
MANUAL

Armv8 and Armv9 Debugger

Armv8 and Armv9 Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Arm/CORTEX/XSCALE .. 

 Armv8 and Armv9 Debugger ... 1

 History .. 8

 Warning .. 10

 Introduction ... 11

 Brief Overview of Documents for New Users 11

 Demo and Start-up Scripts 12

 Quick Start of the JTAG Debugger .. 13

 Configure Debugger for SoC Specific Reset Behavior 17

 Troubleshooting .. 31

 Communication between Debugger and Processor cannot be established 31

 FAQ ... 32

 Trace Extensions 32

 Quick Start for Multicore Debugging ... 33

 SMP Debugging - Quick Start 33

 1. How to Debug a System with Multiple Identical Cores 33

 2. Set up the SMP Debug Scenario 34

 3. Enter Debug Mode 35

 4. Switch Debug View between Cores 35

 5. Write a Start-up Script Summary 36

 AMP Debugging - Quick Start 37

 1. How to Debug a System with Multiple Heterogenous Cores 37

 2. Starting the TRACE32 PowerView GUIs 37

 3. Master-Slave Concept 38

 4. Setting up the Multicore Environment 38

 5. Synchronized Go / Step / Break 39

 6. Write a Start-up Script Summary 39

 Arm Specific Implementations ... 40

 AArch Mode Support 40
Armv8 and Armv9 Debugger | 2©1989-2024 Lauterbach

 AArch64 and AArch32 Debugging 40

 AArch64 and AArch32 Switching 41

 TrustZone Technology 43

 AArch64 Secure Model 43

 AArch32 Secure Model 44

 Debug Permission 44

 Checking Debug Permission 44

 Checking Secure State 45

 Changing the Secure State from within TRACE32 45

 AArch64 System Registers Access 46

 AArch32 Coprocessor Registers Access 46

 Accessing Cache and TLB Contents 46

 Breakpoints and Vector Catch Register 46

 Breakpoints and Secure Modes 46

 big.LITTLE 47

 Debugger Setup 47

 Consequence for Debugging 48

 Requirements for the Target Software 48

 big.LITTLE MP 48

 Breakpoints 49

 Software Breakpoints 49

 On-chip Breakpoints for Instructions 49

 On-chip Breakpoints for Data 49

 Example for Standard Breakpoints 50

 Secure, Non-Secure, Hypervisor Breakpoints 52

 Example for ETM Stopping Breakpoints 57

 Access Classes 58

 System Registers (AArch64 Mode) 66

 Coprocessors (AArch32 Mode) 69

 Accessing Memory at Run-time 74

 Semihosting 78

 AArch64 HLT Emulation Mode 79

 AArch64 DCC Communication Mode (DCC = Debug Communication Channel) 80

 AArch32 SVC (SWI) Emulation Mode 81

 AArch32 DCC Communication Mode (DCC = Debug Communication Channel) 82

 Virtual Terminal 84

 Large Physical Address Extension (LPAE) 85

 Consequence for Debugging 85

 Virtualization Extension, Hypervisor 86

 Consequence for Debugging 86

 Debug Field 87

 Run Mode 87

 Run-time Measurements 88
Armv8 and Armv9 Debugger | 3©1989-2024 Lauterbach

 Trigger 88

 Arm specific SYStem Commands .. 89

 SYStem.CLOCK Inform debugger about core clock 89

 SYStem.CONFIG.state Display target configuration 89

 SYStem.CONFIG Configure debugger according to target topology 90

 <parameters> describing the “DebugPort” 101

 <parameters> describing the “JTAG” scan chain and signal behavior 106

 <parameters> describing a system level TAP “MultiTap” 110

 <parameters> configuring a CoreSight Debug Access Port “AP” 112

 <parameters> describing debug and trace “Components” 121

 <parameters> which are “Deprecated” 133

 SYStem.CONFIG.BMCSnapshot.Base Synchronous BMC sampling 138

 SYStem.CONFIG.EXTWDTDIS Disable external watchdog 138

 SYStem.CONFIG.GICD Generic Interrupt Controller Distributor (GIC) 139

 SYStem.CONFIG.GICR Generic Interrupt Controller Redistributor 142

 SYStem.CONFIG.GICC Generic Interrupt Controller physical CPU interface 143

 SYStem.CONFIG.GICH Generic Interrupt Controller virtual interface control 144

 SYStem.CONFIG.GICV Generic Interrupt Controller virtual CPU interface 145

 SYStem.CONFIG.SMMU Internal use 146

 SYStem.CPU Select the used CPU 147

 SYStem.JtagClock Define the frequency of the debug port 148

 SYStem.LOCK Tristate the JTAG port 149

 SYStem.MemAccess Select run-time memory access method 150

 SYStem.Mode Establish the communication with the target 153

 SYStem.Option Special setup 155

 SYStem.Option.Address32 Define address format display 155

 SYStem.Option.AXI32 Use 32-bit atomic AXI accesses instead of 64-bit 156

 SYStem.Option.BreakOS Allow break during OS-unlock 156

 SYStem.Option.CacheStatusCheck Check status bits during cache access 157

 SYStem.Option.CFLUSH FLUSH the cache before step/go 157

 SYStem.Option.CLTAPKEY Set key values for CLTAP operation 158

 SYStem.Option.CoreSightRESet Assert CPU reset via CTRL/STAT 158

 SYStem.Option.CTIGate CTI gate control 158

 SYStem.Option.CTITimerStop Stop system timer when CPU stops 159

 SYStem.Option.DACRBYPASS Ignore DACR access permission settings 159

 SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 160

 SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2 160

 SYStem.Option.DAPNOIRCHECK No DAP instruction register check 161

 SYStem.Option.DAPREMAP Rearrange DAP memory map 162

 SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 162

 SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2 163

 SYStem.Option.DBGCLAIM Debug and PMU claim 164

 SYStem.Option.DBGSPR Use debugger view for SPR access 164
Armv8 and Armv9 Debugger | 4©1989-2024 Lauterbach

 SYStem.Option.DBGUNLOCK Unlock debug register via OSLAR 165

 SYStem.Option.DCacheMaintenance Data cache maintenance strategy 165

 SYStem.Option.DEBUGPORTOptions Options for debug port handling 166

 SYStem.Option.DIAG Activate more log messages 167

 SYStem.Option.DUALPORT Implicitly use run-time memory access 167

 SYStem.Option.DisMode Define disassembler mode 167

 SYStem.Option.EDACR Define 32-bit value written to EDACR register 168

 SYStem.Option.ENFORCECPSWITCH Try AArch32 for C1x access 168

 SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 169

 SYStem.Option.FunctionalRESet Custom functional reset 169

 SYStem.Option.HRCWOVerRide Enable override mechanism 169

 SYStem.Option.ICacheMaintenance I-Cache maintenance strategy 170

 SYStem.Option.IMASKASM Disable interrupts while single stepping 170

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 171

 SYStem.Option.INTDIS Disable all interrupts 171

 SYStem.Option.IntelSOC Slave core is part of Intel® SoC 171

 SYStem.Option.KEYCODE Define key code to unsecure processor 172

 SYStem.Option.MACHINESPACES Address extension for guest OSes 172

 SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP 173

 SYStem.Option.MemStatusCheck Check status bits during memory access 174

 SYStem.Option.MMUPhysLogMemaccess Memory access preferences 175

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 175

 SYStem.Option.MPUBYPASS Ignore MPU access permission settings 176

 SYStem.Option.NOMA Use alternative memory access 177

 SYStem.Option.NoPRCRReset Disable warm reset via PRCR 177

 SYStem.Option.OSUnlockCatch Use the 'OS Unlock Catch' debug event 178

 SYStem.Option.OVERLAY Enable overlay support 178

 SYStem.Option.PALLADIUM Extend debugger timeout 179

 SYStem.Option.PWRDWN Allow power-down mode 179

 SYStem.Option.PAN Overwrite CPSR.PAN setting 179

 SYStem.Option.PWRREQ Request core power 180

 SYStem.Option.ResBreak Halt the core after reset 181

 SYStem.Option.ResetDetection Choose method to detect a target reset 182

 SYStem.RESetOut Assert nRESET/nSRST on JTAG connector 182

 SYStem.Option.RESetREGister Generic software reset 183

 SYStem.Option.RisingTDO Target outputs TDO on rising edge 183

 SYStem.Option.SLaVeSOFTRESet Allow soft reset of slave cores 184

 SYStem.Option.SMPMultipleCall Send start event to each SMP core 184

 SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint 184

 SYStem.Option.SOFTQUAD Use 64-bit access to set breakpoint 185

 SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping 185

 SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint 185

 SYStem.Option.TraceFilterOverride Enable/Disable trace filter override 185
Armv8 and Armv9 Debugger | 5©1989-2024 Lauterbach

 SYStem.Option.TURBO Disable cache maintenance during memory access 186

 SYStem.state Display SYStem window 186

 SYStem.Option.SoftLockUNLOCK Unlock software lock via EDLAR 187

 SYStem.Option.SYSPWRUPREQ Force system power 187

 SYStem.Option.TRST Allow debugger to drive TRST 187

 SYStem.Option.WaitCTIREG Wait for CTI registers after reset 188

 SYStem.Option.WaitDAPPWR Wait for DAP power after DAP power request 188

 SYStem.Option.WaitDBGREG Wait for core debug registers after reset 189

 SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset 190

 SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset 191

 SYStem.Option.ZoneSPACES Enable symbol management for Arm zones 193

 Overview of Debugging with Zones 194

 Operation System Support - Defining a Zone-specific OS Awareness 197

 SYStem.Option.ZYNQJTAGINDEPENDENT Configure JTAG cascading 199

 Arm specific Functions ... 200

 STATE.NOCTIACCESS() 200

 STATE.NOCPUACCESS() 200

 SYStem.Option.HRCWOVerRide() 201

 Arm specific Benchmarking Commands .. 202

 BMC.<counter>.CountEL<x> Select exception level events to be counted 202

 BMC.EXPORT Export benchmarking events from event bus 204

 BMC.LongCycle Configure cycle counter width 205

 BMC.PRESCALER Prescale the measured cycles 205

 Arm specific TrOnchip Commands ... 206

 TrOnchip.ContextID Enable context ID comparison 207

 TrOnchip.CONVert Allow extension of address range of breakpoint 208

 TrOnchip.MachineID Extend on-chip breakpoint/trace filter by machine ID 209

 TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID 210

 TrOnchip.MatchMachine Extend on-chip breakpoint/trace filter by machine 210

 TrOnchip.MatchZone Extend on-chip breakpoint/trace filter by zone 211

 TrOnchip.RESERVE Exclude breakpoint or watchpoint from debugger usage 212

 TrOnchip.RESet Set on-chip trigger to default state 212

 TrOnchip.Set Set bits in the vector catch register 213

 TrOnchip.StepVector Step into exception handler 215

 TrOnchip.StepVectorResume Catch exceptions and resume single step 216

 TrOnchip.VarCONVert Convert breakpoints on scalar variables 217

 TrOnchip.state Display on-chip trigger window 218

 Cache Analysis and Maintenance .. 219

 TRACE32 Cache Support by CPU Type 220

 CPU specific MMU Commands .. 223

 MMU.DUMP Page wise display of MMU translation table 223

 MMU.List Compact display of MMU translation table 236
Armv8 and Armv9 Debugger | 6©1989-2024 Lauterbach

 MMU.SCAN Load MMU table from CPU 238

 TRACE32 TLB Support by CPU Type 240

 CPU specific SMMU Commands .. 243

 SMMU Hardware system MMU (SMMU) 243

 SMMU.ADD Define a new hardware system MMU 253

 SMMU.Clear Delete an SMMU 255

 SMMU.CtxtDescTable List a context descriptor table 255

 SMMU.DumpQueue.<queue> Dump entries of a queue 256

 SMMU.DumpQueue.CMD Dump cmd queue entries 258

 SMMU.DumpQueue.Event Dump event queue entries 259

 SMMU.Register Peripheral registers of an SMMU 260

 SMMU.Register.ContextBank Display registers of context bank 261

 SMMU.Register.Global Display global registers of SMMU 262

 SMMU.Register.MMUregs Display MMU specific registers 262

 SMMU.Register.S1Context Display stage 1 context descriptor registers 263

 SMMU.Register.StreamTblEntry Display stream table entry registers 263

 SMMU.Register.StreamMapRegGrp Display registers of an SMRG 264

 SMMU.RESet Delete all SMMU definitions 265

 SMMU.SSDtable Display security state determination table 266

 SMMU.StreamMapRegGrp Access to stream map table entries 267

 SMMU.StreamMapRegGrp.ContextReg Display context bank registers 268

 SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table 270

 SMMU.StreamMapRegGrp.list List page table entries 272

 SMMU.StreamTable Display a stream table 273

 Display of Global Faults or Global Errors in an SMMU 284

 Finding streams which are in a fault / error state 285

 SMMU.StreamTblEntry Access to a stream table entry 285

 SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table 287

 SMMU.StreamTblEntry.list List page table entries 288

 SMMU.StreamTblEntry.Register Display STE or CD registers 289

 Target Adaption ... 290

 Probe Cables 290

 Interface Standards JTAG, Serial Wire Debug, cJTAG 290

 Connector Type and Pinout 291

 Debug Cable 291

 CombiProbe 291

 Preprocessor 291
Armv8 and Armv9 Debugger | 7©1989-2024 Lauterbach

Armv8 and Armv9 Debugger

Version 06-Jun-2024

History

20-Feb-2024 New command SYStem.Option.SoftLockUNLOCK.

14-Feb-2024 Link to manual CSWP Debug Back-End added in chapter ' Brief Overview of Documents for
New Users'.

16-Nov-2023 SYStem.Option.MemStatusCheck command has been extended to include new options.

27-Oct-2023 Added Cache and TLB support for Cortex-A520, Cortex-A720, Cortex-X3 and Cortex-X4
CPUs.

17-Feb-2023 New command SYStem.Option.FunctionalRESet.

24-Jan-2023 SYStem.CPU command updated.

24-Jan-2023 ‘Cache Analysis and Maintenance’ chapter revised.

24-Jan-2023 ‘TRACE32 TLB Support by CPU Type’ section has been updated, by adding the support for
Cortex-A78C, Cortex-A715, and Cortex-X1C CPUs.

01-Sept-2022 New command SYStem.Option.CTIGate.

19-Aug-2022 Link to manual XCP Debug Back-End added in chapter' Brief Overview of Documents for
New Users'.

15-Jun-2022 New subchapter ‘XCP Specific Commands’, describes the XCP subcommands of
SYStem.CONFIG.

23-May-2022 Removed command SYStem.Option.eXclusiveMONitor.

22-Apr-2022 New command SYStem.Option.MDMAP.

28-Mar-2022 New command SYStem.CONFIG.BMCSnapshot.Base.

09-Mar-2022 New command SYStem.Option.EDACR.

02-Feb-2022 New function SYStem.Option.HRCWOVerRide().

08-Jun-2021 Manual renamed from debugger_armv8a.pdf to debugger_armv8v9.pdf.
Armv8 and Armv9 Debugger | 8©1989-2024 Lauterbach

15-Aug-2019 Revised manual.

01-Oct-2012 Initial version.
Armv8 and Armv9 Debugger | 9©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
Armv8 and Armv9 Debugger | 10©1989-2024 Lauterbach

Introduction

This manual serves as a guide for debugging Cortex-A/R/X and Neoverse cores based on the Armv8 and
Armv9 architecture and describes all specific TRACE32 settings and functions.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

• This manual does not cover the Cortex-A/R (Armv7, 32-bit) cores. If you are using this processor
architecture, please refer to “Arm Debugger” (debugger_arm.pdf).

• This manual does not cover the Cortex-M processor architecture. If you are using this processor
architecture, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for details.

• “XCP Debug Back-End” (backend_xcp.pdf): This manual describes how to debug a target over a
3rd-party tool using the XCP protocol.

• “CSWP Debug Back-End” (backend_cswp.pdf): This manual describes how to debug a target
over the CSWP protocol.

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):
Armv8 and Armv9 Debugger | 11©1989-2024 Lauterbach

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Cortex-A/R (Armv8, 32/64-bit) and Armv9
based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/arm/ subfolder of the system directory of TRACE32.
Armv8 and Armv9 Debugger | 12©1989-2024 Lauterbach

Quick Start of the JTAG Debugger

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU/SoC specific settings.

Usually the access ports, the core debug base and the CTI base are set when the CPU/SoC is
selected, so the following SYStem.CONFIG commands would not be required. However, for generic
cores like Cortex-A53 or Cortex-A57, these settings are not known. The configuration may contain
default values that do not meet your use case.
Please check the SYStem.CONFIG.state /COmponents window to find out if these addresses are
set. If not, you have to set them manually, e.g. in a script:

All other default values are set in such a way that it should be possible to work without modification.
This might not be the best configuration for your target.

In most cases DEBUGACCESSPORT will be an equivalent to APBACCESSPORT, and
MEMORYACCESSPORT will be an equivalent to AXIACCESSPORT (or AHBACCESSPORT if an
AHB but no AXI is present). It is recommended to always specify the access port for debug, memory
and the APB, AHB or AXI bus.

B::

RESet

SYStem.CPU <cpu_type> ; Default <cpu_type>: CortexA53

SYStem.Option.EnReset [ON|OFF] ; Default: ON

SYStem.CONFIG.COREDEBUG.Base DAP:<core_base>

SYStem.CONFIG.CTI.Base DAP:<cti_base>

SYStem.CONFIG.DEBUGACCESSPORT <apb_num>

SYStem.CONFIG.APBACCESSPORT <apb_num>

SYStem.CONFIG.AXIACCESSPORT <axi_num>

SYStem.CONFIG.MEMORYACCESSPORT <axi_num>
Armv8 and Armv9 Debugger | 13©1989-2024 Lauterbach

3. Enter debug mode.

This command resets the CPU/SoC and enters debug mode. After this command is executed it
should be possible to access memory and registers. The default case assumes that the debug
interface is accessible while the CPU/SoC is held in reset. If this is not the case, SYStem.Mode Up
may fail with an error. Please note that the reset behavior can be controlled with additional options.
Please see the SYStem.Option section.

Another possibility to enter debug mode is to attach to the CPU and to stop it:

This might be helpful in case a reset of the target CPU is not desired or when the debug interface is
not immediately accessible during or shortly after a reset of the CPU.

4. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General
Reference Guide”.

A typical core configuration might look like this. All addresses and access port values are only examples.

SYStem.Mode Up ; Reset target and enter debug mode

SYStem.Mode Attach ; Attach without reset
Break.direct ; Enter debug mode

Data.LOAD.ELF armf ; .ELF specifies the format
; armf is the file name

RESet

SYStem.CPU CortexA53 // Select your SoC/CPU/Core
SYStem.CONFIG.COREDEBUGBase DAP:0x80010000 // Set your core base here
SYStem.CONFIG.CTI Base DAP:0x80020000 // Set your CTI base here
SYStem.CONFIG.DEBUGACCESSPORT 0.
SYStem.CONFIG.APBACCESSPORT 0.
SYStem.CONFIG.MEMORYACCESSPORT 1.
SYStem.CONFIG.AXIACCESSPORT 1.
Armv8 and Armv9 Debugger | 14©1989-2024 Lauterbach

A typical start sequence is shown below.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

Depending on your processor you might need additional settings. These sequences can be written
altogether into a PRACTICE start-up script like <your_own_startup>.cmm. The configuration can be
reproduced by calling this script:

SYStem.Mode Up

// Load position independent demo application to 0x2E000000
DO ~~/demo/arm/compiler/gnu-pic/demo_sieve.cmm 0x2E000000

// Specify HLL source file if located elsewhere
sYmbol.SourcePATH ~~/demo/arm/compiler/arm/sieve.c

// Example Breakpoint Setup
Break.Delete /all // Reset Breakpoint
 // configuration
Go.direct main // Run to main function
Break.Set 0x2E009080 /Program // Set breakpoint to address
 // 0x2E009080
WinCLEAR // Close all windows

// Open useful windows
WinPOS 0.0 0.0 75. 23. 24. 1. W000
WinTABS 10. 10. 25. 62.
List.Mix // Open source code window *)

WinPOS 80.5 17.5 52. 20. 0. 0. W001
Register.view /SpotLight // Open register window *)
 // and show changes of registers
WinPOS 0.0 29.7 41. 6. 5. 0. W002
Frame.view /Locals /Caller // Open the stack frame with
 // local variables *)
WinPOS 46.8 29.7 28. 6. 0. 0. W003
Var.Watch xx c p // Add variables to watch
 // window *)
WinPOS 80.5 0.0 52. 12. 0. 0. W004
PER.view // Show clearly arranged
 // peripherals in window *)

CD.DO <your_own_startup>.cmm
Armv8 and Armv9 Debugger | 15©1989-2024 Lauterbach

A debug session might look like this:

List PER.view

Frame.view Var.Watch Register.view

Command line
Armv8 and Armv9 Debugger | 16©1989-2024 Lauterbach

Configure Debugger for SoC Specific Reset Behavior

All scenarios discussed in this section will focus on the first core in a SoC. This is usually the boot core which
is therefore the first core to become active after a reset or power cycle. This section shows how the
debugger can be configured to gain control over the boot core as soon as possible.

Multicore systems might require additional steps to gain control over the secondary cores. Most of this
procedure is SoC specific. Therefore, only a rough outline will be given towards the end of this section.

In this section:

• Terms, Abbreviations, and Definitions

• Connect to SoC while in Reset

• Connect to SoC when JTAG is not Available in Reset

• Connect to SoC when CoreSight Subsystem is not Available in Reset

• Connect to SoC when Multiple Debug Resources are not Available in Reset

• Connect to SoC when Debug Registers are not Available in Reset

• Connect to SoC when Device is not Available in Reset for an Unknown Reason

• Connect to Secondary Cores

• Troubleshooting

• Summary

Terms, Abbreviations, and Definitions

nSRST This is the physical reset line, for resetting the SoC. If this line is asserted,
the entire SoC or a part of it, e.g. the Arm cores, will be kept in reset. This
behavior is SoC specific.

nTRST The physical reset line that resets the JTAG TAP controller, if asserted.

JTAG-ID An identification code that can be read by the debugger on JTAG level.
This feature is provided by the JTAG TAP itself and is therefore
independent of the presence of a CPU or additional debug infrastructure.

DAP The Arm Debug Access Port which is part of the Arm CoreSight system.

SoC The whole processing entity that includes the discussed Arm cores,
optionally non-Arm architecture cores and custom peripherals.

Debug resource This term will be used to summarize the terms “JTAG”, “CoreSight
subsystem (DAP)” or just “DAP” and “core debug registers”. A “debug
resource” is therefore a module or set of registers needed for debugging.

Debug power The debug power domain in a SoC. Usually power to this domain is
already present or can be requested via a DAP control register. Some
essential core debug registers are located in the debug power domain.
Armv8 and Armv9 Debugger | 17©1989-2024 Lauterbach

Connect to SoC While in Reset

Without additional configuration, the debugger will try the following to connect to a core in the SoC during
SYStem.Mode Up.

Initial Situation:

• The debug resources, i.e. JTAG, the CoreSight subsystem, etc., are accessible in reset state.

• The core debug registers are accessible in reset state.

Debugger Connect Sequence of SYStem.Mode Up:

• Assert the nSRST and nTRST line.

• Release the nTRST line, but keep nSRST asserted, i.e. keep SoC/CPU/core in reset.

• Configure core for debugging. This means, the debugger will check the JTAG ID, make sure the
debug power domain is active, and check if the core debug registers are accessible. Then the
debugger will stop the core. If possible, the core is configured for being caught at the reset vector
after reset release. This is SoC specific.

• Release the nSRST line, the boot core shall directly stop in debug mode.

• Collect all information about the current state of the core. The system is now ready for debug.

Example:

RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core (multicore systems)
SYStem.Mode Up

reset debug

nSRST

nTRST

CPU State config

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

DAP registerJTAG ID
Armv8 and Armv9 Debugger | 18©1989-2024 Lauterbach

Connect to SoC when JTAG is not Available in Reset

The following scenario assumes that the JTAG interface is not available to the debugger while the SoC is
kept in reset.

Initial Situation:

• The boot process on the SoC will unlock the JTAG interface. If this is not happening, the
debugger will be kept out of the device and cannot connect for debugging.

Debugger Connect Sequence of SYStem.Mode Up:

• Assert the nSRST and nTRST line.

• Release the nTRST line, release nSRST line early.

• SoC/core starts execution.

• After releasing reset, the debugger will continuously poll the JTAG ID-Code until a meaningful
value is read. The intention is to stop the core as soon as possible.

• Once a valid ID-Code is read, the debugger will make sure debug power is available, and check if
the core debug registers are accessible. Then the debugger will stop the boot core.

• Collect all information about the current state of the core. The system is now ready for debug.

Consequence:

• The core might not be halted at the reset vector, this is SoC specific. Parts of the SoC might
already be initialized. This means, debugging will not start in a reset context.

Workaround:

Place an endless loop in your boot code to prevent further code execution. Depending on the SoC boot
process only one of the following items apply:

• The boot core you want to connect to has to unlock JTAG itself. Therefore, place the endless loop
immediately after the JTAG interface has been unlocked...

• ...or JTAG is unlocked in an earlier boot phase of the SoC, e.g. a separate core for reset and
power management. Therefore, you can place the endless loop at the first instruction of the
application core you want to debug.

nSRST

nTRST

CPU State

JTAG/SWD State disabled enabled

reset running wait for JTAG ID config debug

Polling Polling Power
OK

Register
OK

CTI

CTI
OK

DAP register
Armv8 and Armv9 Debugger | 19©1989-2024 Lauterbach

Benefits of this option:

• The debugger will connect as soon as possible to the CPU. This means the amount of executed
code is minimized.

• The wait time is dynamic within the given <time> range. For details, please see
SYStem.Option.WaitIDCODE. If boot timings change, the wait time adapts automatically.

Example:

RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.ResBreak OFF // Early release of nSRST
SYStem.Option.WaitIDCODE 500ms // Poll 500ms or less for ID-Code
SYStem.Mode Up
Armv8 and Armv9 Debugger | 20©1989-2024 Lauterbach

Connect to SoC when CoreSight Subsystem is not Available in Reset

The following scenarios focus on the state of the CoreSight subsystem (DAP):

1. The debug power domain cannot be activated in reset, this is the most prominent case.

2. The debug power domain can be activated in reset, i.e. nSRST is still asserted.

The following sequence and figure shows case 1). The examples will show case 1) and 2).

Initial Situation:

• The debug power domain cannot be activated while the SoC is in reset.

• The nSRST line has to be released shortly after its assertion.

Debugger Connect Sequence of SYStem.Mode Up:

• Assert the nSRST and nTRST line.

• Release the nTRST line, release nSRST line early.

• JTAG is available, the JTAG-ID can immediately be checked.

• The debugger requests power to the debug power domain and polls the power state.

• After the debug power domain is available, the debugger will stop the boot core.

• Collect all information about the current state of the core. The system is now ready for debug.

Consequence:

• The core might execute some code. The peripherals of the SoC might already be changed when
the core is stopped in debug state. You will not debug in a reset context.

Benefit of this option:

• The debugger will connect as soon as possible to the CPU. This means the amount of executed
code is minimized.

• The wait time is dynamic within the given <time> range. For details, please see
SYStem.Option.WaitDAPPWR. If boot timings change, the wait time adapts automatically.

nSRST

nTRST

CPU State

DAP Power off on

reset running wait for DAP pwrJTAG ID config debug

Polling PollingJTAG
OK

register

Register
OK

CTI

CTI
OK
Armv8 and Armv9 Debugger | 21©1989-2024 Lauterbach

Example case 1)

Example case 2)

// This example assumes that the DAP cannot be powered in reset
RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.ResBreak OFF // Early release of nSRST line.
SYStem.Option.WaitDAPPWR 50ms // Poll 50ms or less for DAP power
SYStem.Mode Up

// This example assumes that the DAP can be powered in reset
RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.WaitDAPPWR 50ms // Poll 50ms or less for DAP power
SYStem.Mode Up
Armv8 and Armv9 Debugger | 22©1989-2024 Lauterbach

Connect to SoC when Debug Registers are not Available in Reset

The following scenarios focus on the state of the core debug registers:

1. The debug register are not available in reset. This is the most prominent use case.

2. The debug registers will become available after reset has been asserted, if the SoC is kept in
reset, i.e. nSRST is kept asserted.

The following sequence and figure shows case 1). The examples will show case 1) and 2).

Initial situation:

• The cores debug registers cannot be accessed while the SoC is in reset.

Debugger Connect Sequence of SYStem.Mode Up:

• Assert the nSRST and nTRST line.

• Release the nTRST line, release nSRST line early.

• JTAG is available, the JTAG-ID can immediately be checked.

• The debug power domain is available.

• The debugger will poll the debug register state of the core until they become available. The
debugger will stop the boot core.

• Collect all information about the current state of the core. The system is now ready for debug.

Consequence:

• The core might execute some code. The peripherals of the SoC might already be changed when
the core is stopped in debug state. You will not debug in a reset context.

Benefit:

• The debugger will connect as soon as possible to the CPU. This means the amount of executed
code is minimized.

• The wait time is dynamic within the given <time> range. For details, please see
SYStem.Option.WaitDBGREG. If boot timings change, the wait time adapts automatically.

nSRST

nTRST

CPU State

inaccessible accessibleDebug registers

reset running wait for dbg regJTAG ID DAP config debug

JTAG
OK

Power
OK

Polling Polling

CTI

CTI
OK
Armv8 and Armv9 Debugger | 23©1989-2024 Lauterbach

Example case 1)

Example case 2)

// Assumes that the core debug registers are not accessible in reset
RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.ResBreak OFF // Early release of nSRST line.
SYStem.Option.WaitDBGREG 50ms // Poll 50ms or less for core debug
 // registers to become accessible
SYStem.Mode Up

// Assumes that the core debug registers are accessible in reset
RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.WaitDBGREG 50ms // Poll 50ms or less for core debug
 // registers to become accessible
SYStem.Mode Up
Armv8 and Armv9 Debugger | 24©1989-2024 Lauterbach

Connect to SoC when Multiple Debug Resources are not Available in Reset

We will now focus on a scenario, where the debugger has to wait for all the three debug resources, because
each single resource needs a certain enable time.

Initial situation:

• Neither JTAG, nor the debug power domain, nor the debug registers are accessible in reset.

Debugger Connect Sequence of SYStem.Mode Up:

• Assert the nSRST and nTRST line.

• Release the nTRST line, release nSRST line early.

• After releasing reset, the debugger will continuously poll the JTAG ID-Code until a meaningful
value is read.

• The debugger continues and requests power to the debug power domain; however, this is not
immediately happing. The debugger polls the power state until the debug power is available.

• Next the debugger will check the accessibility of the debug registers. Those are not immediately
available, so the debugger has to wait until they are available.

• The debugger will stop the boot core.

• Collect all information about the current state of the core. The system is now ready for debug.
•

Consequence:

• The core might execute some code. The peripherals of the SoC might already be changed when
the core is stopped in debug state. You will not debug in a reset context.

nSRST

nTRST

CPU State

Debug registers inaccessible accessible

reset running dbg reg config debug

disabled enabled

off onDAP Power

JTAG/SWD State

wait for: JTAG ID

Polling

DAP

Polling Polling

CTI

Polling
Armv8 and Armv9 Debugger | 25©1989-2024 Lauterbach

Benefit:

• The debugger will connect as soon as possible to the CPU. This means the amount of executed
code is minimized.

• The wait time is dynamic within the given <time> range. For details, please see:

- SYStem.Option.WaitIDCODE

- SYStem.Option.WaitDAPPWR

- SYStem.Option.WaitDBGREG

Example:

// Assumes that the following debug resources are not available in reset:
// * JTAG
// * Debug power domain
// * Debug registers
RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.ResBreak OFF // Early release of nSRST line
SYStem.Option.WaitIDCODE ON // Poll 1 second or less for JTAG
SYStem.Option.WaitDAPPWR ON // Poll 1 second or less for DAP power
SYStem.Option.WaitDBGREG ON // Poll 1 second or less for dbg registers

SYStem.Mode Up
Armv8 and Armv9 Debugger | 26©1989-2024 Lauterbach

Connect to SoC when Device is not Available in Reset for an Unknown Reason

All scenarios discussed so far assume that the debugger can poll some kind of status to determine when the
core will be available for debug. However, it is possible that none of the three wait methods will succeed.
Let’s summarize what has been discussed so far:

• SYStem.Option.WaitIDCODE: JTAG is not available in reset.

• SYStem.Option.WaitDAPPWR: The debug power domain is not available in reset.

• SYStem.Option.WaitDBGREG: Core debug registers are not available in reset.

A rather generic approach does not to try to check any status at all. Instead, the debugger releases the reset
line early when SYStem.Option.ResBreak OFF is used. The SoC can then execute an application (boot)
code for some time before the debugger tries to bring the device in debug mode:

Consequences:

• The execution time of the CPU before it is brought to debug mode is not really known.

• The CPU might execute more code than expected or necessary for a debug connection.

• If boot timings of the CPU change, the wait time might not fit anymore, and e.g. PRACTICE start-
up scripts (*.cmm) that have been working before might fail suddenly. Manual maintenance of the
script is required.

