
MANUAL

AVR32 Debugger and NEXUS
Trace

AVR32 Debugger and NEXUS Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 AVR32 ... 

 AVR32 Debugger and NEXUS Trace ... 1

 Warning .. 6

 Introduction ... 7

 Brief Overview of Documents for New Users 7

 Demo and Start-up Scripts 8

 Configuration ... 9

 Debugger 9

 Debugger and NEXUS Trace 10

 Quick Start ... 11

 Troubleshooting .. 13

 Special Nexus Trace Troubleshooting 14

 FAQ ... 14

 AVR Specific Implementations .. 15

 Breakpoints 15

 Software Breakpoints 15

 On-chip Breakpoints for Instructions 15

 On-chip Breakpoints for Data 15

 Example for Breakpoints 16

 Filter and Trigger for the NEXUS Trace 17

 Filter and Trigger provided by the Processor (Simple Trigger Unit - STU) 17

 Trigger 18

 Runtime Measurement 18

 Other Useful Trace Commands 18

 Memory Classes 19

 Programming the On-chip FLASH of the AVR32 20

 Special Hints, Restrictions, and Known Problems 21

 Hints 21

 Restrictions 21
AVR32 Debugger and NEXUS Trace | 2©1989-2024 Lauterbach

 Known Problems 21

 Trace Extension ... 22

 CPU specific SYStem Settings ... 23

 SYStem.CONFIG.state Display target configuration 23

 SYStem.CONFIG Configure debugger according to target topology 24

 SYStem.CPU Select the used CPU 28

 SYStem.JtagClock Define JTAG clock 28

 SYStem.MemAccess Select run-time memory access method 29

 SYStem.Mode Establish the communication with the target 30

 SYStem.LOCK Lock and tristate the debug port 30

 SYStem.Option.IMASKASM Disable interrupts while single stepping 31

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 31

 SYStem.Option.MPU Disable MPU during memory access 31

 SYStem.Option.AUTO Auto JTAG setting 31

 SYStem.EraseChip Erases the Flash and the EEprom 32

 CPU specific TrOnchip Commands ... 33

 TrOnchip.state Display on-chip trigger window 33

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 33

 TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 34

 TrOnchip.RESet Set on-chip trigger to default state 34

 TrOnchip.EVTI Allow the EVTI signal to stop the program execution 34

 TrOnchip.EVTO Output sync signals on EVT0 35

 TrOnchip.EXTernal Generate a trigger for the trace on high pulse on INx 35

 CPU specific Nexus Commands .. 36

 NEXUS.BTM Branch trace mode 36

 NEXUS.DDR Use the DDR transmission 36

 NEXUS.DTM Data trace mode 37

 NEXUS.OFF Switch the NEXUS trace port off 37

 NEXUS.ON Switch the NEXUS trace port on 37

 NEXUS.OTM Ownership trace messages 38

 NEXUS.PinConfig Override the nexus port pin mapping 38

 NEXUS.PortMode Change the nexus port clock frequency 38

 NEXUS.Register Display NEXUS trace control registers 38

 NEXUS.RESet Reset NEXUS trace port settings 39

 NEXUS.Spen<messagetype> Avoid message overrun 39

 NEXUS.SQA Synchronize trace by using full address 39

 NEXUS.state Display NEXUS port configuration window 39

 NEXUS.WTM Watch trace messages 40

 Connectors .. 41

 Debug Connector 41

 Mechanical Description of the 10-pin Debug Cable 41

 NEXUS Connector 42
AVR32 Debugger and NEXUS Trace | 3©1989-2024 Lauterbach

 Mechanical Description of the MICTOR38 Debug Connector 42

 Electrical Description of the 38-pin Mictor Debug Cable 43

 Signal Load and Impedance 43

 Mechanical Dimension 45
AVR32 Debugger and NEXUS Trace | 4©1989-2024 Lauterbach

AVR32 Debugger and NEXUS Trace

Version 06-Jun-2024
AVR32 Debugger and NEXUS Trace | 5©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the debug cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the debug
cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the debug cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the debug cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
AVR32 Debugger and NEXUS Trace | 6©1989-2024 Lauterbach

Introduction

This manual serves as a guideline for debugging AVR32 cores and describes all processor-specific
TRACE32 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• To get started with the most important manuals, use the Welcome to TRACE32! dialog
(WELCOME.view):
AVR32 Debugger and NEXUS Trace | 7©1989-2024 Lauterbach

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/avr32/ subfolder of the system directory of TRACE32.
AVR32 Debugger and NEXUS Trace | 8©1989-2024 Lauterbach

Configuration

Debugger

Example configuration for an AVR32 debugger.
AVR32 Debugger and NEXUS Trace | 9©1989-2024 Lauterbach

Debugger and NEXUS Trace

Example configuration for an AVR32 debugger and NEXUS trace.
AVR32 Debugger and NEXUS Trace | 10©1989-2024 Lauterbach

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt B (BDM debugger) and reset TRACE32.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

This command selects the CPU type.

