions

Adapter OrderNo Voltage Range

JTAG Debugger for MIPS32 (ICD) LA-7760 1.8 .. 3.6 V
JTAG Debugger for MIPS64 (ICD) LA-7761 1.8 .. 3.6 V

Dimension

LA-7760 EJTAG-MIPS32

TOP VIEW

CABLE

2288

12
88

92
5

11
13

27
5

43
3

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH
MIPS Debugger and Trace | 67©1989-2024 Lauterbach

LA-7761 EJTAG-MIPS64

Dimension

TOP VIEW

CABLE

2288

12
88

92
5

11
13

ALL DIMENSIONS IN 1/1000 INCH
MIPS Debugger and Trace | 68©1989-2024 Lauterbach

Technical Data Trace

Operation Voltage

Adapter OrderNo Voltage Range

Preproc. for MIPS32 AUTOFOCUS 600 MIPI LA-3906 1.8 .. 3.3 V
Preprocessor for MIPS flex cable LA-7894 0.9 .. 3.3 V
MIPS Debugger and Trace | 69©1989-2024 Lauterbach

Mechanical Dimensions

Dimension

LA-3906 PP-MIPS32-AF-2

LA-7894 PP-MIPS

12
00

47
5

1400

400

PIN1

15
25

24
75

5700

TOP VIEW CABLE

ALL DIMENSIONS IN 1/1000 INCH

SIDE VIEW

LAU
TER

BAC
H

TOP VIEW

SIDE VIEW

PIN 1

5700
1400

400

15
25

24
75

CABLE

ALL DIMENSIONS IN 1/1000 INCH
275

67
5

47
5

MIPS Debugger and Trace | 70©1989-2024 Lauterbach

MIPS Debugger and Trace | 71©1989-2024 Lauterbach

	MIPS Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	WARNING
	Quick Start of the EJTAG Debugger
	Troubleshooting
	SYStem.Up Errors

	FAQ
	CPU specific Implementations
	Breakpoints
	Instruction Breakpoints (Software Breakpoints)
	Instruction Breakpoints in ROM (On-chip Breakpoints)
	Breakpoints on Read/Write Access to Data(On-chip Breakpoints)
	Example for Standard Breakpoints

	Trigger
	Runtime Measurement
	Register
	Memory Classes
	SPR Memory Overlay

	MIPS specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select the used CPU
	SYStem.DETECT.CORENUMBER Detect core number
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.Address32 Define address format display
	SYStem.Option.DCFREEZE Freeze data cache
	SYStem.Option.DCREAD Use DCACHE for data read
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.Endianness Define endianness of target memory
	SYStem.Option.EnReset Control target system reset
	SYStem.Option.EnTRST Control TAP reset
	SYStem.Option.HoldReset Set system reset hold time
	SYStem.Option.FlowTrace Define operating mode of RISC TRACE
	SYStem.Option.FREEZE Freeze system timer in stop mode
	SYStem.Option.ICFLUSH Flush of instruction cache during step and go
	SYStem.Option.ICREAD Use ICACHE for program read
	SYStem.Option.IMASKASM Disable interrupts while ASM single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.KEYCODE Define key code to unsecure processor
	SYStem.Option.MCBreaksynch Select break synchronization method
	SYStem.Option.MMUPhysLogMemaccess Memory access preferences
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MonBase Base address for monitor download routine
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PROTECTION Sends an unsecure sequence to the core
	SYStem.Option.ResBreak Halt the core after reset
	SYStem.Option.STEPONCHIP Use onchip breakpoints for ASM stepping
	SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping
	SYStem.Option.TURBO Enable fast download
	SYStem.Option.UnProtect Unprotect memory addresses
	SYStem.Option.WaitReset Set system reset wait time
	SYStem.Option.WATCHDOG Disable hardware watchdogs
	SYStem.RESetOut Assert nRESET/nSRST on JTAG connector

	On-chip Breakpoints
	TrOnchip.AddressMask Define an address mask
	TrOnchip.CORERESET Halt at reset vector after core reset
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.StepVector Halt on exception vector during step
	TrOnchip.UseWatch Use watchpoints
	TrOnchip.state Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.FORMAT Define MMU table structure
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set MMU registers
	MMU.TLB.Set Set MMU registers
	MMU.TLBSET Set MMU registers

	TCB
	TCB Control

	Configuring your FPGA
	Using JTAG for FPGA configuration

	EJTAG Connector
	Mechanical Description of the 14-pin EJTAG Connector
	Electrical Description of the 14-pin EJTAG Connector
	Mechanical Description of the 24-pin EJTAG Connector
	Electrical Description of the 24-pin EJTAG Connector
	Recommended JTAG Circuit on Target

	Technical Data Debugger
	Operation Voltage
	Mechanical Dimensions

	Technical Data Trace
	Operation Voltage
	Mechanical Dimensions