Example:

RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.ResBreak OFF // Early release of reset line (nSRST)
SYStem.Mode Up

nSRST

nTRST

CPU State reset running debugconfig

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

JTAG ID DAP register
Armv8 and Armv9 Debugger | 27©1989-2024 Lauterbach

By using SYStem.Option.ResBreak OFF, the debugger adds some additional wait time after reset has
been released. This wait time might not be enough. In this case it is required to add an additional wait time
with SYStem.Option.WaitReset:

Consequences:

• The CPU might execute more code than expected or necessary for a debug connection.

• If boot timings of the CPU change, the wait time might not fit anymore, and e.g. PRACTICE start-
up scripts (*.cmm) that have been working before might fail suddenly. Manual maintenance of the
script is required.

Benefit:

• The additional wait time is known.

Example:

RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // Only connect to boot core
 // (multicore systems)
SYStem.Option.ResBreak.OFF // Early release of reset line (nSRST)
SYStem.Option.WaitReset 30ms // 30ms of additional wait time
 // after reset has been deasserted
SYStem.Mode Up

nSRST

nTRST

CPU State reset wait

> 1s (ON)

running debugJTAG ID DAP register config

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK
Armv8 and Armv9 Debugger | 28©1989-2024 Lauterbach

Connect to Secondary Cores

In a multicore system, it might be required to connect to the secondary cores, too. Once the boot core is
stopped in debug mode, the secondary cores might still be in a power down or reset state. In this case, a
SoC-specific sequence can be executed to “kick” the secondary cores into active and debug state. Usually
such a sequence is implemented in a custom start-up script.

Example:

Troubleshooting

Example:

If even an attach operation does not work with your SoC, the device may intentionally not be enabled for
debugging or there might be other issues, e.g. electrical issues. Please see the chapter “Communication
between Debugger and Processor cannot be established”.

// Assumption: The debugger has already connected to core 0 (boot core)
// In this example: There are four Arm cores in the SoC
DO <path>/<to>/<kick_cores_script>.cmm // Kick secondary cores, e.g.
 // by custom script
SYStem.Mode Down // Detach single core session
 // to configure SMP session
CORE.ASSIGN 1. 2. 3. 4. // Assign all cores
SYStem.Mode Attach // Reattach to all cores

Situation SYStem.Mode Up does not work.

Symptom Debug port fail or target in reset.

Possible Cause Not all debug resources are available during SYStem.Mode Up connection
attempt.

Cross-check Connect to the first core only in the SoC without issuing a reset using
SYStem.Mode Attach.

Purpose To evaluate if debug connection is possible at all.

// Evaluate if debug connection is possible at all
RESet // Reset debugger configuration.
 // Does not toggle the reset line (nSRST)
SYStem.CPU <cpu>
CORE.ASSIGN 1. // At first try core0 only
SYStem.Mode Attach
Armv8 and Armv9 Debugger | 29©1989-2024 Lauterbach

Summary

Let’s sum up the wait methods discussed above. The strategy to connect to a core via SYStem.Mode Up
SoC is as follows:

• Try to get a good understanding of the boot process on your SoC.

• Try to choose one or more wait methods in the following order:

- SYStem.Option.WaitIDCODE

- SYStem.Option.WaitDAPPWR

- SYStem.Option.WaitDBGREG

- If those methods do not work, try to use SYStem.Option.ResBreak OFF, probably in addition
with SYStem.Option.WaitReset.

- If all options fail, try to connect to the first core via SYStem.Mode Attach.
Armv8 and Armv9 Debugger | 30©1989-2024 Lauterbach

Troubleshooting

Communication between Debugger and Processor cannot be established

Typically SYStem.Mode Up is the first command of a debug session for which communication with the
target (e.g. evaluation board) is required. Error messages like “debug port fail” or “debug port time out” while
executing this command may have the reasons below. “target processor in reset” is just a follow-up error
message. Open the AREA.view window to see all error messages.

• The target has no power or the Debug Cable is not connected to the target. This results in the
error message “target power fail”.

• You did not select the correct core type SYStem.CPU <type>.

• There is an issue with the JTAG interface. See “Arm JTAG Interface Specifications”
(app_arm_jtag.pdf) and the manuals or schematic of your target to check the physical and
electrical interface. Maybe there is the need to set jumpers on the target to connect the correct
signals of the JTAG connector.

• There is the need to enable (jumper) the debug features on the target. It will e.g. not work if
nTRST signal is directly connected to ground on target side.

• The target is in an unrecoverable state. Re-power your target and try again.

• The target cannot communicate with the debugger while in reset. Try SYStem.Mode Attach
followed by Break.direct instead of SYStem.Up or use SYStem.Option.EnReset OFF.

• The default frequency of the JTAG/SWD/cJTAG debug port is too high, especially if you emulate
your core or if you use an FPGA-based target. In this case try SYStem.JtagClock 50kHz and
optimize the speed when you got it working.

• The core has no power or is kept in reset.

• The core has no clock.

• The target needs a certain setup time after the reset release. Per default, SYStem.Up will try to
catch the CPU at the reset vector, i.e. there is no time for any initialization. You can try to grant a
certain setup time to the target using SYStem.Option.WaitIDCODE,
SYStem.Option.WaitDAPPWR, SYStem.Option.WaitDBGREG, SYStem.Option.ResBreak
and/or SYStem.Option.WaitReset. As an alternative, try to use SYStem.Mode Attach. Please
see “Configure Debugger for SoC Specific Reset Behavior” for more details on these options.

• Your Core-base and/or CTI-base is not set. See SYStem.CONFIG.COREDEBUG.Base and
SYStem.CONFIG.CTI.Base. Both base addresses are needed. The Core-base is needed for the
communication and the CTI-base is needed for the start/stop control.

• There is a watchdog which needs to be deactivated.

• Your target needs special debugger settings. Check the directory ~~/demo/arm to see if there is
a suitable script file *.cmm for your target.

You might have several TAP controllers in a JTAG-chain. Example: The TAP of the DAP could be in a
chain with other TAPs from other CPUs. In this case you have to check your pre- and post-bit
configuration. See for example SYStem.CONFIG IRPRE or SYStem.CONFIG DAPIRPRE.
Armv8 and Armv9 Debugger | 31©1989-2024 Lauterbach

FAQ

Please refer to https://support.lauterbach.com/kb.

Trace Extensions

There following types of trace extensions are available for Arm:

• Arm-ETMv4: an Embedded Trace Macrocell is integrated into the core. The Embedded Trace
Macrocell provides program flow only plus trigger and filter features.

Please note that in case of CoreSight ETMv4 you need to inform the debugger in the start-up
script about the location of the trace control register and funnel configuration. See
SYStem.CONFIG ETM Base, SYStem.CONFIG.FUNNEL.Base, SYStem.CONFIG.TPIU.Base,
SYStem.CONFIG.ETMFUNNELPORT. In case a HTM or ITM module is available and shall be
used you need also settings for that.

For detailed information about the usage of Arm ETMv4, please refer to the online-help books:

- “Arm ETM Trace” (trace_arm_etm.pdf)

- “Arm ETM Programming Dialog” (trace_arm_etm_dialog.pdf)

- “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf)
Armv8 and Armv9 Debugger | 32©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Quick Start for Multicore Debugging

This chapter will give you a quick start regarding Multicore Processing:

• SMP Debugging - Quick Start (Symmetric Multiprocessing)

• AMP Debugging - Quick Start (Asymmetric Multiprocessing)

Please see also the Demo and Start-up Scripts chapter for ready-to-run PRACTICE (*.cmm) start-up
scripts.

SMP Debugging - Quick Start

1. How to Debug a System with Multiple Identical Cores

A multicore system used for Symmetric Multiprocessing (SMP) has two or more cores that are identical or
have at least a compatible instruction set. This means that an application might switch between the cores. To
debug an SMP system you start only one TRACE32 PowerView GUI:

Core-specific
information
(here: Currently
selected core)

Information
common
for all cores

Core-specific
information
(here: Core 1)
Armv8 and Armv9 Debugger | 33©1989-2024 Lauterbach

All cores can be accessed using this one GUI. Core specific information can be displayed in separate
windows. The cores will be started, stepped (HLL step) and halted together. The assembler step is not
synchronized and will be done independently for each core. TRACE32 takes care that software and on-
chip breakpoints will have an effect on whatever core the task will run.

SYStem.Option settings and the selected JTAG clock affect all cores. For the start-up the first TRACE32
instance gets control over the reset signals. SYStem.CONFIG Slave ON may only be used if none of the
SMP cores shall control the reset lines and initialize the JTAG interface.

Devices that have a Cross-Trigger-Matrix (CTM) implemented allow Symmetric Multiprocessing (SMP)
with low start/stop latencies. If there is no CTM implemented, SMP debugging is still possible but the
debugger must continuously poll the state of the cores and synchronize the state of the other cores which
causes much higher start/stop latencies.

The included cores of identical type are connected to a single shared main memory. Typically a proper SMP
real-time operating system assigns the tasks to the cores. You will not know in advance on which core the
task you are interested in will be executed.

2. Set up the SMP Debug Scenario

The selection of the proper SMP SoC causes the debugger to connect to all assigned SMP-able cores on
start-up (e.g. by SYStem.Mode Up). To select an SMP SoC use SYStem.CPU.

If a predefined SoC is available, the following settings could be skipped, as they are already set by the SoC
selection. Having selected a SoC, you can check this settings in SYStem.CONFIG. It is recommend to
check if your SoC is already available in the CPU selection.

If you have no predefined SMP SoC but an SMP-able core setup you need to specify the number of cores
you intend to SMP-debug yourself by SYStem.CONFIG.CoreNumber <number>. You need then to select
the cores (of all cores) you want to debug using CORE.ASSIGN, e.g.:

In this example you have 2 out of 4 cores grouped into one SMP system. As a next step you need to specify
how each core can be accessed in your SMP setup. For known SoCs this settings might already be set.
Check the SYStem.CONFIG /COmponents window.

Example: If you have several cores connected to one common DAP you have to specify multiple core base
and CTI base addresses:

SYStem.CPU CORTEXA53
SYStem.CONFIG.CoreNumber 4.
CORE.ASSIGN 1. 2.

; Select CPU or chip
; Total number of cores
; Assign SMP cores

; Base and CTI addresses, for cores 1 & 2
SYStem.CONFIG.COREDEBUG Base DAP:0x80010000 DAP:0x80110000
SYStem.CONFIG.CTI Base DAP:0x80020000 DAP:0x80120000
Armv8 and Armv9 Debugger | 34©1989-2024 Lauterbach

Some setups might also require to set up PRE and POST bits, e.g. if your cores are in a JTAG daisy chain:

In this example the chain would look like this:

IR-Path: TDI ---> [TAP, IR=3] ---> [TAP, IR=7] ---> [DAP-TAP, IR=4] ---> [TAP, IR=5] ---> TDO

DR-Path: TDI ---> [TAP, DR=1] ---> [TAP, DR=1] ---> [DAP-TAP, DR=32] ---> [TAP, DR=1] ---> TDO

3. Enter Debug Mode

This will bring all cores into debug mode that have been assigned to the SMP system using the
CORE.ASSIGN command. The default case assumes that the debug interface is accessible while the CPU
is held in reset. If this is not the case, SYStem.Mode Up may fail with an error. In this case try to attach to
the CPU and to stop it:

4. Switch Debug View between Cores

The command CORE.select allows to switch between cores (also visible and changeable via the state line).
Commands may also offer the /CORE <core> option, e.g.:

SYStem.CONFIG.DAPIRPRE 5. ; One trailing IR in the chain
SYStem.CONFIG.DAPIRPOST 10. ; 10 = 3 + 7 (add precedent IR)
SYStem.CONFIG.DAPDRPRE 1. ; One trailing bypass DR in the chain
SYStem.CONFIG.DAPDRPOST 2. ; 2 = 1 + 1 (all precedent bypass DR)

SYStem.Up

SYStem.Mode Attach ; Attach without reset
Break.direct ; Enter debug mode

CORE.select 0. ; select core 0
Register.view ; view registers of current core 0
Register.view /CORE 1. ; view registers of core 1
Armv8 and Armv9 Debugger | 35©1989-2024 Lauterbach

The number of the currently selected core is shown in the state line at the bottom of the main window. You
can use this to switch the GUIs perspective to the other cores when you right-click on the core number there.

5. Write a Start-up Script Summary

The SMP setup sequence can be written altogether into a *.cmm setup script like <smp_setup>.cmm. The
setup can be reproduced by calling this script:

CD.DO <smp_setup>.cmm

Selected Core
Armv8 and Armv9 Debugger | 36©1989-2024 Lauterbach

AMP Debugging - Quick Start

1. How to Debug a System with Multiple Heterogenous Cores

A multicore system used for Asymmetric Multiprocessing (AMP) has specialized cores which are used for
specific tasks. An AMP system may consist of independent single cores or of independent SMP-systems
(subsystems). Independent means that e.g. tasks cannot be assigned to other AMP cores/subsystems in an
arbitrary fashion:

In this case, tasks of the Linux SMP-2 system could not be assigned to the Linux SMP-4 system or the
single cores. However, tasks can be assigned within the SMP system, in this case core 1 and core 2.

To debug such a system, you need to open a separate TRACE32 graphical user interface (GUI), one for
each core or each subsystem. For simplicity, only two GUIs for two SMP systems are shown here:

Each GUI will debug one subsystem. The GUIs are able to communicate using the InterCom command.

2. Starting the TRACE32 PowerView GUIs

To set up an AMP multicore debugging scenario, multiple TRACE32 instances (GUIs) need to be started.
Please make sure the “File config.t32” (installation.pdf) adds at least:

CORE=<integer>

IC=NETASSIST
PORT=<port_number>

; e.g. CORE=1

; enable InterCom
; e.g. PORT=20000

Linux SMP-2 Linux SMP-4

1 2 3 4 5 6 7 8

AMP system with two independent SMP systems and two single cores

SMP System GUI (Linux SMP-2)

InterCom

SMP System GUI (Linux SMP-4)
Armv8 and Armv9 Debugger | 37©1989-2024 Lauterbach

3. Master-Slave Concept

An AMP system may share the reset line. Only one TRACE32 instance is allowed to control the reset line to
avoid unwanted resets by other TRACE32 instances. The TRACE32 instance that controls the reset line is
called “master” and all the other TRACE32 instances are referred to as “slaves”.

For AMP systems, we recommend to write a start-up script, which is intended to run on the “master”
instance controlling the “slave” instances via InterCom commands.

Hint: Setting up user-defined commands with ON CMD improves readability, e.g.:

4. Setting up the Multicore Environment

After starting the TRACE32 PowerView GUIs, each instance assumes to be connected to a separate
chip/subsystem by default. Mounting the cores into the same chip makes TRACE32 aware of the resources
to be shared between the cores. This is especially important for multi-core synchronization and shared
resources like the on- and off-chip trace.

Before bringing the system up, use the SYStem.CONFIG.CORE command on each GUI to mount all cores
into one chip, e.g.:

You need to set up each core in each GUI separately. For each Core/GUI this it no different from setting
up a single core setup. An example setup for a single Armv8 core can be found in the Quick Start of the
JTAG Debugger chapter. It can also be used a starting point for an Armv9 setup.

; startup_script.cmm running on GUI0:
&addressGUI2="127.0.0.1:20002"

ON CMD CORE2 GOSUB
(
 LOCAL ¶ms
 ENTRY %Line ¶ms
 InterCom.execute &addressGUI2 ¶ms

 RETURN
)
CORE2 PRINT "executed on core 2"

; address and port of
; GUI2
; define command “CORE2”

; execute command on
; remote GUI

; use the user-defined
; command: text will be
; printed on GUI2

CORE0 SYStem.CONFIG CORE 1. 1.
CORE1 SYStem.CONFIG CORE 2. 1.
CORE2 SYStem.CONFIG CORE 3. 1.

; GUIO: core 0 in chip 1
; GUI1: core 1 in chip 1
; GUI2: core 2 in chip 1
Armv8 and Armv9 Debugger | 38©1989-2024 Lauterbach

5. Synchronized Go / Step / Break

The SYnch command allows for start stop synchronization between multiple GUIs.

6. Write a Start-up Script Summary

The AMP setup sequence can be written altogether into a *.cmm setup script like <amp_setup>.cmm. The
setup can be reproduced by calling that script:

CD.DO <amp_setup>.cmm
Armv8 and Armv9 Debugger | 39©1989-2024 Lauterbach

Arm Specific Implementations

AArch Mode Support

Cores based on the Armv8 or Armv9 architecture may switch operation between 64-bit and 32-bit execution.
For this the Armv8/Armv9 architecture defines two modes:

For a detailed description, refer to the Armv9, Armv8 and / or Armv7 documents of the manufacturer.

AArch64 and AArch32 Debugging

When the debugger establishes a debug connection to the target (e.g. SYStem.Mode Up, SYStem.Mode
Attach) it will automatically determine which mode the core is currently using. The AArch mode will mainly
affect:

• Register Window: In the AArch64 mode the Register.view window will be displayed in a new
format. In the AArch32 mode the register window layout from precedent Arm architectures, like
the Armv7 architecture, will be used. You can watch both layouts simultaneously by enlarging the
register window. Some registers of the inactive AArch mode might not be accessible.

• List Window: The instruction opcodes in the List.auto window will be disassembled according to
the current DisMode setting. It is recommended to use SYStem.Option.DisMode AUTO and to
let the debugger decide which disassembly mode is used. To choose a custom disassembly
mode use SYStem.Option.DisMode or use an appropriate access class.

• Software Breakpoints: Software Breakpoint instructions differ in AArch64 from the ones in
AArch32. To ensure correct use of Software Breakpoints you should set the correct DisMode
using SYStem.Option.DisMode. It is recommended to use SYStem.Option.DisMode AUTO.

• Co-Processor (C15/C14) and System Register (SPR) access: In AArch64 mode, System
Registers are used instead of the AArch32 Co-Processor registers. Both register types are
related but the accessibility depends on the CPU mode and is handled differently in most cases.
Most CP-Registers are architecturally mapped to SPRs.

• Secure mode handling: In AArch64 mode, the influence of the secure bit is different from the
AArch32 mode. In AArch32 the secure mode will decide which of the banked secure/non-secure
registers is currently available. This does not apply for most registers in AArch64 mode. The
accessibility of registers is mainly determined by the current exception level of the CPU.

• FPU.view Window: The FPU/VPU unit has been reworked in Armv8. The layout of the FPU.view
window changes according to the AArch mode that was detected by the debugger. You can
watch both layouts simultaneously by enlarging the FPU window.

AArch64 Supports execution of the 64-bit instruction set A64. The instruction length is
fixed to 32-bit. The operand can be 64-bit wide (e.g. General Purpose Registers).

AArch32 Supports execution of the 32-bit instruction sets A32 (Arm) and T32 (Thumb).
Acts as a compatibility mode to run 32-bit applications, e.g. legacy code from the
Armv7 or other 32-bit Arm cores.
Armv8 and Armv9 Debugger | 40©1989-2024 Lauterbach

AArch64 and AArch32 Switching

AArch Mode Switch by Debugger

The AArch mode of the CPU can be switched in the Register.view window.

Not every transition is possible or allowed. The debugger will print an error message an a reason to
AREA.view in an error case. Forbidden transitions are:

• Any switch from an AArch64/AArch32 secure mode to AArch64/AArch32 EL2/hyp (Armv8.0-A -
Armv8.3-A). Please note that this may be a legal transition since Armv8.4-A.

• A switch from AArch64 EL3 mode to AArch32 mon mode

• A switch from AArch32 mon mode to AArch64 EL3

• A switch to an AArch64 EL when the CPU is in AArch32 only mode

• A switch to an AArch32 mode when the corresponding EL does not support AArch32

Some modes might not be available if they are not implemented by the Armv8/Armv9 device.

AArch64 modes

AArch32 modes
Armv8 and Armv9 Debugger | 41©1989-2024 Lauterbach

AArch Mode Switch by Application

For an application there are two possibilities to switch the AArch mode. An application might configure the
lower Exception Levels (ELx) and cause an exception return (ERET) to switch to a lower EL. It is also
possible for an application to go to a higher level by causing an exception call, e.g. a secure monitor call
(SMC).

The above approach does not allow to switch the AArch mode of EL3. A special mechanism is needed. The
RMR_ELx registers (if implemented) can be used to cause a reset and define a new AArch mode.

The Vector catch debug events (TrOnchip.Set) can be configured to stop the core on such a reset event.

The debugger keeps track of the application mode switches. However, the debugger cannot know that the
target switched the AArch mode while the application is running. The debugger detects a switch the next
time the target enters debug mode. A change might happen every time the target has the opportunity to
execute code:

• Assembler single step or HLL single step

• Go - Break

• Go - Self triggered halt (Breakpoints, Exceptions, catch events, etc.)

Example transition from AArch64 EL3 to AArch32 EL1 using an exception return (ERET) and
transition back to AArch64 EL3 using a secure monitor call (SMC).

Example transition from AArch64 EL3 to AArch32 EL3 using the RMR_EL3 register.
Armv8 and Armv9 Debugger | 42©1989-2024 Lauterbach

TrustZone Technology

Some processors might integrate Arm’s TrustZone technology, a hardware security extension, to facilitate
the development of secure applications.

The TrustZone technology splits the computing environment into two isolated worlds. Most of the code runs
in the ‘non-secure’ world, whereas trusted code runs in the ‘secure’ world. There are core operations that
allow you to switch between the secure and non-secure world.

AArch64 Secure Model

For switching purposes, TrustZone provides a secure ‘EL3’ mode. Reset enters the secure world:

When EL3 is operating in AArch64 mode, lower exception modes may either operate in AArch64 or AArch32
mode. The availability of these modes for each exception level depends on the specific implementation.

Only when the core is in the secure world, core and debugger can access the secure memory. In AArch64
mode, there are no secure/non-secure banked registers. Instead, the accessibility of the registers depends
only on the exception level the CPU operates in. A few registers are only available in secure mode, e.g.
secure timer registers.

Armv8.4-A Secure Hypervisor Extension

Armv8.4-A adds a secure Hypervisor to the security model. This extension is only available in AArch64. This
means there is no secure AArch32 Hypervisor.

EL0 App
AArch64 or AArch32

EL1 Guest OS
AArch64 or AArch32

EL3 Secure
monitor
AArch64

EL0 Secure App
AArch64 or AArch32

EL1 Secure OS
AArch64 or AArch32

Secure worldNon-secure world

EL2 Hypervisor
AArch64 or AArch32

EL2 Secure
AArch64 Hypervisor

ArmV8.4-A

Secure state
Armv8 and Armv9 Debugger | 43©1989-2024 Lauterbach

AArch32 Secure Model

For switching purposes, TrustZone provides a secure ‘monitor’ mode. Reset enters the secure world:

When the monitor mode operates in AArch32 mode, all lower exception levels / modes must also operate in
AArch32 mode.

Only when the core is in the secure world, core and debugger can access the secure memory. There are
some CP15 registers accessible in secure state only, and there are banked CP15 registers, with both secure
and non-secure versions.

Debug Permission

Debugging is strictly controlled. It can be enabled or disabled by the SPIDEN (Secure Privileged Invasive
Debug Enable) input signal and SUIDEN (Secure User Invasive Debug Enable) bit in SDER (Secure Debug
Enable Register):

• SPIDEN=0, SUIDEN=0: debug in non-secure world, only

• SPIDEN=0, SUIDEN=1: debug in non-secure world and secure user mode

• SPIDEN=1: debug in non-secure and secure world

SPIDEN is a chip internal signal and it’s level can normally not be changed. The SUIDEN bit can be
changed in secure privileged mode, only.

Debug mode cannot be entered in a mode where debugging is not allowed. Breakpoints will not work there.
Break or SYStem.Mode Up will work at the moment a mode is entered where debugging is allowed.

Checking Debug Permission

The DBGAUTHSTAT (Debug Authentication Status Register), bit [5:4] shows the signal level of SPIDEN.

In the SDER/SDER_EL3 (Secure Debug Enable Register) you can see the SUIDEN flag assuming you are
in the secure state which allows reading the SDER register.

Normal mode
user mode

Normal mode
privileged modes

Monitor
mode

Secure model
user mode

Secure world
privileged modes

Secure worldNon-secure world

Secure state
Armv8 and Armv9 Debugger | 44©1989-2024 Lauterbach

Checking Secure State

In the peripheral file, the SCR register bit 0 (NS) shows the current secure state. You can also see it in the
Register.view window if you scroll down a bit. On the left side you will see ‘sec’ which means the core is in
the secure state, ‘nsec’ means the core is in non-secure state. Both reflect the bit 0 (NS) of the SCR (Secure
Control Register). However SCR is only accessible in secure state.

In AArch64 mode, for most SPR registers the access does not depend on the security state.

In AArch32 monitor mode, which is also indicated in the Register.view window, the core is always in a
secure state independent of the NS bit (non-secure bit) described above. From AArch32 monitor mode, you
can access the secure CP15 registers if “NS=secure” and the non-secure CP15 registers if “NS=non-
secure”.

To check the secure state, e.g. in a PRACTICE script (*.cmm) or via the TRACE32 command line, use:

Changing the Secure State from within TRACE32

From the TRACE32 PowerView GUI, you can switch between secure mode (NS=0) and non-secure mode
(NS=1) by toggling the ‘sec’, ‘nsec’ indicator in the Register.view window or by executing this command:

It sets or clears the NS (Non-Secure) bit in the SCR register. You will get a ‘emulator function blocked by
device security’ message in case you are trying to switch to secure mode although debugging is not allowed
in secure mode.

This way you can also inspect the registers of the other world. Please note that a change in state affects
program execution. Remember to set the bit back to its original value before continuing the application
program.

PRINT Register(NS) ; PRINT current secure mode bit to AREA.view
&secureMode=Register(NS) ; Read current secure mode bit into a macro

Register.Set NS 0 ; secure mode
Register.Set NS 1 ; non-secure mode

Current secure state and mode
Armv8 and Armv9 Debugger | 45©1989-2024 Lauterbach

AArch64 System Registers Access

The secure mode does not affect the access to most system registers (SPR). Mainly the exception level (EL)
of the CPU is relevant. Some registers are only accessible in secure mode, e.g. secure timer registers. See
also System Registers (AArch64 mode).

You can force the SPR access in another mode by using the access class “MSPR:” for EL3, “HSPR:” for
EL2/hypervisor, “ZSPR:” for secure and “NSPR:” for non-secure respectively.

AArch32 Coprocessor Registers Access

The peripheral file and ‘C15:’ access class will show you the CP15 register bank of the secure mode the
core is currently in. When you try to access registers in non-secure world which are accessible in secure
world only, the debugger will show you ‘????????’.

You can force to see the other bank by using access class “ZC15:” for secure, “NC15:” for non-secure
respectively.

Accessing Cache and TLB Contents

Reading cache and TLB (Translation Look-aside Buffer) contents is only possible if the debugger is allowed
to debug in secure/EL3 state. You get a ‘function blocked by device security’ message otherwise.

However, a lot of devices do not provide this debug feature at all. Then you get the message ‘function not
implemented’.

Breakpoints and Vector Catch Register

Software breakpoints will be set in secure, non-secure or hypervisor memory depending on the current
secure mode of the core. Alternatively, software breakpoints can be set by preceding an address with the
access class “Z:” (secure) or “N:” (non-secure).

Vector catch debug events (TrOnchip.Set …) can individually be activated for secure state, non-secure
state, and different exception levels.

Breakpoints and Secure Modes

The security concept of the Armv8 architecture allows to specify breakpoints that cause a halt event only for
a certain secure mode (EL3/monitor, secure, non-secure, hypervisor).

Please refer to the chapter about secure, non-secure and hypervisor breakpoints to get additional
information.
Armv8 and Armv9 Debugger | 46©1989-2024 Lauterbach

big.LITTLE

Arm big.LITTLE processing is an energy savings method where high-performance cores get paired together
in a cache-coherent combination. Software execution will dynamically transition between these cores
depending on performance needs.

The OS kernel scheduler sees each pair as a single virtual core. The big.LITTLE software works as an
extension to the power-versa-performance management. It can switch the execution context between the
big and the LITTLE core.

Qualified for pairing is Cortex-A57/A72/A73/A75/A76 (as ‘big’) and Cortex-A35/A53/A55 (as ‘LITTLE’).

Debugger Setup

Example for a symmetric big.LITTLE configuration (2 Cortex-A57, 2 Cortex-A53):

SYStem.CPU CORTEXA57A53
SYStem.CONFIG CoreNumber 4.
CORE.ASSIGN BIGLITTLE 1. 2. 3. 4.
SYStem.CONFIG.COREDEBUG.Base <CA57_1> <CA53_2> <CA57_3> <CA53_4>
SYStem.CONFIG.CTI.Base <CA57CTI_1> <CA53CTI_2> <CA57CTI_3> <CA53CTI_4>

CPU
0

CPU
1

CPU
n

OS Kernel

S
ch

ed
ul

er

P
o

w
er

 v
er

sa
 P

er
fo

rm
an

ce
 M

an
ag

em
en

t

big

LITTLE

big

LITTLE

big

LITTLE

task

measure workload

toggle

measure workload

toggle

measure workload

toggle

task

task

.

.

.

Armv8 and Armv9 Debugger | 47©1989-2024 Lauterbach

Example for a non-symmetric big.LITTLE configuration (1 Cortex-A57, 2 Cortex-A53):

Consequence for Debugging

Using ‘BIGLITTLE’ for the core assignments will have the following effects on the debug session:

• The shown core numbers are extended by ‘b’ = ‘big’ or ‘l’ = ‘LITTLE’.

• The core status (active or powered down) can be checked with TargetSystem.state or in the
state line of the TRACE32 main window, where you can switch between the cores.

• The debugger assumes that one core of the pair is inactive.

• The OS Awareness sees each pair as one virtual core.

• The peripheral file respects the core type (e.g. Cortex-A57 or Cortex-A53).

Requirements for the Target Software

The routine (OS on target) which switches between the cores needs to take care of (copying) transferring the
on-chip debug settings to the core which wakes up.

This needs also to be done when waking up a core pair. In this case you copy the settings from an already
active core.

big.LITTLE MP

Another logical use-model is big.LITTLE MP (‘MP’ = Multi-Processing). It allows both the big and the LITTLE
core to be powered on and to simultaneously execute code.

From the debuggers’ point of view, this is not a big.LITTLE system in the narrow sense. There are no pairs of
cores. It is handled like a normal multi-core system, but with mixed core types.

Therefore for the setup, we need SYStem.CPU CORTEXA57A53, but we use CORE.ASSIGN instead of
CORE.ASSIGN BIGLITTLE.

Example for a symmetric big.LITTLE MP configuration (2 Cortex-A57, 2 Cortex-A53):

// NONE is a dummy core as partner for the 2nd little core
SYStem.CPU CORTEXA57A53
SYStem.CONFIG CoreNumber 4.
CORE.ASSIGN BIGLITTLE 1. 2. NONE 4.
SYStem.CONFIG.COREDEBUG.Base <CA57_1> <CA53_2> <dummy_3> <CA53_4>
SYStem.CONFIG.CTI.Base <CA57CTI_1> <CA53CTI_2> <CA57CTI_3> <CA53CTI_4>

SYStem.CPU CORTEXA57A53
SYStem.CONFIG CoreNumber 4.
CORE.ASSIGN 1. 2. 3. 4.
SYStem.CONFIG.COREDEBUG.Base <CA57_1> <CA53_2> <CA57_3> <CA53_4>
SYStem.CONFIG.CTI.Base <CA57CTI_1> <CA53CTI_2> <CA57CTI_3> <CA53CTI_4>
Armv8 and Armv9 Debugger | 48©1989-2024 Lauterbach

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is temporarily patched by a
breakpoint code. There is no restriction in the number of software breakpoints.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. Those CPU
resources only allow to set single address instruction breakpoints.

If an instruction range shall be covered, you need to invoke the ETM, see ETM.StoppingBreakPoints in
trace_arm_etm.pdf.

On-chip Breakpoints for Data

To stop the CPU after a read or write access to a memory location on-chip breakpoints are required. In the
Arm notation these breakpoints are called watch points (WP).

Overview

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used to set program
breakpoints into ROM/FLASH/EPROM.

• Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

• Data Value breakpoint: Number of on-chip data breakpoints that can be used to stop the
program when a specific data value is written to an address or when a specific data value is read
from an address.

Program Breakpoints Read/Write
Breakpoints

Data Value
Breakpoints

Cortex-A3x
Cortex-A5x
Cortex-A6x
Cortex-A7x
Cortex-R82
Cortex-X
Neoverse

Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
2 exact address ranges
(more on request)

Onchip breakpoints:
4, but address range
only as bit mask

ETM breakpoints:
—

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
—

Armv8 and Armv9 Debugger | 49©1989-2024 Lauterbach

Example for Standard Breakpoints

Assume you have a target with

• FLASH from 0x0--0xfffff

• RAM from 0x100000--0x11ffff

The command to set up TRACE32 correctly for this configuration is:

The following standard breakpoint combinations are possible.