The AP7 is not supported at the moment, but it will be in the future.

3. Inform the debugger about the cashable address range (FLASH/EEPROM).

This is important to speed up the TRACE32 PowerView GUI responsiveness. The specified address
range will be accessed only once after a break, thus avoiding unnecessary memory accesses.

4. Reset the target and enter debug mode.

This command resets the CPU on the target, enables On-Chip-Debug Mode and issues a breakpoint
right after the reset interrupt routine.The CPU stops executing any instruction, and the user is able to
download and test the code. After this command is executed, it is possible to access memory and
registers.

B::

RESet

SYStem.CPU UC3A0512

NOTE: For a multicore target it is most likely necessary to configure the multicore settings
using SYStem.CONFIG before continuing.

MAP.UpdateOnce p:0x8000--0xffff

SYStem.Mode Up
AVR32 Debugger and NEXUS Trace | 11©1989-2024 Lauterbach

5. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference Guide D” (general_ref_d.pdf).

A typical start sequence of the AVR32 is shown below. This sequence can be written to a PRACTICE script
file (*.cmm, ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

Data.LOAD.Elf userpgm ; ELF specifies the format of the
; symbol and debug information

B:: ; Select the ICD device prompt

RESet ; Reset the TRACE32 software

MAP.UpdateOnce p:0x8000--
0xffff

; Specify the address range for caching

WinCLEAR ; Clear all windows

SYStem.Up ; Reset the target and enter debug mode

Data.LOAD.Elf sieve.elf ; Load the target application

; Set the stack pointer to address 8000

PER.view ; Show clearly arranged peripherals
; in window *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %SpotLight flags ast ; Open watch window for variables *)

Break.Set 0x1000 /Program ; Set software breakpoint to address
; 1000 (address 1000 is within RAM
; address range)

Break.Set 0x101000 /Program ; Set on-chip breakpoint
; to address 101000 (address 101000 is
; within Flash address range)
AVR32 Debugger and NEXUS Trace | 12©1989-2024 Lauterbach

Troubleshooting

Error Message Event Reason

Target power fail SYStem.Mode.Up See below.

Target processor in
reset

SYStem.Down See below.

Target not connected or
JTAG chain not
configured correctly:
Returned IR[1:0] != “01”

SYStem.Mode.Up
SYStem.Mode.Go

The debugger expects to receive the
bit sequence “01” for every command
that is sent over JTAG. If this is not the
case, an error message is displayed.
Check the JTAG connections.

The number of
<number> accessed
bytes in memory is not a
multiple of the access
size <size> bytes.

No special event Internal error, please consult your
Lauterbach representative.

Memory address
<address> is not aligned
to access size <size>.

No special event Internal error, please consult your
Lauterbach representative.

Invalid memory access
size: <size> bytes (@
address <address>)

No special event Internal error, please consult your
Lauterbach representative.

Memory access timeout:
Reading from address
<address>

No special event Corrupted JTAG connection. Check
JTAG hardware and settings.
AVR32 Debugger and NEXUS Trace | 13©1989-2024 Lauterbach

Typically the SYStem.Up command is the first command of a debug session where communication with
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message.

• Open the AREA.view window to display all error messages.

• If the target has no power or the debug cable is not connected to the target, this results in the
error message “target power fail”.

• Did you select the correct core type with SYStem.CPU <cpu>?

• There is an issue with the JTAG interface. Maybe there is the need to set jumpers on the target to
connect the correct signals to the JTAG connector. The debugger will not work, for example, if
nTRST signal is directly connected to ground on target side.

• The target is in an unrecoverable state. Re-power your target and try again.

• The default JTAG clock speed is too fast. In this case try SYStem.JtagClock 50kHz and optimize
the speed when you got it working.

• The core is used in a multicore system and the appropriate multicore settings for the debugger
are missing. See for example SYStem.CONFIG IRPRE. This is the case if you get a value.

• The core has no clock.

• The core is kept in reset.

• There is a watchdog which needs to be deactivated.

Special Nexus Trace Troubleshooting

For the case the debugger is working, but Nexus trace does not deliver reliable results, one can try the test
instruction DIAG 3016 and watch the result in the AREA.view window.
This test command does a hardware test of all relevant Nexus signals, independent on the Nexus trace
mode. The AREA window delivers information about which signals possibly stack at logical High or LOW or
are possibly connected to other Nexus signals. (walking H test).

