LAUTERBACH A

e TPU Debugger and Trace

eTPU Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
=0 1 o0 r—
eTPU Debugger and TracCeiccciiiiiirisssmmmmmsnnsinssssssssssssssssss s ssssssssssssssssss s s s snsssssssssnnnnns 1

L (oo L1 T o) o 5

Brief Overview of Documents for New Users 5

Demo and Start-up Scripts 5
L= T 1 ' 7
Target Design Requirement/Recommendationsccccccmivsmnnssminessnnsssssssssnsesnnnes 8
General 8

Quick Start eTPU DeDUGQErccciiiiriimririninss s ses s s ssss s smssss s smssssssssassanes 9

QLo 101 o L= X= 0 T Tor 1] 3T . 10

O 10
ConfiguIration ... 11
System Overview 11

eTPU Debugger Specific Implementationsccocvciiriecmmninssssssss s 13
eTPU operating modes 13
Debugging the eTPU 13
Breakpoints and Watchpoints 14
Software Breakpoints 14

On-chip Breakpoints/Watchpoints 14
Breakpoints/Watchpoints on Service Request or channel register write 14

Memory Classes 15
Address Spaces and Addressing Modes 15

CPU specific SYStem Commandscccccccemmimiiiiiiiiiisssssccssss e ssssssssssssssssssssssessesssssssnnnas 16
SYStem.CONFIG Configure debugger according to target topology 16
SYStem.CONFIG.CORE Assign core to TRACE32 instance 16
SYStem.CPU Select the CPU type 17
SYStem.JtagClock Select the debug clock frequency 17
SYStem.LOCK Lock and tristate the debug port 17
©1989-2024 Lauterbach eTPU Debugger and Trace 2

SYStem.MemAccess
SYStem.Mode

Select run-time memory access method
Select operation mode

18
19
19

SYStem.Option.ByteWise
SYStem.Option.DUALPORT
SYStem.Option.HaltTwinEngine

Use byte addressing for eTPU memory space
Implicitly use run-time memory access
Halt twin engine eTPU

CPU specific SYStem ComMmaNdSccccccceemmmmmiimiissssssssssmmssnnsnsssssssssssssmsssssssssssssssssssssnnnas
SYStem.Option.FreezeCLKS Freeze eTPU clocks if eTPU halted
SYStem.Option.FreezePINS Freeze pins if eTPU is halted

NEXUS specific SYStem Settings ... s ssennas

NEXUS.BTM Control for branch trace messages 22
NEXUS.CHAN Enable CHAN register write trace messages 22
NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client 22
NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing 23
NEXUS.DTM Control for data trace messages 23
NEXUS.OFF Switch the NEXUS trace port off 23
NEXUS.ON Switch the NEXUS trace port on 23
NEXUS.OTM Enable ownership trace messages 24
NEXUS.PortMode Define MCKO frequency 24
NEXUS.PortSize Define the width of MDO 24
NEXUS.PTCE Program trace enable per channel 25
NEXUS.Register Display NEXUS trace control registers 25
NEXUS.RESet Reset NEXUS trace port settings 25
NEXUS.STALL Stall the program execution 25
NEXUS.state Display NEXUS port configuration window 26
CPU specific TrOnchip Commandscccceeeeiiiiiicssscccrmmrrirssssssssssssssssssssssssssessssssssssssnnes 27
TrOnchip.BusTrigger Trigger bus on debug event 27
TrOnchip.CBI Halt on client breakpoint input 27
TrOnchip.CBT Select client breakpoint timing condition 28
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 28
TrOnchip.EVTI Use EVTI signal to stop the program execution 29
TrOnchip.EXTernal External signals 29
TrOnchip.HTWIN Halt on twin engine breakpoint 29
TrOnchip.RESet Reset on-chip trigger settings 30
TrOnchip.SCM Select channels for that breakpoints are effective 30
TrOnchip.Set Break on debug event 30
TrOnchip.TEnable Set filter for the trace 31
TrOnchip. TOFF Switch the sampling to the trace to OFF 31
TrOnchip.TON Switch the sampling to the trace to “ON” 32
TrOnchip.TraceTrigger Trigger trace on debug event 32
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 33
TrOnchip.state Display on-chip trigger window 33
CompleXx Trigger UNitcccceiiiiiimrimnis s ssss s s sams s sessssssss s e samssnnnas 34
©1989-2024 Lauterbach eTPU Debugger and Trace 3

Usage 34

Complex Trigger Examples for eTPU 35
Keywords for the Complex Trigger Unit 36
B0 I € 01T T 7= o3 o 37
Mechanical Description 37
JTAG Connector MPC55XX (OnCE) 37
Connector for COLDFIRE 37

©1989-2024 Lauterbach eTPU Debugger and Trace | 4

eTPU Debugger and Trace

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features of TRACE32-ICD for the eTPU core.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACEB32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known eTPU based hardware.