1. Unlimited breakpoints in RAM and one breakpoint in ROM/FLASH with “myFunc” in RAM.

2. Unlimited breakpoints in RAM and one breakpoint on a write access

3. Two breakpoints in ROM/FLASH

Cortex-R52 Onchip breakpoints:
8, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
8, but address range
only as bit mask

ETM breakpoints:
—

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
—

Map.BOnchip 0x0--0xfffff

Break.Set 0x100000 /Program ; Software BP on RAM address

Break.Set myFunc /Program ; Software BP on symbol in RAM

Break.Set 0x100 /Program ; On-chip BP on flash address

Break.Set 0x100000 /Program ; Software BP on address

Break.Set myFunc /Program ; Software BP on symbol

Break.Set 0x108000 /Write ; On-chip write breakpoint
; on address 0x108000

Break.Set 0x100 /Program ; On-chip breakpoint 1

Break.Set 0x200 /Program ; On-chip breakpoint 2

Program Breakpoints Read/Write
Breakpoints

Data Value
Breakpoints
Armv8 and Armv9 Debugger | 50©1989-2024 Lauterbach

4. Two breakpoints on a read or write access on specific addresses

5. One breakpoint in ROM/FLASH and one breakpoint on a read or write access

Break.Set 0x108000 /Write ; On-chip write breakpoint 1

Break.Set 0x108010 /Read ; On-chip read breakpoint 2

Break.Set 0x100 /Program ; On-chip breakpoint 1

Break.Set 0x108010 /ReadWrite ; On-chip breakpoint 2
Armv8 and Armv9 Debugger | 51©1989-2024 Lauterbach

Secure, Non-Secure, Hypervisor Breakpoints

TRACE32 will set any breakpoint to work in any secure and non-secure mode. As of build 59757, TRACE32
distinguishes between secure, non-secure, and hypervisor breakpoints. The support for these kinds of
breakpoints is disabled per default, i.e. all breakpoints are set for all secure/non-secure/hypervisor modes.

Enable and Use Secure, Non-Secure and Hypervisor Breakpoints

First enable the symbol management for Arm zones with the SYStem.Option.ZoneSPACES command:

Second, configure breakpoints to match in different zones:

Usually TRACE32 will then set the secure/non-secure breakpoint automatically if it has enough information
about the secure/non-secure properties of the loaded application and its symbols. This means the user has
to tell TRACE32 if a program code runs in secure/non-secure or hypervisor mode when the code is loaded:

Please refer to the SYStem.Option.ZoneSPACES and Break.CONFIG.MatchZone command for
additional code loading examples.

Now breakpoints can be used as usual, i.e. TRACE32 will automatically take care of the secure type when a
breakpoint is set. This depends on how the application/symbols were loaded:

SYStem.Option.ZoneSPACES ON ; Enable symbol management

Break.CONFIG.MatchZone ON ; Match in different zones

Data.LOAD.ELF armf Z: ; Load application, symbols for secure mode

Data.LOAD.ELF armf N: ; Load application, symbols for non-secure mode

Data.LOAD.ELF armf H: ; Load application, symbols for hypervisor mode

Data.LOAD.ELF armf M: ; Load application, symbols for EL3 (AArch64)

Break.Set main ; Set breakpoint on main() function, Z:, N:, H:
 ; or M: access class is automatically set

Var.Break.Set struct1 ; Set Read/Write breakpoints to the whole
 ; structure struct1. The breakpoint is either
 ; a secure/non-secure/hypervisor or EL3 type.
Armv8 and Armv9 Debugger | 52©1989-2024 Lauterbach

Example 1: Load secure application and set breakpoints

First the symbol management is enabled and breakpoints are configured to match in different secure zones.
An application is loaded and TRACE32 is advised by the access class “Z:” at the end of the Data.LOAD.ELF
command that this application runs in secure mode.

As a next step, two breakpoints are set but the user does not need to care about any access classes. The
Break.List window shows that the breakpoints are automatically configured to be of a secure type. This is
shown by the “Z:” access class that is set at the beginning of the breakpoint addresses:

Set Breakpoints and Enforce Secure Mode

TRACE32 allows the user to specify whether a breakpoint should be set for secure, non-secure, hypervisor
or EL3 (AArch64) mode. This means the user has to specify an access class when the breakpoint is set:

SYStem.Option.ZoneSPACES ON ; Enable symbol management
Break.CONFIG.MatchZone ON ; Enable bp match in different zones

// Load demo application and tell TRACE32 that it is secure (Z:)
Data.LOAD.ELF ~~/demo/arm/compiler/arm/sieve_a64.elf Z:

// Set a breakpoint on the sieve() function start
Break.Set sieve

// Set a read breakpoint to the global variable mstatic1
Var.Break.Set mstatic1 /Read

Break.List ; Show breakpoints

Break.Set Z:main ; Enforce secure breakpoint on main()

Break.Set N:main ; Enforce non-secure breakpoint on main()

Break.Set H:main ; Enforce hypervisor breakpoint on main()

Break.Set M:main ; Enforce EL3 (AArch64) breakpoint on main()

Secure breakpoint(s)
Armv8 and Armv9 Debugger | 53©1989-2024 Lauterbach

Breakpoints on variables need the variable name and the access class to be enclosed in round brackets:

For 64-bit modes “Z:”, “N:”, “H:” or “M:” determine in which exception level the CPU shall stop:

For 32-bit modes “Z:”. “N:” or “H:” determine in which mode the CPU shall stop:

Var.Break.Set (Z:struct1) ; Enforce secure read/write breakpoint

Var.Break.Set (N:struct1) ; Enforce non-secure read/write breakpoint

Var.Break.Set (H:struct1) ; Enforce hypervisor read/write breakpoint

Var.Break.Set (M:struct1) ; Enforce EL3 (AArch64) read/write breakpoint

BP access class EL3 sec EL3 nsec EL2 EL1/EL0
sec

EL1/EL0
nsec

M: (secure) halt halt no halt no halt no halt

Z: (secure) no halt no halt no halt halt no halt

H: (hypervisor) no halt no halt halt no halt no halt

N: (non-secure) no halt no halt no halt no halt halt

BP access class mon sec mon nsec hyp svc/usr sec svc/usr
nsec

Z: (secure) halt halt no halt halt no halt

H: (hypervisor) no halt no halt halt no halt no halt

N: (non-secure) no halt no halt no halt no halt halt
Armv8 and Armv9 Debugger | 54©1989-2024 Lauterbach

Example 2: Load secure application and set hypervisor breakpoint.

First, the symbol management is enabled. An application is loaded and TRACE32 is advised by the “Z:” at
the end of the Data.LOAD.ELF command that this application runs in secure mode.

Then four breakpoints are set. Two do not have any access class specified. TRACE32 will use the symbol
information to make them secure breakpoints. Two breakpoints are defined as hypervisor breakpoints with
“H:”, i.e. the symbol information is explicitly overwritten. Break.List now shows a mixed breakpoint setup:

SYStem.Option.ZoneSPACES ON ; Enable symbol management
Break.CONFIG.MatchZone ON ; Enable bp match in different zones

// Load demo application and tell TRACE32 by ‘Z:’ that it is secure
Data.LOAD.ELF ~~/demo/arm/compiler/arm/sieve_a64.elf Z:

Break.Set main ; Auto configured secure breakpoint

// Explicitly set hypervisor breakpoint on function sieve()
Break.Set H:sieve

// Set secure read breakpoint (auto-configured) on variable mstatic1
Var.Break.Set mstatic1 /Read

// Explicitly set hypervisor write breakpoint on variable vtdef1
Var.Break.Set (H:vtdef1) /Write

Break.List ; Show breakpoints

NOTE: If a breakpoint is explicitly set in another mode, there might be no symbol
information loaded for this mode. This means Break.List can only display the
address of the breakpoint but not the corresponding symbol.

Secure breakpoint Hypervisor breakpointHypervisor breakpoint No symbol information
Armv8 and Armv9 Debugger | 55©1989-2024 Lauterbach

Summary of Breakpoint Configuration

TRACE32 can show a summary of the set breakpoints in a Break.List window. Furthermore, which
breakpoint will be active is also indicated in the List.auto window. The window Register.view will show you
the current secure state of the CPU. This example uses only addresses and no symbols. The use of
symbols is also possible as shown in Example 1 and Example 2:

Configuration of the Target CPU

The on-chip breakpoints configuration will be placed in the breakpoint/watchpoint registers of the
Armv8/Armv9 CPU. The debugger takes care of the correct values in the configuration register, so that the
breakpoint becomes only active when the CPU operates in the given secure/non-secure/hypervisor mode.

NOTE: The CPU might stop at a software breakpoint although there is not breakpoint
shown in the List.auto window. This happens because all software breakpoints are
always written at the given memory address.

Only secure breakpoint is shown

Hypervisor breakpoint

Non-secure breakpoints

Secure breakpoint

CPU is secure
Armv8 and Armv9 Debugger | 56©1989-2024 Lauterbach

Example for ETM Stopping Breakpoints

The default on-chip breakpoints either allow you to just set an instruction breakpoint on a single address or
to apply a mask to get a rough range. In case of a mask, the given range is extended to the next range limits
that fit the mask, i.e. the breakpoint may cover a wider address range than initially anticipated.

ETM stopping breakpoints allow you to set a true address range for instructions, i.e. the end and the start
address of the breakpoint really match your expectations. This only works if the CPU provides an ETM with
the necessary resources, e.g. the address comparators.

Prerequisites for ETM stopping breakpoints:

• Make sure that an ETM base address is configured. Otherwise TRACE32 will assume that there
is no ETM.

• If your CPU has its own CTI, it is recommended that you specify the CTI as well. Dependant on
the specific core implementation, the CTI might be needed to receive the ETM stop events:

It’s recommended to add both configuration commands to your PRACTICE start-up script (*.cmm). If you
selected a known SoC, e.g. with SYStem.CPU <cpu>, these settings are already configured.

To set ETM stopping breakpoints:

1. Activate the ETM Stopping breakpoints support:

2. Set the instruction range breakpoints, e.g.:

The Break.List window provides an overview of all set breakpoints.

For more information, see ETM.StoppingBreakPoints in “Arm ETM Trace” (trace_arm_etm.pdf).

SYStem.CONFIG ETM Base DAP:<etm_base> ; Make ETM available

SYStem.CONFIG CTI Base DAP:<cti_base>

ETM.StoppingBreakpoints ON

Break.Set func10 ; Set address range breakpoint on
 ; the address range of function
 ; func10

Break.Set 0xEC009008++0x58 ; Set address range breakpoint with
 ; precise start and end address
Armv8 and Armv9 Debugger | 57©1989-2024 Lauterbach

Access Classes

This section describes the available Arm access classes and provides background information on how to
create valid access class combinations in order to avoid syntax errors.

For background information about the term access class, see “TRACE32 Concepts”
(trace32_concepts.pdf).

In this section:

• Description of the Individual Access Classes

• Combinations of Access Classes

• How to Create Valid Access Class Combinations

• Access Class Expansion by TRACE32

Description of the Individual Access Classes

Access Class Description

A Absolute addressing (physical address)

AHB, AHB2 See DAP description in this table.

APB, APB2 See DAP description in this table.

AXI, AXI2 See DAP description in this table.

C “Current”. Do not use this access class. It might be shown by the debugger
if it is unknown what access class shall be used. Then the access class
derives from the current processor mode.

C14 Access to C14-Coprocessor register. Its recommended to only use this in
AArch32 mode.

C15 Access to C15-Coprocessor register. Its recommended to only use this in
AArch32 mode.

D Data Memory
Armv8 and Armv9 Debugger | 58©1989-2024 Lauterbach

DAP, DAP2,
AHB, AHB2, ...,
APB, APB2, ...,
AXI, AXI2, ...

Memory access through bus masters that are called Memory Access
Ports (MEM-AP) provided by a Debug Access Port (DAP). The DAP is a
CoreSight component that is mandatory on Cortex-based devices. The
MEM-APs are addressed and configured differently depending on whether
you have a CoreSight SoC-400 or CoreSight SoC-600 based system on
chip.

Which bus master (MEM-AP) is used by which access class (e.g. AHB) is
defined by assigning a MEM-AP number (SoC-400) or base address
(SoC-600) to the access class:

CoreSight SoC-400:
SYStem.CONFIG.DEBUGAP1.Port <mem_ap#> -> “DAP”
SYStem.CONFIG.AHBAP1.Port <mem_ap#> -> “AHB”
SYStem.CONFIG.APBAP1.Port <mem_ap#> -> “APB”
SYStem.CONFIG.AXIAP1.Port <mem_ap#> -> “AXI”

CoreSight SoC-600:
SYStem.CONFIG.AHBAP1.Base <address> -> “AHB”
SYStem.CONFIG.APBAP1.Base <address> -> “APB”
SYStem.CONFIG.AXIAP1.Base <address> -> “AXI”

For an example, see Configuration examples for memory access ports
and a CoreSight component.

“DAP” should be the memory access port where the debug registers are
located, which is typically an APB MEM-AP (AHB MEM-AP on a Cortex-
M). This is because it is the default access class in debugger
configurations (SYStem.CONFIG ...) if you use an address without access
class. “DAP” is not available for a SoC-600 system.

For a CoreSight SoC-400 system, a second set of access classes (DAP2,
AHB2, APB2, AXI2) and configuration commands (e.g.,
SYStem.CONFIG.DEBUGAP2.Port <mem_ap#>) is available in case
there are two DAPs that need to be controlled by the debugger. For a
CoreSight SoC-600 system, more than two access classes of the same
type are possible and configurable (APB, APB2, APB3, ...), all controlled
by the same DAP.

DP The Debug Port access class is used to address the first memory bus
(APB) that you directly access with a SoC-600 DAPs debug interface
(JTAG, SWD).

E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

M
Armv8-A only

EL3 Mode (TrustZone devices). This access class only refers to the 64-bit
EL3 mode. It does not refer to the 32-bit monitor mode. If an Armv8 based
device is in 32-bit only mode, any entered “M” access class will be
converted to a “ZS” access class.

H EL2/Hypervisor Mode (devices having Virtualization Extension)

Access Class Description
Armv8 and Armv9 Debugger | 59©1989-2024 Lauterbach

Combinations of Access Classes

Combinations of access classes are possible as shown in the example illustration below:

The access class “A” in the red path means “physical access”, i.e. it will only bypass the MMU but consider
the cache content. The access class “NC” in the yellow path means “no cache”, so it will bypass the cache
but not the MMU, i.e. a virtual access is happening.

I Intermediate address. Available on devices having Virtualization
Extension.

J Java Code (8-bit)

N EL0/1 Non-Secure Mode (TrustZone devices)

P Program Memory

R AArch32 Arm Code (A32, 32-bit instr. length)

S Supervisor Memory (privileged access)

SPR
Armv8/Armv9 only

Access to System Register, Special Purpose Registers and System
Instructions. Its recommended to only use this in AArch64 mode.

T AArch32 Thumb Code (T32, 16-bit instr. length)

U User Memory (non-privileged access)
not yet implemented; privileged access will be performed.

USR Access to Special Memory via User-Defined Access Routines

JSEQ: Access data via JTAG sequences registered with
JTAG.SEQuence.MemAccess.ADD

VM Virtual Memory (memory on the debug system)

X
Armv8-A only

AArch64 Arm64 Code (A64, 32-bit instr. length)

Z Secure Mode (TrustZone devices)

Access Class Description

CPU CacheMMU Memory
NC

A

ANC
Armv8 and Armv9 Debugger | 60©1989-2024 Lauterbach

If both access classes “A” and “NC” are combined to “ANC”, this means that the properties of both access
classes are summed up, i.e. both the MMU and the cache will be bypassed on a memory access.

The blue path is an example of a virtual access which is done when no access class is specified.

The access classes “A” and “NC” are not the only two access classes that can be combined. An access
class combination can consist of up to five access class specifiers. But any of the five specifiers can also be
omitted.

Three specifiers: Let’s assume you want to view a secure memory region that contains 32-bit Arm code.
Furthermore, the access is translated by the MMU, so you have to pick the correct CPU mode to avoid a
translation fail. In our example it should be necessary to access the memory in Arm supervisor mode. To
ensure a secure access, use the access class specifier “Z”. To switch the CPU to supervisor mode during
the access, use the access class specifier “S”. And to make the debugger disassemble the memory content
as 32-bit Arm code use “R”. When you put all three access class specifiers together, you will obtain the
access class combination “ZSR”.

One specifier: Let’s imagine a physical access should be done. To accomplish that, start with the “A”
access class specifier right away and omit all other possible specifiers.

No specifiers: Let’s now consider what happens when you omit all five access class specifiers. In this case
the memory access by the debugger will be a virtual access using the current CPU context, i.e. the
debugger has the same view on memory as the CPU.

Using no or just a single access class specifier is easy. Combining at least two access class specifiers is
slightly more challenging because access class specifiers cannot be combined in an arbitrary order. Instead
you have to take the syntax of the access class specifiers into account.

If we refer to the above example “ZSR” again, it would not be possible to specify the access class
combination as “SZR” or “RZS”, etc. You have to follow certain rules to make sure the syntax of the access
class specifiers is correct. This will be illustrated in the next section.

List.Mix ZSR:0x10000000 // View 32-bit Arm code in secure memory

Data.dump A:0x80000000 // Physical memory dump at address 0x80000000

Data.dump 0xFB080000 // Virtual memory dump at address 0xFB080000
Armv8 and Armv9 Debugger | 61©1989-2024 Lauterbach

How to Create Valid Access Class Combinations

The illustrations below will show you how to combine access class specifiers for frequently-used access
class combinations.

Rules to create a valid access class combination:

• From each column of an illustration block, select only one access class specifier.

• You may skip any column - but only if the column in question contains an empty square.

• Do not change the original column order. Recommendation: Put together a valid combination by
starting with the left-most column, proceeding to the right.

Memory Access through CPU (CPU View)

The debugger uses the CPU to access memory and peripherals like UART or DMA controllers. This means
the CPU will carry out the accesses requested by debugger. Examples would be virtual, physical, secure, or
non-secure memory accesses. Some options are only available since Armv8.4.

Example combinations:

AD View physical data (current CPU mode)

AH View physical data or program code while CPU is in hypervisor mode

ED Access data at run-time

NUX View A64 instruction code at non-secure virtual address location, e.g. code of the user
application.

ZSD View data in secure supervisor mode at virtual address location

AZHD Physical secure hypervisor access. ArmV8.4-A only.

ZI Secure intermediate access. ArmV8.4-A only.

E A N

Z

U

S

D

P

X

R

T

TE

H

A
rm

V8
.4

E A M D

P

X

R

T

TE

H

A
rm

V8
.0

-8
.3

I

E D

P

X

R

T

TE

N

Z

A
rm

V8
.4
Armv8 and Armv9 Debugger | 62©1989-2024 Lauterbach

Illegal access class combinations when ArmV8.4-A secure hypervisor is not implemented:

Illegal access class combinations when ArmV8.4-A secure hypervisor is implemented:

Peripheral Register Access

This is used to access core ID and configuration/control registers.

Example combinations:

ZH, NH Illegal; Secure hypervisor is not supported by CPU

ZI, NI Illegal; Secure intermediate addresses are not supported by CPU

ZHR, NHR
ZHT, NHT
ZHTE, NHTE

The ArmV8.4-A extension does not include a secure AArch32 hypervisor.
Therefore any 32-bit access class specifiers (R, T, TE) are illegal in combination
with “NH” or “ZH”.

ZIR, NIR
ZIT, NIT
ZITE, NITE

The ArmV8.4-A extension does not include a secure AArch32 intermediate
addresses. Therefore any 32-bit access class specifiers (R, T, TE) are illegal in
combination with “NH” or “ZH”.

NC15 Access non-secure banked coprocessor 15 register (AArch32 mode)

C15 Access coprocessor 15 register in current secure mode (AArch32 mode)

SPR Access system register (AArch64 mode)

MSPR Access system registers in EL3 (AArch64) mode

HSPR Access system registers in EL2 (AArch64) mode

ZSPR Access system registers in secure EL1 (AArch64) mode

E

N

Z

H

C15

E SPR

N

Z

H

M E C14
Armv8 and Armv9 Debugger | 63©1989-2024 Lauterbach

CoreSight Access

These accesses are typically used to access the CoreSight busses APB, AHB and AXI directly through the
DAP bypassing the CPU. For example, this could be used to view physical memory at run-time.

Example combinations:

Cache and Virtual Memory Access

Used to access the TRACE32 virtual memory (VM:) or the data and instruction caches or to bypass them.

Example combinations:

EZAXI Access secure memory location via AXI during run-time

DAP Access debug access port (e.g. core debug registers)

VM Access virtual memory using current CPU context

AVM Access virtual memory ignoring current CPU context

HVMR Access virtual memory that is banked in hypervisor mode and disassemble memory
content as 32-bit Arm instruction code

NC Bypass all cache levels during memory access

ANC Bypass MMU and all cache levels during memory access

E N

Z

AXI

AXI2

AHB

AHB2

E DAP

DAP2

APB

APB2

VM

X

R

T

TE

A

N

Z

H

M

E A NC

NCL

IC

DC

N

Z

H

Armv8 and Armv9 Debugger | 64©1989-2024 Lauterbach

Access Class Expansion by TRACE32

If you omit access class specifiers in an access class combination, then TRACE32 will make an educated
guess to fill in the blanks. The access class is expanded based on:

• The current CPU context (architecture specific)

• The used window type (e.g. Data.dump window for data or List.Mix window for code)

• Symbol information of the loaded application (e.g. combination of code and data)

• Segments that use different instruction sets

• Debugger specific settings (e.g. SYStem.Option.*)

Examples: Memory Access through CPU

Let’s assume the CPU is in non-secure supervisor mode, executing 32-bit code.

Your input, here List.Mix at the TRACE32 command line, remains unmodified. TRACE32 performs an
access class expansion and visualizes the result in the window you open, here in the List.Mix window.

User input at the
command line

Expansion
by TRACE32

These access classes are added because...

List.Mix

(see also illustration
below)

NSR: N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
R: … code is viewed (not data) and the CPU uses 32-
bit instructions.

Data.dump A:0x0 ANSD:0x0 N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

Data.dump Z:0x0 ZSD:0x0 S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

NOTE: ‘E’ and ‘A’ are not automatically added because the debugger cannot know if you intended a
run-time or physical access.

A TRACE32 makes an educated guess to expand your omitted access class to “NSR”.

B Indicates that the CPU is in non-secure supervisor mode.

A

B

Armv8 and Armv9 Debugger | 65©1989-2024 Lauterbach

System Registers (AArch64 Mode)

Only the AArch64 mode provides System Registers (SPR). Their functionality is similar to Coprocessor
registers. Use the SPR access class for a read or write. SPR registers can also be accessed in the
PER.view window.

A TRACE32 SPR address takes five parameters <op0>, <op1>, <CRn>, <CRm>, <op2> which are defined
for a MRS or MSR instruction:

MRS <Xt>, <S>_<op1>_<Cn>_<Cm>_<op2> | MSR <S>_<op1>_<Cn>_<Cm>_<op2>, <Xt>

Each parameter is a nibble (4-bit) in the SPR address. The parameter arrangement is:

NOTE: • The parameter <S> is also called <op0> in the 64-bit instruction set.
• SYS instructions equal MSR or MRS instructions with <S> = 1

SPR example register Parameters, binary (hex) representation Debugger access

VTTBR_EL2
(64-bit read-write register)

op0=11 (0x3)
op1=100 (0x4)
CRn=0010 (0x2)
CRm=0001 (0x1)
op2=000 (0x0)

spr:0x34210

IFSR32_EL2
(32-bit read-write register)

op0=11 (0x3)
op1=100 (0x4)
CRn=0101 (0x5)
CRm=0000 (0x0)
op2=001 (0x1)

spr:0x34501

AT S12E1R
(64-bit write-only system
instruction)

op0=01 (0x1)
op1=100 (0x4)
CRn=0111 (0x7)
CRm=1000 (0x8)
op2=101 (0x5)

spr:0x14785

MRS
MSR

17 16
op0

14 12
op1

7 4
CRm

11 8
CRn

2 0
op2SPR:

<Xt>, <S>_<op1>_<Cn>_<Cm>_<op2>
<S>_<op1>_<Cn>_<Cm>_<op2>, <Xt>

Bit assignment
Armv8 and Armv9 Debugger | 66©1989-2024 Lauterbach

Example 1: Write a 64-bit value to VTTBR_EL2 via the TRACE32 command line.

Example 2: Single read of a 32-bit value from IFSR32_EL2 via the TRACE32 command line.

Example 3: Write 64-bit virtual address to AT S12E1R system instruction via the TRACE32 command line.

SPR Access in Specific CPU Mode

The debugger will access the SPR register in the current CPU mode if only the “SPR” access class is
specified during the access. This means that a register might not be accessible by the debugger if the CPU
has no access to register from its current mode.

You can enforce a mode switch during the access by adding the access class specifiers “M”, “H”, “Z” or “N”:

The following examples assume that CPU is in non-secure EL1 mode.

Example 1: Access SCR_EL3, which can only be done in EL3 mode.

Example 2: Access HCR_EL2, which can only be done in EL2 mode.

Data.Set SPR:0x34210 %Quad 0x20080000000 // Write to VTTBR_EL2

Data.In SPR:0x34501 /Long // Read from IFSR_EL2

Data.Set SPR:0x14785 %Quad 0x20080C08280 // Execute system instr.

NOTE: Unlike the AArch32 TrustZone concept, there are no secure / non-secure banked
registers. The accessibility of a SPR depends mainly on the current exception level
of the CPU, in a few cases a SPR might only be accessible in secure mode.

MSPR Access SPR register in EL3 (AArch64) mode

HSPR Access SPR register in EL2 (AArch64) mode

ZSPR Access SPR register in secure EL1 (AArch64) mode

NSPR Access SPR register in non-secure EL1 (AArch64) mode

Data.Set MSPR:0x36110 %Long 0x401 // Switch to EL3 mode

Data.In HSPR:0x34110 /Quad // Switch to EL2 mode
Armv8 and Armv9 Debugger | 67©1989-2024 Lauterbach

SPR Converter Dialog

The demo directory offers a System Register Converter dialog, which allows you to assemble or display
the MSR/MRS opcodes for a known register parameter set.

To display the System Register Converter dialog, run this command:

Alternatively, you can open the converter from the Misc menu:

SPR access in per file

Usually per files use the “SPR” access class to access system registers. This means that the command
“PER” will open a per file window that shows you the current CPU view, i.e. system registers might not be
accessible and be displayed as “????????” dependant on the current CPU mode.

You can explicitly access system registers with higher access priviledges by using
SYStem.Option.DBGSPR ON.

DO ~~/demo/arm/etc/systemregister/systemregister_converter.cmm

A Edit SPR parameters and GPR here.

B Open Data.dump window at current SPR address.

C Assemble MRS/MSR instruction at current PC location.

C

A

B

A

Armv8 and Armv9 Debugger | 68©1989-2024 Lauterbach

Coprocessors (AArch32 Mode)

Only the AArch32 mode provides Coprocessor registers. Coprocessors 14 and Coprocessors 15 are
accessible (if available) in the processor.

Coprocessor 14 (CP14), 32-bit Access

CP14 registers allow to control debug and trace components. Use the access class “C14” to access CP14
registers. Please refer to the Arm documentation for details. CP14 registers can also be controlled in the
PER.view window.

The TRACE32 C14 address takes four parameters <CRn>, <CRm>, <op1>, <op2> which are defined for a
MCR or MRC instruction.

<MCR|MRC> p14, <opc1>, <Rt>, <CRn>, <CRm>, <opc2>

Each parameter is a nibble (4bit) in the C14 address. The order of the parameters is:

Example 1: Single read of DBGAUTHSTATUS via the TRACE32 command line.

Example 2: Write to DBGDTRTX via the TRACE32 command line.

C14 example register Parameters, binary (hex) representation Debugger access

DBGAUTHSTATUS
(read-only register)

op1=000 (0x0)
CRn=0111 (0x7)
CRm=1110 (0xE)
op2=110 (0x6)

C14:0x06E7

DBGDTRTX
(read-write register)

op1=000 (0x0)
CRn=0011 (0x3)
CRm=0010 (0x2)
op2=000 (0x0)

C14:0x0023

Data.In C14:0x06E7 /Long // Single read access to
// DBGAUTHSTATUS

Data.Set C14:0x0023 %Long 0x10438012 // Write 0x10438012 to
// DBGDTRTX

C14:

<MCR | MRC> p14, <opc1>, <Rt>, <CRn>, <CRm>, <opc2>

14 12
op1

10 8
op2

3 0
CRn

7 4
CRm

Bit assignment
Armv8 and Armv9 Debugger | 69©1989-2024 Lauterbach

Coprocessor 15 (CP15), 32-bit Access

C15 allows the control of basic CPU functions. Use the access class “C15” to access CP15 registers. Please
refer to the Arm documentation for details. CP15 registers can also be controlled in the PER.view window.

The TRACE32 C15 address takes four parameters <CRn>, <CRm>, <op1>, <op2> which are defined for a
MCR or MRC instruction.

<MCR|MRC> p15, <op1>, <Rt>, <CRn>, <CRm>, <opc2>

Each parameter is a nibble (4bit) in the C15 address. The arrangement of the parameters is as follows:

Example 1: Single read of HMAIR1 via the TRACE32 command line.

Example 2: Write to SCR via the TRACE32 command line.

C15 example register Parameters, binary (hex) representation Debugger access

HMAIR1
(read-write register)

op1=100 (0x4)
CRn=1010 (0xA)
CRm=0010 (0x2)
op2=001 (0x1)

C15:0x412A

SCR
(read-write register)

op1=000 (0x0)
CRn=0001 (0x1)
CRm=0001 (0x1)
op2=000 (0x0)

C15:0x0011

Data.In C15:0x412A /Long // Single read access to
// HMAIR1

Data.Set C15:0x0011 %Long 0x1 // Write 0x1 to SCR
// (switch to non-secure)

NOTE: On devices having a TrustZone (e.g. Cortex-A53) there are some banked CP15
registers, one for secure and one for non-secure mode. The “C15:” access class
provides the view of the current mode of the core. With “ZC15:” and “NC15:” you
can access the secure / non-secure bank independent of the current core mode.

C15:

<MCR | MRC> p15, <opc1>, <Rd>, <CRn>, <CRm>, <opc2>

14 12
op1

10 8
op2

3 0
CRn

7 4
CRm

Bit assignment
Armv8 and Armv9 Debugger | 70©1989-2024 Lauterbach

Coprocessor 15 (CP15), 64-bit Access

Some registers of the coprocessor registers in AArch32 are 64-bit wide. Those registers require a different
access. The 64-bit CP15 registers can also be controlled in the PER window.

The TRACE32 C15 address takes two parameters <CRm>, <op1> which are defined for a MCRR or MRRC
instruction.

<MCRR|MRRC> p15, <op1>, <Rd1>, <Rd2>, <CRm>

Each parameter is a nibble (4bit) in the C15 address. The order of the parameters is:

Unlike the 32-bit coprocessor address, a “fifth” parameter at bit 16 is needed that is fixed to 1. This shows
TRACE32 that a 64-bit Coprocessor register is accessed. The parameters <op2> and <CRn> are not used.

Example 1: Single read of HTTBR via the TRACE32 command line.

Example 2: Write to HTTBR via the TRACE32 command line.

Example Parameters, binary (hex) representation Debugger access

HTTBR
(read-write register)

op1=100 (0x4)
CRm=0010 (0x2)

C15:0x14020

Data.In c15:0x14020 /Quad // Single read access to
// HTTBR

Data.Set c15:0x14020 %Quad 0xFE8000000 // Write 0xFE8000000 to
// HTTBR

NOTE: On devices having a TrustZone (e.g. Cortex-A53) there are some banked CP15
registers, one for secure and one for non-secure mode. The “C15:” access class
provides the view of the current mode of the core. With “ZC15:” and “NC15:” you
can access the secure / non-secure bank independent of the current core mode.

14 12
op1

10 8
0

3 0
0

7 4
CRmC15:

16
1

Fixed to 0, not used for 64-bit accessFixed to 1, 64-bit access

<MCRR | MRRC> p15, <opc1>, <Rd1, <Rd2>, <CRm>

Bit assignment
Armv8 and Armv9 Debugger | 71©1989-2024 Lauterbach

Coprocessor Converter Dialog

The demo directory offers a Coprocessor converter dialog, which allows you to assemble or display the
MCR/MRC (32-bit Coprocessor registers) or MCRR/MRRC (64-bit Coprocessor register) opcodes for a
known register parameter set.

To display the Coprocessor converter dialog, run this command:

Alternatively, you can open the converter from the Misc menu:

Coprocessor access in per file

Usually per files use the “C1x” class to access coprocessors, and the “AD:” access class to access other
peripherals that are directly memory mapped.

All these accesses may be done in non-secure or secure mode, dependant on the SoC implementation. The
non-secure/secure access is automatically selected, so per default PER shows the content using the current
CPU secure mode.

Sometimes coprocessors or peripherals might only show “????????” if the access is not possible in the
current CPU secure mode.

DO ~~/demo/arm/etc/coprocessor/coprocessor_converter.cmm

A Edit Coprocessor parameters here.

B Open Data.dump window at current 32-bit Coprocessor address.

C Assemble MRC/MCR instruction at current PC location.

D Open Data.dump window at current 64-bit Coprocessor address.

E Assemble MRRC/MCRR instruction at current PC location.

A

B

D

E

C

Armv8 and Armv9 Debugger | 72©1989-2024 Lauterbach

In this case you can enforce the secure mode with the /Secure or /NonSecure option.

The /Secure or /NonSecure can be combined with /DualPort option (run-time access), example:

PER , /Secure
PER , /NonSecure

// always use “ZC1x” or “AZD” in per file
// always use “NC1x” or “AND” in per file

PER , /DualPort /Secure

NOTE: Non-intrusive run-time accesses are not possible for coprocessors. Peripherals
that are directly memory mapped need to be mapped to either the AXI or AHB
in a 1:1 fashion to make a non-intrusive run-time access possible. For more
information about intrusive and non-intrusive run-time accesses, please see
Accessing Memory at Run-time.
Armv8 and Armv9 Debugger | 73©1989-2024 Lauterbach

Accessing Memory at Run-time

This sections describes how memory can be accessed at run-time. It gives an overview of all available
methods for Arm based devices.