FAQ

Please refer to https://support.lauterbach.com/kb.
AVR32 Debugger and NEXUS Trace | 14©1989-2024 Lauterbach

https://support.lauterbach.com/kb

AVR Specific Implementations

Breakpoints

Software Breakpoints

If a software breakpoint is set, the corresponding program code is replaced by a break instruction. As soon
as the program stops, the beak instruction is replaced with the original code. Thus software breakpoints can
only be applied to program code residing in a RAM.

There is no restriction to the number of software breakpoints.

On-chip Breakpoints for Instructions

The AVR32 architecture provides six on-chip breakpoint registers for the program counter. The on-chip
breakpoints are generally used to stop the program execution in ROM/Flash area. These on-chip breakpoint
registers can also be used to define an address range where the program should stop. In order to define a
range, two on-chip breakpoint registers are used; one for the address and another one to define the mask
bits which means that only 3 breakpoint ranges can be defined using the on-chip breakpoint registers.

On-chip Breakpoints for Data

Data breakpoints are used to analyze the read and write accesses to global variables. The data breakpoints
can be triggered with respect to the data address or access type, i.e. read, write or both, or the data value.
There are a total of 2 on-chip data breakpoint registers available to the user.

In case of an on-chip data breakpoint, every load and store instruction is checked with respect to the
breakpoint address, access type and the value. The data breakpoints are especially useful to find out when
a global variable is written with a certain value. It is not possible to implement a similar breakpoint in software
without affecting the real-time behavior of the system. Since the load and store instructions work on RAM,
data breakpoints always point to addresses on RAM.
AVR32 Debugger and NEXUS Trace | 15©1989-2024 Lauterbach

Example for Breakpoints

Some examples of software and hardware (i.e. on-chip) breakpoints are given below with the following
assumption about the memory map.

• FLASH address range from 0x1000--0x1fff

• RAM address range from 0x000--0x0fff

In the first example, the breakpoint address lies inside the RAM area, a software breakpoint is automatically
set. The option /Program is the default option and not required but displayed here for clarification.

If the breakpoint address lies within the Flash address range, it is automatically recognized and a hardware
breakpoint is set.

This example specifies a data breakpoint which triggers when a read attempt is made at the address
0x0110.

Similarly, the break command below triggers when a write attempt is made at the address 0x0110.

This last example demonstrates a data breakpoint trigger mechanism for both read and write attempts.

Break.Set 0x0110 /Program ; Software breakpoint

Break.Set 0x1110 /Program ; Hardware breakpoint

Break.Set 0x0110 /Read; Data breakpoint for read access

Break.Set 0x0110 /Write; Data breakpoint for write access

Break.Set 0x0110 /ReadWrite; Data breakpoint for read and write accesses
AVR32 Debugger and NEXUS Trace | 16©1989-2024 Lauterbach

Filter and Trigger for the NEXUS Trace

Filter and Trigger provided by the Processor (Simple Trigger Unit - STU)

The internal watchpoints of the AVR32 can be used to control trace message output. The following actions
for the NEXUS trace are provided by the Break.Set command:

Actions for the Trace

TraceON Switch the sampling to the trace ON on the specified event.

TraceOFF Switch the sampling to the trace OFF on the specified event.

TraceTrigger Stop the sampling to the trace on the specified event. A trigger delay is
possible.

BusTrigger Generate a 100 ns high pulse on the trigger connector of the PowerTrace on the
defined trigger event.

BusCount Use the TRACE32 counter to analyze the trigger event.

WATCH Set a watchpoint on the event. The CPU will trigger the EVTO pin if the event
occurs.

SPOT Stops user program, updates all windows on the screen and continues user
program execution
AVR32 Debugger and NEXUS Trace | 17©1989-2024 Lauterbach

Trigger

A bidirectional trigger system allows the following two events:

• Trigger an external system (e.g. logic analyzer) if the program execution is stopped.

• Stop the program execution if an external trigger is asserted.

For more information refer to the TrBus command.

There is further document STU-AVR32.PDF which illustrates the Simple Trigger Unit (STU). The STU is just
available for the Nexus probe, not for the JTAG dongle.

Runtime Measurement

The command RunTime allows run time measurement based on polling the CPU run status by software or
by hardware. Therefore the result can be about a few milliseconds more than the real value.

As an idea one can expect about 6 ms more in case of the JTAG Dongle (RT start stop just SW controlled)
and about 1.2 us in case of the Nexus probe.