©1989-2024 Lauterbach eTPU Debuggerand Trace | 5

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/etpu/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach eTPU Debugger and Trace | 6

Warning

Signal Level
MPC55XX The debugger drives the output pins of the JTAG/OnCE connector with the same
level as detected on the VCCS pin. If the 10 pins of the processor are 3.3 V
compatible then the VCCS should be connected to 3.3 V.
ESD Protection
WARNING: To prevent debugger and target from damage it is recommended to connect or

disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o & e

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACES32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

eTPU Debugger and Trace |

Target Design Requirement/Recommendations

General

. Locate the JTAG/ONCE/Nexus connector as close as possible to the processor to minimize the
capacitive influence of the trace length and cross coupling of noise onto the BDM signals.

. Ensure that the debugger signal (HRESET) is connected directly to the HRESET of the
processor. This will provide the ability for the debugger to drive and sense the status of HRESET.
The target design should only drive the HRESET with open collector, open drain. HRESET
should not be tied to PORESET, because the debugger drives the HRESET and DSCK to enable
BDM operation.

©1989-2024 Lauterbach eTPU Debugger and Trace | 8

Quick Start eTPU Debugger

Starting up the debugger is done as follows.

NOTE: Debugger for €200 (or ColdFire) has to be started and configured first.
1. Set the CPU type to load the CPU specific settings.:

SYStem.CPU MPC5676R

2. Configure select target core. See SYStem.CONFIG.CORE for details.

SYStem.CONFIG.CORE <core_index>. 1.

3. Start debug session by attaching to the eTPU:

SYStem.Mode.Attach

4, Break eTPU and initialize program and data memory (optional).

Break

Data.Set P:0x0000--0x0BFF %Long OxXFFFFFFFF
Data.Set D:0x0000--0x02FF %Long OxDEADDEAD
Go

5. Load the debug symbols. The program code will be usually loaded by the master core
(Coldfire/PowerPC)

Data.LOAD.El1f app.elf /NoCODE /NoRegister

6. Set up breakpoint(s) and run master CPU afterwards:

Break.Set func_increment /Onchip

7. Or set a debug event on a service request:

TrOnchip.Set HSR ON

©1989-2024 Lauterbach eTPU Debugger and Trace

Troubleshooting

No information available.

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach eTPU Debugger and Trace | 10

https://support.lauterbach.com/kb

Configuration

System Overview

SWITCH PC or

Workstation

55xx
100 MBit Ethernet

MPC eTPU

A

eTPU

L 7

POWER TRACE ETHERNET

Ethernet
Cable

[) LAuTERBACH

POWER TRACE / ETHERNET

L o Desktop
Power Supply

Target

NEXUS
Connector

NEXUS Adapter

©1989-2024 Lauterbach

eTPU Debugger and Trace

11

SWITCH

1 GBit Ethernet

PC or
Workstation

MPC
55xx

eTPU
A

eTPU

Ethernet
Cable

POWER DEBUG PRO

[e —

POWER TRACE I
LAUTERBACH

[

—

P p—

POWER DEBUG PRO
POWER TRACE Il

Desktop

Power Supply

S

NEXUS Adapter

Target

NEXUS
Connector

R—

©1989-2024 Lauterbach

eTPU Debugger and Trace

12

eTPU Debugger Specific Inplementations

eTPU operating modes

The eTPU is event driven. When no service request is pending, the eTPU is in IDLE mode. When the eTPU
is halted by the debugger (command Break) while it is not processing a service request, the debugger will
display IDLE in the status line.

When IDLE, the register set is invalid and will not be displayed in the Register.view window. There is also no
valid MPC (microprogram counter, i.e. instruction pointer) in this state. Therefore Data.List will fail, but
Data.List <address> or Data.List <function/label> can be always used.

Debugging the eTPU

Before the eTPU debug session can be started, the main core (€200 or ColdFire) has to initialize the eTPUs
i.e. load the eTPU program and initiate a host service request. Make sure that the eTPUs are not halted for
debugging, because this would prevent the main core from accessing the eTPUs.
This is the recommended method to start an eTPU debug session:
1. Program main application to FLASH using main core (if not already programmed)

Reset processor and begin debug session on main core (SYStem.Up)

2
3. Begin eTPU debug session using SYStem.Mode.Attach
4

Load debug symbols for all main and eTPU cores (Data.LOAD.EIf). Note: The eTPUs have
their own debug symbols. The source file of the main core does notinclude debug symbols of the
eTPUs.