In this section:

• Intrusive and Non-intrusive Run-time Access

• Cache Coherent Non-intrusive Run-time Access

• Performing Intrusive and Non-intrusive Run-time Accesses with TRACE32

• Performing Cache Coherent Non-intrusive Run-time Accesses with TRACE32

• Additional Considerations

Intrusive and Non-intrusive Run-time Access

Intrusive run-time access

Intrusive means that the CPU is periodically stopped and restarted, so that the debugger can access the
memory content through the CPU using load / store commands.

The debugger will see memory the same way the CPU does; however, real-time constraints may be broken.

Non-intrusive run-time access

Non-intrusive means that the CPU is not stopped during the memory access.

The debugger cannot read through the CPU while it is running and continuously accessing memory.
Therefore the debugger has to use a DAP access, i.e. the AHB or AXI bus. The CPU is bypassed, which will
equal a physical memory access. This way the real-time constrains are preserved. This access method only
works if an AHB or AXI is present and if the busses are properly mapped to memory.

CPU

stopped

Debugger load / store Memoryaccess

Debugger CPU

running

Memory

DAP access via AHB or AXI
Armv8 and Armv9 Debugger | 74©1989-2024 Lauterbach

Cache Coherent Non-intrusive Run-time Access

A non-intrusive run-time access through the AHB/AXI bus will bypass caches. In the example below,
“myVar” is only updated in the cache but not in memory. Hence its current state is invisible to the debugger.

An example of such a cache would be a write-back cache. For the debugger to see the current value of
“myVar”, a run-time access has to trigger a cache flush, so that “myVar” is written back to memory.

In this example, the cache coherency is maintained by the Snoop Control Unit (SCU). During an AXI access,
the SCU can be instructed to trigger a write of “myVar” back to memory. This feature is not supported for the
AHB. It is implementation-defined whether this is available for AXI transactions.

Performing Intrusive and Non-intrusive Run-time Accesses with TRACE32

All of the previously mentioned access methods can be carried out in TRACE32.

To access memory at run-time, add the access class “E” as a prefix. “E” means run-time access and can
be combined with most access classes that access memory. E.g. “Data.dump NSD:<address>” can be
extended to “Data.dump ENSD:<address>”.

Intrusive run-time access

To activate intrusive memory accesses, use the command SYStem.MemAccess.StopAndGo.

SYStem.MemAccess.StopAndGo ; Intrusive run-time memory access, CPU
 ; is periodically stopped / restarted
Data.dump E:0x100 ; Intrusive access via CPU. Prefix “E”
Var.view %E myVar ; is required to read 0x100 or myVar

Debugger CPU

running

DAP access via AHB or AXI

MemoryCache

myVar myVar

Debugger CPU

running

AXI access

MemoryCache

myVar myVarwrite-back

SCU
Armv8 and Armv9 Debugger | 75©1989-2024 Lauterbach

Non-intrusive run-time access: Direct DAP access

You can directly specify an access to memory via the AHB or AXI bus using an access class. This requires
that the AHB or AXI is defined as a valid access port. If you select a known chip with SYStem.CPU,
then TRACE32 configures this setting automatically. Please see the following example for the AXI:

Non-intrusive run-time access: Indirect DAP access

It is not very convenient or even not always possible to use an AXI or AHB access class specifier. In most
cases you should let the debugger decide which access to use. Use the command SYStem.MemAccess
DAP to activate non-intrusive run-time accesses via AHB or AXI. TRACE32 will then redirect access to the
AHB or AXI bus. This requires that the AHB or AXI is defined as a valid access port.

Performing Cache Coherent Run-time Accesses with TRACE32

So far there is not guarantee that the run-time accesses via AHB / AXI will be coherent. This means, you
might not see the current value of e.g. a variable because the value is in the cache but not updated in
memory.

The AXI may allow you to select whether an access should be performed as a coherent transaction or not.
To activate this feature, use SYStem.Option.AXIACEEnable ON

SYStem.CONFIG MEMORYACCESSPORT 1. ; Define memory access port and AXI
SYStem.CONFIG AXIACCESSPORT 1. ; access port (e.g. port number 1)

Data.dump EAXI:<address> ; Run-time access via AXI. Prefix “E”
Data.dump EAXI:myVar ; is optional but recommended to read
 ; myVarn via the DAP

SYStem.CONFIG MEMORYACCESSPORT 1. ; Define memory access port and AHB
// SYStem.CONFIG AHBACCESSPORT 1. ; or AXI access port
SYStem.CONFIG AXIACCESSPORT 1.

SYStem.MemAccess DAP ; Non-intrusive access via AHB / AXI

Data.dump E:0x100 ; Run-time access via DAP. Prefix “E”
Var.view %E myVar ; is required to read 0x100 or myVar

SYStem.CONFIG.MEMORYACCESSPORT 1. ; Define memory access port and AXI
SYStem.CONFIG.AXIACCESSPORT 1. ; access port (e.g. port number 1)

SYStem.Option.AXIACEEnable ON ; Enable cache coherent transactions
SYStem.MemAccess DAP ; Non-intrusive access via AXI

Data.dump E:0x100 ; Run-time access via AXI. Prefix “E”
Var.view %E myVar ; is required to read 0x100 or myVar
Armv8 and Armv9 Debugger | 76©1989-2024 Lauterbach

Coherent cache accesses without AXI coherency support

The AXI may not provide cache coherent transactions or there may only be an AHB available. In this case
you can still perform non-intrusive cache-coherent run-time memory accesses. But this requires that you
change the configuration of your target application in one of the following ways:

• Configure the address range of interest as “non-cacheable”

• Configure the address range of interest as “write-through”

• Configure the entire cache as “write-through” (global setting)

• Make the CPU periodically flush the cache lines of interest

• Disable the cache

• Use a monitor program that accesses the memory address range of interest through the cache
(CPU view) and provides the result to the debugger, e.g. via shared memory or DCC. This
requires a code instrumentation of the target application.

Additional Considerations

Non-intrusive run-time access with active MMU

If the run-time access involves virtual addresses that do not directly map to physical addresses, the
debugger has to be made aware of the proper virtual-to-physical address translations. For more information
about address translations, refer to the descriptions of the following commands:

NOTE: • Support for cache coherent AXI transactions is implementation-defined.
Therefore SYStem.Option.AXIACEEnable ON may be without effect.

• The AHB does not provide such a coherency mechanism.

TRANSlation.Create If the CPU has never stopped, set the translation manually.

MMU.SCAN Scan static page tables into the debugger while the CPU is stopped.

TRANSlation.TableWalk Use if CPU stops and page tables are modified frequently (e.g. by
OS).
Armv8 and Armv9 Debugger | 77©1989-2024 Lauterbach

Semihosting

Semihosting is a technique for application programs running on an Arm processor to communicate with the
host computer of the debugger. This way the application can use the I/O facilities of the host computer like
keyboard input, screen output, and file I/O. This is especially useful if the target platform does not yet provide
these I/O facilities or in order to output additional debug information in printf() style.

In AArch32 mode, a semihosting call from the application causes an exception by a SVC (SWI) instruction
together with a certain SVC number to indicate a semihosting request. The type of operation is passed in
R0. R1 points to the other parameters.

In AArch64 mode, a semihosting call is done without exception using the HLT instruction together with a
certain constant number to indicate a semihosting request.

Normally, semihosting is invoked by code within the C library functions of the Arm RealView compiler like
printf() and scanf(). The application can also invoke operations used for keyboard input, screen output, and
file I/O directly. These operations are described in the RealView Compilation Tools Developer Guide from
Arm in the chapter “Semihosting Operations”.

The debugger which needs to interface to the I/O facilities on the host provides two ways to handle a
semihosting request which results in a SVC (SWI) or BKPT exception or HLT event.
Armv8 and Armv9 Debugger | 78©1989-2024 Lauterbach

AArch64 HLT Emulation Mode

There is no need to set any additional breakpoints since the HLT instruction itself will stop the core. The
immediate of the HLT instruction has to be 0xF000 to indicate a semihosting request. The debugger will
restart the core after the semihosting data is processed.

This mode is enabled by TERM.METHOD ARMSWI [<address>] and by opening a TERM.GATE window for
the semihosting screen output. The handling of the semihosting requests is only active when the
TERM.GATE window is existing.

TERM.HEAPINFO defines the system stack and heap location. The C library reads these memory
parameters by a SYS_HEAPINFO semihosting call and uses them for initialization.

An example for AArch64 can be found in
~~/demo/arm/etc/semihosting_arm_emulation/armv8_aarch64/halt_armv8.cmm
Armv8 and Armv9 Debugger | 79©1989-2024 Lauterbach

AArch64 DCC Communication Mode (DCC = Debug Communication Channel)

In AArch64 you cannot use the Arm library for semihosting (DCC mode (Arm) as in AArch32 mode) since
the HLT instruction will stop the target. Therefore an exception handler cannot be executed which would
handle the DCC communication.

In case the Arm library for semihosting is not used, you can alternatively use the native TRACE32 format for
the semihosting requests. Then the SWI handler (t32swi.c) is not required. You can send the requests
directly via DCC.

This mode is enabled by TERM.METHOD DCC3 and by opening a TERM.GATE window for the
semihosting screen output. The handling of the semihosting requests is only active when the TERM.GATE
window is existing. TERM.HEAPINFO defines the system stack and heap location. The Arm C library reads
these memory parameters by a SYS_HEAPINFO semihosting call and uses them for initialization.

Find examples and source codes in ~~/demo/arm/etc/semihosting_trace32_dcc
Armv8 and Armv9 Debugger | 80©1989-2024 Lauterbach

AArch32 SVC (SWI) Emulation Mode

A breakpoint placed on the SVC exception entry stops the application. The debugger handles the request
while the application is stopped, provides the required communication with the host, and restarts the
application at the address which was stored in the link register ELR on the SVC exception call. Other as for
the DCC mode the SVC parameter has to be 0x123456 to indicate a semihosting request.

This mode is enabled by TERM.METHOD ARMSWI [<address>] and by opening a TERM.GATE window for
the semihosting screen output. The handling of the semihosting requests is only active when the
TERM.GATE window is existing.

When using the <address> option of the TERM.METHOD ARMSWI [<address>] any memory location with
a breakpoint on it can be used as a semihosting service entry instead of the SVC call. The application just
needs to jump to that location. After servicing the request the program execution continues at that address
(not at the address in the link register ELR. You could for example place an ’ERET’ command at that address
and hand the return address in ELR. Since this method does not use the SVC command no parameter
(0x123456) will be checked to identify a semihosting call.

TERM.HEAPINFO defines the system stack and heap location. The C library reads these memory
parameters by a SYS_HEAPINFO semihosting call and uses them for initialization.

An example for AArch32 can be found in
~~/demo/arm/etc/semihosting_arm_emulation/armv8_aarch32/swisoft_armv8.cmm
Armv8 and Armv9 Debugger | 81©1989-2024 Lauterbach

AArch32 DCC Communication Mode (DCC = Debug Communication Channel)

A semihosting exception handler will be called by the SVC (SWI) exception. It uses the Debug
Communication Channel based on the JTAG interface to communicate with the host. The target application
will not be stopped, but the semihosting exception handler needs to be loaded or linked to the application.
This mode can only be used if the DCC is provided by the target.

This mode is enabled by TERM.METHOD DCC3 and by opening a TERM.GATE window for the
semihosting screen output. The handling of the semihosting requests is only active when the TERM.GATE
window is existing. TERM.HEAPINFO defines the system stack and heap location. The Arm C library reads
these memory parameters by a SYS_HEAPINFO semihosting call and uses them for initialization.

An example (swidcc_x.cmm) and the source of the Arm compatible semihosting handler (t32swi.c,
t32helper_x.c) can be found in ~~/demo/arm/etc/semihosting_arm_dcc

In case the Arm library for semihosting is not used, you can alternatively use the native TRACE32 format for
the semihosting requests. Then the SWI handler (t32swi.c) is not required. You can send the requests
directly via DCC.
Armv8 and Armv9 Debugger | 82©1989-2024 Lauterbach

For examples and source codes, see ~~/demo/arm/etc/semihosting_trace32_dcc
Armv8 and Armv9 Debugger | 83©1989-2024 Lauterbach

Virtual Terminal

The command TERM opens a terminal window which allows to communicate with the Arm core over the
Debug Communications Channel (DCC). All data received from the DCC are displayed and all data inputs to
this window are sent to the DCC. Communication occurs byte wide or up to four bytes per transfer. The
following modes can be used:

The TERM.METHOD command selects which mode is used (DCC, DCC3, DCC4A or DCC4B).

The TRACE32 directory ~~/demo/arm/etc/virtual_terminal contains examples for the different
Arm families which demonstrate how the communication works.

DCC Use the DCC port of the JTAG interface to transfer 1 byte at once.

DCC3 Three byte mode. Allows binary transfers of up to 3 bytes per DCC transfer.
The upper byte defines how many bytes are transferred (0 = one byte, 1 = two
bytes, 2 = three bytes). This is the preferred mode of operation, as it combines
arbitrary length messages with high bandwidth.

DCC4A Four byte ASCII mode. Does not allow to transfer the byte 00. Each non-zero byte of
the 32-bit word is a character in this mode.

DCC4B Four byte binary mode. Used to transfer non-ASCII 32-bit data (e.g. to or from a
file).
Armv8 and Armv9 Debugger | 84©1989-2024 Lauterbach

Large Physical Address Extension (LPAE)

LPAE is an optional extension in AArch32 mode. It allows physical addresses above 32-bit. The instructions
still use 32-bit addresses, but the extended memory management unit can map the address within a 40-bit
physical memory range.

Virtual address (32-bit) --> Extended MMU --> Physical address (40-bit)

It is for example implemented on Cortex-A53 and Cortex-A57.

Please note that in AArch64 mode there is always a physical address space above 32-bit accessible.

Consequence for Debugging

Only the physical address have been extended in AArch32, because the virtual address is still 32-bit.

Example: Memory dump starting at physical address 0x0280004000.
 “A:” = absolute address = physical address.

Unfortunately the above command will result in a bus error (‘????????’) on a real chip because the debug
interface does not support physical accesses beyond the 4GByte in AArch32. The reason is that the load
and store instructions to access memory only support 32-bit addresses in AArch32 mode. However, it will
work on the TRACE32 Instruction Set Simulator and on virtual platforms.

In case the Debug Access Port (DAP) of the chip provides an AXI MEM-AP then the debugger can act as a
bus master on the AXI, and you can access the physical memory independent of TLB entries. AXI will
accept full 64-bit addresses.

However this does not show you the cache contents in case of a write-back cache. For a cache coherent
access you need to set:

This requires that the CPU debug logic supports this setting. If the debug logic does not support coherent
AXI accesses, this option is will be without effect.

Data.dump A:02:80004000

Data.dump AXI:0x0280004000

SYStem.Option.AXIACEEnable ON

Virtual address
(32-bit)

Physical address
(40-bit)

Extended
MMU
Armv8 and Armv9 Debugger | 85©1989-2024 Lauterbach

Virtualization Extension, Hypervisor

The ‘Virtualization Extension’ is an optional extension. It can be found on Armv8 based devices like Cortex-
A53, Cortex-A55, Cortex-A72 etc. It adds a ‘Hypervisor/EL2’ processor mode used to switch between
different guest operating systems. The extension assumes LPAE in AArch32 and TrustZone/EL3. It adds a
second stage address translation.

Consequence for Debugging

The debugger shows you the memory view of the mode the core is currently in. The address translation and
therefore the view can/will be different for secure mode, non-secure mode, and hypervisor mode.

You can force a certain view/translation by switching to another mode or by using the access classes “Z:”
(secure), “N:” (non-secure), “H:” (Hypervisor/EL2) or “M:” (AArch64 EL3).

If you want to perform an access addressed by an intermediate address, use the ‘I:’ access class.

Virtual address Intermediate address Physical address
MMU

(stage 2)
MMU

(stage 1)
Armv8 and Armv9 Debugger | 86©1989-2024 Lauterbach

Debug Field

The debug field shows various state information, e.g. run state of the CPU, halt reasons, system modes, etc.
Not all information is debugger specific. See also “State Line” (ide_user.pdf).

Run Mode

The following debugger specific run states are displayed in the debug field:

Run state Description

running (no claim) The debugger could not claim the debug interface. The debugger
does not poll any debug registers therefore.
The APB/AHB/AXI can be accessed by the user.

running (power down) The core is not powered.

no CTI The core is not powered and the CTI is inaccessible.
Armv8.3 DoPD is not implemented.

no CPU The core is not powered and the CTI is accessible.
Armv8.3 DoPD is not implemented.

CTI hlt The core is not powered and the CTI is accessible.
A halt event is pending, waiting to stop the CPU.
Armv8.3 DoPD is not implemented.

no CTI: DoPD The core is not powered and the CTI is inaccessible
Armv8.3 DoPD is not implemented.

no CPU: DoPD The core is not powered and the CTI is accessible
Armv8.3 DoPD is implemented.

Debug field
Armv8 and Armv9 Debugger | 87©1989-2024 Lauterbach

Run-time Measurements

The RunTime command group allows run-time measurements based on polling the CPU run status by
software. Therefore the result will be about a few milliseconds higher than the real value.

Trigger

A bidirectional trigger system allows the following two events:

• Trigger an external system (e.g. logic analyzer) if the program execution is stopped.

• Stop the program execution if an external trigger is asserted.

For more information, refer to the TrBus command group.

CTI hlt DoPD The core is not powered and the CTI is accessible.
A halt event is pending, waiting to stop the CPU.
Armv8.3 DoPD is implemented.

running (secured) Core is secured. Access by debugger not possible.
Armv8.3 DoPD is implemented.

running (sticky reset) Core is running with sticky reset bit set.

running (double lock) Core is running with OS-lcok bit set.

running (OS lock) Core is running with OS-lock bit set.

running (OS lock/catch) Core is running with OS-lock bit set and OS catch event is enabled
for this core when SYStem.Option.BreakOS is OFF.

disabled The debugger detected that CSW.DeviceEn is low. The debugger
assumes the device is currently suspended. It will wait up to 10
minutes for the device to become available.

no debug External debug is disabled. This may indicate that DBGEN or
SPIDEN are low. For external debug both signals need to be high.
Armv8 and Armv9 Debugger | 88©1989-2024 Lauterbach

Arm specific SYStem Commands

The debugger and the target behavior can be configured via the TRACE32 command line or via the
SYStem.state window.

SYStem.CLOCK Inform debugger about core clock

Informs the debugger about the core clock frequency. This information is used for analysis functions
where the core frequency needs to be known. This command is only available if the debugger is used
as front-end for virtual prototyping.

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CLOCK <frequency>

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | MultiTap | AccessPorts | COmponents

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.
Armv8 and Armv9 Debugger | 89©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>:
(DebugPort)

CJTAGFLAGS <flags>
CJTAGTCA <value>
CONNECTOR [MIPI34 | MIPI20T]
CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
NIDNTTRSTTORST [ON | OFF]
NIDNTPSRISINGEDGE [ON | OFF]
NIDNTRSTPOLARITY [High | Low]
PortSHaRing [ON | OFF | Auto]
Armv8 and Armv9 Debugger | 90©1989-2024 Lauterbach

<parameter>:
(DebugPort cont.)

Slave [ON | OFF]
SWDP [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

CHIPDRLENGTH <bits>
CHIPDRPATTERN [Standard | Alternate <pattern>]
CHIPDRPOST <bits>
CHIPDRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN [Standard | Alternate <pattern>]
CHIPIRPOST<bits>
CHIPIRPRE <bits>

DAP2DRPOST <bits>
DAP2DRPRE <bits>
DAP2IRPOST <bits>
DAP2IRPRE <bits>
DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DRPOST <bits>
DRPRE <bits>

ETBDRPOST <bits>
ETBDRPRE <bits>
ETBIRPOST <bits>
ETBIRPRE <bits>

IRPOST<bits>
IRPRE <bits>

NEXTDRPOST <bits>
NEXTDRPRE <bits>
NEXTIRPOST<bits>
NEXTIRPRE <bits>

RTPDRPOST <bits>
RTPDRPRE <bits>
RTPIRPOST <bits>
RTPIRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Armv8 and Armv9 Debugger | 91©1989-2024 Lauterbach

<parameter>:
(MultiTap)

CFGCONNECT <code>
DAP2TAP <tap>
DAPTAP <tap>
DEBUGTAP <tap>
ETBTAP <tap>
MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
 IcepickBC | IcepickCC | IcepickDD | STCLTAP1 | STCLTAP2 |
 STCLTAP3 |
 MSMTAP <irlength> <irvalue> <drlength> <drvalue>
 JtagSEQuence <sub_cmd>]
NJCR <tap>
RTPTAP <tap>
SLAVETAP <tap>

<parameter>:
(AccessPorts
)

AHBAPn.Base <address>
AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view
AHBAPn.XCPTRI <tri>
AHBAPn.XtorName <name>

APBAPn.Base <address>
APBAPn.Port <port>
APBAPn.RESet
APBAPn.view
APBAPn.XCPTRI <tri>
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view
AXIAPn.XCPTRI <tri>
AXIAPn.XtorName <name>

DAP2JTAGPORT <port>
DAPNAME <name>
DAP2NAME <name>

DEBUGAPn.Port <port>
DEBUGAPn.RESet
DEBUGAPn.view
DEBUGAPn.XtorName <name>
Armv8 and Armv9 Debugger | 92©1989-2024 Lauterbach

<parameter>:
(AccessPorts
cont.)

JTAGAPn.Base <address>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>
JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

MEMORYAPn.HPROT [<value> | <name>]
MEMORYAPn.Port <port>
MEMORYAPn.RESet
MEMORYAPn.view
MEMORYAPn.XtorName <name>

<parameter>:
(COmponents)

AMU.Base <address>
AMU.RESet
AMU.view

BMC.Base <address>
BMC.RESet
BMC.view
BMCSnapshot.Base <address>
BMCSnapshot.RESet
BMCSnapshot.view

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTI.Base <address>
CTI.Config <interconnection>
CTI.RESet
CTI.view

DRM.Base <address>
DRM.RESet
DRM.view

DTM.RESet
DTM.Type [None | Generic]
DTM.view
Armv8 and Armv9 Debugger | 93©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

DWT.Base <address>
DWT.RESet

EPM.Base <address>
EPM.RESet
EPM.view

ETB2AXI.Base <address>
ETB2AXI.RESet
ETB2AXI.view

ETB.ATBSource <source>
ETB.Base <address>
ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet
ETB.Size <size>
ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETB.view

ETF.ATBSource <source>
ETF.Base <address>
ETF.Name <string>
ETF.NoFlush [ON | OFF]
ETF.RESet
ETF.Size <size>
ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETF.view

ETM.Base <address>
ETM.RESet
ETM.view

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.Name <string>
ETR.NoFlush [ON | OFF]
ETR.RESet
ETR.Size <size>
ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETR.view
Armv8 and Armv9 Debugger | 94©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

ETS.ATBSource <source>
ETS.Base <address>
ETS.Name <string>
ETS.NoFlush [ON | OFF]
ETS.RESet
ETS.Size <size>
ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
FUNNEL.view

HSM.Base <address>
HSM.RESet

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]

ICE.Base <address>
ICE.RESet

ITM.Base <address>
ITM.Name <string>
ITM.RESet

L2CACHE.Base <address>
L2CACHE.RESet
L2CACHE.Type [NONE | Generic | L210 | L220 | L2C-310 | AURORA |
 AURORA2]
L2CACHE.view

MPAM.Base <address>
MPAM.RESet
MPAM.view
Armv8 and Armv9 Debugger | 95©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.Type <type>

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>

RAS.Base <address>
RAS.RESet
RAS.view

REP.ATBSource <source>
REP.Base <address>
REB.Name <string>
REP.RESet
REP.view

RTP.Base <address>
RTP.PerBase <address>
RTP.RamBase <address>
RTP.RESet
RTP.view

SC.Base <address>
SC.RESet
SC.TraceID <id>

SDC.Base <address>
SDC.RESet

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | GenericARM | SDTI | TI]

TBR.ATBSource <source>
TBR.Base <address>
TBR.Name <string>
TBR.NoFlush [ON | OFF]
TBR.RESet
Armv8 and Armv9 Debugger | 96©1989-2024 Lauterbach

<parameter>:
(Components
cont.)

TBR.Size <size>
TBR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
TBR.view

TISCTM.Base <address>
TISCTM.RESet
TISCTM.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
TPIU.view
Armv8 and Armv9 Debugger | 97©1989-2024 Lauterbach

<parameter>:
(Deprecated)

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
BMCBASE <address>
BYPASS <seq>
COREBASE <address>
COREJTAGPORT <port>
CTIBASE <address>
CTICONFIG [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
 QV1]
DAP2AHBACCESSPORT <port>
DAP2APBACCESSPORT <port>
DAP2AXIACCESSPORT <port>
DAP2COREJTAGPORT <port>
DAP2DEBUGACCESSPORT <port>
DEBUGACCESSPORT <port>
DEBUGBASE <address>
DTMCONFIG [ON | OFF]
DTMETBFUNNELPORT <port>
DTMFUNNEL2PORT <port>
DTMFUNNELPORT <port>
DTMTPIUFUNNELPORT <port>
DWTBASE <address>
ETB2AXIBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FILLDRZERO [ON | OFF]
FUNNEL2BASE <address>
FUNNELBASE <address>
HSMBASE <address>
HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>
ITMBASE <address>
ITMETBFUNNELPORT <port>
Armv8 and Armv9 Debugger | 98©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

In many cases, selecting the chip under debug with the SYStem.CPU command is sufficient. TRACE32
recognizes the available on-chip debug and trace components and can configure them accordingly.

If the components require configuration using the SYStem.CONFIG commands, you must first set the chip
under debug using the SYStem.CPU command. Then, configure the components with the
SYStem.CONFIG commands. Finally, start the debug session e.g. with the SYStem.Up command.

Syntax Remarks

The commands are not case-sensitive. Capital letters indicate how the command can be abbreviated.
Example: “SYStem.CONFIG.DWT.Base 0x1000” -> “SYS.CONFIG.DWT.B 0x1000”

The dots after “SYStem.CONFIG” can alternatively be replaced with a space.
Example: “SYStem.CONFIG.DWT.Base 0x1000” or “SYStem.CONFIG DWT Base 0x1000”.

More Information on the Deprecated Commands

General information on deprecated commands and command parameters can be found here.

The table “Mapping Deprecated to New Commands”, page 1 provides a mapping of the deprecated
command parameters to the new command parameters.

<parameter>:
(Deprecated cont.)

ITMFUNNEL2PORT <port>
ITMFUNNELPORT <port>
ITMTPIUFUNNELPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>
PERBASE <address>
RAMBASE <address>
RTPBASE <address>
SDTIBASE <address>
STMBASE <address>
STMETBFUNNELPORT<port>
STMFUNNEL2PORT<port>
STMFUNNELPORT<port>
STMTPIUFUNNELPORT<port>
TIDRMBASE <address>
TIEPMBASE <address>
TIICEBASE <address>
TIOCPBASE <address>
TIOCPTYPE <type>
TIPMIBASE <address>
TISCBASE <address>
TISTMBASE <address>
TPIUBASE <address>
TPIUFUNNELBASE <address>
view
Armv8 and Armv9 Debugger | 99©1989-2024 Lauterbach

A detailed description of the deprecated command parameterss can be found in “<parameters> which are
“Deprecated””, page 1.
Armv8 and Armv9 Debugger | 100©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags> Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.
Bit 1: Target has no “keeper”.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes.
Bit 4: Unlock cJTAG via APFC register.

Default: 0.

CJTAGTCA <value> Selects the TCA (TAP Controller Address) to address a device in a
cJTAG Star-2 configuration. The Star-2 configuration requires a
unique TCA for each device on the debug port.

CONNECTOR
[MIPI34 | MIPI20T]

Specifies the connector “MIPI34” or “MIPI20T” on the target. This
is mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used, MIPI20T if µTrace
(MicroTrace) is used.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1
Armv8 and Armv9 Debugger | 101©1989-2024 Lauterbach

CORE <core> <chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> If you start multiple debugger instances with
TargetSystem.NewInstance, you get ascending values (1, 2, 3,...).

CoreNumber <number> Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are core types like
ARM11MPCore, CortexA5MPCore, CortexA9MPCore and
Scorpion which can be used as a single core processor or as a
scalable multicore processor of the same type. If you intend to
debug more than one such core in an SMP debug session you
need to specify the number of cores you intend to debug.

Default: 1.

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

What is NIDnT?

NIDnT is an acronym for “Narrow Interface for Debug and Test”.
NIDnT is a standard from the MIPI Alliance, which defines how to
reuse the pins of an existing interface (like for example a microSD
card interface) as a debug and test interface.

To support the NIDnT standard in different implementations,
TRACE32 has several special options:
Armv8 and Armv9 Debugger | 102©1989-2024 Lauterbach

NIDNTPSRISINGEDGE
[ON | OFF]

Send data on rising edge for NIDnT PS switching.

NIDnT specifies how to switch, for example, the microSD card
interface to a debug interface by sending in a special bit sequence
via two pins of the microSD card.

TRACE32 will send the bits of the sequence incident to the falling
edge of the clock, because TRACE32 expects that the target
samples the bits on the rising edge of the clock.

Some targets will sample the bits on the falling edge of the clock
instead. To support such targets, you can configure TRACE32 to
send bits on the rising edge of the clock by using
SYStem.CONFIG NIDNTPSRISINGEDGE ON

NOTE: Only enable this option right before you send the NIDnT
switching bit sequence.
Make sure to DISABLE this option, before you try to connect to the
target system with for example SYStem.Up.

NIDNTRSTPOLARITY
[High | Low]

Usually TRACE32 requires that the system reset line of a target
system is low active and has a pull-up on the target system.

When connecting via NIDnT to a target system, the reset line
might be a high-active signal.
To configure TRACE32 to use a high-active reset signal, use
SYStem.CONFIG NIDNTRSTPOLARITY High

This option must be used together with
SYStem.CONFIG NIDNTTRSTTORST ON
because you also have to use the TRST signal of an Arm debug
cable as reset signal for NIDnT in this case.

NIDNTTRSTTORST
[ON | OFF]

Usually TRACE32 requires that the system reset line of a target
system is low active and has a pull-up on the target system.
This is how the system reset line is usually implemented on regular
Arm-based targets.

When connecting via NIDnT (e.g. a microSD card slot) to the
target system, the reset line might not include a pull-up on the
target system.
To circumvent problems, TRACE32 allows to drive the target reset
line via the TRST signal of an Arm debug cable.

Enable this option if you want to use the TRST signal of an Arm
debug cable as reset signal for a NIDnT.
Armv8 and Armv9 Debugger | 103©1989-2024 Lauterbach

PortSHaRing [ON | OFF |
Auto]

Configure if the debug port is shared with another tool, e.g. an
ETAS ETK.

OFF: Default. Communicate with the target without sending
requests.

ON: Request for access to the debug port and wait until the access
is granted before communicating with the target.

Auto: Automatically detect a connected tool on next
SYStem.Mode Up, SYStem.Mode Attach or SYStem.Mode Go. If
a tool is detected switch to mode ON else switch to mode OFF.

The current setting can be obtained by the PORTSHARING()
function, immediate detection can be performed using
SYStem.DETECT PortSHaRing.

Slave [ON | OFF] If several debugger instances share the same debug port, all
except one must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF for the first debugger instance.
Default: ON for all further debugger instances you open with
TargetSystem.NewInstance.

SWDP [ON | OFF] With this command you can change from the normal JTAG
interface to the serial wire debug mode. SWDP (Serial Wire Debug
Port) uses just two signals instead of five. It is required that the
target and the debugger hard- and software supports this
interface.

Default: OFF.

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).
Armv8 and Armv9 Debugger | 104©1989-2024 Lauterbach

DAP2SWDPTargetSel
<value>

Device address of the second CoreSight DAP (DAP2) in case of a
multidrop serial wire debug port (SWD).

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Armv8 and Armv9 Debugger | 105©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
Armv8 and Armv9 Debugger | 106©1989-2024 Lauterbach

NOTE: There are rarely implemented DAP (Debug Access Port) TAPs, having an 8-bit
wide instruction register (IR) instead of 4-bit. They can be identified with the
SYStem.DETECT.DaisyChain command. Their IDCODE is 0x?ba03477 or
0x?ba07477. They require you to set (or add) SYStem.CONFIG DAPIRPOST 4.

CHIPDRLENGTH
<bits>

Number of Data Register (DR) bits which needs to get a certain BYPASS
pattern.

CHIPDRPATTERN
[Standard | Alter-
nate <pattern>]

Data Register (DR) pattern which shall be used for BYPASS instead of
the standard (1...1) pattern.

CHIPIRLENGTH
<bits>

Number of Instruction Register (IR) bits which needs to get a certain
BYPASS pattern.

CHIPIRPATTERN
[Standard | Alter-
nate <pattern>]

Instruction Register (IR) pattern which shall be used for BYPASS instead
of the standard pattern.

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF for the first debugger instance.
Default: ON for all further debugger instances you open with
TargetSystem.NewInstance.
Armv8 and Armv9 Debugger | 107©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Armv8 and Armv9 Debugger | 108©1989-2024 Lauterbach

ETB (Embedded Trace Buffer) TAP if the ETB has its own TAP to access its control register (typical with
Arm11 cores).
-> ETBDRPOST, ETBDRPRE, ETBIRPOST, ETBIRPRE.