Other Useful Trace Commands

Var.Break.Set flags[3] /Write /TraceEnable

; NEXUS outputs only trace
; messages
; for write accesses to flags[3]

Var.Break.Set flags /Write /TraceData

; NEXUS outputs the complete
; program flow and all write
; accesses to the variable flags

Break.Set func2 /Program /TraceON
Break.Set Var.END(func2)-3 /TraceOFF

; NEXUS switches the trace
; output to ON at the entry to
; func2 and switches the trace
; output to OFF at the exit of
; func2

Trace.TERMination ON | OFF Use trace line termination of NEXUS adapter.

Trace.TestFocus Test Trace port recording.
AVR32 Debugger and NEXUS Trace | 18©1989-2024 Lauterbach

Memory Classes

The following memory access classes are available:

To access a memory class, write the class in front of the address. For example, use ED to access the data
memory during run-time.

The memory class SR is used to denote the special system registers and available only during a CPU break.

Since the AVR32 architecture uses the same address range for both data and instructions, the memory
access classes D and P in fact are same. So the following two examples return the same results.

Access Class Description

D Data

P Program

SR System Registers

ED Run-time data memory access (see SYStem.MemAccess)

EP Run-time program memory access (see SYStem.MemAccess)

Data.dump ED:0x00

Data.dump SR:0x00

Data.dump D:0x100

Data.dump P:0x100
AVR32 Debugger and NEXUS Trace | 19©1989-2024 Lauterbach

Programming the On-chip FLASH of the AVR32

Some example PRACTICE scripts for programming the on-chip FLASH of the AVR32 can be found in the
TRACE32 demo folder ~~/demo/avr32/flash/*.cmm, where * stands for the script file name, e.g.
at32uc3a.cmm.

Please be aware that these are just example scripts. The scripts have to be adapted to your memory layout.
The FLASH programming algorithm used is based on the FLASH library provided by Atmel.
AVR32 Debugger and NEXUS Trace | 20©1989-2024 Lauterbach

Special Hints, Restrictions, and Known Problems

Hints

• JTAG/NEXUS: After startup, OSCILLATOR0 will automatically be selected as clock source of the
device. This is a difference to normal startup without the debugger.
The command DIAG 3018 0/1 allows to disable/enable OSCILL0 that feature permanently for
a debug session.

Restrictions

• JTAG: Runtime counter causes about 6 ms mismatch.

Known Problems

• JTAG/NEXUS: Help system not available yet

• NEXUS: STU function DE-Pulse not implemented yet

• NEXUS: EVTI trigger working, but “Warning: CPU already in *Break* mode !”
 The warning can be ignored.

• NEXUS: Testfocus not implemented yet. (User DIAG 3016 meanwhile)

• NEXUS: SQA mode delivers Flowerror during trace list.

• NEXUS: If Data Trace is activated, data access messages can occasionally not yet properly be
 displayed, related to the corresponding code.

• JTAG/NEXUS: In-line assembler is not implemented yet.

NOTE: All problems will be fixed in one of the next SW versions without notice!
AVR32 Debugger and NEXUS Trace | 21©1989-2024 Lauterbach

Trace Extension

The AVR32 family offers NEXUS class 2+ or 3 trace features.

Depending on the debugger configuration (Debug Cable or Nexus Adapter), trace features are available or
not. Device internal trace is not supported yet.
AVR32 Debugger and NEXUS Trace | 22©1989-2024 Lauterbach

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.
AVR32 Debugger and NEXUS Trace | 23©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

If there is more than one TAP controller in the JTAG chain, the chain must be defined to be able to access
the right TAP controller.

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger of the TAP
controller position in the JTAG chain if there is more than one core in the JTAG chain. The information is
required before the debugger can be activated, e.g., by a SYStem.Mode.Attach.

TriState has to be used if several debuggers are connected to a common JTAG port at the same time.
TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches
to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or
pull-down resistor, other trigger inputs need to be kept in inactive state.

Format: SYStem.CONFIG <parameter>

<parameter>: IRPRE <bits>
IRPOST<bits>
DRPRE <bits>
DRPOST <bits>
IRLength <bits>
MultiCoreLocal [ON | OFF]
CoreNumber <number>
TriState [ON | OFF]
Slave [ON | OFF]
TAPState <state>
TCKLevel <level>

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.
See also Daisy-Chain Example.
AVR32 Debugger and NEXUS Trace | 24©1989-2024 Lauterbach

CoreNumber <number> of cores in a shared-memory or local-memory multicore
system. (default: 1)

TriState onoff The debugger switches to tristate mode after each debug port access. If
several debuggers share the same debug port, this option is required.
Then other debuggers can access the port. (default: OFF)

Slave [ON | OFF] Defines the master in a multicore chip. Only one core can be the master
of the chip reset, the TAP reset and the chip initialization features. All
other cores are slave cores. (default: OFF)

TAPState This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.
(default: 7 = Select-DR-Scan)

TCKLevel [0 | 1] Level of TCK signal when all debuggers are tristated. (default: 0)
AVR32 Debugger and NEXUS Trace | 25©1989-2024 Lauterbach

Daisy-Chain Example

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag ; optional: open the window

SYStem.CONFIG IRPRE 6. ; IRPRE: There is only one TAP.
 ; So type just the IR bits of TAP4, i.e. 6.