5. To debug a service request or function, set a Breakpoint or enable a debug event on a service
request. When another eTPU uses the same SCM, i is recommended to enable the “halt on twin
engine” debug event on the other eTPU. See TrOnchip.HTWIN.

6. Make sure that all eTPU debuggers are in state running (green filed displaying “running” in the
status bar)

7. Run application on main core (Go).

8. The main core will initialize the eTPUs. The eTPU should halt for the debugger when the set
breakpoint or service request’s debug event occurs.

While an eTPU is halted for the debugger, it will not process any pending service requests. Some target
applications wait for a response from an eTPU and in some cases it was seen that a halted eTPU caused a
processor reset (e.g. by watchdog) in this case. Make sure that the main core’s application can handle a
halted eTPU e.g. by deactivating the watchdog.

On processors with eTPU2, the eTPU watchdog must be disabled for debugging.

©1989-2024 Lauterbach eTPU Debugger and Trace | 13

Breakpoints and Watchpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

The debugger will use software breakpoints as default. The debugger supports an unlimited number of
software breakpoints.When using software breakpoints, MISC has to be disabled.

On a chip with more than one eTPU, the SCM (shared code memory) is only visible if both eTPUs
connected to the same SCM (A and B) are stopped. Therefore, using software breakpoints is not supported
in all cases, esp. if special break conditions (CBI, HTWIN) are enabled.

In systems with two eTPUs connected to the same SCM, software breakpoints will be visible for both cores.
If both eTPUs run the same code, on-chip breakpoints should be used.

On-chip Breakpoints/Watchpoints

An eTPU has two on-chip break-/watchpoints. They can be used to

. generate a debug event (core halts for debugger)
. generate a watchpoint hit trace message
J enable/disable trace message generation when the event occurs.

The on-chip break-/watchpoints can be configured for
J instruction address comparison (instruction break/watchpoint)

J data address comparison (optional with data value comparison)

In addition, the break/watchpoints can be enabled for one channel, all channels or a certain set of channels.
See TrOnchip.SCM for details.

Breakpoints/Watchpoints on Service Request or channel register write

The eTPU supports also debug events on service request starts and on channel register writes. See
TrOnchip.Set for details. Like the on-chip break/watchpoints, they can be can be enabled for one channel,
all channels or a certain set of channels.

The debugger uses watchpoints on service request starts and on channel register writes to generate a
trigger signal (TrOnchip.BusTrigger) or to stop the trace recording (TrOnchip.TraceTrigger).

©1989-2024 Lauterbach eTPU Debugger and Trace | 14

Memory Classes

The following memory classes are available:

Memory Class Description

P Program Memory (SCM)

D Data Memory (SPRAM)

H Memory space of the main core (HOST)

Address Spaces and Addressing Modes

The eTPU cores have an address space which is independent of the main core (€200 or ColdFire). Also
program and data address space is separated (Harvard architecture).

In contrast to the main core, which uses byte addressing, the eTPU uses addresses its memory in 32-bit
words. The following table shows some examples:

eTPU address main core address
eTPU_A/B SCM MPC5XXX: A:0xC3FD0000
P:0x0000 ColdFire: IPSBAR + 0x1E0000
eTPU_A/B SCM MPC5XXX: A:0xC3FD0004
P:0x0001 ColdFire: IPSBAR + 0x1E00004
eTPU_C SCM MPC5XXX: A:0xC3E30000
P:0x0000

ETPU_A/B SPRAM MPC5XXX: A:0xC3FC8000
D:0x0000 ColdFire: IPSBAR + 0x1D8000
ETPU_A/B SPRAM MPC5XXX: A:0xC3FC8004
D:0x0001 ColdFire: IPSBAR + 0x1D8004
ETPU_C SPRAM MPC5XXX: A:0xC3E28000
D:0x0000

If two eTPUs share one SCM (e.g. eTPU_a and eTPU_B), SCM is only accessible if both eTPUs are
stopped.

©1989-2024 Lauterbach eTPU Debugger and Trace | 15

CPU specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <mode>
SYStem.MultiCore <mode> (deprecated)

For the description of SYStem.CONFIG commands, refer to the debugger manual for the main core in
SYStem.CONFIG in “Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace”
(debugger_mpc5500.pdf).

This setting is only available for CPUs with JTAG as debug port (not available for BDM).

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG CORE <core_index> [<chip_index>]
SYStem.MutiCore.Core <core_index> (deprecated)

This command is used to assign a specific core to a TRACE32 instance. Please make sure that the host
debugger's CPU selection is appropriate before this command is called. If this command is called while a
CPU without eTPU is selected, the command will fail. The valid parameters for <core-id> are given by
debugger implementation:

Architecture / eTPU Core-ID

MPC5XXX/SPC56XX 2 (eTPU_A), 3 (eTPU_B)

with one e200 core

MPC5XXX with two €200 cores 3 (eTPU_A), 4 (eTPU_B), 5 (eTPU_C)
ColdFire 2

©1989-2024 Lauterbach eTPU Debugger and Trace | 16

SYStem.CPU Select the CPU type

Format: SYStem.CPU <cpu>

<cpu>: MPC5554 | MCF5232 | ...