NEXT: If a memory access changes the JTAG chain and the core TAP position then you can specify the new
values with the NEXT... parameter. After the access for example the parameter NEXTIRPRE will replace the
IRPRE value and NEXTIRPRE becomes 0. Available only on ARM11 debugger.
-> NEXTDRPOST, NEXTDRPRE, NEXTIRPOST, NEXTIRPRE.

RTP (RAM Trace Port) TAP if the RTP has its own TAP to access its control register.
-> RTPDRPOST, RTPDRPRE, RTPIRPOST, RTPIRPRE.

CHIP: Definition of a TAP or TAP sequence in a scan chain that needs a different Instruction Register
(IR) and Data Register (DR) pattern than the default BYPASS (1...1) pattern.
-> CHIPDRPOST, CHIPDRPRE, CHIPIRPOST, CHIPIRPRE.

Example:

SYStem.CONFIG IRPRE 15.
SYStem.CONFIG DRPRE 3.
SYStem.CONFIG DAPIRPOST 16.
SYStem.CONFIG DAPDRPOST 3.
SYStem.CONFIG ETBIRPOST 5.
SYStem.CONFIG ETBDRPOST 1.
SYStem.CONFIG ETBIRPRE 11.
SYStem.CONFIG ETBDRPRE 2.

ARM11 TAP

IR: 5bit

ETB TAP

IR: 4bit

DAP TAP

IR: 4bit

TDI TDO
OfNoInterest TAP

IR: 7bit
Armv8 and Armv9 Debugger | 109©1989-2024 Lauterbach

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

At the moment the debugger supports three types and its different versions:
Icepickx, STCLTAPx, MSMTAP:

Example:

CFGCONNECT <code> The <code> is a hexadecimal number which defines the JTAG
scan chain configuration. You need the chip documentation to
figure out the suitable code. In most cases the chip specific
default value can be used for the debug session.

Used if MULTITAP=STCLTAPx.

DAPTAP <tap> Specifies the TAP number which needs to be activated to get the
DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

DAP2TAP <tap> Specifies the TAP number which needs to be activated to get a
2nd DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

 TDO

 TMS

 TCK

 nTRST

Arm11
TAP

DAP
TAP

ETB
TAP

MULTITAP IcepickC
DEBUGTAP
DAPTAP
ETBTAB

Multitap
“IcepickC”

JTAG

1
4
5

 TDI
Armv8 and Armv9 Debugger | 110©1989-2024 Lauterbach

DEBUGTAP <tap> Specifies the TAP number which needs to be activated to get the
core TAP in the JTAG chain. E.g. ARM11 TAP if you intend to
debug an ARM11.

Used if MULTITAP=Icepickx.

ETBTAP <tap> Specifies the TAP number which needs to be activated to get the
ETB TAP in the JTAG chain.

Used if MULTITAP=Icepickx. ETB = Embedded Trace Buffer.

MULTITAP
[NONE | IcepickA | IcepickB
| IcepickC | IcepickD |
IcepickM |
IcepickBB | IcepickBC |
IcepickCC | IcepickDD |
STCLTAP1 | STCLTAP2 |
STCLTAP3 | MSMTAP
<irlength> <irvalue>
<drlength> <drvalue>
JtagSEQuence <sub_cmd>]

Selects the type and version of the MULTITAP.

In case of MSMTAP you need to add parameters which specify
which IR pattern and DR pattern needed to be shifted by the
debugger to initialize the MSMTAP. Please note some of these
parameters need a decimal input (dot at the end).

IcepickXY means that there is an Icepick version “X” which
includes a subsystem with an Icepick of version “Y”.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

NJCR <tap> Number of a Non-JTAG Control Register (NJCR) which shall be
used by the debugger.

Used if MULTITAP=Icepickx.

RTPTAP <tap> Specifies the TAP number which needs to be activated to get the
RTP TAP in the JTAG chain.

Used if MULTITAP=Icepickx. RTP = RAM Trace Port.

SLAVETAP <tap> Specifies the TAP number to get the Icepick of the sub-system in
the JTAG scan chain.

Used if MULTITAP=IcepickXY (two Icepicks).
Armv8 and Armv9 Debugger | 111©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Different memory buses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:”, “DP:”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
Armv8 and Armv9 Debugger | 112©1989-2024 Lauterbach

Example 2: SoC-600

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
Armv8 and Armv9 Debugger | 113©1989-2024 Lauterbach

Configuration examples for memory access ports and a CoreSight component

System
Memory

TRACE32
SYStem.CONFIG AHBAP1.Port 0.
SYStem.CONFIG APBAP1.Port 1.
SYStem.CONFIG <module>.Base APB:0x2000

JTAG or
cJTAG or

SWD

Arm

0

1

A
H

B

A
P

B

0x2000

Memory
Access Port
(MEM-AP)

Memory
Access Port
(MEM-AP)

-400

TRACE32
SYStem.CONFIG AXIAP1 .Base DP:0x1000
SYStem.CONFIG APBAP1.Base DP:0x3000
SYStem.CONFIG APBAP2.Base APB1:0xA000
SYStem.CONFIG <module>.Base APB2:0x8000

JTAG or
cJTAG or

SWD

D
P

A
P

B
1

Memory
Access

Port
(MEM-AP)

0x3000

0xA000

Memory
Access

Port
(MEM-AP)

A
P

B
2 0x8000

-600

Memory
Access

Port
(MEM-AP)

0x1000 A
X

I

Armv8 and Armv9 Debugger | 114©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AHBAPn.HPROT [<value> |
<name>]
SYStem.Option.AHBH-
PROT [<value> | <name>]
(deprecated)

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

AXIAPn.HPROT [<value> |
<name>]
SYStem.Option.AXIHPROT
[<value> | <name>]
(deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.

MEMORYAPn.HPROT
[<value> | <name>]
SYStem.Option.MEMO-
RYHPROT [<value> |
<name>] (deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF] (deprecated)

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6
Armv8 and Armv9 Debugger | 115©1989-2024 Lauterbach

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE
Armv8 and Armv9 Debugger | 116©1989-2024 Lauterbach

AHBAPn.XtorName
<name>
AHBNAME <name>
(deprecated)
DAP2AHBNAME <name>
(deprecated)

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name>
APBNAME <name>
(deprecated)
DAP2APBNAME <name>
(deprecated)

APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name>
AXINAME <name>
(deprecated)
DAP2AXINAME <name>
(deprecated)

AXI bus transactor name that shall be used for “AXIn:” access
class.

DEBUGAPn.XtorName
<name>
DEBUGBUSNAME <name>
(deprecated)
DAP2DEBUGBUSNAME
<name> (deprecated)

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

MEMORYAPn.XtorName
<name>
MEMORYBUSNAME
<name> (deprecated)
DAP2MEMORYBUSNAME
<name> (deprecated)

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

DAPNAME <name> DAP transactor name that shall be used for DAP access ports.

DAP2NAME <name> DAP transactor name that shall be used for DAP access ports of
2nd order.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
Armv8 and Armv9 Debugger | 117©1989-2024 Lauterbach

SoC-400 Specific Commands

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)
DAP2AHBACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)
DAP2APBACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)
DAP2AXIACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DAP2JTAGPORT <port> JTAG-AP port number (0-7) for an (other) DAP which is
connected to a JTAG-AP.

DEBUGAPn.Port <port>
DEBUGACCESSPORT
<port> (deprecated)
DAP2DEBUGACCESS-
PORT <port> (deprecated)

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)
DAP2COREJTAGPORT
<port> (deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPn.Port <port>
MEMORYACCESSPORT
<port> (deprecated)
DAP2MEMORYACCESS-
PORT <port> (deprecated)

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.
Armv8 and Armv9 Debugger | 118©1989-2024 Lauterbach

SoC-600 Specific Commands

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
Armv8 and Armv9 Debugger | 119©1989-2024 Lauterbach

XCP Specific Commands

The following commands are used with the XCP backend to configure access to target resources via the
XCP slave. If the value is not set, the debugger will fall back to a method that might have less performance.

Normally, these values can be set automatically using SYStem.DETECT.XCPTRI. For Details, see “Target
Resources” in XCP Debug Back-End, page 7 (backend_xcp.pdf)

AHBAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for AHB accesses. Default: not set.

APBAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for APB accesses. Default: not set.

AXIAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for AXI accesses. Default: not set.
Armv8 and Armv9 Debugger | 120©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.
Armv8 and Armv9 Debugger | 121©1989-2024 Lauterbach

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNEL3,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can prepend the access class
(e.g. AHB:0x80001000). Without an access class, it gets the command-specific default access class, which
in most cases is “EDAP:”. For a configuration example using access classes, see Configuration examples
for memory access ports and a CoreSight component.

Example:

SYStem.CONFIG.COREDEBUG.Base 0x80010000 0x80012000
SYStem.CONFIG.BMC.Base 0x80011000 0x80013000
SYStem.CONFIG.ETM.Base 0x8001c000 0x8001d000
SYStem.CONFIG.STM1.Base EAHB:0x20008000
SYStem.CONFIG.STM1.Type ARM
SYStem.CONFIG.STM1.Mode STPv2
SYStem.CONFIG.FUNNEL1.Base 0x80004000
SYStem.CONFIG.FUNNEL2.Base 0x80005000
SYStem.CONFIG.TPIU.Base 0x80003000
SYStem.CONFIG.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
SYStem.CONFIG.FUNNEL2.ATBSource FUNNEL1 0 STM1 7
SYStem.CONFIG.TPIU.ATBSource FUNNEL2

ETM

ETM

STM

Core

Core

FUNNEL

TPIUFUNNEL

0

1
0

7

Armv8 and Armv9 Debugger | 122©1989-2024 Lauterbach

… .ATBSource <source> Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>” or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>”.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example:
SYStem.CONFIG FUNNEL.ATBSource ETM 0 HTM 1 STM 7

Meaning: The funnel gets trace data from ETM on port 0, from
HTM on port 1 and from STM on port 7.

In an SMP (Symmetric MultiProcessing) debug session where
you used a list of base addresses to specify one component per
core you need to indicate which component in the list is meant:
Armv8 and Armv9 Debugger | 123©1989-2024 Lauterbach

Example: Four cores with ETM modules.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.2 2 ETM.3 3
"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2
The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELs.

For a list of possible components including a short description
see Components and Available Commands.

… .BASE <address> This command informs the debugger of the start address for the
component's register block, thereby notifying it of the
component's existence. An on-chip debug and trace component
typically includes a control register block that the debugger must
access to control the component.

Example: SYStem.CONFIG ETM.Base APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, COREBEBUG, CTI, ETB, ETF,
ETM, ETR a list of base addresses to specify one component per
core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.
Armv8 and Armv9 Debugger | 124©1989-2024 Lauterbach

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:
1. Configures the ETF base address and access for each core
SYStem.CONFIG.ETF.Base DAP:0x80001000 \

APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs
SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \

"cluster-etf-1" "cluster-etf-2"

... .NoFlush [ON | OFF] Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

… .Size <size> Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.
Armv8 and Armv9 Debugger | 125©1989-2024 Lauterbach

… .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

Specifies the which method is used to implement the Stack mode
of the on-chip trace.
NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTIs to the
on-chip trace.
FULLTIDRM: trigger mechanism for TI devices.
NOTSET: the method is derived by other GUIs or hardware.
detection.
FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

… .view Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

… .TraceID <id> Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TraceID <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TraceID <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.
Armv8 and Armv9 Debugger | 126©1989-2024 Lauterbach

CTI.Config <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

CTICH01: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8/Armv9 only.
CTICH23: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8/Armv9 only.
ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. Armv8/Armv9 only.

DTM.Type [None | Generic] Informs the debugger that a customer proprietary Data Trace
Message (DTM) module is available. This causes the debugger
to consider this source when capturing common trace data.
Trace data from this module will be recorded and can be
accessed later but the unknown DTM module itself will not be
controlled by the debugger.

ETR.CATUBase <address> Base address of the CoreSight Address Translation Unit (CATU).

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.
Armv8 and Armv9 Debugger | 127©1989-2024 Lauterbach

FUNNEL.PROGrammable
[ON | OFF]

Default is ON. If set to ON the peripheral is controlled by
TRACE32 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACE32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

HTM.Type [CoreSight | WPT] Selects the type of the AMBA AHB Trace Macrocell (HTM).
CoreSight is the type as described in the Arm CoreSight
manuals. WPT is a NXP proprietary trace module.

L2CACHE.Type [NONE |
Generic | L210 | L220 | L2C-
310 | AURORA | AURORA2]

Selects the type of the level2 cache controller. L210, L220, L2C-
310 are controller types provided by Arm. AURORAx are Marvell
types. The ‘Generic’ type does not need certain treatment by the
debugger.

OCP.Type <type> Specifies the type of the OCP module. The <type> is just a
number which you need to figure out in the chip documentation.

RTP.PerBase <address> PERBASE specifies the base address of the core peripheral
registers which accesses shall be traced. PERBASE is needed
for the RAM Trace Port (RTP) which is available on some
derivatives from Texas Instruments. The trace packages include
only relative addresses to PERBASE and RAMBASE.

RTP.RamBase <address> RAMBASE is the start address of RAM which accesses shall be
traced. RAMBASE is needed for the RAM Trace Port (RTP)
which is available on some derivatives from Texas Instruments.
The trace packages include only relative addresses to PERBASE
and RAMBASE.

STM.Mode [NONE | XTIv2 |
SDTI | STP | STP64 | STPv2]

Selects the protocol type used by the System Trace Module (STM).

STM.Type [None | Generic |
ARM | SDTI | TI]

Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols (see STM.Mode).

TPIU.Type [CoreSight |
Generic]

Selects the type of the Trace Port Interface Unit (TPIU).

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.
Armv8 and Armv9 Debugger | 128©1989-2024 Lauterbach

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
ATBSource,Base, ,RESet,TraceID.

BMC.Base <address>
BMC.RESet
Performance Monitor Unit (PMU) - Arm debug module, e.g. on Cortex-A/R
Bench-Mark-Counter (BMC) is the TRACE32 term for the same thing.
The module contains counter which can be programmed to count certain events (e.g. cache hits).
BMCSnapshot.Base <address>
For a description of the command, see SYStem.CONFIG.BMCSnapshot.Base.

CMI.Base <address>
CMI.RESet
CMI.TraceID <id>
Clock Management Instrumentation (CMI) - Texas Instruments
Trace source delivering information about clock status and events to a system trace module.

COREDEBUG.Base <address>
COREDEBUG.RESet
Core Debug Register - Arm debug register, e.g. on Cortex-A/R
Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTI.Base <address>
CTI.Config <interconnection>
Cross Trigger Interface (CTI) - Arm CoreSight module
If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

DRM.Base <address>
DRM.RESet
Debug Resource Manager (DRM) - Texas Instruments
It will be used to prepare chip pins for trace output.

DTM.RESet
DTM.Type [None | Generic]
Data Trace Module (DTM) - generic, CoreSight compliant trace source module
If specified it will be considered in trace recording and trace data can be accessed afterwards.
DTM module itself will not be controlled by the debugger.

DWT.Base <address>
DWT.RESet
Data Watchpoint and Trace unit (DWT) - Arm debug module on Cortex-M cores
Normally fix address at 0xE0001000 (default).
Armv8 and Armv9 Debugger | 129©1989-2024 Lauterbach

EPM.Base <address>
EPM.RESet
Emulation Pin Manager (EPM) - Texas Instruments
It will be used to prepare chip pins for trace output.

ETB2AXI.Base <address>
ETB2AXI.RESet
ETB to AXI module
Similar to an ETR.

ETB.ATBSource <source>
ETB.Base <address>
ETB.RESet
ETB.Size <size>
Embedded Trace Buffer (ETB) - Arm CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>
ETF.Base <address>
ETF.RESet
Embedded Trace FIFO (ETF) - Arm CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>
ETM.RESet
Embedded Trace Macrocell (ETM) - Arm CoreSight module
Program Trace Macrocell (PTM) - Arm CoreSight module
Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.RESet
Embedded Trace Router (ETR) - Arm CoreSight module
Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

ETS.ATBSource <source>
ETS.Base <address>
ETS.RESet
Embedded Trace Streamer (ETS) - Arm CoreSight module

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
CoreSight Trace Funnel (CSTF) - Arm CoreSight module
Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus)
Armv8 and Armv9 Debugger | 130©1989-2024 Lauterbach

REP.ATBSource <sourcelist>
REP.Base <address>
REP.Name <string>
REP.RESet
CoreSight Replicator - Arm CoreSight module
This command group is used to configure Arm Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HSM.Base <address>
HSM.RESet
Hardware Security Module (HSM) - Infineon

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]
AMBA AHB Trace Macrocell (HTM) - Arm CoreSight module
Trace source delivering trace data of access to an AHB bus.

ICE.Base <address>
ICE.RESet
ICE-Crusher (ICE) - Texas Instruments

ITM.Base <address>
ITM.RESet
Instrumentation Trace Macrocell (ITM) - Arm CoreSight module
Trace source delivering system trace information e.g. sent by software in printf() style.

L2CACHE.Base <address>
L2CACHE.RESet
L2CACHE.Type [NONE | Generic | L210 | L220 | L2C-310 | AURORA | AURORA2]
Level 2 Cache Controller
The debugger might need to handle the controller to ensure cache coherency for debugger operation.

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.Type <type>
Open Core Protocol watchpoint unit (OCP) - Texas Instruments
Trace source module delivering bus trace information to a system trace module.

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>
Power Management Instrumentation (PMI) - Texas Instruments
Trace source reporting power management events to a system trace module.

RTP.Base <address>
RTP.PerBase <address>
RTP.RamBase <address>
Armv8 and Armv9 Debugger | 131©1989-2024 Lauterbach

RTP.RESet
RAM Trace Port (RTP) - Texas Instruments
Trace source delivering trace data about memory interface usage.

SC.Base <address>
SC.RESet
SC.TraceID <id>
Statistic Collector (SC) - Texas Instruments
Trace source delivering statistic data about bus traffic to a system trace module.

SDC.Base <address>
SDC.RESet
Secure Debug Channel (SDC) - Arm CoreSight module
Communication module sdc600_apbcom_ext for debug authentication.

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | Generic | ARM | SDTI | TI]
System Trace Macrocell (STM) - MIPI, Arm CoreSight, others
Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
Trace Port Interface Unit (TPIU) - Arm CoreSight module
Trace sink sending the trace off-chip on a parallel trace port (chip pins).
Armv8 and Armv9 Debugger | 132©1989-2024 Lauterbach

<parameters> which are “Deprecated”

In recent years, chips and their debug and trace architectures have become much more complex. The
CoreSight trace components and their interconnection on a common trace bus, in particular, necessitated a
revision of our commands. The new commands can handle even the most complex structures.

… BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, CORE, CTI, ETB, ETF, ETM, ETR a
list of base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000”.

COREBASE (old syntax: DEBUGBASE): Some cores e.g. Cortex-
A or Cortex-R do not have a fix location for their debug register
which are used for example to halt and start the core. In this case it
is essential to specify its location before you can connect by e.g.
SYStem.Up.

PERBASE and RAMBASE are needed for the RAM Trace Port
(RTP) which is available on some derivatives from Texas
Instruments. PERBASE specifies the base address of the core
peripheral registers which accesses shall be traced, RAMBASE
is the start address of RAM which accesses shall be traced. The
trace packages include only relative addresses to PERBASE and
RAMBASE.

For a list of possible components including a short description
see Components and Available Commands.
Armv8 and Armv9 Debugger | 133©1989-2024 Lauterbach

… PORT <port> Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port> parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

For a list of possible components including a short description
see Components and Available Commands.

BYPASS <seq> With this option it is possible to change the JTAG bypass
instruction pattern for other TAPs. It works in a multi-TAP JTAG
chain for the IRPOST pattern, only, and is limited to 64 bit. The
specified pattern (hexadecimal) will be shifted least significant bit
first. If no BYPASS option is used, the default value is “1” for all
bits.

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.
Armv8 and Armv9 Debugger | 134©1989-2024 Lauterbach

Mapping Deprecated to New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

DTMCONFIG [ON | OFF] Informs the debugger that a customer proprietary Data Trace
Message (DTM) module is available. This causes the debugger
to consider this source when capturing common trace data.
Trace data from this module will be recorded and can be
accessed later but the unknown DTM module itself will not be
controlled by the debugger.

FILLDRZERO [ON | OFF] This changes the bypass data pattern for other TAPs in a multi-
TAP JTAG chain. It changes the pattern from all “1” to all “0”. This
is a workaround for a certain chip problem. It is available on the
Arm9 debugger, only.

TIOCPTYPE <type> Specifies the type of the OCP module from Texas Instruments
(TI).

view Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

<parameter>:
(Deprecated)

<parameter>:
(New)

BMCBASE <address> BMC.Base <address>

BYPASS <seq> CHIPIRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN.Alternate <pattern>

COREBASE <address> COREDEBUG.Base <address>

CTIBASE <address> CTI.Base <address>

CTICONFIG <type> CTI.Config <type>

DEBUGBASE <address> COREDEBUG.Base <address>

DTMCONFIG [ON | OFF] DTM.Type.Generic

DTMETBFUNNELPORT <port> FUNNEL4.ATBSource DTM <port> (1)

DTMFUNNEL2PORT <port> FUNNEL2.ATBSource DTM <port> (1)

DTMFUNNELPORT <port> FUNNEL1.ATBSource DTM <port> (1)

DTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource DTM <port> (1)

DWTBASE <address> DWT.Base <address>

ETB2AXIBASE <address> ETB2AXI.Base <address>
Armv8 and Armv9 Debugger | 135©1989-2024 Lauterbach

ETBBASE <address> ETB1.Base <address>

ETBFUNNELBASE <address> FUNNEL4.Base <address>

ETFBASE <address> ETF1.Base <address>

ETMBASE <address> ETM.Base <address>

ETMETBFUNNELPORT <port> FUNNEL4.ATBSource ETM <port> (1)

ETMFUNNEL2PORT <port> FUNNEL2.ATBSource ETM <port> (1)

ETMFUNNELPORT <port> FUNNEL1.ATBSource ETM <port> (1)

ETMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ETM <port> (1)

FILLDRZERO [ON | OFF] CHIPDRPRE 0
CHIPDRPOST 0
CHIPDRLENGTH <bits_of_complete_dr_path>
CHIPDRPATTERN.Alternate 0

FUNNEL2BASE <address> FUNNEL2.Base <address>

FUNNELBASE <address> FUNNEL1.Base <address>

HSMBASE <address> HSM.Base <address>

HTMBASE <address> HTM.Base <address>

HTMETBFUNNELPORT <port> FUNNEL4.ATBSource HTM <port> (1)

HTMFUNNEL2PORT <port> FUNNEL2.ATBSource HTM <port> (1)

HTMFUNNELPORT <port> FUNNEL1.ATBSource HTM <port> (1)

HTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource HTM <port> (1)

ITMBASE <address> ITM.Base <address>

ITMETBFUNNELPORT <port> FUNNEL4.ATBSource ITM <port> (1)

ITMFUNNEL2PORT <port> FUNNEL2.ATBSource ITM <port> (1)

ITMFUNNELPORT <port> FUNNEL1.ATBSource ITM <port> (1)

ITMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ITM <port> (1)

PERBASE <address> RTP.PerBase <address>

RAMBASE <address> RTP.RamBase <address>

RTPBASE <address> RTP.Base <address>

SDTIBASE <address> STM1.Base <address>
STM1.Mode SDTI
STM1.Type SDTI

STMBASE <address> STM1.Base <address>
STM1.Mode STPV2
STM1.Type ARM

STMETBFUNNELPORT <port> FUNNEL4.ATBSource STM1 <port> (1)

STMFUNNEL2PORT <port> FUNNEL2.ATBSource STM1 <port> (1)

STMFUNNELPORT <port> FUNNEL1.ATBSource STM1 <port> (1)

STMTPIUFUNNELPORT <port> FUNNEL3.ATBSource STM1 <port> (1)
Armv8 and Armv9 Debugger | 136©1989-2024 Lauterbach

(1) Further “<component>.ATBSource <source>” commands might be needed to describe the full trace data
path from trace source to trace sink.

TIDRMBASE <address> DRM.Base <address>

TIEPMBASE <address> EPM.Base <address>

TIICEBASE <address> ICE.Base <address>

TIOCPBASE <address> OCP.Base <address>

TIOCPTYPE <type> OCP.Type <type>

TIPMIBASE <address> PMI.Base <address>

TISCBASE <address> SC.Base <address>

TISTMBASE <address> STM1.Base <address>
STM1.Mode STP
STM1.Type TI

TPIUBASE <address> TPIU.Base <address>

TPIUFUNNELBASE <address> FUNNEL3.Base <address>

view state
Armv8 and Armv9 Debugger | 137©1989-2024 Lauterbach

SYStem.CONFIG.BMCSnapshot.Base Synchronous BMC sampling
[build 144970 - DVD 09/2022]

Allows to define the address of the PMUSNAPSHOTREQ register. The implementation state of the register
is SoC specific. If the address for this register is set, the BMC snooper can sample the Arm PMU events, PC
and CONTEXTIDR registers synchronously across multiple cores at run-time using the PMU snapshot
feature. For this, the snooper has to be set to SNOOPer.Mode.BMC.

If no snapshot base address is defined, SNOOPer.Mode.BMC will use asynchronous sampling, i.e. the
sampled values are not correlated. This is the default behavior which will work on all Arm cores that
implement a PMU that allows to read the event counters at run-time.

Example:

SYStem.CONFIG.EXTWDTDIS Disable external watchdog

Default for Automotive/Automotive PRO Debug Cable: High.
Default for XCP: OFF.

Controls the WDTDIS pin of the debug port. This configuration is only available for tools with an Automotive
Connector (e.g., Automotive Debug Cable, Automotive PRO Debug Cable) and XCP.

Format: SYStem.CONFIG.BMCSnapshot.Base <address>

SYStem.CONFIG.BMCSnapshot.Base APB:0xF8200800 ; PMUSNAPSHOTREQ mapped to
 ; APB
BMC.PMN0.EVENT CPU_CYCLES ; set event(s) to be counted
SNOOPer.Mode.BMC ; activate snooping of events

Format: SYStem.CONFIG.EXTWDTDIS <option>

<option>: OFF
High
Low
HighwhenStopped
LowwhenStopped

OFF The WDTDIS pin is not driven. (XCP only)

High The WDTDIS pin is permanently driven high.

Low The WDTDIS pin is permanently driven low.
Armv8 and Armv9 Debugger | 138©1989-2024 Lauterbach

SYStem.CONFIG.GICD Generic Interrupt Controller Distributor (GIC)
[Examples]

This command group makes TRACE32-internal configuration settings for the peripheral Generic Interrupt

Controller Distributor (GICD) complying with the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0.

After you have selected a SoC with a known configuration using the SYStem.CPU <soc> command,
TRACE32 makes its own internal settings for the peripheral automatically. You can view the result in the
SYStem.CONFIG.state window on the COmponents tab.

For custom SoCs, you have to make these settings manually. To do this, use the SYStem.CONFIG GICD
command group or the SYStem.CONFIG.state /COmponents window.

As soon as the subcommands Base and Type are configured, the following command groups are activated:

• SYStem.CONFIG.GICR for the Generic Interrupt Controller Redistributor (GICR)

• SYStem.CONFIG.GICC for the Generic Interrupt Controller physical CPU interface (GICC)

• SYStem.CONFIG.GICH for the Generic Interrupt Controller virtual interface control (GICH)

• SYStem.CONFIG.GICV for the Generic Interrupt Controller virtual CPU interface (GICV)

HighwhenStopped The WDTDIS pin is driven high when program is stopped (not XCP).

LowwhenStopped The WDTDIS pin is driven low when program is stopped (not XCP).

Format: SYStem.CONFIG.GICD <sub_cmd>

<sub_cmd>: Base <address>
Type GIC400 | GIC500 | GICv3 | GICv4
RESet
Armv8 and Armv9 Debugger | 139©1989-2024 Lauterbach

For information about whether the use of a newly-activated command group is mandatory or optional, see
here.

Overview of Mandatory and Optional TRACE32-internal Settings

Examples

Example 1:

Base Informs the debugger about the physical base address of the peripheral,
access class AD:.

Type Selects the type or version of the Arm Generic Interrupt Controller (GIC)
used in the SoC.
• GIC400 and GIC500 are implementations from Arm.
• GICv3 and GICv4 are controllers complying with the GICv3/GICv4

specification from Arm.
If the type is configured, the correct GIC register block is shown in the
PER.view window.

RESet Removes the component from the TRACE32 configuration.
This does not cause a physical reset for the peripheral on the chip.

If the type* or version of the Generic Interrupt Controller
(GIC) is:

Then the TRACE32-internal
settings with:

GIC400 GIC500 GICv3 GICv4

SYStem.CONFIG.GICD are mandatory mandatory mandatory mandatory

SYStem.CONFIG.GICR are N/A mandatory mandatory mandatory

SYStem.CONFIG.GICC are mandatory optional optional optional

SYStem.CONFIG.GICH are mandatory optional optional optional

SYStem.CONFIG.GICV are mandatory optional optional optional

(*) Type or version are set with SYStem.CONFIG.GICD Type.

;a known SoC is selected from the CPU list
SYStem.CPU IMX8MQ

;the TRACE32-internal settings for the GIC are preset => nothing to do
Armv8 and Armv9 Debugger | 140©1989-2024 Lauterbach

Example 2:

Example 3:

;configure custom SoC:
;e.g. Cortex-A53 Quadcore with Arm GIC-500 without legacy interface.
SYStem.CPU CortexA53
SYStem.CONFIG.CORENUMBER 4.

SYStem.CONFIG ...

;example GIC Distributor base address: 0x10000000
SYStem.CONFIG.GICD Base AD:0x10000000
SYStem.CONFIG.GICD Type GIC500

;example GIC Redistributor base addresses: 0x11000000 0x11020000
;0x11040000 0x11060000
SYStem.CONFIG.GICR Base AD:0x11000000 AD:0x11020000 AD:0x11040000 \
 AD:0x11060000

;configure a custom SoC:
;e.g. Cortex-A53 Quadcore with Arm GIC-400
SYStem.CPU CortexA53
SYStem.CONFIG.CORENUMBER 4.

SYStem.CONFIG ...

;example GIC Distributor base address: 0x10001000
SYStem.CONFIG.GICD Base AD:0x10001000
SYStem.CONFIG.GICD Type GIC400

;example GIC CPU interface base addresses (banked): 0x10002000
SYStem.CONFIG.GICC Base AD:0x10002000

;example GIC virtual interface control base addresses (banked):
;0x10004000
SYStem.CONFIG.GICH Base AD:0x10004000

;example GIC virtual CPU interface base addresses (banked): 0x10006000
SYStem.CONFIG.GICV Base AD:0x10006000
Armv8 and Armv9 Debugger | 141©1989-2024 Lauterbach

SYStem.CONFIG.GICR Generic Interrupt Controller Redistributor

This command group makes TRACE32-internal configuration settings for the peripheral Generic Interrupt

Controller Redistributor (GICR) complying with the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0.

• SYStem.CONFIG.GICR is activated as soon as Base and Type of the SYStem.CONFIG GICD
command group have been set.

• The GICR configuration is only valid and mandatory if the SYStem.CONFIG.GICD Type is GICv3,
GICv4, or GIC500.

For SoCs in the SYStem.CPU list that have a known configuration, TRACE32 makes its own internal
settings for the peripheral automatically. You can view the result in the SYStem.CONFIG.state window on
the COmponents tab.

For custom SoCs, you have to make these settings manually. To do this, use the SYStem.CONFIG.GICR
command group or the SYStem.CONFIG.state /COmponents window.

Format: SYStem.CONFIG.GICR <sub_cmd>

<sub_cmd>: Base <address>…
RESet

Base <address>… Informs the debugger about the physical base address of the redistributor
for each core, access class AD:.

RESet Removes the component from the TRACE32 configuration.
This does not cause a physical reset for the peripheral on the chip.
Armv8 and Armv9 Debugger | 142©1989-2024 Lauterbach

SYStem.CONFIG.GICC Generic Interrupt Controller physical CPU interface

This command group makes TRACE32-internal configuration settings for the peripheral Generic Interrupt

Controller physical CPU interface (GICC) complying with the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0.

• SYStem.CONFIG.GICC is activated as soon as Base and Type of the SYStem.CONFIG GICD
command group have been set.

• The GICC configuration is mandatory if the SYStem.CONFIG.GICD Type is GIC400.

• The GICC configuration is optional if the SYStem.CONFIG.GICD Type is GICv3, GICv4, or
GIC500.

For SoCs in the SYStem.CPU list that have a known configuration, TRACE32 makes its own internal
settings for the peripheral automatically. You can view the result in the SYStem.CONFIG.state window on
the COmponents tab.

For custom SoCs, you have to make these settings manually. To do this, use the SYStem.CONFIG GICC
command group or the SYStem.CONFIG.state /COmponents window.

Format: SYStem.CONFIG.GICC <sub_cmd>

<sub_cmd>: Base <address>…
RESet

Base <address> Informs the debugger about the physical base address of the CPU
interface for each core, access class AD:.
If the address is banked in hardware, it is sufficient to specify only a
single address.