SYStem.CONFIG IRPOST 12. ; IRPOST: Add up the IR bits of TAP1, TAP2
 ; and TAP3, i.e. 4. + 3. + 5. = 12.

SYStem.CONFIG DRPRE 1. ; DRPRE: There is only one TAP which is
 ; in BYPASS mode.
 ; So type just the DR of TAP4, i.e. 1.

SYStem.CONFIG DRPOST 3. ; DRPOST: Add up one DR bit per TAP which
 ; is in BYPASS mode, i.e. 1. + 1. + 1. = 3.
 ; This completes the configuration.

NOTE: In many cases, the number of TAPs equals the number of cores. But in many
other cases, additional TAPs have to be taken into account; for example, the
TAP of an FPGA or the TAP for boundary scan.

Core

IRPOST IRPRE

4

1

TAP1

IR

DR

3

1

TAP2

IR

DR

5

1

TAP3

IR

DR

6

1

TAP4

IR

DR
TDI TDO

DRPOST DRPRE

IR: Instruction register length DR: Data register length Core: The core you want to debug
AVR32 Debugger and NEXUS Trace | 26©1989-2024 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
AVR32 Debugger and NEXUS Trace | 27©1989-2024 Lauterbach

SYStem.CPU Select the used CPU

Default: UC3XXX.

Selects the processor type. All of the Atmel CPUs with AVR32 cores are supported.

SYStem.JtagClock Define JTAG clock

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

Format: SYStem.CPU <cpu>

<cpu>: UC3A0512 | UC3A0256 | UC3A0128 |
UC3A1512 | UC3A1256 | UC3A1128 |
UC3B0512 | UC3B0256 | UC3B0128 |
UC3B064 | UC3B1512 | UC3B1256 |
UC3B1128 | UC3B164 | UC3L064 |
UC3L032 | UC3L016 | UC3A3256S |
UC3A3256 | UC3A3128S | UC3A3128 |
UC3A364S | UC3A364 | UC3A4256S |
UC3A4256 | UC3A4128S | UC3A4128 |
UC3A464S | UC3A464 | UC3C064 |
UC3C0128 | UC3C0256 | UC3C0512 |
UC3C164 | UC3C1128 | UC3C1256 |
UC3C1512 | UC3C264 | UC3C2128 |
UC3C2256 | UC3C2512 | UC3D032 |
UC3D064 | UC3D0128 | UC3D132 |
UC3D164 | UC3D1128 | UC3D1256

Format: SYStem.JtagClock <frequency>
SYStem.BdmClock <frequency> (deprecated)

<frequency>: 4kHz …100 MHz
1250000. | 2500000. | 5000000. | 10000000. (on obsolete ICD hardware)
AVR32 Debugger and NEXUS Trace | 28©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Denied.

<frequency> The debugger cannot select all frequencies accurately. It chooses the next
possible frequency (i.e. 109 KHz will be converted to 125 KHz).

Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value, although
no “.” is used.

Format: SYStem.MemAccess Enable | StopAndGo | Denied

Nexus Non-intrusive memory access during program execution is enabled. Only
run-time memory classes can be accessed.

Enable
CPU (deprecated)

This option is not available at the moment.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Denied Memory access during program execution to target is disabled.
AVR32 Debugger and NEXUS Trace | 29©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

Default: Down.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Attach
Go
Up

Down Disables the debugger. The state of the CPU remains unchanged.

NoDebug The debug adapter gets tristated. The state of the CPU remains
unchanged. Debug mode is not active. In this mode the target behaves
as if the debugger is not connected.

Attach Initializes the debug interface and connect to the core while program
remains running. After this command, the user program can be stopped
with the Break command or by any other break condition (e.g.
breakpoints).

Go Resets the target and starts execution.

Up Resets the target and stops the CPU at the reset vector.

StandBy Not available for AVR32.