Selects the CPU type.

SYStem.JtagClock Select the debug clock frequency

Format: SYStem.JtagClock <frequency>
SYStem.BdmClock <frequency> (deprecated)

<frequency>: 1 000 000. ... 50 000 000. (Default 4 MHz)

If possible, use the same JTAG clock frequency for all cores debugged

NOTE: *
with the same debug interface.
. MPC55XX: the max. allowed JTAG clock frequency is 1/4th of the core

frequency.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach eTPU Debugger and Trace | 17

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>

<mode>: Denied | Enable | NEXUS | StopAndGo

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus.

The run-time memory access has to be activated for each window by using the memory class E: (e.g.
Data.dump E:0x100) or by using the format option %E (e.g. Var.View %E var1). It is also possible to activate
this non-intrusive memory access for all memory ranges displayed on the TRACES32 screen by setting
SYStem.Option.DUALPORT ON.

Denied Memory access is disabled while the CPU is executing code.

Enable The debugger performs memory accesses via a dedicated CPU

CPU (deprecated) interface.

NEXUS Memory access is done via the NEXUS interface. Available for
MPC55XX/MPC56XX family, for both the NEXUS and JTAG-only
debugger.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.

©1989-2024 Lauterbach eTPU Debugger and Trace | 18

SYStem.Mode Select operation mode

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)

<mode>: Down | Attach

Select target reset mode.

Down Disables the Debugger. The state of the CPU remains unchanged.
Attach Establishes connection to the eTPU.
NoDebug Not applicable for eTPU.
Go
StandBy
Up
SYStem.Option.ByteWise Use byte addressing for eTPU memory space
Format: SYStem.Option.ByteWise [ON | OFF]

The eTPU addresses data and code memory in 32-bit (words). In the default setting (OFF), the debugger
addresses the eTPU memories also in 32-bit words.

There are however instructions, which can modify partitions of a 32-bit word (byte and 24-bit operations). In
this case, it might be more convenient to address the eTPU memories in byte units.

Set this option to ON to configure the debugger to use byte addressing. This setting should only be changed
before the debug session begins.

©1989-2024 Lauterbach eTPU Debugger and Trace | 19

SYStem.Option.DUALPORT Implicitly use run-time memory access

Format: SYStem.Option.DUALPORT [ON | OFF]

Forces all list, dump and view windows to use the memory class E: (e.g. Data.dump E:0x100) or to use the
format option %E (e.g. Var.View %E var1) without being specified. Use this option if you want all windows to
be updated while the processor is executing code. This setting has no effect if
SYStem.Option.MemAccess is disabled.

SYStem.Option.HaltTwinEngine Halt twin engine eTPU

[build 138991 - DVD 02/2022]

Format: SYStem.Option.HaltTwinEngine [ON | OFF]

This option is intended for the use case that only one eTPU is being debugged and the debugged eTPU is in
dual-engine configuration (eTPUs share same program and data memory).

Use this option to halt the eTPU twin engine when the debugged eTPU halts. This option is required to
access the eTPU program memory, as it is only visible when both eTPU engines of a dual-engine
configuration are halted.

If both eTPU engines are debugged, use TrOnchip.HTWIN to halt an engine when its twin engine halts.

©1989-2024 Lauterbach eTPU Debugger and Trace | 20

CPU specific SYStem Commands

SYStem.Option.FreezeCLKS Freeze eTPU clocks if eTPU halted

Format: SYStem.Option.FreezeCLKS [ON | OFF]

Stop TCR clocks. Controls whether the TCR clocks from the e TPU stop running when the eTPU is halted for
the debugger.

SYStem.Option.FreezePINS Freeze pins if eTPU is halted

Format: SYStem.Option.FreezePins [ON | OFF]

Stop pins in debug mode. Controls whether the eTPU pins are sampled when the eTPU is halted for the
debugger. When set to ON, the pins are not sampled during debug mode. The pins are sampled during
normal single steps.

©1989-2024 Lauterbach eTPU Debugger and Trace | 21

NEXUS specific SYStem Settings

Note: The following processors do not include a NEXUS trace module (tracing not possible):
J MPC563xM, SPC563M (Monaco)
J MPC564xA, SPC564A (Andorra)

J eTPU in ColdFire processors
NEXUS.BTM Control for branch trace messages
Format: NEXUS.BTM [ON | OFF]

SYStem.Option.BTM [ON | OFF] (deprecated)

Control for the NEXUS branch trace messages.