RESet Removes the component from the TRACE32 configuration.
This does not cause a physical reset for the peripheral on the chip.
Armv8 and Armv9 Debugger | 143©1989-2024 Lauterbach

SYStem.CONFIG.GICH Generic Interrupt Controller virtual interface control

This command group makes TRACE32-internal configuration settings for the peripheral Generic Interrupt

Controller virtual interface control (GICH) complying with the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0.

• SYStem.CONFIG.GICH is activated as soon as Base and Type of the SYStem.CONFIG.GICD
command group have been set.

• The GICH configuration is mandatory if the SYStem.CONFIG.GICD Type is GIC400.

• The GICH configuration is optional if the SYStem.CONFIG.GICD Type is GICv3, GICv4, or
GIC500.

For SoCs in the SYStem.CPU list that have a known configuration, TRACE32 makes its own internal
settings for the peripheral automatically. You can view the result in the SYStem.CONFIG.state window on
the COmponents tab.

For custom SoCs, you have to make these settings manually. To do this, use the SYStem.CONFIG.GICH
command group or the SYStem.CONFIG.state /COmponents window.

Format: SYStem.CONFIG.GICH <sub_cmd>

<sub_cmd>: Base <address>…
RESet

Base Informs the debugger about the physical base address of the virtual
interface control for each core, access class AD:.
If the address is banked in hardware, it is sufficient to specify only a
single base address.

RESet Removes the component from the TRACE32 configuration.
This does not cause a physical reset for the peripheral on the chip.
Armv8 and Armv9 Debugger | 144©1989-2024 Lauterbach

SYStem.CONFIG.GICV Generic Interrupt Controller virtual CPU interface

This command group makes TRACE32-internal configuration settings for the peripheral Generic Interrupt

Controller virtual CPU interface (GICV) complying with the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0.

• SYStem.CONFIG GICV is activated as soon as Base and Type of the SYStem.CONFIG.GICD
command group have been set.

• The GICV configuration is mandatory if the SYStem.CONFIG GICD.Type is GIC400.

• The GICV configuration is optional if the SYStem.CONFIG GICD.Type is GICv3, GICv4, or
GIC500.

For SoCs in the SYStem.CPU list that have a known configuration, TRACE32 makes its own internal
settings for the peripheral automatically. You can view the result in the SYStem.CONFIG.state window on
the COmponents tab.

For custom SoCs, you have to make these settings manually. To do this, use the SYStem.CONFIG GICV
command group or the SYStem.CONFIG.state /COmponents window.

Format: SYStem.CONFIG.GICV <sub_cmd>

<sub_cmd>: Base <address>…
RESet

Base Informs the debugger about the physical base address of the virtual CPU
interface for each core, access class AD:.
If the address is banked in hardware, it is sufficient to specify only a
single base address.

RESet Removes the component from the TRACE32 configuration.
This does not cause a physical reset for the peripheral on the chip.
Armv8 and Armv9 Debugger | 145©1989-2024 Lauterbach

SYStem.CONFIG.SMMU Internal use

For some CPUs with SMMUs, TRACE32 configures the SMMUs parameters automatically after you have
selected a CPU with the SYStem.CPU command.

You can access the automatically configured SMMUs through the CPU menu > SMMU submenu in
TRACE32. The individual SMMU configurations can be viewed in the SYStem.CONFIG.state /COmponent
window.

Format: SYStem.CONFIG.SMMU<x> <sub_cmd>

<x>: 1 … 20

<sub_cmd>: Base <base_address>
Type MMU400 | MMU401 | MMU500
Name "<name>"
RESet

NOTE: For a manual SMMU configuration, use the SMMU.ADD command.
Armv8 and Armv9 Debugger | 146©1989-2024 Lauterbach

SYStem.CPU Select the used CPU
[Go to figure]

Selects the processor type. If your CPU is not listed, use SYStem.CPU ArmV8-A.

<x> Serial number of the SMMU.

Base Logical or physical base address of the memory-mapped SMMU register
space.

Type Defines the type of the Arm system MMU IP block:
MMU400, MMU401, or MMU500.

Name Assigns a user-defined name to an SMMU.

RESet Resets the configuration of an SMMU specified with <x>.

Format: SYStem.CPU <cpu>

<cpu>: CortexA32 | CortexA34 | CortexA35 | CortexA53 | CortexA55 | CortexA57 |
CortexA65 | CortexA72 | CortexA73 | CortexA75 | CortexA76 |
CortexA76AE | CortexA77 | Cortex-A78 | Cortex-A78C | CortexA510 |
CortexA64AE CortexA78AE | CortexA710 | CortexA715
CortexR52 | CortexR82
CortexX1 | CortexX1C | CortexX2 | CortexX3
NeoverseE1 | NeoverseN1 | NeoverseN2 | NeoverseV1 | NeoverseV2

NONE Is the default selection if the Debugger for Cortex-A/R (Armv8, 32/64-bit)
is used.

NOTE: Only Cortex-A/R/X, Neoverse CPUs are shown in the example selection. There
are other CPUs in the selection as well. Use SYStem.CPU * to get a selection
list.
Armv8 and Armv9 Debugger | 147©1989-2024 Lauterbach

SYStem.JtagClock Define the frequency of the debug port
[Go to figure]

Default frequency: 10 MHz.

Selects the frequency (TCK/SWCLK) used by the debugger to communicate with the processor in JTAG,
SWD or cJTAG mode.

The clock frequency affects e.g. the download speed. It could be required to reduce the frequency if there
are buffers, additional loads or high capacities on the debug signals or if VTREF is very low. A very high
frequency will not work on all systems and will result in an erroneous data transfer. Therefore we
recommend to use the default setting if possible.

Format: SYStem.JtagClock [<frequency> | CTCK <frequency>]
SYStem.BdmClock (deprecated)

<frequency>: 4 kHz…100 MHz

<frequency> • The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays this value in the SYStem.state
window.

• Besides a decimal number like “100000.” short forms like “10kHz”
or “15MHz” can also be used. The short forms imply a decimal
value, although no “.” is used.

CTCK With this option higher debug port speeds can be reached.
The TDO/SWDIO signal will be sampled by a signal which derives from
TCK/SWCLK, but which is timely compensated regarding the debugger-
internal driver propagation delays (Compensation by TCK). This feature can
be used with a Debug Cable version 4b or newer. If it is selected, although
the Debug Cable is not suitable, a fixed frequency will be selected instead
(minimum of 10 MHz and selected clock).
Armv8 and Armv9 Debugger | 148©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked, the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the Arm core JTAG state machine remains unchanged while the system
is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target,
EDBGRQ must have a pull-down resistor.

Format: SYStem.LOCK [ON | OFF]
Armv8 and Armv9 Debugger | 149©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method
[Go to figure]

Default: Denied.

Allows to select a method for memory access while the CPU is running. If SYStem.MemAccess is not
Denied, it is possible to read from memory, to write to memory and to set software breakpoints while the
CPU is executing the program. For more information, see SYStem.CpuBreak and SYStem.CpuSpot.

A run-time access can be done by using the access class prefix “E”. At first sight it is not clear, whether this
causes a read access through the CPU, the AHB/AXI bypassing the CPU, or no read access at all. The
following tables will summarize this effect. “E” can be combined with various access classes. The following
example uses the access class “A” (physical access) to illustrate the effect of “E”.

Format: SYStem.MemAccess <mode>

<mode>: AHB | AXI | APB | … (SoC-600)
DAP (SoC-400)
Enable
Denied
StopAndGo

AHB, AXI, APB, … Depending on which memory access ports are available on the chip, the
memory access is done through the specified bus.

DAP For SoC-600, DAP must not be used anymore. Use AXI or AHB instead,
depending on what the chip offers.
A run-time memory access is done via the Arm SoC-400 Debug Access
Port (DAP). This is only possible if a DAP is available on the chip and if
the memory bus is connected to it (Cortex, CoreSight).
NOTE: The debugger accesses the memory bus and cannot see caches.

Run-time memory access via the DAP is not possible on the TRACE32
Instruction Set Simulator.

Denied No memory access is possible while the CPU is executing the program.

Enable
CPU (deprecated)

Used to activate the memory access while the CPU is running on the
TRACE32 Instruction Set Simulator and on debuggers which do not have
a fixed name for the memory access method.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.
Armv8 and Armv9 Debugger | 150©1989-2024 Lauterbach

CPU stopped

CPU running

*) Cortex-M: The "CPU" access uses the AHB/AXI access path instead, due to the debug interface design.

SYStem.CpuSpot Enabled

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA CPU* AHB/AXI AHB/AXI CPU*

A CPU* CPU* CPU* CPU*

AHB or AXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

SYStem.CpuSpot [Denied | Target | SINGLE]

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA CPU* AHB/AXI AHB/AXI not allowed

A CPU* CPU* CPU* not allowed

AHB or AXI AHB/AXI AHB/AXI AHB/AXI not allowed

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI not allowed

SYStem.CpuSpot Enabled

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA no access AHB/AXI AHB/AXI CPU* (spotted)

A no access no access no access no access

AHB or AXI no access no access no access no access

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

SYStem.CpuSpot [Denied | Target | SINGLE]

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA no access AHB/AXI AHB/AXI not allowed

A no access no access no access not allowed

AHB or AXI no access no access no access not allowed

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI not allowed
Armv8 and Armv9 Debugger | 151©1989-2024 Lauterbach

If SYStem.MemAccess StopAndGo is set, it is possible to read from memory, to write to memory and to
set software breakpoints while the CPU is executing the program. To make this possible, the program
execution is shortly stopped by the debugger. Each stop takes some time depending on the speed of the
JTAG port and the operations that should be performed. A white S against a red background in the
TRACE32 state line warns you that the program is no longer running in real-time:

To update specific windows that display memory or variables while the program is running, select the
memory class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

No real-time
Armv8 and Armv9 Debugger | 152©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target
[SYStem.state window > Mode]

Default: Down.

Configures how the debugger connects to the target and how the target is handled.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Prepare
Go
Attach
StandBy
Up

Down Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Prepare Resets the target. This can be done via the reset line or CPU specific
reset registers, see also SYStem.Option.RESetREGister. Afterwards
direct access to the CoreSight DAP interface is provided. For a reset, the
reset line has to be connected to the debug connector.

The debugger initializes the debug port (JTAG, SWD, cJTAG) and
CoreSight DAP interface, but does not connect to the CPU.
This debug mode is used if the CPU shall not be debugged or bypassed,
i.e. the debugger can access the memory busses, such as AXI, AHB and
APB, directly through the memory access ports of the CoreSight DAP.

Typical use cases:
• The debugger accesses (physical) memory and bypasses the CPU

if a mapping exists. Memory might require initialization before it can
be accessed.

• The debugger accesses peripherals, e.g. for configuring registers
prior to stopping the CPU in debug mode. Peripherals might need to
be clocked and powered before they can be accessed.

• Third-party software or proprietary debuggers use the TRACE32
API (application programming interface) to access the debug port
and DAP via the TRACE32 debugger hardware.
Armv8 and Armv9 Debugger | 153©1989-2024 Lauterbach

Go Resets the target via the reset line, initializes the debug port (JTAG, SWD,
cJTAG), and starts the program execution. For a reset, the reset line has to
be connected to the debug connector.
Program execution can, for example, be stopped by the Break command.

Attach No reset happens, the mode of the core (running or halted) does not
change. The debug port (JTAG, SWD, cJTAG) will be initialized.
After this command has been executed, the user program can, for
example, be stopped with the Break command.

StandBy Keeps the target in reset via the reset line and waits until power is
detected. For a reset, the reset line has to be connected to the debug
connector.

Once power has been detected, the debugger restores as many debug
registers as possible (e.g. on-chip breakpoints, vector catch events, trace
control) and releases the CPU from reset to start the program execution.

When a CPU power-down is detected, the debugger switches
automatically back to the StandBy mode. This allows debugging of a
power cycle because debug registers will be restored on power-up.

NOTE: Usually only on-chip breakpoints and vector catch events can be
set while the CPU is running. To set a software breakpoint, the CPU has to
be stopped.

Up Resets the target via the reset line, initializes the debug port (JTAG, SWD,
cJTAG), stops the CPU, and enters debug mode.
For a reset, the reset line has to be connected to the debug connector.
The current state of all registers is read from the CPU.
Armv8 and Armv9 Debugger | 154©1989-2024 Lauterbach

SYStem.Option Special setup
[SYStem.state window > Option]

The SYStem.Option commands are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.

SYStem.Option.Address32 Define address format display

Default: AUTO.

Selects the number of displayed address digits in various windows, e.g. List.auto or Data.dump.

Format: SYStem.Option.Address32 [ON | OFF | AUTO | NARROW]

ON Display all addresses as 32-bit values. 64-bit addresses are truncated.

OFF Display all addresses as 64-bit values.

AUTO Number of displayed digits depends on address size.

NARROW 32-bit display with extendible address field.
Armv8 and Armv9 Debugger | 155©1989-2024 Lauterbach

SYStem.Option.AXI32 Use 32-bit atomic AXI accesses instead of 64-bit

Default: OFF

If set to ON, 64-bit atomic AXI accesses will be converted to 32-bit atomic AXI accesses. The option can be
set when the AXI of a SoC does not support 64-bit atomic accesses.

SYStem.Option.BreakOS Allow break during OS-unlock

Default: OFF.

A CPU that is in OS-lock mode shall usually not stop when Break.direct is executed. This is the case when
SYStem.Option.BreakOS is OFF. The debugger will make sure that the CPU remains running and will
enable an OS-unlock catch event to stop the CPU in debug mode as soon as it gets unlocked.

This behavior might not always be applicable. Some use cases require the CPU to stop while it is locked. Set
SYStem.Option.BreakOS to ON. The debugger will use a CTI stop event to halt the CPU in locked mode.
The locked state is cached by the debugger and restored on a Go or Step. The user can change the cached
lock state by writing to OSLAR manually (e.g. via the PER file).

Format: SYStem.Option.AXI32 [ON | OFF]

Format: SYStem.Option.BreakOS [ON | OFF]

Break with SYStem.Option.BreakOS OFF (default)
Armv8 and Armv9 Debugger | 156©1989-2024 Lauterbach

To control the OS-unlock catch event for all cores, see also TrOnchip.state.

SYStem.Option.CacheStatusCheck Check status bits during cache access

SYStem.Option.CFLUSH FLUSH the cache before step/go
[SYStem.state window > CFLUSH]

Default: ON.

If this option is ON, the cache is invalidated automatically before each Step or Go command. This is
necessary to maintain software breakpoint consistency.

Format: SYStem.Option.CacheStatusCheck [ON | OFF] (deprecated)
Replaced by auto-detection.

Format: SYStem.Option.CFLUSH [ON | OFF] (deprecated)
Use SYStem.Option.ICacheMaintenance instead.

Break with SYStem.Option.BreakOS ON
Armv8 and Armv9 Debugger | 157©1989-2024 Lauterbach

SYStem.Option.CLTAPKEY Set key values for CLTAP operation

Default: <key[n]> = 0x00000000

Defines key values that are shifted by the debugger during an implementation defined CTTAP operation. All
key values are shifted in a row during a single 128-bit DR-shift starting with <key0> and ending with <key3>.

SYStem.Option.CoreSightRESet Assert CPU reset via CTRL/STAT

Default: OFF.

The CPU is reset via the CTRL/STAT.CDBGRSTREQ bit. This feature is highly SoC specific and should only
be used if this reset method is really implemented.

SYStem.Option.CTIGate CTI gate control
[build 151107 - DVD 02/2023]

Default: DEFault.

Allows the user to decide if the CTI should be opened while debugging a single core or if it should remain
closed.

This control can be useful when the CPU start/stop events should be transmitted to an entity outside the
CPU’s CTI in the single core use case.

Format: SYStem.Option.CLTAPKEY <key0> <key1> <key2> <key3>

<key[n]> The key value that is shifted. The shift if a single key value starts with its
LSB (little endian representation) and ends with the MSB.

Format: SYStem.Option.CoreSightRESet [ON | OFF]

Format: SYStem.Option.CTIGate [DEFault | SINGLE]

DEFault The CTI gate is closed in the single core use case.

SINGLE The CTI gate is opened in the single core use case.
Armv8 and Armv9 Debugger | 158©1989-2024 Lauterbach

SYStem.Option.CTITimerStop Stop system timer when CPU stops

Default: OFF.

If set, the CTI of the device will be configured to start / stop the timer(s) when the CPU starts / stops.

SYStem.Option.DACRBYPASS Ignore DACR access permission settings

Default: OFF.

Derivatives having a Domain Access Control Registers (DACR) do not allow the debugger to access
memory if the location does not have the appropriate access permission. If this option is activated, the
debugger temporarily modifies the access permission to get access to any memory location.

Format: SYStem.Option.CTITimerStop [OFF | ZYNQULTRASCALE | SR6P7]

OFF CTI will not be configured for timer stop.

ZYNQULTRASCALE The system timestamp generator (IOU_SCNTRS) is stopped. Other timers
are not stopped. Requires that the stop event is also enabled in the system
timer control register.
Note: There is a delay between CPU and timer (re)start.

SR6P7 Every timer that is configured to stop in debug mode will be stopped
when the CPU stops and restart when the CPU restarts.
Configuration is required in corresponding timer control register.

Format: SYStem.Option.DACRBYPASS [ON | OFF]
SYStem.Option.DACR [ON | OFF] (deprecated)
Armv8 and Armv9 Debugger | 159©1989-2024 Lauterbach

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2

Default: ON.

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Format: SYStem.Option.DAP2DBGPWRUPREQ [ON | AlwaysON]
Armv8 and Armv9 Debugger | 160©1989-2024 Lauterbach

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAP2DBGPWRUPREQ is set
to AlwaysON.

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Debug power is not requested and not checked by the debugger.
The control bit is set to 0.

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Armv8 and Armv9 Debugger | 161©1989-2024 Lauterbach

SYStem.Option.DAPREMAP Rearrange DAP memory map

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

This option is for target processors having a Debug Access Port (DAP) e.g., Cortex-A or Cortex-R.

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to contain
an address range followed by a single address.

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.
Armv8 and Armv9 Debugger | 162©1989-2024 Lauterbach

SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
during and after the debug session

Format: SYStem.Option.DAP2SYSPWRUPREQ [AlwaysON | ON | OFF]

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.
Armv8 and Armv9 Debugger | 163©1989-2024 Lauterbach

SYStem.Option.DBGCLAIM Debug and PMU claim
[build 128826 - DVD 09/2021]

Default: OFF.

The debug and PMU claim (if any) will be released during SYStem.Mode [Down | Prepare].

It is recommended to only toggle this option while in SYStem.Mode.Down. Otherwise, a claim may not be
correctly set or released.

SYStem.Option.DBGSPR Use debugger view for SPR access

Default: OFF.

SPR register are always accessed with debugger privileges. The current CPU mode is ignored.

Format: SYStem.Option.DBGCLAIM [ON | OFF]

OFF No claim of any kind will be made.

ON The debugger will make a claim of the debug registers in the
DBGCLAIMSET/DBGCLAIMCLR registers during SYStem.Mode [Up |
Attach].
The debugger will make a claim of the PMU registers in the
DBGCLAIMSET/DBGCLAIMCLR registers if at least one counter of the
BMC command group is configured. The PMU claim will be released if all
counters are disabled again.

NOTE: A debug claim may not be released when the debug connection suddenly fails,
i.e. upon a debug port fail.

Format: SYStem.Option.DBGSPR [ON | OFF]
Armv8 and Armv9 Debugger | 164©1989-2024 Lauterbach

SYStem.Option.DBGUNLOCK Unlock debug register via OSLAR

Default: ON.

This option allows the debugger to unlock the debug register by writing to the Operating System Lock
Access Register (OSLAR) when a debug session will be started. If it is switched off the operating system is
expected to unlock the register access, otherwise debugging is not possible.

SYStem.Option.DCacheMaintenance Data cache maintenance strategy

Default: VA (Virtual Address).

Determines which kind of cache maintenance instructions are used to clean or invalidate the data cache,
e.g. during a physical access. It is recommended to either use VA or SetWay.

Format: SYStem.Option.DBGUNLOCK [ON | OFF]

Format: SYStem.Option.DCacheMaintenance [SetWay | SetWayVA | VA | OFF]

SetWay Iterate over all cache levels and set/way tuples.

SetWayVA Handle separate caches by VA to PoC and unified caches by Set/Way.

VA Handle all caches by VA to PoC (Point of Coherency).

OFF Disables the automatic data cache maintenance, e.g. during a physical
memory access.

NOTE: The CACHE.FLUSH, CACHE.CLEAN and CACHE.INVALIDATE commands are
not affected by this option. They always operate on the entire cache.
Armv8 and Armv9 Debugger | 165©1989-2024 Lauterbach

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

SWDTRSTKEEP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation
Armv8 and Armv9 Debugger | 166©1989-2024 Lauterbach

SYStem.Option.DIAG Activate more log messages

Default: OFF.

Adds more information to the report in the SYStem.LOG.List window.

SYStem.Option.DUALPORT Implicitly use run-time memory access

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, Data.List, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

SYStem.Option.DisMode Define disassembler mode
[Go to figure]

Default: AUTO.

Format: SYStem.Option.DIAG [ON | OFF]

Format: SYStem.Option.DUALPORT [ON | OFF]

Format: SYStem.Option.DisMode <option>

<option>: AUTO
ACCESS
ARM
THUMB
AARCH64
Armv8 and Armv9 Debugger | 167©1989-2024 Lauterbach

Specifies the selected disassembler.

SYStem.Option.EDACR Define 32-bit value written to EDACR register
[build 145442 - DVD 09/2022]

Allows to define a 32-bit value that is written to the EDACR register before the core resumes execution.

SYStem.Option.ENFORCECPSWITCH Try AArch32 for C1x access
[build 133461 - DVD 02/2021]

Default: OFF.

The debugger will make C15/C14 accesses in the current CPU mode per default. This ensures that the PER
window will show registers the same way the CPU would see them. If registers are not accessible by the
CPU in the current mode, they are usually not shown in the PER window as well.

AUTO The information provided by the compiler output file is used for the
disassembler selection. If no information is available it has the same
behavior as the option ACCESS.

ACCESS The selected disassembler depends on the T and RW bit in the CPSR or
on the selected access class. (e.g. List SR:0 for Arm mode or List
ST:0 for THUMB mode).

ARM Only the Arm disassembler is used (highest priority*, AArch32 only).

THUMB Only the THUMB disassembler is used (highest priority*, AArch32 only).

AARCH64 Only the AArch64 disassembler is used (highest priority*).

THUMBEE Only the THUMB disassembler is used which supports the Thumb-2
Execution Environment extension (highest priority).

NOTE: Highest priority in this context means that this setting will overwrite all other
symbol information that refer to the kind of opcode used. Which instruction set
is used by the CPU can also be contained in the debug information of the file
loaded. Or it can be encoded in the access class, like List.auto X:<address>,
List.auto R:<address> or List.auto T:<address>, see also Access Classes.

Format: SYStem.Option.EDACR <value32>

Format: SYStem.Option.ENFORCECPSWITCH [ON | OFF]
Armv8 and Armv9 Debugger | 168©1989-2024 Lauterbach

If the CPU is using AArch64, C15/C14 accesses may not show the register content in the PER window,
because the C15/C14 access does not cause a switch to AArch32.

If this option is set to ON, the debugger will try o find a suitable AArch32 mode to perform the C15/C14
access. This option does not work if the CPU does not implement AArch32, or if AArch32 is only
implemented in user mode (EL0).

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
[SYStem.state window> EnReset]

Default: ON.

If this option is disabled the debugger will never drive the nRESET (nSRST) line on the JTAG connector. This
is necessary if nRESET (nSRST) is no open collector or tristate signal.

From the view of the core, it is not necessary that nRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.FunctionalRESet Custom functional reset
[build 156733 - DVD 09/2023]

Default: OFF.

If this option is set to “ON”, the debugger will perform an implementation defined functional reset during
SYStem.Mode.Up.

This option is only available for selected devices. This option is without effect on most devices.

SYStem.Option.HRCWOVerRide Enable override mechanism

Default: OFF.

Format: SYStem.Option.EnReset [ON | OFF]

Format: SYStem.Option.FunctionalRESet [ON | OFF]

Format: SYStem.Option.HRCWOVerRide [ON | OFF] [/NONE | /PORESET]
Armv8 and Armv9 Debugger | 169©1989-2024 Lauterbach

Enables the Hardcoded Reset Configuration Word override mechanism for NXP/Freescale
Layerscape/QorIQ devices. The feature is required e.g. to program the flash in cases where the flash
content is empty or corrupted.

In order to use this functionality, please contact Lauterbach for more details.

SYStem.Option.ICacheMaintenance I-Cache maintenance strategy

Default: IALLU

Determines which kind of cache maintenance instructions are used to invalidate the instruction cache before
the CPU restarts execution, e.g. before a Go or Step.

SYStem.Option.IMASKASM Disable interrupts while single stepping
[SYStem.state window > IMASKASM]

Default: OFF.

Format: SYStem.Option.ICacheMaintenance [IALLU | IALLUIS | OFF]
SYStem.Option.CFLUSH [ON | OFF] (deprecated)

IALLU Invalidate all instruction caches to Point of Unification (PoU).

IALLUIS Invalidate all instruction caches in the Inner Shareable domain to Point of
Unification (PoU).

IVAU Invalidate instruction cache upon a program write, e.g. Data.Assemble
<address> or Break.Set <address> /SOFT, by <address>. Instruction
cache invalidation before a Go or Step is not performed.

OFF Perform no instruction cache invalidation before CPU restart or during
program write (e.g. Data.Assemble)

NOTE: The CACHE.FLUSH IC and CACHE.INVALIDATE IC commands are not affected
by this option. They always use IALLU.

Format: SYStem.Option.IMASKASM [ON | OFF]
Armv8 and Armv9 Debugger | 170©1989-2024 Lauterbach

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
[SYStem.state window > IMASKHLL]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

SYStem.Option.INTDIS Disable all interrupts

Default: OFF.

If this option is ON, all interrupts on the Arm core are disabled.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC

Default: OFF.

Informs the debugger that the core is part of an Intel® SoC. When enabled, all IR and DR pre/post settings
are handled automatically, no manual configuration is necessary.

Requires that the debugger for this core is slave in a multicore setup with x86 as the master debugger and
that SYStem.Option.CLTAPOnly is enabled in the x86 debugger.

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.INTDIS [ON | OFF]

Format: SYStem.Option.IntelSOC [ON | OFF]
Armv8 and Armv9 Debugger | 171©1989-2024 Lauterbach

SYStem.Option.KEYCODE Define key code to unsecure processor

Default: 0, means no key required.

Some processors have a security feature and require a key to un-secure the processor in order to allow
debugging. The processor will use the specified key on the next debugger start-up (e.g. SYStem.Up) and
forgets it immediately. For the next start-up the key code must be specified again.

SYStem.Option.MACHINESPACES Address extension for guest OSes

Default: OFF

Enables the TRACE32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

If SYStem.Option.MACHINESPACES is set to ON:

• Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACE32 currently supports machine IDs up to 30.

• The debugger address translation (MMU and TRANSlation command groups) can be individually
configured for each virtual machine.

• Individual symbol sets can be loaded for each virtual machine.

Machine IDs (0 and > 0)

• On Arm CPUs with hardware virtualization, guest machines are running in the non-secure zone
(N:) and use machine IDs > 0.

• The hypervisor functionality is usually running in the hypervisor zone (H:) and uses machine ID
0.

• Software running in the secure monitor mode (Z: for Arm32) or EL3 mode (M: for Arm64) is also
using machine ID 0.

Format: SYStem.Option.KEYCODE <key>

Format: SYStem.Option.MACHINESPACES [ON | OFF]
Armv8 and Armv9 Debugger | 172©1989-2024 Lauterbach

SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP
[build 121894 - DVD 09/2022]

Allows to set different debug option controlled by the NXP MDM-AP inside devices, where it is implemented.

Format: SYStem.Option.MDMAP <option>

<option>: DestructiveReset [ON | OFF]
FunctionalReset [ON | OFF]
HaltAfterPoWeRUP [ON | OFF]
DBGRSTFASTPAD [ON | OFF]
DBGRSTSLOWPAD [ON | OFF]
PORWDGDIS [ON | OFF]
WFIFIX [ON | OFF]

DestructiveReset
[ON | OFF]

Default: OFF.

Generates a destructive reset during SYSem.Up or SYStem.Mode.Go.

FunctionalReset
[ON | OFF]

Default: OFF.

Generates a functional (warm) reset during SYSem.Up or
SYStem.Mode.Go.

HaltAfterPoWeRUP
[ON | OFF]

Default: OFF.

Can be used to stop the master core on the first instruction after reset
from a power-up transition using SYStem.Mode.StandBy. This ensures,
that no code has been executed on the target, when first powering on the
target board.

DBGRSTFASTPAD
[ON | OFF]

Default: OFF.

Turning on the fast IO pins using for tracing.

DBGRSTSLOWPAD
[ON | OFF]

Default: OFF.

Turning on the slow IO pins using for tracing.
Armv8 and Armv9 Debugger | 173©1989-2024 Lauterbach

SYStem.Option.MemStatusCheck Check status bits during memory access

Default: OFF

Enables status flags check during memory access. The debugger checks if the CPU is ready to
receive/provide new data. Usually this is not needed. Only slow devices (e.g. emulations systems) may need
an additional status check. The option can be enabled for all memory transactions or only certain types of
memory accesses. The access time will increase if a check is enabled.

PORWDGDIS [ON |
OFF]

Default: OFF.

Disabling the power watchdog inside the device.

WFIFIX [ON | OFF] Default: ON.

Workaround for WFI/WFE entrance of Cortex-M7 cores in some NXP
S32 devices. In case the debugger is disconnected from the target using
SYStem.Down, the set WFIFIX option ensures, that the Cortex-M7 still
can wake-up correctly from WFI/WFE state.

Format: SYStem.Option.MemStatusCheck [ON | OFF | Read | Write | Block | Single]

OFF Default value, no check is done (fastest memory access).

ON Additional status check on any read/write access.

Read Additional status check on any read access.

Write Additional status check on any write access.

Block Additional status check on read/write block accesses, i.e. when 8 byte or
more are transferred and the specified width is “Long”. Requires that the
start address and block size are aligned to an 4-byte address, e.g.
“0x10000014++0x1F”.

Single Additional status check when less than 8 byte are transferred, or when
“Quad” or “Oct” width specifier is used.
Armv8 and Armv9 Debugger | 174©1989-2024 Lauterbach

SYStem.Option.MMUPhysLogMemaccess Memory access preferences

Controls whether TRACE32 prefers a cached logical memory access over a (potentially uncached) physical
memory access to keep caches updated and coherent.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

Format: SYStem.Option.MMUPhysLogMemaccess [ON | OFF]

NOTE: This option should usually not be changed.

ON A cached logical memory access is used.

This option is enabled by default for Armv7 and older cores.

OFF A (potentially uncached) physical memory access is used.

This option is disabled by default for Armv8 because the physical memory
can usually be accessed while the caches are still kept coherent.

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)
Armv8 and Armv9 Debugger | 175©1989-2024 Lauterbach

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

SYStem.Option.MPUBYPASS Ignore MPU access permission settings

Default: OFF.

Derivatives having a memory protection unit do not allow the debugger to access memory if the location
does not have the appropriate access permission. If this option is activated, the debugger temporarily
modifies the access permission to get access to the memory location.

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

Format: SYStem.Option.MPUBYPASS [ON | OFF]
SYStem.Option.MPU [ON | OFF] (deprecated)
Armv8 and Armv9 Debugger | 176©1989-2024 Lauterbach

SYStem.Option.NOMA Use alternative memory access

Default: OFF.

Per default the debugger will try to access larger memory blocks using an optimized memory access mode
of the CPU. If this is not desired, the Debugger may use an alternative memory access when this option is
not OFF. This can be used as a workaround e.g. when the default memory access does not work with a
target CPU. The memory access will become significantly slower. It is recommended not to use this option
during normal debugger operation.

SYStem.Option.NoPRCRReset Disable warm reset via PRCR

Default: ON.

The debugger tries to do a warm reset, (e.g. SYStem.Up) when this option is set to OFF.

Format: SYStem.Option.NOMA [OFF | Read | Write | ReadWrite]
SYStem.Option.NOMA [ON | OFF] (deprecated)

OFF Use optimized memory access mode of the CPU.

Read Use alternative memory access only for read accesses.

Write Use alternative memory access only for write accesses.

ReadWrite Use alternative memory access only for read and write accesses.

NOTE: If the memory access width is byte, word or quad, the optimized memory
access mode will never be used.

Format: SYStem.Option.NoPRCRReset [ON | OFF]

NOTE: It is SoC specific whether the warm reset resets the core only or additional
modules. Please consider: Peripherals might not be reset. Code execution from
the reset vector might therefore happen in a different context compared to a
power cycle of the SoC or a system wide reset, e.g. by asserting the reset line.
Armv8 and Armv9 Debugger | 177©1989-2024 Lauterbach

SYStem.Option.OSUnlockCatch Use the "OS Unlock Catch" debug event

Default: ON.

The debugger uses the OS Unlock Catch debug event in order to halt the target during SYStem.Up when
this option is set to ON. This option has no effect on the settings of TrOnchip.Set.

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

Format: SYStem.Option.OSUnlockCatch [ON | OFF]

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_id>:<address>
Armv8 and Armv9 Debugger | 178©1989-2024 Lauterbach

SYStem.Option.PALLADIUM Extend debugger timeout

Default: OFF.

The debugger uses longer timeouts as might be needed when used on a chip emulation system like the
Palladium from Cadence.