Format: SYStem.LOCK [ON | OFF]
AVR32 Debugger and NEXUS Trace | 30©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step. It is
turned on to make sure that no interrupt routine is serviced between Break and Go states.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.MPU Disable MPU during memory access

Default: OFF.

The AVR32 architecture specifies an optional MPU unit which can restrict memory accesses. It’s not
possible to read memory when the MPU blocks it. If this option is turned on, the MPU is first turned off, then
the memory is read, and the MPU is turned on again. This way, every memory address is accessible.

SYStem.Option.AUTO Auto JTAG setting

Default: ON.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.MPU [ON | OFF]

Format: SYStem.Option.AUTO [ON | OFF]
AVR32 Debugger and NEXUS Trace | 31©1989-2024 Lauterbach

Calculates the maximum available JTAG frequency according to the PLL settings and sets up the JTAG
frequency automatically. The calculation and setting of the JTAG frequency is done at every Go / Break
command.

SYStem.EraseChip Erases the Flash and the EEprom

Erases the Flash memory. It is available to the user only in the SYStem.Down mode.

Format: SYStem.EraseChip
AVR32 Debugger and NEXUS Trace | 32©1989-2024 Lauterbach

CPU specific TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

Format: TrOnchip.state

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message
AVR32 Debugger and NEXUS Trace | 33©1989-2024 Lauterbach

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.EVTI Allow the EVTI signal to stop the program execution

Example: Sample all write accesses to the variable flags[3] to the trace and all cycles from func5.

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Format: TrOnchip.RESet

Format: TrOnchip.EVTI [ON | OFF]

ON Allow the EVTI signal to stop the program execution (faster).

OFF The program execution is stopped by sending a break sequence via
NEXUS.
(takes a bit longer)
AVR32 Debugger and NEXUS Trace | 34©1989-2024 Lauterbach

TrOnchip.EVTO Output sync signals on EVT0

The output signal EVTO is available at the Nexus probe connector pin OX0.

TrOnchip.EXTernal Generate a trigger for the trace on high pulse on INx

Generate a trigger for the trace on a high pulse (at least 20 ns) on the IN0 or the IN1 connector on the
NEXUS Adapter. IN0 and IN1 are ORed for the trigger.

; Set a program breakpoint to the entry of func5 and select the action
; TraceON
Break.Set func5 /Program /TraceON

; Set a program breakpoint to the exit of func5 and select the action
; TraceOFF
Break.Set Var.END(func5)-1 /Program /TraceOFF

; Set a write breakpoint to flags[3] and select the action TraceEnable
Var.Break.Set flags[3] /Write /TraceEnable

Format: TrOnchip.EVTO [ON | BREAK | OFF]

ON Generates a signal if a Watch/Breakpoint has been passed.

BREAK Generates a signal if the CPT enters Debug mode.

OFF No sync signal is generated on EVTO pin. (Default)

Format: TrOnchip.EXTernal <source>

<source>: OFF
IN0
IN1

TrOnchip.EXTernal IN0

Go
AVR32 Debugger and NEXUS Trace | 35©1989-2024 Lauterbach

CPU specific Nexus Commands

NEXUS.BTM Branch trace mode

Default: ON.

If turned on, nexus branch messages are generated each time a jump, return, branch, etc. command is
executed. This option must always be turned on if the user wants to reconstruct the program flow.

NEXUS.DDR Use the DDR transmission

Default: OFF.

The clock frequency of the nexus port is halved and the trace data are sent on both falling and rising edge of
the trace clock.

Format: NEXUS.BTM [ON | OFF]

Format: NEXUS.DDR [ON | OFF]
AVR32 Debugger and NEXUS Trace | 36©1989-2024 Lauterbach

NEXUS.DTM Data trace mode

Controls the NEXUS Data Trace Messages.

Default: Data Trace Messages are disabled (OFF).

NEXUS.OFF Switch the NEXUS trace port off

If the debugger is used stand-alone, the trace port is disabled by the debugger.

NEXUS.ON Switch the NEXUS trace port on

The NEXUS trace port is switched on. All trace registers are configured by debugger.

Format: NEXUS.DTM <mode>

<mode>: ON | OFF
Read
Write
ReadWrite

OFF No Data Trace Messages are generated.

Write Data write accesses are output on the trace.
Watchpoints and Trace Filters are used to control the data trace.

Read Data read accesses are output on the trace.
Watchpoints and Trace Filters are used to control the data trace.

ReadWrite Data read and write accesses are output on the trace.
Watchpoints and Trace Filters are used to control the data trace.

Format: NEXUS.OFF

Format: NEXUS.ON
AVR32 Debugger and NEXUS Trace | 37©1989-2024 Lauterbach

NEXUS.OTM Ownership trace messages

Default: OFF.