NEXUS.CHAN Enable CHAN register write trace messages

Format: NEXUS.CHAN [ON | OFF]
SYStem.Option.CHAN [ON | OFF] (deprecated)

Control for the NEXUS channel register write trace messages. CHAN register write tracing requires the
channel being serviced to have program trace enabled.

NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client

Format: NEXUS.CLIENT1.MODE [OFF | Read | Write | ReadWrite]

Sets the data trace mode of the selected trace client. Select the trace client using
NEXUS.CLIENT<x>.SELECT before setting the trace mode.

©1989-2024 Lauterbach eTPU Debugger and Trace | 22

NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing

Format: NEXUS.CLIENT1.SELECT <client>

<client>: OFF | CDC | CDC2

Select the eTPU Coherent Dual-Parameter Controller’s trace client for data tracing. CDC belongs to eTPU_A
and aTPU_B, CDC2 belongs to eTPU_C and eTPU_D.

NEXUS.DTM Control for data trace messages

Format: NEXUS.DTM [OFF | Read | Write | ReadWrite]
SYStem.Option.DTM [OFF | Read | Write | ReadWrite] (deprecated)

OFF (default) No data trace messages are output by NEXUS.

Read NEXUS outputs data trace messages for read accesses.

Write NEXUS outputs data trace messages for write accesses.

ReadWrite NEXUS outputs data trace messages for read and write accesses.
NEXUS.OFF Switch the NEXUS trace port off

Format: NEXUS.OFF

If the debugger is used stand-alone, the trace port is disabled by the debugger.

NEXUS.ON Switch the NEXUS trace port on

Format: NEXUS.ON

The NEXUS trace port is switched on. All trace registers are configured by debugger.

©1989-2024 Lauterbach eTPU Debugger and Trace | 23

NEXUS.OTM Enable ownership trace messages

Format: NEXUS.OTM [ON | OFF]
SYStem.Option.OTM [ON | OFF] (deprecated)

Enables ownership trace messaging. On the eTPU, an OTM is generated each time a channel starts or
ends and contains (amongst others) channel number and HSR ID. The information of OTMs is displayed in
the flow trace and also in trace chart views (e.g. Trace.CHART.TASKSRV)

NEXUS.PortMode Define MCKO frequency

Format: NEXUS.PortMode <divider>
SYStem.Option.MCKO <dlivider> (deprecated)

<divider>: 1111/211/311/411/8

Set the frequency of MCKO relative to the core frequency. The port mode setting must be the same for all
cores (€200 and eTPU).

NEXUS.PortSize Define the width of MDO

Format: NEXUS.PortSize <port_size>
SYStem.Option.NEXUS <port_size> (deprecated)

<port_size>: MDO2 | MDO4 | MDO8 | MDO12 | MDO16

The width of MDO can only be set if the SYStem mode is DOWN. The port size setting must be the same for
all cores (€200 and eTPU).

©1989-2024 Lauterbach eTPU Debugger and Trace | 24

NEXUS.PTCE Program trace enable per channel

Format: NEXUS.PTCE <value>
SYStem.Option.PTCE <value> (deprecated)

<value>: bit mask [ch31, ch30, ch29 ... ch1, ch0]

Enables program trace for channels, which have the regarding bit of the value set to one. e.g. 0x00000009:
enable program trace for channel 0 and 4.

NEXUS.Register Display NEXUS trace control registers

Format: NEXUS.Register

This command opens a window which shows the NEXUS configuration and status registers of NPC, core
and other trace clients.

NEXUS.RESet Reset NEXUS trace port settings

Format: NEXUS.RESet

Resets NEXUS trace port settings to default settings.

NEXUS.STALL Stall the program execution

Format: NEXUS.STALL [ON | OFF]
SYStem.Option.STALL [ON | OFF] (deprecated)

Stall the program execution whenever the on-chip NEXUS-FIFO threatens to overflow. If this option is
enabled, the NEXUS port controller will stop the core’s execution pipeline until all messaged in the on-chip
NEXUS FIFO are sent. Enabling this command will affect (delay) the instruction execution timing of the CPU.

This system option, which is a representation of a feature of the processor, will remarkably reduce the
amount FIFO OVERFLOW errors, but cannot avoid them completely.

©1989-2024 Lauterbach eTPU Debugger and Trace | 25

NEXUS.state Display NEXUS port configuration window

Format: NEXUS.state

Display NEXUS trace configuration window.