This option will only extend some timeouts by a fixed factor. It is recommended to extend all timeouts. This
can be done with SYStem.CONFIG.DEBUGTIMESCALE.

SYStem.Option.PWRDWN Allow power-down mode

Default: OFF.

Controls the CORENPDRQ bit in device power-down and reset control register (PRCR). This forces the
system power controller in emulate mode.

SYStem.Option.PAN Overwrite CPSR.PAN setting

Default: OFF.

This option is effective since Armv8.1. It is not effective for Armv8.0. It controls how the debugger handles
the Privileged Access Never (PAN) bit in CPSR while the CPU is in debug (stopped) mode. The debugger
will restore the PAN setting, if modified, when the CPU returns to running state.

Format: SYStem.Option.PALLADIUM [ON | OFF] (deprecated)
Use SYStem.CONFIG.DEBUGTIMESCALE instead.

Format: SYStem.Option.PWRDWN [ON | OFF]

Format: SYStem.Option.PAN [ON | OFF]

ON The debugger will clear the CPSR.PAN bit temporarily in debug mode.
Memory access are handled in the same fashion as for Armv8.0

OFF The debugger ignores the CPSR.PAN bit. All memory accesses are
handled according to the PAN setting introduced with Armv8.1
Armv8 and Armv9 Debugger | 179©1989-2024 Lauterbach

SYStem.Option.PWRREQ Request core power

Default: OFF.

Controls the COREPURQ bit in device power-down and reset control register (PRCR). When this option is
set to OFF the debugger will set this bit to 0. The debugger requests core power when this option is set to
ON. Implemented on customers demand. Usually this option is not needed.

Format: SYStem.Option.PWRREQ [ON | OFF]
Armv8 and Armv9 Debugger | 180©1989-2024 Lauterbach

SYStem.Option.ResBreak Halt the core after reset

Default: ON.

This option has to be disabled if the nTRST line is connected to the nRESET / nSRST line on the target. In
this case the CPU executes some cycles while the SYStem.Up command is executed. The reason for this
behavior is the fact that it is necessary to halt the core (enter debug mode) by a JTAG sequence. This
sequence is only possible while nTRST is inactive. In the following figure the marked time between the
deassertion of reset and the entry into debug mode is the time of this JTAG sequence plus a time delay
selectable by SYStem.Option.WaitReset (default = 3 msec).

If nTRST is available and not connected to nRESET/nSRST it is possible to force the CPU directly after
reset (without cycles) into debug mode. This is also possible by pulling nTRST fixed to VCC (inactive), but
then there is the problem that it is normally not ensured that the JTAG port is reset in normal operation. If the
ResBreak option is enabled the debugger first deasserts nTRST, then it executes a JTAG sequence to set
the DBGRQ bit in the ICE breaker control register and then it deasserts nRESET/nSRST.

Format: SYStem.Option.ResBreak [ON | OFF]

nSRST

nTRST

CPU State reset running debugconfig

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

JTAG ID DAP register

reset debug

nSRST

nTRST

CPU State config

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

DAP registerJTAG ID
Armv8 and Armv9 Debugger | 181©1989-2024 Lauterbach

SYStem.Option.ResetDetection Choose method to detect a target reset

Default: nSRST

Selects the method how an external target reset can be detected by the debugger.

SYStem.RESetOut Assert nRESET/nSRST on JTAG connector
[SYStem.state window > RESetOut]

If possible (nRESET/nSRST is open collector), this command asserts the nRESET/nSRST line on the JTAG
connector. While the CPU is in debug mode, this function will be ignored. Use the SYStem.Up command if
you want to reset the CPU in debug mode.

Format: SYStem.Option.ResetDetection <method>

<method>: nSRST | None

nSRST Detects a reset if nSRST (nRESET) line on the debug connector is pulled
low.

None Detection of external resets is disabled.

Format: SYStem.RESetOut
Armv8 and Armv9 Debugger | 182©1989-2024 Lauterbach

SYStem.Option.RESetREGister Generic software reset

Specifies a register on the target side, which allows the debugger to assert a software reset, in case no
nReset line is present on the JTAG header. The reset is asserted on SYStem.Up, SYStem.Mode.Go,
SYStem.Mode Prepare and SYStem.RESetOut. The specified address needs to be accessible during
runtime (for example E, DAP, AXI, AHB, APB).

SYStem.Option.RisingTDO Target outputs TDO on rising edge

Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

Format: SYStem.Option.RESetRegister NONE
SYStem.Option.RESetRegister <address>
 <mask>
 <assert_value>
 <deassert_value>
 [/<width>]

<width>: Byte | Word | Long | Quad

<address> Specifies the address of the target reset register.

<mask> The <assert_value> and <deassert_value> are written in a read-modify-
write operation. The mask specifies which bits are changed by the
debugger. Bits of the mask value which are ‘1’ are not changed inside the
reset register.

<assert_value> Value that is written to assert reset.

<deassert_value> Value that is written to deassert reset.

<width> Width used for register access. See also “Keywords for <width>”
(general_ref_d.pdf).

NOTE: The debugger will not perform the default warm reset via the PRCR if this option
is set.

Format: SYStem.Option.RisingTDO [ON | OFF]
Armv8 and Armv9 Debugger | 183©1989-2024 Lauterbach

SYStem.Option.SLaVeSOFTRESet Allow soft reset of slave cores

Default: OFF.

Allow the debugger to do a soft reset of a slave core during SYStem.Up. the availability of this soft reset
mechanism depends on the target core type and is also implementation defined. Only set to ON when the
reset event on a slave core is not distributed to other cores, e.g. by a reset controller.

SYStem.Option.SMPMultipleCall Send start event to each SMP core

Default: OFF.

When set to ON, the debugger will send a start pulse to each core via the CTI in an SMP system. This is a
bugfix for systems with a broken CTI event distribution. Implemented on customers’ request.

SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint

Default: OFF.

Instructs the debugger to use 32-bit accesses to patch the software breakpoint code.

Format: SYStem.Option.SLaVeSOFTRESet [ON | OFF]

NOTE: This option is ignored and the soft reset is not executed if
SYStem.Option.RESetREGister is configured.

Format: SYStem.Option.SMPMultipleCall [ON | OFF]

Format: SYStem.Option.SOFTLONG [ON | OFF]
Armv8 and Armv9 Debugger | 184©1989-2024 Lauterbach

SYStem.Option.SOFTQUAD Use 64-bit access to set breakpoint

Default: OFF.

Activate this option if software breakpoints should be written by 64-bit accesses. This was implemented in
order not to corrupt ECC.

SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping

Default: OFF.

If set to ON, software breakpoints are used for single stepping on assembler level (advanced users only).

SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint

Default: OFF.

Instructs the debugger to use 16-bit accesses to patch the software breakpoint code.

SYStem.Option.TraceFilterOverride Enable/Disable trace filter override
[build 135747 - DVD 09/2021]

Default: ON.

If set to ON, the debugger can trace at any visible exception level, overriding the current trace filter controls.

Format: SYStem.Option.SOFTQUAD [ON | OFF]

Format: SYStem.Option.STEPSOFT [ON | OFF]

Format: SYStem.Option.SOFTWORD [ON | OFF]

Format: SYStem.Option.TraceFilterOverride [ON | OFF]
Armv8 and Armv9 Debugger | 185©1989-2024 Lauterbach

SYStem.Option.TURBO Disable cache maintenance during memory access

Default: OFF.

The debugger will not perform any cache maintenance during memory accesses. This will speed up
memory accesses. However, the IC invalidation before a Step or Go may still be done. See
SYStem.Option.ICacheMaintenance for controlling this kind of cache maintenance.

SYStem.state Display SYStem window

Displays the SYStem.state window for Arm. Offers a GUI for system settings that configure debugger and
target behavior. All these settings are described in the sections of this chapter. Each link is a valid command
that can be entered in the TRACE32 command line.

Click a link to navigate directly to the corresponding section.

Format: SYStem.Option.TURBO [ON | OFF]

Format: SYStem.state

SYStem.Mode

SYStem.MemAccess SYStem.Option SYStem.Option.DisMode

SYStem.JtagClock

SYStem.CPU

SYStem.CONFIG

SYStem.RESetOut

SYStem.Option.WaitReset

SYStem.CpuBreak
SYStem.CpuSpot
Armv8 and Armv9 Debugger | 186©1989-2024 Lauterbach

SYStem.Option.SoftLockUNLOCK Unlock software lock via EDLAR
[build 166962 - DVD 09/2024]

Default: ON.

This option allows the debugger to unlock the debug registers by writing to the Software Lock register
(EDLAR) when a debug session will be started. If it is switched “OFF”, debugging might not be possible. The
option has no effect when the Software Lock is not implemented.

SYStem.Option.SYSPWRUPREQ Force system power

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP). If
the option is ON, system power will be requested by the debugger on a debug session start.

This option is for target processors having a Debug Access Port (DAP).

SYStem.Option.TRST Allow debugger to drive TRST
[SYStem.state window > TRST]

Default: ON.

If this option is disabled, the nTRST line is never driven by the debugger (permanent high). Instead five
consecutive TCK pulses with TMS high are asserted to reset the TAP controller which have the same effect.

Format: SYStem.Option.SoftLockUNLOCK [ON | OFF]

Format: SYStem.Option.SYSPWRUPREQ [ON | OFF] (deprecated)
Use SYStem.Option.DAPSYSPWRUPREQ instead.

Format: SYStem.Option.TRST [ON | OFF]
Armv8 and Armv9 Debugger | 187©1989-2024 Lauterbach

SYStem.Option.WaitCTIREG Wait for CTI registers after reset
[build 138382 - DVD 02/2022]

Default: OFF = disabled.

Example: The following figure shows a situation in which JTAG and the CoreSight subsystem (DAP) are
available, but the SoC needs a certain time until the CTI registers become available:

In this example, the nSRST line is released while the debugger waits for the CTI registers to become
available. This is ensured by SYStem.Option.ResBreak OFF.

However, if you can wait for the CTI register while SRST is still asserted, SYStem.Option.ResBreak ON
can be used.

SYStem.Option.WaitDAPPWR Wait for DAP power after DAP power request
[

Default: OFF = disabled.

Format: SYStem.Option.WaitCTIREG [ON | OFF | <time>]

ON 1 second default wait time.

OFF No additional CTI availability check.

<time> Custom wait time, max. 30 sec, use ‘us’, ‘ms’, ‘s’ as units.

Format: SYStem.Option.WaitDAPPWR [ON | OFF | <time>]

nSRST

nTRST

CPU State

inaccessible accessibleDebug registers

reset running wait for CTI regJTAG ID DAP config debug

JTAG
OK

Power
OK

Polling Polling

register

Register
OK
Armv8 and Armv9 Debugger | 188©1989-2024 Lauterbach

Allows to add an additional wait time after a power up request of the Arm CoreSight subsystem (DAP).

Example: The following figure shows a situation in which JTAG is available in reset, but the CoreSight
subsystem (DAP) needs a certain time until it powers up due to the debuggers power request:

SYStem.Option.WaitDBGREG Wait for core debug registers after reset
[

Default: OFF = disabled.

Adds an additional wait time after reset has been asserted to wait for core debug registers availability.

Example: The following figure shows a situation in which JTAG and the CoreSight subsystem (DAP) are
available, but the SoC needs a certain time until the core debug registers become available:

ON 1 second default wait time

OFF 50 ms default wait time

<time> Custom wait time, max. 30 sec, use ‘us’, ‘ms’, ‘s’ as units.

Format: SYStem.Option.WaitDBGREG [ON | OFF | <time>]

ON 1 second default wait time

OFF 50 ms default wait time

<time> Custom wait time, max. 30 sec, use ‘us’, ‘ms’, ‘s’ as units.

nSRST

nTRST

CPU State

DAP Power off on

reset running wait for DAP pwrJTAG ID config debug

Polling PollingJTAG
OK

register

Register
OK

CTI

CTI
OK
Armv8 and Armv9 Debugger | 189©1989-2024 Lauterbach

In this example, the nSRST line is kept asserted while the debugger waits for the core debug registers to
become available. However, it might be required to release the reset early for this to happen. In this case you
should additionally use SYStem.Option.ResBreak OFF.

SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset
[

Default: OFF = disabled.

Allows to add additional busy time after reset. The command is limited to systems that use an Arm DAP.

If SYStem.Option.WaitIDCODE is enabled and SYStem.Option.ResBreak is disabled, the debugger
starts to busy poll the JTAG/SWD IDCODE until it is readable. For systems where JTAG/SWD is disabled
after RESET and e.g. enabled by the BootROM, this allows an automatic adjustment of the connection delay
by busy polling the IDCODE.

After deasserting nSRST and nTRST the debugger waits the time configured by
SYStem.Option.WaitReset till it starts to busy poll the JTAG/SWD IDCODE. As soon as the IDCODE is
readable, the regular connection sequence continues.

Example: The following figure shows a scenario with SYStem.Option.ResBreak disabled and
SYStem.Option.WaitIDCODE enabled. The polling mechanism tries to minimize the delay between the
JTAG/SWD disabled and debug state.

Format: SYStem.Option.WaitIDCODE [ON | OFF | <time>]

ON 1 second busy polling

OFF Disabled

<time> Configurable polling time, max. 30 sec, use ’us’, ’ms, ’s’ as units.

nSRST

nTRST

CPU State

inaccessible accessibleDebug registers

reset running wait for dbg regJTAG ID DAP config debug

JTAG
OK

Power
OK

Polling Polling

CTI

CTI
OK
Armv8 and Armv9 Debugger | 190©1989-2024 Lauterbach

SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
[SYStem.state window > WaitReset]

Default: OFF = 3 msec.

Allows to add additional wait time after reset.

If SYStem.Option.ResBreak is enabled, SYStem.Option.WaitReset should be set to OFF.

If SYStem.Option.ResBreak is disabled, SYStem.Option.WaitReset can be used to specify a waiting time
between the deassertion of nSRST and nTRST and the first JTAG activity. During this time the core may
execute some code, e.g to enable the JTAG port.

If SYStem.Option.WaitReset is disabled (OFF) and SYStem.Option.ResBreak is disabled, the debugger
waits 3 ms after the deassertion of nSRST and nTRST before the first JTAG/SWD activity.

If SYStem.Option.WaitReset <time> is specified and SYStem.Option.ResBreak is disabled, the debugger
waits the specified <time> after the deassertion of nSRST and nTRST before the first JTAG/SWD activity.

If SYStem.Option.WaitReset is enabled (ON) and SYStem.Option.ResBreak is disabled, the debugger
waits for at least 1 s, then it waits until nSRST is released from target side; the max. wait time is 35 s (see
picture below).

Format: SYStem.Option.WaitReset [ON | OFF | <time>]

ON 1 sec delay

OFF 3 msec delay

<time> Selectable time delay, min. 50 usec, max. 30 sec, use ’us’, ’ms, ’s’ as units.

nSRST

nTRST

CPU State

JTAG/SWD State disabled enabled

reset running wait for JTAG ID config debug

Polling Polling Power
OK

Register
OK

CTI

CTI
OK

DAP register
Armv8 and Armv9 Debugger | 191©1989-2024 Lauterbach

If the chip additionally supports soft reset methods then the wait time can happen more than once.

nTRST

nRESET (nSRST)

CPU State reset running debug

>1 s (ON)
Armv8 and Armv9 Debugger | 192©1989-2024 Lauterbach

SYStem.Option.ZoneSPACES Enable symbol management for Arm zones

Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if an Arm CPU with TrustZone or
VirtualizationExtension is debugged. In these Arm CPUs, the processor has two or more CPU operation
modes called:

• Non-secure mode

• Secure mode

• Hypervisor mode

• 64-bit EL3/Monitor mode (Armv8-A only)

Within TRACE32, these CPU operation modes are referred to as zones.

In each CPU operation mode (zone), the CPU uses separate MMU translation tables for memory accesses
and separate register sets. Consequently, in each zone, different code and data can be visible on the same
logical addresses.

To ease debug-scenarios where the CPU operation mode switches between non-secure, secure or
hypervisor mode, it is helpful to load symbol sets for each used zone.

Format: SYStem.Option.ZoneSPACES [ON | OFF]

NOTE: For an explanation of the TRACE32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

OFF TRACE32 does not separate symbols by access class. Loading two or more
symbol sets with overlapping address ranges will result in unpredictable
behavior. Loaded symbols are independent of Arm zones.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
Arm zones - each symbol carries one of the access classes N:, Z:, H: or
M:
For details and examples, see below.
Armv8 and Armv9 Debugger | 193©1989-2024 Lauterbach

Overview of Debugging with Zones

If SYStem.Option.ZoneSPACES is enabled (ON), TRACE32 enforces any memory address specified in a
TRACE32 command to have an access class which clearly indicates to which zone the memory address
belongs. The following access classes are supported:

If an address specified in a command is not clearly attributed to N: Z:, H: or M:, the access class of the
current PC context is used to complete the addresses’ access class.

Every loaded symbol is attributed to either non-secure (N:), secure (Z:), hypervisor (H:) or EL3/monitor (M:)
zone. If a symbol is referenced by name, the associated access class (N:, Z:, H: or M:) will be used
automatically, so that the memory access is done within the correct CPU mode context. As a result, the
symbol’s logical address will be translated to the physical address with the correct MMU translation table.

N Non-secure mode
Example: Linux user application

Z Secure mode
Example: Secure crypto routine

H Hypervisor mode
Example: XEN hypervisor

M
Armv8-A only

64-bit EL3/Monitor mode
Example: Trusted boot stage / monitor

NOTE: The loaded symbols and their associated access class can be examined with
command sYmbol.List or sYmbol.Browse or sYmbol.INFO.
Armv8 and Armv9 Debugger | 194©1989-2024 Lauterbach

Example: Symbols Loading

Example: Symbolic Memory Access

Example: Deleting Zone-specific Symbols

To delete a complete symbol set belonging to a specific zone, e.g. the non-secure zone, use the following
command to delete all symbols in the specified address range.

SYStem.Option.ZoneSPACES ON

; 1. Load the vmlinux symbols for non-secure mode (access classes N:, NP:
; and ND: are used for the symbols) with offset 0x0:
Data.LOAD.Elf vmlinux N:0x0 /NoCODE

; 2. Load the sysmon symbols for secure mode (access classes Z:, ZP: and
; ZD: are used for the symbols) with offset 0x0:
Data.LOAD.Elf sysmon Z:0x0 /NoCODE

; 3. Load the xen-syms symbols for hypervisor mode (access classes H:,
; HP: and HD: are used for the symbols) but without offset:
Data.LOAD.Elf xen-syms H: /NoCODE

; 4. Load the sieve symbols without specification of a target access
; class and address:
Data.LOAD.Elf sieve /NoCODE
; Assuming that the current CPU mode is non-secure in this example, the
; symbols of sieve will be assigned the access classes N:, NP: and ND:
; during loading.

; dump the address on symbol swapper_pg_dir which belongs
; to the non-secure symbol set "vmlinux" we have loaded above:

Data.dump swapper_pg_dir

; This will automatically use access class N: for the memory access,
; even if the CPU is currently not in non-secure mode.

sYmbol.Delete N:0x0--0xffffffff ; non-secure mode (access classes N:)
Armv8 and Armv9 Debugger | 195©1989-2024 Lauterbach

Example: Zone-specific Debugger Address Translation Setup

If the option ZoneSPACES is enabled and the debugger address translation is used (TRANSlation
commands), a strict zone separation of the address translations is enforced. Also, common address ranges
created with TRANSlation.COMMON will always be specific for a certain zone.

This script shows how to define separate translations for the zones N: and H:

SYStem.Option.ZoneSPACES ON

Data.LOAD.Elf sysmon Z:0 /NoCODE
Data.LOAD.Elf usermode N:0 /NoCODE /NoClear

; set up address translation for secure mode
TRANSlation.Create Z:0xC0000000++0x0fffffff A:0x10000000

; set up address translation for non-secure mode
TRANSlation.Create N:0xC0000000++0x1fffffff A:0x40000000

; enable address translation and table walk
TRANSlation.ON

; check the complete translation setup
TRANSlation.List
Armv8 and Armv9 Debugger | 196©1989-2024 Lauterbach

Operation System Support - Defining a Zone-specific OS Awareness

If the CPU’s virtualization extension is used to virtualize one or more guest systems, the hypervisor always
runs in the CPU’s hypervisor mode (zone H:), and the current guest system (if a ready-to-run guest is
configured at all by the hypervisor) will run in the CPU’s non-secure mode (zone N:).

Often, an operation system (such as a Linux kernel) runs in the context of the guest system.

In such a setup with hypervisor and guest OS, it is possible to load both the hypervisor symbols to H: and all
OS-related symbols to N:

A TRACE32 OS Awareness can be loaded in TRACE32 to support the work with the OS in the guest
system. This is done as follows:

1. Configure the OS Awareness as for a non-virtualized system. See:

- “Training Linux Debugging” (training_rtos_linux.pdf)

- TASK.CONFIG command

2. Additionally set the default access class of the OS Awareness to the non-secure zone:

The TRACE32 OS Awareness is now configured to find guest OS kernel symbols in the non-secure
zone.

TASK.ACCESS N:

NOTE: This debugger setup, which is based on the option ZoneSPACES, allows work with
only one guest system simultaneously.
If the hypervisor has configured more than one guest, only the guest that is active in
the non-secure CPU mode is visible.
To work with another guest, the system must continue running until an inactive
guest becomes the active guest.

With SYStem.Option.MACHINESPACES enabled, TRACE32 also supports
concurrent debugging of a virtualized system with hypervisor and multiple
guests.

the CPU specific zones N: Z: H: and M: will be extended by machine specific
zones. Each of these zones is identified by a machine ID. Each guest has its
own zone because it uses a separate translation table and a separate register
set.
Armv8 and Armv9 Debugger | 197©1989-2024 Lauterbach

Example: Setup for a Guest OS and a Hypervisor

In this script, the hypervisor is configured to run in zone H: and a Linux kernel with OS Awareness as
current guest OS in zone N:

Any task-related command, such as MMU.List.TaskPageTable <task_name>, will automatically refer to
tasks running in the same zone as the OS Awareness.

SYStem.Option.ZoneSPACES ON

; within the OS Awareness we need the space ID to separate address spaces
; of different processes / tasks
SYStem.Option.MMUSPACES ON

; here we let the target system boot the hypervisor. The hypervisor will
; set up the guest and boot Linux on the guest system.
...

; load the hypervisor symbols
Data.LOAD.Elf xen-syms H:0 /NoCODE
Data.LOAD.Elf usermode N:0 /NoCODE /NoClear

; set up the Linux OS Awareness
TASK.CONFIG ~~/demo/arm/kernel/linux/linux-3.x/linux3.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/linux-3.x/linux.men

; instruct the OS Awareness to access all OS-related symbols with
; access class N:
TASK.ACCESS N:

; set up the debugger address translation for the guest OS

; Note that the default address translation in the following command
; defines a translation of the logical kernel addresses range
; N:0xC0000000++0xFFFFFFF to the intermediate address range
; starting at I:0x40000000
MMU.FORMAT linux swapper_pg_dir N:0xC0000000++0xFFFFFFF I:0x40000000

; define the common address range for the guest kernel symbols
TRANSlation.COMMON N:0xC0000000--0xFFFFFFFF

; enable the address translation and the table walk
TRANSlation.TableWalk ON
TRANSlation.ON

NOTE: If SYStem.Option.MMUSPACES ON is used, all addresses for all zones will
show a space ID (such as N:0x024A:0x00320100), even if the OS Awareness
runs only in one zone (as defined with command TASK.ACCESS).
Armv8 and Armv9 Debugger | 198©1989-2024 Lauterbach

SYStem.Option.ZYNQJTAGINDEPENDENT Configure JTAG cascading

Default: OFF

This option is for a Zynq Ultrascale+ device using JTAG Boot mode. There are two cases:

1. Device operates in cascaded mode. The Arm DAP and TAP controllers both use the PL JTAG
interface, i.e. forming a JTAG daisy chain.

2. Device operates in independent mode. The TAP controller is accessed via the PL JTAG interface.
The Arm DAP is connected to the MIO or EMIO JTAG interface.

This command controls whether the debugger connects to the device in independent or cascaded mode.
This depends on the used JTAG interface.

Format: SYStem.Option.ZYNQJTAGINDEPENDENT [ON | OFF]

ON The Arm DAP is accessed through the MIO or EMIO JTAG interface. No
JTAG chain configuration is required by the debugger.

NOTE: Please set this option to ON if JTAG is connected via the
independent JTAG (e.g. via MIO or EMIO via FPGA) lines.

OFF The Arm DAP is accessed through the PL JTAG interface and has to be
chained with the TAP controller by the debugger.
Armv8 and Armv9 Debugger | 199©1989-2024 Lauterbach

Arm specific Functions

STATE.NOCTIACCESS()
[build 122395 - DVD 09/2020]

Returns whether the CTI related to the CPU can be accessed or not.

Return Value Type: Boolean.

Return Value and Description:

STATE.NOCPUACCESS()
] [build 122395 - DVD 09/2020]

Returns whether the debug registers related to the CPU can be accessed or not.

Return Value Type: Boolean.

Return Value and Description:

Syntax: STATE.NOCTIACCESS()

TRUE The CPU is running and the CTI cannot be accessed

FALSE The CPU is running or stopped and the CTI can be accessed

Syntax: STATE.NOCPUACCESS()

TRUE The CPU is running and the debug registers cannot be accessed

FALSE The CPU is running or stopped and the debug registers can be accessed
Armv8 and Armv9 Debugger | 200©1989-2024 Lauterbach

SYStem.Option.HRCWOVerRide()
[build 144077 - DVD 02/2022]

Returns current setting of SYStem.Option.HRCWOVerRide.

Return Value Type: Boolean.

Return Value and Description:

Syntax: SYStem.Option.HRCWOVerRide()

TRUE SYStem.Option.HRCWOVerRide ON has been set.

FALSE SYStem.Option.HRCWOVerRide OFF has been set.
Armv8 and Armv9 Debugger | 201©1989-2024 Lauterbach

Arm specific Benchmarking Commands

The BMC (BenchMark Counter) commands provide control and usage of the on-chip benchmark and
performance counters if available on the chip.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.<counter>.CountEL<x> Select exception level events to be counted

Selects the exception level events to be counted.

Format: BMC.<counter>.CountEL<x> <option>

<counter>: PMN<x>

<option>: DISable
ALL
ALLEL1NSEL3
NSEL0
NSEL1
NSEL2
NSEL1SEL3
SEL0
SEL1ALLEL3
SEL1NSEL3
SEL2
SEL3

BMC.<counter>.EVENT

Exception level (EL)

Counters:
PMN<x>
Armv8 and Armv9 Debugger | 202©1989-2024 Lauterbach

Available counters:

Select exception level (EL) that shall count certain events

Armv8-A (with TrustZone):

Select secure/non-secure events that shall be counted on a certain exception level. The availability of these
options depends on the selected CountEL<x>.

Example cores: Cortex-A3x, Cortex-A5x, Cortex-A7x

Armv8.4-A cores, or later (additional options)

PMN<x> Counter to be configured. Number of counters is chip specific. Examples:
PMN0, PMN1, PMN2 etc.

CountEL0 Configure secure/non-secure events to be counted for EL0.

CountEL13 Configure secure/non-secure events to be counted for EL1 and EL3.

CountEL2 Configure secure/non-secure events to be counted for EL2.

DISable Disable counting of all events for this <counter>.

ALL Count all events on all exception levels with <counter>.

ALLEL1NSEL3 Count all EL1 and non-secure EL3 events with <counter>.

NSEL0 Count non-secure EL0 events with <counter>.

NSEL1 Count non-secure EL1 events with <counter>.

NSEL1SEL3 Counter non-secure EL1 events and secure EL3 events with <counter>

SEL0 Count secure EL0 events with <counter>.

SEL1ALLEL3 Count secure EL1 events and all EL3 events with <counter>.

SEL1NSEL3 Count secure EL1 events and non-secure EL3 events with <counter>.

SEL3 Count secure EL3 events with <counter>.

NSEL2 Count non-secure events of EL2. Armv8.4 only.

SEL2 Count secure events of EL2. Armv8.4 only.
Armv8 and Armv9 Debugger | 203©1989-2024 Lauterbach

Armv8-R (without TrustZone):

Select whether events on a certain exception level shall be counted or not.

Example core: Cortex-R52

Example:

Function

Benchmark counter values can be returned with the function BMC.COUNTER().

BMC.EXPORT Export benchmarking events from event bus

Enable / disable the export of the benchmarking events from the event bus. If enabled, it allows an external
monitoring tool, such as an ETM to trace the events. For further information please refer to the target
processor manual under the topic performance monitoring.

Default: OFF

CountEL0 Configure events to be counted for EL0.

CountEL1 Configure events to be counted for EL1.

CountEL2 Configure events to be counted for EL2.

DISable Disable counting of all events for this <counter>.

ALL Count all events on all exception levels with <counter>.

BMC.PMN0.EVENT INST ; Count instructions ...
BMC.PMN0.CountEL13 SEL3 ; ... in secure EL3 only with PMN0

Format: BMC.EXPORT [ON | OFF]
Armv8 and Armv9 Debugger | 204©1989-2024 Lauterbach

The figure below depicts an example configuration comprising the PMU and ETM:

In case ETM1 or ETM2 are selected for event counting, BMC.EXPORT will automatically be switched on.
Furthermore the according extended external input selectors of the ETM will be set accordingly.

BMC.LongCycle Configure cycle counter width

Configures if the Cycle Counter (clocks) uses a 32-bit or 64-bit register width for counting.

If an Armv8 implementation is AArch64 only, the counter is always 64-bit.

BMC.PRESCALER Prescale the measured cycles

If ON, the cycle counter register, which counts for the cpu cycles which is used to measure the elapsed time,
will be divided (prescaled) by 64. The display of the time will be corrected accordingly.

Format: BMC.LongCycle [ON | OFF]

Format: BMC.PRESCALER [ON | OFF]
Armv8 and Armv9 Debugger | 205©1989-2024 Lauterbach

Arm specific TrOnchip Commands

The TrOnchip command group provides low-level access to the on-chip debug register. For configuring the
low-level access, use the TRACE32 command line or the TrOnchip.state window:

Special events are the reset, the removal of the OS-lock state or the access to debug registers (TDA).

Events that trigger the halt on an exception level change cannot distinguish the AArch32 modes abt, und, fiq,
irq, svc, sys. Those modes are all covered by the option SEL1 or NSEL1. To stop on a specific AArch32
exception vector (e.g. fiq, irq) do not use the TrOnchip.state command. Set a single address breakpoint on
the exception vector address instead.

A TrOnchip.Set If enabled, the program execution is stopped at the specified special event.

B TrOnchip.Set Enable/Disable stepping of exception handlers.

C TrOnchip.Set If enabled, the program execution stops on an exception level change.

D TrOnchip.Set If enabled, the program execution stops on an exception level entry from a lower
exception level, Armv8.2 only, secure EL2 extension Armv8.4 only.

E TrOnchip.Set If enabled, the program execution stops on an exception level return from a higher
execption level, Armv8.2 only, secure EL2 extension Armv8.4 only.

A
CB

A
B

C D E

Armv8.2 variant
Armv8.0, Armv8.1

Armv8.4 variant
Armv8 and Armv9 Debugger | 206©1989-2024 Lauterbach

Deprecated vs. New Commands

For information about architecture-specific TrOnchip commands, refer to the command descriptions in this
chapter.

TrOnchip.ContextID Enable context ID comparison

If the debug unit provides breakpoint registers with ContextID comparison capability, TrOnchip.ContextID
has to be set to ON in order to set task/process specific breakpoints that work in real-time.

Example:

NOTE: A number of commands from the TrOnchip command group have been
renamed to Break.CONFIG.<sub_cmd>.

In addition, these Break.CONFIG commands are now architecture-independent
commands, and as such they have been moved to general_ref_b.pdf.

Previously in this manual: Now in general_ref_b.pdf:

TrOnchip.CONVert (deprecated) Break.CONFIG.InexactAddress

TrOnchip.MatchASID (deprecated) Break.CONFIG.MatchASID

TrOnchip.MatchMachine (deprecated) Break.CONFIG.MatchMachine

TrOnchip.MatchZone (deprecated) Break.CONFIG.MatchZone

TrOnchip.ContextID (deprecated) Break.CONFIG.UseContextID

TrOnchip.MachineID (deprecated) Break.CONFIG.UseMachineID

TrOnchip.VarCONVert (deprecated) Break.CONFIG.VarConvert

Format: TrOnchip.ContextID [ON | OFF] (deprecated)
Use Break.CONFIG.UseContextID instead

TrOnchip.ContextID ON

Break.Set VectorSwi /Program /Onchip /TASK EKern.exe:Thread1
Armv8 and Armv9 Debugger | 207©1989-2024 Lauterbach

TrOnchip.CONVert Allow extension of address range of breakpoint

Controls for all on-chip read/write breakpoints whether the debugger is allowed to change the user-defined
address range of a breakpoint (see Break.Set <address_range> in the figure below).

The debug logic of a processor may be implemented in one of the following three ways:

1. The debug logic does not allow to set range breakpoints, but only single address breakpoints.
Consequently the debugger cannot set range breakpoints and returns an error message.

2. The debugger can set any user-defined range breakpoint because the debug logic accepts this
range breakpoint.

3. The debug logic accepts only certain range breakpoints. The debugger calculates the range that
comes closest to the user-defined breakpoint range (see “modified range” in the figure above).