Ownership Trace Messages are created when the OTM is on.

NEXUS.PinConfig Override the nexus port pin mapping

Default: 0.

Overrides the default pin mapping of the nexus(aux) port. It allows the user to choose one of the 4 pin
configurations as the trace data output.

NEXUS.PortMode Change the nexus port clock frequency

Default: 1/1.

Adjusts the nexus port clock frequency by dividing the CPU clock by 1, 2, 4 or 8.

NEXUS.Register Display NEXUS trace control registers

This command opens a window which shows the NEXUS configuration and status registers.

Format: NEXUS.OTM [ON | OFF]

Format: NEXUS.PinConfig [0 | 1 | 2 | 3]

Format: NEXUS.PortMode [1/1 | 1/2 | 1/4 | 1/8]

Format: NEXUS.Register
AVR32 Debugger and NEXUS Trace | 38©1989-2024 Lauterbach

NEXUS.RESet Reset NEXUS trace port settings

Resets NEXUS trace port settings to default settings.

NEXUS.Spen<messagetype> Avoid message overrun

NEXUS.SpenDTM stalls the CPU to avoid the data trace message overrun if the FIFO is full.
Default: OFF.

NEXUS.SpenPTM stalls the CPU to avoid the program trace message overrun if the FIFO is full.
Default: ON.

NEXUS.SQA Synchronize trace by using full address

Default: OFF.

Forces the CPU to generate trace messages with full address which allows the TRACE32 to quickly
calculate the program counter. This option should be turned on if the user plans to connect/disconnect the
Nexus Adapter during run-time. The side-effect of this option is that the trace FIFO on CPU is filled faster.

NEXUS.state Display NEXUS port configuration window

Displays the NEXUS trace configuration window.

Format: NEXUS.RESet

Format: NEXUS.SpenDTM [ON | OFF]
NEXUS.SpenPTM [ON | OFF]

Format: NEXUS.SQA [ON | OFF]

Format: NEXUS.state
AVR32 Debugger and NEXUS Trace | 39©1989-2024 Lauterbach

NEXUS.WTM Watch trace messages

Default: OFF.

Watch Trace Messages are output on the nexus port when the WTM is on.

Format: NEXUS.WTM [ON | OFF]
AVR32 Debugger and NEXUS Trace | 40©1989-2024 Lauterbach

Connectors

Debug Connector

Mechanical Description of the 10-pin Debug Cable

This connector is defined by Atmel, and we recommend this connector for all future designs.

Signal Pin Pin Signal
TCK 1 2 GND
TDO 3 4 VCC
TMS 5 6 RST-
N/C 7 8 N/C
TDI 9 10 GND
AVR32 Debugger and NEXUS Trace | 41©1989-2024 Lauterbach

NEXUS Connector

Mechanical Description of the MICTOR38 Debug Connector

This connector is defined by IEEE ISTO NEXUX5001, and we recommend this connector for all future
designs.
We also recommend to leave the unused signals open.

Signal Pin Pin Signal

MDO12 1 2 MDO13
MDO14 3 4 MDO15
MDO09 5 6 (CLKOUT)

N/C 7 8 MDO08
RSTIN- 9 10 EVTI-

TDO 11 12 VTREF
MDO10 13 14 RDY-

TCK 15 16 MDO07
TMS 17 18 MDO06
TDI 19 20 MDO05

JCOMP 21 22 MDO04
MDO11 23 24 MDO03

RESETOUT 25 26 MDO02
TDET/WDTDIS 27 28 MDO01

BGRNT 29 30 MDO00
N/C 31 32 EVTO-
N/C 33 34 MCKO

BREQ 35 36 MSEO1-
N/C 37 38 MSEO0-
AVR32 Debugger and NEXUS Trace | 42©1989-2024 Lauterbach

Electrical Description of the 38-pin Mictor Debug Cable

Signal Load and Impedance

Important: The load values below are giving just an idea about the signals load and driver
impedance (no commitment)

 Signal

 Direction
(for the probe)

Resistance
Capacity Remark

VREF (VTREF) Input 50 KOhm
PD-GND

RSTIN Input
Output

10 pF
22 Ohm S,
10 KOhm VTAR

 OD

RSTOUT (RESETOUT) Input 10 pF *

CLKOUT Input 100 Ohm VTT,
10 pF

*

TCK Output 22 Ohm S TS

RTCK Input 100 Ohm VTT
10 pF

*

TRST (JCOMP) Output 22 Ohm S TS

DBACK (RDY) Input RC *

DBREQ Output 22 Ohm S *,TS

TMS Input
Output

22 Ohm S

cJTAG
TS

TDI Output 22 Ohm S TS

TDO Input RC cJTAG

MCKO Input 100 Ohm VTT,
10 pF

MSEO0 Input 100 Ohm VTT,
10 pF

MSEO1 Input 100 Ohm VTT,
10 pF

MDO00 Input 100 Ohm VTT,
10 pF

MDO01 Input 100 Ohm VTT,
10 pF

MDO02 Input 100 Ohm VTT,
10 pF
AVR32 Debugger and NEXUS Trace | 43©1989-2024 Lauterbach

* Not relevant vor AVR32, leave open.