©1989-2024 Lauterbach eTPU Debugger and Trace | 26

CPU specific TrOnchip Commands

TrOnchip.BusTrigger Trigger bus on debug event

Format: TrOnchip.BusTrigger <event> [ON | OFF]

<event>: CRW
HSR
LINK
MRL
TDL

Enables or disables events on which a bus trigger signal will be generated.

Enables or disables events on which the trace will be triggered.

CRW Channel register write.

HSR Host service request.

LINK Link service request.

MRL Match recognition request.

TDL Transition detect request.

NOTE: The eTPU implementation for the special events CRW, HSR, LINK, MRL and TDL

allows configuring each event independently to generate a watchpoint or a
breakpoint. It is however not possible to generate a watchpoint and a breakpoint at
the same time for the same event. See TrOnchip.Set for details.

TrOnchip.CBI Halt on client breakpoint input

Format: TrOnchip.CBI [ON | OFF]

Enables or disables the “Halt on Client breakpoint” break condition. If enabled, the eTPU will halt and run
synchronized to the master core (e.g. PowerPC).

©1989-2024 Lauterbach eTPU Debugger and Trace | 27

TrOnchip.CBT Select client breakpoint timing condition

Format: TrOnchip.CBT [ON | OFF]

With this setting you can select how the eTPU should react on a client breakpoint input / twin engine
breakpoint. If this setting is OFF (default), the eTPU will stop on completion of the current micro cycle. If ON,
it will stop on completion of the current instruction thread, i.e. the eTPU only stop when it is in IDLE mode.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range
Break.Set 0x1000--0x17ff /Write ; 1000--17ff
Break.Set 0x1001--0x17ff /Write ; gilives an error message

©1989-2024 Lauterbach eTPU Debugger and Trace | 28

TrOnchip.EVTI Use EVTI signal to stop the program execution

Format: TrOnchip.EVTI [ON | OFF]

Default: OFF. If enabled, the debugger will use the EVTI signal to break program execution instead of
sending a JTAG command. This will speed up reaction time. If the complex trigger unit is used to stop
program execution, it is recommended to enable this option to achieve a shorter delay. If this option is
disabled, the debugger will drive EVTI permanently high.

NOTE: . Only enable this option if the EVTI pin of the processor is connected to
the NEXUS connector.
. This option has no effect if TrOnchip.EVTEN is disabled in the PowerPC

debugger.
TrOnchip.EXTernal External signals
Format: TrOnchip.EXTernal <input>
<input>: OFF
INO
IN1

Enables / selects a external input to trigger the trace. The inputs are locates at the TRACE32 Nexus
Adapter.

TrOnchip.HTWIN Halt on twin engine breakpoint

Format: TrOnchip.HTWIN [ON | OFF]

Enables or disables the “Halt on Twin Engine” breakpoint. If enabled, the eTPU will halt and run
synchronized to the eTPU connected to the same SCM.

©1989-2024 Lauterbach eTPU Debugger and Trace | 29

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets the trigger system to the default state.

TrOnchip.SCM Select channels for that breakpoints are effective

Format: TrOnchip.SCM <value> | <bitmask>

On-chip instruction and data address breakpoints/watchpoints by default match for any service channel. If
the SCM value is different from “Oxxx”, these breakpoints/watchpoints will only be effective for those
channels that match to the used value/bit mask.

<value> | <bitmask> A value or bit mask to specify service channels.
TrOnchip.Set Break on debug event
Format: TrOnchip.Set <event>[ON | OFF]

TrOnchip.Set SCM <value> | <bitmask>

<event>: CRW
HSR
LINK
MRL
TDL

Enables or disables events on which the eTPU core will be halted. If the SCM value is different from “Oxxx”,
then the events will occur only if the current service channel number matches the SCM setting. Please refer
to the eTPU user's manual for more information.

NOTE: The eTPU implementation for the special events CRW, HSR, LINK, MRL and TDL
allows configuring each event independently to generate a watchpoint or a
breakpoint. It is however not possible to generate a watchpoint and a breakpoint at
the same time for the same event.

©1989-2024 Lauterbach eTPU Debugger and Trace | 30

SCM

CRW

HSR

LINK

MRL

TDL

<value> | <bitmask>

Service channel number mask, value or bitmask are allowed.
Channel register write.

Host service request.

Link service request.

Match recognition request.

Transition detect request.

A value or bit mask to specify service channels.

For example Tronchip.Set HSR ON (breakpoint on HSR) cannot be used together with
Tronchip.TraceTrigger HSR ON (trace trigger on HSR) or TrOnchip.BusTrigger HSR ON (bus trigger on
HSR). TraceTrigger and BusTrigger events can be enabled at the same time, because both configure for

watchpoints.

If both breakpoint and watchpoint on a special event are enabled, the resulting action is undefined.

TrOnchip.TEnable

Set filter for the trace

Format: TrOnchip.TEnable <par> (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TOFF

Switch the sampling to the trace to OFF

Format: TrOnchip.TOFF (deprecated)

Refer to the Break.Set command to set trace filters.

©1989-2024 Lauterbach

eTPU Debugger and Trace | 31

TrOnchip.TON Switch the sampling to the trace to “ON”

Format: TrOnchip.TON EXT | Break (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TraceTrigger Trigger trace on debug event

Format: TrOnchip.TraceTrigger <event> [ON | OFF]

<event>: CRW
HSR
LINK
MRL
TDL

Enables or disables events on which the trace will be triggered.

NOTE: The eTPU implementation for the special events CRW, HSR, LINK, MRL and TDL
allows configuring each event independently to generate a watchpoint or a
breakpoint. It is however not possible to generate a watchpoint and a breakpoint at
the same time for the same event. See TrOnchip.Set for details.

CRW Channel register write.
HSR Host service request.
LINK Link service request.

MRL Match recognition request.
TDL Transition detect request.

©1989-2024 Lauterbach eTPU Debugger and Trace | 32

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach eTPU Debugger and Trace | 33

Complex Trigger Unit

Usage

The Complex Trigger Unit for eTPU is only available for the NEXUS class2/3+ debugger. It is only supported
for NEXUS port sizes MDO8, MDO12 and MDO16

The Complex Trigger Unit for eTPU can not be programmed through the Analyzer.Program dialog in the
eTPU debugger. Use the dialog of the PowerPC debugger instead. In order to declare an event for a eTPU
NEXUS message, add the option /<source> to the event.

Example:

OTME task_countl 0x0900 /ETPU1
OTME task_count2 0x0100 /ETPU2

Complex Trigger programs can handle PowerPC and eTPU events at the same time. It is possible to e.g.
start tracing on a PowerPC action and stop at an eTPU action.

NOTE: For all events based on NEXUS trace messages, please make sure that the
corresponding message type in enabled in the eTPU SYStem window, e.g. OTMEs
need owner trace messages enabled. See “NEXUS specific SYStem Settings”
for details.

©1989-2024 Lauterbach eTPU Debugger and Trace | 34

Complex Trigger Examples for eTPU

Here are some examples on eTPU specific complex trigger programs. Please see “Trace Filtering and
Triggering with Debug Events” (debugger_mpc5500.pdf) for a detailed description and more examples on
general complex trigger features.

Example 1: Break if eTPU executed a task a given number of times

; Example ; open a trace programming window to enter
Trace.Program time_watch ; the trigger program for the CTU

; trigger program

OTME task_start 0x0900 /ETPUL ; event on eTPU1l-OTM (task start)
OTME task_end 0x0000 /ETPU1 ; event on eTPUl-OTM (task end)
EVENTCOUNTER taskcount 1000. ; task counter for 1000 events
start:

Counter.Increment taskcount, GOTO intask IF task_start
intask:

GOTO start IF task_end

BREAK.PROGRAM IF taskcount

Go

Example 2: Break if eTPU task execution time exceeds a maximum time

; Example ; open a trace programming window to
; enter
Trace.Program time_watch ; the trigger program for the CTU

; trigger program

OTME task_start 0x0900 /ETPU1l ; event on eTPUl-OTM (task start)
OTME task_end 0x0000 /ETPU1 ; event on eTPUl-OTM (task end)
TIMECOUNTER tasktime 2.400ms ; timer 2.4 ms

start:

GOTO intask if task start

intask:

Counter.Increment tasktime

Counter.Restart tasktime IF task_end

GOTO start IF task_end

BREAK . PROGRAM IF tasktime&&!task end
Go

©1989-2024 Lauterbach eTPU Debugger and Trace | 35

Keywords for the Complex Trigger Unit

Input Event

Meaning

IN

external input event INO or IN1 occurred

CRWM, TCODE_3C, TCODE_CRWM

channel register write message

CSSM, TCODE_3A, TCODE_CSSM

channel start service message

CTEM, TCODE_3B, TCODE_CTEM

channel trace enable message

DRM, TCODE_6, TCODE_DRM

data read message

DRSM, TCODE_E, TCODE_DRSM

data read sync message

DSM, TCODE_0, TCODE_DSM

debug status message

DWM, TCODE_5, TCODE_DWM

data write message

DWSM, TCODE_D, TCODE_DWSM

data write sync message

EM, TCODE_8, TCODE_EM

error message

EM_O, TCODE_8_0

error message 0 - OTM loss

EM_1, TCODE_8_1

error message 1 - BTM loss

EM_2, TCODE_8_2

error message 2 - DTM loss

EM_6, TCODE_8_6

error message 6 - WHM loss

EM_7, TCODE_8_7

error message 7 - BTM/DTM/OTM loss

EM_8, TCODE_8_8

error message 8 - BTM/DTM/OTM/WHM loss

EM_18, TCODE_8_18

error message 18 - DSM loss

EM_19, TCODE_8_19

error message 19 - BTM/DSM/DTM/OTM loss

EM_1A, TCODE_8_1A

error message 1A - BTM/DSM/DTM/OTM/WHM loss

IHM, TCODE_1C, TCODE_IHM

hardware event message

IHSM, TCODE_1D, TCODE_IHSM

hardware event sync message

OTM, TCODE_2, TCODE_OTM

ownership trace message

PTCM, TCODE_21, TCODE_PTCM

repeat branch message

RFM, TCODE_1B, TCODE_RFM

resource full message

WHM, TCODE_F, TCODE_WHM

watchpoint hit message

©1989-2024 Lauterbach

eTPU Debugger and Trace |

36

JTAG Connector

Mechanical Description

JTAG Connector MPC55XX (OnCE)

Signal

TDI

TDO

TCK

(EVTI-)
RESET-
JTAG-VTREF
(RDY-)

This is a standard 14 pin double row (two rows of seven pins) connector (pin-to-pin spacing: 0.100 in.).

Pin

= = fO|N|O|w|—=

wW| =

Signal
GND
GND
GND
N/C
T™MS
GND
JCOMP

(Signals in brackets are not strong necessary for basic debugging, but its recommended to take in

consideration for future designs.)

Connector for COLDFIRE

Signal
N/C
GND
GND
RESET-/RSTI-
1.8-5.0V
GND
PST2
PSTO
DDATA2
DDATAO
N/C
GND
1.8-5.0V

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26

Signal

BKPT-

DSCLK

N/C

DSI

DSO

PST3

PST1

DDATA3

DDATA1

GND

N/C
PSTCLK/CPUCLK
TEA-/TA-/DTACK-

©1989-2024 Lauterbach

eTPU Debugger and Trace

37

	eTPU Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Target Design Requirement/Recommendations
	General

	Quick Start eTPU Debugger
	Troubleshooting
	FAQ
	Configuration
	System Overview

	eTPU Debugger Specific Implementations
	eTPU operating modes
	Debugging the eTPU
	Breakpoints and Watchpoints
	Software Breakpoints
	On-chip Breakpoints/Watchpoints
	Breakpoints/Watchpoints on Service Request or channel register write

	Memory Classes
	Address Spaces and Addressing Modes

	CPU specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CPU Select the CPU type
	SYStem.JtagClock Select the debug clock frequency
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode
	SYStem.Option.ByteWise Use byte addressing for eTPU memory space
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.HaltTwinEngine Halt twin engine eTPU

	CPU specific SYStem Commands
	SYStem.Option.FreezeCLKS Freeze eTPU clocks if eTPU halted
	SYStem.Option.FreezePINS Freeze pins if eTPU is halted

	NEXUS specific SYStem Settings
	NEXUS.BTM Control for branch trace messages
	NEXUS.CHAN Enable CHAN register write trace messages
	NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client
	NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing
	NEXUS.DTM Control for data trace messages
	NEXUS.OFF Switch the NEXUS trace port off
	NEXUS.ON Switch the NEXUS trace port on
	NEXUS.OTM Enable ownership trace messages
	NEXUS.PortMode Define MCKO frequency
	NEXUS.PortSize Define the width of MDO
	NEXUS.PTCE Program trace enable per channel
	NEXUS.Register Display NEXUS trace control registers
	NEXUS.RESet Reset NEXUS trace port settings
	NEXUS.STALL Stall the program execution
	NEXUS.state Display NEXUS port configuration window

	CPU specific TrOnchip Commands
	TrOnchip.BusTrigger Trigger bus on debug event
	TrOnchip.CBI Halt on client breakpoint input
	TrOnchip.CBT Select client breakpoint timing condition
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.EVTI Use EVTI signal to stop the program execution
	TrOnchip.EXTernal External signals
	TrOnchip.HTWIN Halt on twin engine breakpoint
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.SCM Select channels for that breakpoints are effective
	TrOnchip.Set Break on debug event
	TrOnchip.TEnable Set filter for the trace
	TrOnchip.TOFF Switch the sampling to the trace to OFF
	TrOnchip.TON Switch the sampling to the trace to “ON”
	TrOnchip.TraceTrigger Trigger trace on debug event
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.state Display on-chip trigger window

	Complex Trigger Unit
	Usage
	Complex Trigger Examples for eTPU
	Keywords for the Complex Trigger Unit

	JTAG Connector
	Mechanical Description
	JTAG Connector MPC55XX (OnCE)
	Connector for COLDFIRE