VTT: Connected to termination voltage. Can be 0.25 .. 3 V or disabled (tristate)

VTAR:Connected to a voltage equivalent to the voltage at VTREF pin (target voltage).

S: Serial resistor

OD: Open drain output.

TS: Can be tristated.

RC: 100 Ohm - 100 pF in series, one end to signal, other end to GND.

MDO03 Input 100 Ohm VTT,
10 pF

MDO04 Input 100 Ohm VTT,
10 pF

MDO05 Input 100 Ohm VTT,
10 pF

MDO06 Input 100 Ohm VTT,
10 pF

*

MDO07 Input 100 Ohm VTT,
10 pF

*

MDO08 Input 100 Ohm VTT,
10 pF

*

MDO09 Input 100 Ohm VTT,
10 pF

*

MDO10 Input 100 Ohm VTT,
10 pF

*

MDO11 Input 100 Ohm VTT,
10 pF

*

MDO12 Input 100 Ohm VTT,
10 pF

*

MDO13 Input 100 Ohm VTT,
10 pF

*

MDO14 Input 100 Ohm VTT,
10 pF

*

MDO15 Input 100 Ohm VTT,
10 pF

*

EVTI Output 22 Ohm S TS

EVTO Input 100 Ohm VTT,
10 pF

WDTE Input
Output

10 pF
22 Ohm S *,TS

ARBREQ Output 22 Ohm S *,TS

ARBGRANT Input 10 pF *
AVR32 Debugger and NEXUS Trace | 44©1989-2024 Lauterbach

Mechanical Dimension

PIN1

TOP VIEW

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH
275

475
675

3950
1400

400

15
25

24
75

CABLE

L
A

U
T

E
R

B
A

C
H

N
E

X
U

S
 A

D
A

P
T

E
R

AVR32 Debugger and NEXUS Trace | 45©1989-2024 Lauterbach

	AVR32 Debugger and NEXUS Trace
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Configuration
	Debugger
	Debugger and NEXUS Trace

	Quick Start
	Troubleshooting
	Special Nexus Trace Troubleshooting

	FAQ
	AVR Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Example for Breakpoints

	Filter and Trigger for the NEXUS Trace
	Filter and Trigger provided by the Processor (Simple Trigger Unit - STU)
	Trigger
	Runtime Measurement
	Other Useful Trace Commands

	Memory Classes
	Programming the On-chip FLASH of the AVR32
	Special Hints, Restrictions, and Known Problems
	Hints
	Restrictions
	Known Problems

	Trace Extension
	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.LOCK Lock and tristate the debug port
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MPU Disable MPU during memory access
	SYStem.Option.AUTO Auto JTAG setting
	SYStem.EraseChip Erases the Flash and the EEprom

	CPU specific TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.EVTI Allow the EVTI signal to stop the program execution
	TrOnchip.EVTO Output sync signals on EVT0
	TrOnchip.EXTernal Generate a trigger for the trace on high pulse on INx

	CPU specific Nexus Commands
	NEXUS.BTM Branch trace mode
	NEXUS.DDR Use the DDR transmission
	NEXUS.DTM Data trace mode
	NEXUS.OFF Switch the NEXUS trace port off
	NEXUS.ON Switch the NEXUS trace port on
	NEXUS.OTM Ownership trace messages
	NEXUS.PinConfig Override the nexus port pin mapping
	NEXUS.PortMode Change the nexus port clock frequency
	NEXUS.Register Display NEXUS trace control registers
	NEXUS.RESet Reset NEXUS trace port settings
	NEXUS.Spen<messagetype> Avoid message overrun
	NEXUS.SQA Synchronize trace by using full address
	NEXUS.state Display NEXUS port configuration window
	NEXUS.WTM Watch trace messages

	Connectors
	Debug Connector
	Mechanical Description of the 10-pin Debug Cable

	NEXUS Connector
	Mechanical Description of the MICTOR38 Debug Connector
	Electrical Description of the 38-pin Mictor Debug Cable
	Signal Load and Impedance

	Mechanical Dimension