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

Range fits
to debug

logic?
No

Break.Set <addr_range>

Program
debug logic

Yes

Yes unmodified range

TrOnchip.
CONVert

OFF

ON
modified range

No

Error
Armv8 and Armv9 Debugger | 208©1989-2024 Lauterbach

The TrOnchip.CONVert command covers case 3. For case 3) the user may decide whether the debugger is
allowed to change the user-defined address range of a breakpoint or not by setting TrOnchip.CONVert to
ON or OFF.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.MachineID Extend on-chip breakpoint/trace filter by machine ID

If the debug unit provides breakpoint registers with Machine ID comparison capability, TrOnchip.MachineID
has to be set to ON in order to set machine specific breakpoints that work in real-time.

ON
(default)

If TrOnchip.Convert is set to ON and a breakpoint is set to a range which
cannot be exactly implemented, this range is automatically extended to
the next possible range. In most cases, the breakpoint now marks a wider
address range (see “modified range” in the figure above).

OFF If TrOnchip.Convert is set to OFF, the debugger will only accept
breakpoints which exactly fit to the debug logic (see “unmodified range”
in the figure above).
If the user enters an address range that does not fit to the debug logic, an
error will be returned by the debugger.

Format: TrOnchip.MachineID [ON | OFF] (deprecated)
Use Break.CONFIG.UseMachineID instead
Armv8 and Armv9 Debugger | 209©1989-2024 Lauterbach

TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID

TrOnchip.MatchMachine Extend on-chip breakpoint/trace filter by machine

Format: TrOnchip.MatchASID [ON | OFF] (deprecated)
TrOnchip.ASID [ON | OFF] (deprecated)
Use Break.CONFIG.MatchASID instead

OFF
(default)

Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON Stop the program execution at on-chip breakpoint if both the address and
the ASID match.
Trace filters and triggers become active if both the address and the ASID
match.

Format: TrOnchip.MatchMachine [ON | OFF] (deprecated)
Use Break.CONFIG.MatchMachine instead

OFF
(default)

Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON Stop the program execution at on-chip breakpoint if both the address and
the machine match.
Trace filters and triggers become active if both the address and the
machine match.
Armv8 and Armv9 Debugger | 210©1989-2024 Lauterbach

TrOnchip.MatchZone Extend on-chip breakpoint/trace filter by zone

Example: In these two demo code snippets, let’s compare the setting TrOnchip.MatchZone ON and
OFF for an on-chip breakpoint at address 0x100 in zone Z (= secure memory).

Format: TrOnchip.MatchZone [ON | OFF] (deprecated)
Use Break.CONFIG.MatchZone instead

OFF Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON
(default)

Stop the program execution at on-chip breakpoint if both the address and
the zone match.
Trace filters and triggers become active if both the address and the zone
match.

NOTE: SYStem.Option.ZoneSPACES must be set to ON for TrOnchip.MatchZone ON
to take effect.

However, the setting TrOnchip.MatchZone ON is not supported by all Arm
cores nor by all ETMs.

SYStem.Option.ZoneSPACES ON

;create an on-chip breakpoint in secure memory
Break.Set ZSR:0x100 /Onchip

TrOnchip.MatchZone ON ;observe the zones for on-chip breakpoints

;--> application execution will stop at the on-chip breakpoint
; only if both conditions are fulfilled:
; a) the address is 0x100 and
; b) the zone is Z (= secure memory)

SYStem.Option.ZoneSPACES ON

;create an on-chip breakpoint in secure memory
Break.Set ZSR:0x100 /Onchip

TrOnchip.MatchZone OFF ;ignore the zones for on-chip breakpoints

;--> now application execution will stop at address 0x100
; irrespective of the zone
Armv8 and Armv9 Debugger | 211©1989-2024 Lauterbach

TrOnchip.RESERVE Exclude breakpoint or watchpoint from debugger usage

Default: OFF.

Selects breakpoints or watchpoints that will not be used by the debugger. This allows to do a custom
configuration of breakpoint or watchpoint registers.

Example:

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.RESERVE BP<x> | WP<x> [ON | OFF]

BP<x> Selects whether breakpoint <x> can be used by the debugger.
• OFF: Debugger can configure and use breakpoint <x>.
• ON: Debugger shall not configure and overwrite breakpoint <x>.

WP<x> Selects whether watchpoint <x> can be used by the debugger.
• OFF: Debugger can configure and use watchpoint <x>.
• ON: Debugger shall not configure and overwrite watchpoint <x>.

TrOnchip.RESERVE BP0 ON ; Exclude breakpoint 0 from debugger usage
TrOnchip.RESERVE WP7 ON ; Exclude watchpoint 7 from debugger usage

NOTE: If all available breakpoints or watchpoints are excluded from debugger usage,
the debugger cannot set onchip instruction or read/write breakpoints anymore.
At least one breakpoint and one, preferably two watchpoints should be available
to the debugger at any time.

Format: TrOnchip.RESet
Armv8 and Armv9 Debugger | 212©1989-2024 Lauterbach

TrOnchip.Set Set bits in the vector catch register

Default: RESET ON, all other options are OFF.

These options are available for all Armv8 cores. Several exception catch events can be set simultaneously.

Additional options for Armv8.2-A cores (or later):

Format: TrOnchip.Set <item> [ON | OFF]

<item> : RESET | OSUnloCk | NSEL0R | NSEL1 | NSEL1E | NSEL1R | NSEL2 |
NSEL2E | NSEL2R | SEL0R | SEL1 | SEL1E | SEL1R | SEL3 | SEL3E |
SEL3R

RESET
[ON | OFF]

The core stops on a reset event.

OSUnloCk
[ON | OFF]

The core stops on a OS unlock event.

TDA
[ON | OFF]

The core is halted when it accesses debug registers and when the OS-
lock is cleared.

NSEL1
[ON | OFF]

Non-secure exception level 1.
The core stops when the exception level changes to non-secure EL1

NSEL2
[ON | OFF]

Non-secure exception level 2.
The core stops when the exception level changes to non-secure EL2.

SEL1
[ON | OFF]

Secure exception level 1.
The core stops when the exception level changes to secure EL1.

SEL3
[ON | OFF]

Secure exception level 3.
The core stops when the exception level changes to secure EL3.

StepVector
(deprecated)

Please see TrOnchip.StepVector.

NSEL0R
[ON | OFF]

Non-secure exception level 0 return.
The core stops on an exception return to non-secure EL0, e.g. from a
higher exception level.

NSEL1E
[ON | OFF]

Non-secure exception level 1 entry.
The core stops on an exception entry to non-secure EL1, e.g. from a
lower exception level.
Armv8 and Armv9 Debugger | 213©1989-2024 Lauterbach

Additional options for Armv8.4-A cores (or later):

NSEL1R
[ON | OFF]

Non-secure exception level 1 return.
The core stops on an exception return to non-secure EL1, e.g. from a
higher exception level.

NSEL2E
[ON | OFF]

Non-secure exception level 2 entry.
The core stops on an exception entry to non-secure EL2, e.g. from a
lower exception level.

NSEL2R
[ON | OFF]

Non-secure exception level 2 return.
The core stops on an exception return to non-secure EL2, e.g. from a
higher exception level.

SEL0R
[ON | OFF]

Secure exception level 0 return.
The core stops on an exception return to secure EL0, e.g. from a higher
exception level.

SEL1E
[ON | OFF]

Secure exception level 1 entry.
The core stops on an exception entry to secure EL1, e.g. from a lower
exception level.

SEL1R
[ON | OFF]

Secure exception level 1 return.
The core stops on an exception return to secure EL1, e.g. from a higher
exception level.

SEL3E
[ON | OFF]

Secure exception level 3 entry.
The core stops on an exception entry to secure EL3, e.g. from a lower
exception level.

SEL3R
[ON | OFF]

Secure exception level 3 return.
The core stops on an exception return to secure EL3, e.g. from a higher
exception level.

SEL2
[ON | OFF]

Secure exception level 2.
The core stops when the exception level changes to secure EL2.

SEL2E
[ON | OFF]

Secure exception level 2 entry.
The core stops on an exception entry to secure EL2, e.g. from a lower
exception level.

SEL2R
[ON | OFF]

Secure exception level 2 return.
The core stops on an exception return to secure EL2, e.g. from a higher
exception level.
Armv8 and Armv9 Debugger | 214©1989-2024 Lauterbach

Exception Catch into Current Exception Level of CPU (Armv8.0 and Armv8.1 only)

If the CPU shall resume operation upon a Go.direct or Step.single, this means the CPU has to leave debug
mode. Leaving debug mode has the effect of an exception return from debug mode to the current exception
level of the CPU. Such an exception return might already trigger an exception catch if a catch event was set
for the current CPU mode. This only happens for Armv8.0 or Armv8.1 based devices. In this case, the
debugger will issue a warning that the CPU cannot resume execution.

Example:

The CPU is currently in AArch64 EL2 and should be caught when it changes from non-secure EL1 to EL2.

The CPU has stopped in debug mode. TrOnchip.Set NSEL2 has been set to ON. This means that an entry
to EL2 will trigger a CPU stop. Now if a go is executed, the debugger will restore the CPU state and return
the CPU from debug mode to EL2. This entry to EL2, however, will trigger the set EL2 catch event. The CPU
will now enter debug mode again without having executed a single line of code.

Workaround:

If an exception trigger is used, it is likely to assume that the CPU will not stay in its exception level. If it would,
such a trigger would be useless. Therefore try to proceed as follows:

• Disable the catch event for the current exception level of the CPU. If the CPU should resume from
EL2 like in the example, disable NSEL2.

• Instead set a trigger to the EL the CPU will switch to and wait for it to get stopped there. In the
example this would mean to set NSEL1 to ON.

Disable the last set trigger and set your initial catch event. In the example this would mean to set
NSEL2 to ON again.

TrOnchip.StepVector Step into exception handler

Step into exception handler if ON. Step over exception handler if OFF. In EDECR, this changes the bit
EDECR.SS (Halting step enable).

Format: TrOnchip.StepVector [ON | OFF]
Armv8 and Armv9 Debugger | 215©1989-2024 Lauterbach

TrOnchip.StepVectorResume Catch exceptions and resume single step

Default: OFF.

When this command is set to ON, the debugger will catch exceptions and resume the single step.

Format: TrOnchip.StepVectorResume [ON | OFF]
Armv8 and Armv9 Debugger | 216©1989-2024 Lauterbach

TrOnchip.VarCONVert Convert breakpoints on scalar variables
f

Controls for all scalar variables whether the debugger sets an HLL breakpoint with Var.Break.Set only on
the start address of the scalar variable or on the entire address range covered by this scalar variable.

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Program
debug logicYes

Yes unmodified range

Range fits
to debug

logic?

TrOnchip.
VarCONVert

ON
single address

TrOnchip.
CONVert

Var.Break.Set <scalar>

ON
modified range

O
F

F

No

OFF

ad
dr

ra
ng

e

No

OFF

Error
Armv8 and Armv9 Debugger | 217©1989-2024 Lauterbach

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.state Display on-chip trigger window
[Go to figure]

Opens the TrOnchip.state window.

ON If TrOnchip.VarCONVert is set to ON and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set only to the start
address of the scalar variable.
• Allocates only one single on-chip breakpoint resource.
• Program will not stop on accesses to the variable’s address space.

OFF
(default)

If TrOnchip.VarCONVert is set to OFF and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set to the entire address
range that stores the scalar variable value.
• The program execution stops also on any unintentional accesses

to the variable’s address space.
• Allocates up to two on-chip breakpoint resources for a single

range breakpoint.
NOTE: The address range of the scalar variable may not fit to the debug
logic and has to be converted by the debugger, see TrOnchip.CONVert.

Format: TrOnchip.state
Armv8 and Armv9 Debugger | 218©1989-2024 Lauterbach

Cache Analysis and Maintenance

Armv8 cores feature a hierarchical memory system with multiple levels of cache. Using the CACHE
command group, you can analyze and alter all cache levels that are accessible by external debuggers. The
TRACE32 cache support visualizes the essential information about stored cache entries, including full
decoding of the cache tag information. To perform basic cache maintenance tasks, please have a look at
these recommended commands:

The cache topology and capabilities of an Armv8 cores are defined by its implementation and therefore may
vary significantly for different types of cores. Especially commands for basic cache analysis tasks may be
affected by this:

For an overview of the TRACE32 cache support for various Armv8 cores, please refer to “TRACE32 Cache
Support by CPU Type”, page 220.

The list of referenced members of the CACHE command group in this section is far from complete. For a full
list, please see “General Commands Reference Guide C” (general_ref_c.pdf).

CACHE.view Display control registers for configuration of all cache levels.

CACHE.INVALIDATE Invalidate all entries stored in L1 or L2 instruction/data cache.

CACHE.FLUSH Clean and invalidate all entries stored in L1 or L2 instruction/data cache.

CACHE.CLEAN Clean all entries stored in L1 or L2 data cache.

CACHE.DUMP Display all entries located in L1 or L2 instruction/data cache.

NOTE: The instruction cache cannot be cleaned. Only an invalidation is possible.
Therefore CACHE.CLEAN IC has no effect.
CACHE.FLUSH IC is the same as CACHE.INVALIDATE IC.
Armv8 and Armv9 Debugger | 219©1989-2024 Lauterbach

TRACE32 Cache Support by CPU Type

Armv8 cores with hierarchical memory system feature varying cache analysis capabilities. Each
implementation can restrict the access of external debuggers to certain cache levels or sections. A short
comparison for different types is shown here:

Armv8/v9 Core L1 IC L1 DC L2 L3

Cortex-A32 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A34 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A35 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A53 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A55 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A57 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A65 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A65AE Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A72 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A73 Cache analysis
only when EL3 is in
AArch64 state. No
restrictions on
cache
maintenance.

Cache analysis
only when EL3 is in
AArch64 state. No
restrictions on
cache
maintenance.

Cache
maintenance

-

Cortex-A75 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-A76
Cortex-A76AE

Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A77 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A78 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A78AE Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Armv8 and Armv9 Debugger | 220©1989-2024 Lauterbach

Cortex-A78C Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A510 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A520 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A710 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A715 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-A720 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-R52 Cache analysis
and maintenance

Cache analysis
and maintenance

- -

Cortex-R82 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Cortex-X1 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-X1C Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-X2 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-X3 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Cortex-X4 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Neoverse E1 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache
maintenance

-

Neoverse N1 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Neoverse N2 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Neoverse V1 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Neoverse V2 Cache analysis
and maintenance

Cache analysis
and maintenance

Cache analysis
and maintenance

-

Armv8/v9 Core L1 IC L1 DC L2 L3
Armv8 and Armv9 Debugger | 221©1989-2024 Lauterbach

NOTE: Cache analysis refers to the readout of the cache content.
Cache maintenance refers to cache clean and invalidate operations.
Armv8 and Armv9 Debugger | 222©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>] [/<option>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: dis-

plays the translation table of the specified process and/or machine
• else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.
Armv8 and Armv9 Debugger | 223©1989-2024 Lauterbach

CPU specific Tables in MMU.DUMP <table>

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

MACHINE
<machine_magic> |
<machine_id> |
<machine_name>

The following options are only available if
SYStem.Option.MACHINESPACES is set to ON.

Dumps a page table of a virtual machine. The MACHINE option applies
to PageTable and KernelPageTable and some <cpu_specific_tables>.

The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List.MACHINES window.

Fulltranslation For page tables of guest machines both the intermediate address and the
physical address is displayed in the MMU.DUMP window.

The physical address is derived from a table walk using the guest’s
intermediate page table.

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

TLB0 Displays the contents of the Translation Lookaside Buffer 0.

TLB1 Displays the contents of the Translation Lookaside Buffer 1.

NonSecPageTable Displays the translation table used if the CPU is in non-secure mode and in
privilege level PL0 or PL1. This is the table pointed to by MMU registers
TTBR0 and TTBR1 in non-secure mode. This option is only visible if the
CPU has the TrustZone and/or Virtualization Extension.
This option is only enabled if Exception levels EL0 or EL1 use AArch32
mode.

SecPageTable Displays the translation table used if the CPU is in secure mode. This is the
table pointed to by MMU registers TTBR0 and TTBR1 in secure mode. This
option is only visible if the CPU has the TrustZone Extension.
This option is only enabled if the Exception level EL1 uses AArch32
mode.
Armv8 and Armv9 Debugger | 224©1989-2024 Lauterbach

Next:

• Screenshot of the MMU.DUMP.PageTable Window

• Description of the Columns

• Examples

HypPageTable Displays the translation table used by the MMU when the CPU is in HYP
mode. This is the table pointed to by MMU register HTTBR.
This table is only available in CPUs with Virtualization Extension.

IntermedPageTable Displays the translation table used by the MMU for the second stage
translation of a guest machine. (i.e., intermediate address to physical
address). This is the table pointed to by MMU register VTTBR.
This table is only available in CPUs with Virtualization Extension.

EL1PageTable Displays the translation table used if the CPU is in Exception level EL0 or
EL1. This is the table pointed to by MMU registers TTBR0_EL1 and
TTBR1_EL1. The option is enabled if Exception levels EL0 or EL1 use
AArch64 mode.

EL2PageTable Displays the translation table used if the CPU is in Exception level EL2. This
is the table pointed to by MMU register TTBR_EL2. The option is available
only if Exception level EL2 is implemented in the CPU.

EL3PageTable Displays the translation table used if the CPU is in Exception level EL3. This
is the table pointed to by MMU register TTBR_EL3. The option is available
only if Exception level EL3 is implemented in the CPU and EL3 uses
AArch64 mode.
Armv8 and Armv9 Debugger | 225©1989-2024 Lauterbach

Description of Columns in the MMU.DUMP.PageTable Window

Column Name Description

logical Logical page address range

physical Physical page address range

sec Security state of entry (s=secure, ns=non-secure, sns=non-secure
entry in secure page table)

d Domain

size Block or page size of each page table entry in bytes.
Note for MMU.List.PageTable: this is the block or page size of one
page table entry - not the summed up address range.

permissions Data access permissions and instruction execution permissions.
For details, see description of the access permissions:
• Data Access Permissions for non-Stage2 Page Tables
• Data Access Permissions for Stage2 Page Tables
• Instruction Execution Permissions for non-Stage2 Page

Tables
• Instruction Execution Permissions for Stage2 Page Tables

glb Global page

shr Shareability (no=non-shareable, yes=shareable, inn=inner
shareable, out=outer shareable)

pageflags Memory attributes (see Description of the Memory Attributes.)

Armv8 and Armv9 Debugger | 226©1989-2024 Lauterbach

(for stage 1page tables in
CPUs supporting feature
FEAT_XS)
XS

State of the xs attribute (derived from the memory attributes).

(for stage 2 page tables in
CPUs supporting feature
FEAT_XS)
FnXS

State of the FnXS bit in page table descriptors.

gp Guarded page bit
This column is only visible if the Branch Target Identification (BTI)
feature is available in the CPU.

tablewalk Details of table walk for logical page address (one sub column for
each table level, showing the access class, table base address,
entry index, entry width in bytes and value of table entry)

Column Name Description
Armv8 and Armv9 Debugger | 227©1989-2024 Lauterbach

Data Access Permissions for non-Stage2 Page Tables
(AArch64 EL0/1/2/3 and AArch32 PL0/1/2)

[Back to Column Name: permissions]

This table describes the data access permissions shown in the permissions column of the following
windows:

• MMU.List.PageTable window (AArch64 EL0/1/2/3 or AArch32 PL0/1/2)

• MMU.DUMP.PageTable window (AArch64 EL0/1/2/3 or AArch32 PL0/1/2)

• SMMU.StreamMapRegGrp.Dump window

• SMMU.StreamMapRegGrp.list window

P: <data_access_permission> data access permissions for privileged code (PL1 / EL1)
U: <data_access_permission> data access permissions for unprivileged code (PL0 / EL0)

Column “permissions”
<data_access_permission>
Keywords

Description of the <data_access_permission> Keywords

noaccess No read access and no write access for this privilege level

readonly Read access, no write access for this privilege level

readwrite Read and write access for this privilege level

noaccess (DACR)
(AArch32 only)

No read access and no write access for this privilege level
as specified by register DACR bits associated with the domain.

readwrite (DACR)
(AArch32 only)

Read and write access for this privilege level (Managers)
as specified by register DACR bits associated with the domain.

reserved (DACR)
(AArch32 only)

Reserved setting (unpredictable behavior)
as specified by register DACR bits associated with the domain.

reserved Reserved setting (unpredictable behavior)
Armv8 and Armv9 Debugger | 228©1989-2024 Lauterbach

Data Access Permissions for Stage2 Page Tables
[Back to Column Name: permissions]

This table describes the data access permissions shown in the permissions column of the following
windows:

• MMU.List.IntermediatePageTable window

• MMU.DUMP.IntermediatePageTable window

• SMMU.StreamMapRegGrp.Dump /IPT window

• SMMU.StreamMapRegGrp.list /IPT window

Column “permissions”
<data_access_permission>
Keywords

Description of the <data_access_permission> Keywords

no access
(AArch32 only)

No read access and no write access for non-secure PL1 and PL0

read access only
(AArch32 only)

Read access and no write access for non-secure PL1 and PL0

write access only
(AArch32 only)

Write access and no read access for non-secure PL1 and PL0

read/write access
(AArch32 only)

Read and write access for non-secure PL1 and PL0

EL0,1: no access
(AArch64 only)

No read access and no write access for non-secure EL1 and EL0

EL0,1: read only
(AArch64 only)

Read access and no write access for non-secure EL1 and EL0

EL0,1: write only
(AArch64 only)

Write access and no read access for non-secure EL1 and EL0

EL0,1: read/write
(AArch64 only)

Read and write access for non-secure EL1 and EL0
Armv8 and Armv9 Debugger | 229©1989-2024 Lauterbach

Instruction Execution Permissions for non-Stage2 Page Tables
(AArch64 EL0/1/2/3 and AArch32 PL0/1/2)

[Back to Column Name: permissions]

This table describes the access permissions for instruction execution shown in the permissions column of
the following windows:

• MMU.List.PageTable window (AArch64 EL0/1/2/3 or AArch32 PL0/1/2)

• MMU.DUMP.PageTable window (AArch64 EL0/1/2/3 or AArch32 PL0/1/2)

• SMMU.StreamMapRegGrp.Dump window

• SMMU.StreamMapRegGrp.list window

P: <execution_permission> instruction execution permission for privileged code (PL1 / EL1)
U: <execution_permission> instruction execution permission for unprivileged code (PL0 / EL0)

Column “permissions”
<execution_permission>
Keywords

Description of the <execution_permission> Keywords

ex or exec Code execution allowed

xn or notexec Code execution not allowed

xnW Code execution not allowed due to setting of bit WXN in CPU
register SCTLR (AArch32) or SCTLR_ELx (AArch64)
OR
because the Arm AArch64 execution treats all regions writable at
EL0 as being PXN

xnD Code execution not allowed
because dirty bit modifier (DBM) is set in page table entry

nopexec Code execution not allowed for privileged level,
code execution allowed for unprivileged level
Armv8 and Armv9 Debugger | 230©1989-2024 Lauterbach

Description of the Instruction Execution Permissions for Stage2 Page Tables
[Back to Column Name: permissions]

This table describes the access permissions for instruction execution shown in the permissions column of
the following windows:

• MMU.List.IntermediatePageTable window

• MMU.DUMP.IntermediatePageTable window

• SMMU.StreamMapRegGrp.Dump /IPT window

• SMMU.StreamMapRegGrp.list /IPT window

Column “permissions”
<execution_permission>
Keywords

Description of the <execution_permission> Keywords

EL1:xn EL0:xn No code execution allowed for EL1 and EL0

EL1:xn EL0:ex No code execution allowed for EL1, code execution allowed for EL0

EL1:ex EL0:xn Code execution allowed for EL1, no code execution allowed for EL0

EL1:ex EL0:ex Code execution allowed for EL1 and EL0
Armv8 and Armv9 Debugger | 231©1989-2024 Lauterbach

Description of the Memory Attributes
[Back to Column Name: pageflags]

This table describes the memory attributes displayed in the pageflags column of the following windows:

• MMU.List.PageTable (any page table) and MMU.List.IntermediatePageTable window

• MMU.DUMP.PageTable (any page table) and MMU.DUMP.IntermediatePageTable window

• SMMU.StreamMapRegGrp.Dump window

• SMMU.StreamMapRegGrp.list window

Column “pageflags” Description of the memory attributes

device nGnRnE Device memory type non-Gathering, non-Reordering, no Early write
acknowledgement

device nGnRE Device memory type non-Gathering, non-Reordering, Early Write
Acknowledgement

device nGRE Device memory type non-Gathering, Reordering, Early Write
Acknowledgement

device GRE Device memory type Gathering, Reordering, Early Write
Acknowledgement

write-thru/write-allo-
cate/trans

Inner and Outer Normal Memory, Write-through transient, write
allocate policy

write-thru/read-allo-
cate/trans

Inner and Outer Normal Memory, Write-through transient, read
allocate policy

write-thru/r-w-allo-
cate/trans

Inner and Outer Normal Memory, Write-through transient, read and
write allocate policy

non-cacheable Inner and Outer Normal Memory, Non-Cacheable

write-back/write-allo-
cate/trans

Inner and Outer Normal Memory, Write-back transient, write
allocate policy

write-back/read-allo-
cate/trans

Inner and Outer Normal Memory, Write-back transient, read
allocate policy

write-back/r-w-allo-
cate/trans

Inner and Outer Normal Memory, Write-back transient, read and
write allocate policy

write-thru/write-allocate Inner and Outer Normal Memory, Write-through non-transient, write
allocate policy

write-thru/read-allocate Inner and Outer Normal Memory, Write-through non-transient, read
allocate policy

write-thru/read-write-allo-
cate

Inner and Outer Normal Memory, Write-through non-transient, read
and write allocate policy

write-back/write-allocate Inner and Outer Normal Memory, Write-back non-transient, write
allocate policy
Armv8 and Armv9 Debugger | 232©1989-2024 Lauterbach

write-back/read-allocate Inner and Outer Normal Memory, Write-back non-transient, read
allocate policy

write-back/read-write-allo-
cate

Inner and Outer Normal Memory, Write-back non-transient, read
and write allocate policy

write-back/read-write-allo-
cate/tag

Inner and Outer Normal Memory, Write-back non-transient, read
and write allocate policy, tagged (Memory Tagging Extension)

I:/O: w-thru/wa/t Inner / Outer Normal Memory, Write-through transient, write
allocate policy

I:/O: w-thru/ra/t Inner / Outer Normal Memory, Write-through transient, read allocate
policy

I:/O: w-thru/rwa/t Inner / Outer Normal Memory, Write-through transient, read and
write allocate policy

I:/O: non-cacheable Inner / Outer Normal Memory, Non-Cacheable

I:/O: w-back/wa/t Inner / Outer Normal Memory, Write-back transient, write allocate
policy

I:/O: w-back/ra/t Inner / Outer Normal Memory, Write-back transient, read allocate
policy

I:/O: w-back/rwa/t Inner / Outer Normal Memory, Write-back transient, read and write
allocate policy

I:/O: w-thru/wa Inner / Outer Normal Memory, Write-through non-transient, write
allocate policy

I:/O: w-thru/ra Inner / Outer Normal Memory, Write-through non-transient, read
allocate policy

I:/O: w-thru/rwa Inner / Outer Normal Memory, Write-through non-transient, read
and write allocate policy

I:/O: w-back/wa Inner / Outer Normal Memory, Write-back non-transient, write
allocate policy

I:/O: w-back/ra Inner / Outer Normal Memory, Write-back non-transient, read
allocate policy

I:/O: w-back/rwa Inner / Outer Normal Memory, Write-back non-transient, read and
write allocate policy

P:<permission> U:<permis-
sion>

Data access permissions for privileged and unprivileged execution
level.
<permission> may be readwrite, readonly or noaccess

exec Code execution allowed for privileged and unprivileged level

notexec Code execution allowed for privileged level but not for unprivileged
level

nopexec Code execution not allowed for privileged and unprivileged level

Column “pageflags” Description of the memory attributes
Armv8 and Armv9 Debugger | 233©1989-2024 Lauterbach

The following table describes the special memory attributes displayed in the pageflags column of the
MMU.List.IntermediatePageTable and MMU.DUMP.IntermediatePageTable window if the Armv8.4 Force
Write Back feature (FEAT_S2FWB) is enabled:

force I+O non-cacheab. or
device

• If stage 1 pageflags indicate Normal Memory:
Force Inner + Outer Non-Cacheable

• If stage 1 pageflags indicate Device:
Device

(for Stage 2 with Forced Write Back enabled (FEAT_S2FWB) only)

force I+O write-back Force Inner + Outer Write-back
(for Stage 2 with Forced Write Back enabled (FEAT_S2FWB) only)

use stage 1 page flags
(FWB)

Stage 1 page flags are used for memory type and cacheability
(for Stage 2 with Forced Write Back enabled (FEAT_S2FWB) only)

device nGnRnE (FWB) Device memory type non-Gathering, non-Reordering, no Early write
acknowledgement

device nGnRE (FWB) Device memory type non-Gathering, non-Reordering, Early Write
Acknowledgement

device nGRE (FWB) Device memory type non-Gathering, Reordering, Early Write
Acknowledgement

device GRE (FWB) Device memory type Gathering, Reordering, Early Write
Acknowledgement

Column “pageflags” Description of the memory attributes

force I+O non-cacheab. or
device

If the stage 1 page flags indicate Normal Memory, force the
combined page flags of stage 1 and stage 2 to Inner + Outer Non-
Cacheable.
If the stage 1 page flags indicate Device, the combined flags also
indicate Device.

force I+O write-back Force the combined page flags to Inner + Outer Write-back

use stage 1 page flags
(FWB)

The combined stage 1 and stage 2 memory type and cacheability
are determined by the stage 1 page flags only.

device nGnRnE (FWB) Force the combined device memory type non-Gathering, non-
Reordering, no Early write acknowledgement

device nGnRE (FWB) Force the combined device memory type non-Gathering, non-
Reordering, Early Write Acknowledgement

device nGRE (FWB) Force the combined device memory type non-Gathering,
Reordering, Early Write Acknowledgement

device GRE (FWB) Force the combined device memory type Gathering, Reordering,
Early Write Acknowledgement

Column “pageflags” Description of the memory attributes
Armv8 and Armv9 Debugger | 234©1989-2024 Lauterbach

Examples for Page Tables in Virtualized Systems

Example 1:

Example 2:

Example 3:

SYStem.Option.MACHINESPACES ON

; your code to load Hypervisor Awareness and define guest machine setup.

; <machine_id>
MMU.DUMP.PageTable /MACHINE 2.

; <machine_name>
MMU.DUMP.PageTable /MACHINE "Dom0"

SYStem.Option.MACHINESPACES ON

; your code to load Hypervisor Awareness and define guest machine setup.

; <machine_name>:::<task_name>
MMU.DUMP.TaskPageTable "Dom0:::swapper"

SYStem.Option.MACHINESPACES ON

;your code to load Hypervisor Awareness and define guest machine setup.

;a) dumps the current guest page table of the current machine, showing
; the intermediate addresses.
; Without the option /Fulltranslation the column "physical" is hidden.
MMU.DUMP.PageTable 0x400000

;b) With the option /Fulltranslation the intermediate addresses
; are translated to physical addresses and shown in column "physical"
MMU.DUMP.PageTable 0x400000 /Fulltranslation

;c) dumps the current page table of machine 2
; <machine_id>
MMU.DUMP.PageTable /MACHINE 2. /Fulltranslation
Armv8 and Armv9 Debugger | 235©1989-2024 Lauterbach

Results for 3 a) and 3 b)

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.
In contrast to MMU.DUMP, multiple consecutive page table entries with identical page attributes are listed as
a single line, showing the total mapped address range.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
 [/<option>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.
Armv8 and Armv9 Debugger | 236©1989-2024 Lauterbach

CPU specific Tables in MMU.List <table>

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: list

the translation table of the specified process and/or machine
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

<option> For description of the options, see MMU.DUMP.

TLB Displays the contents of the Translation Lookaside Buffer.

NonSecPageTable Displays the translation table used if the CPU is in non-secure mode and in
privilege level PL0 or PL1. This is the table pointed to by MMU registers
TTBR0 and TTBR1 in non-secure mode. This option is only visible if the
CPU has the TrustZone and/or Virtualization Extension.
This option is only enabled if Exception levels EL0 or EL1 use AArch32
mode.

SecPageTable Displays the translation table used if the CPU is in secure mode. This is the
table pointed to by MMU registers TTBR0 and TTBR1 in secure mode. This
option is only visible if the CPU has the TrustZone Extension.
This option is only enabled if the Exception level EL1 uses AArch32
mode.

HypPageTable Displays the translation table used by the MMU when the CPU is in HYP
mode. This is the table pointed to by MMU register HTTBR.
This table is only available in CPUs with Virtualization Extension.
Armv8 and Armv9 Debugger | 237©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

IntermedPageTable Displays the translation table used by the MMU for the second stage
translation of a guest machine. (i.e., intermediate address to physical
address). This is the table pointed to by MMU register VTTBR.
This table is only available in CPUs with Virtualization Extension.

EL1PageTable Displays the translation table used if the CPU is in Exception level EL0 or
EL1. This is the table pointed to by MMU registers TTBR0_EL1 and
TTBR1_EL1. The option is enabled if Exception levels EL0 or EL1 use
AArch64 mode.

EL2PageTable Displays the translation table used if the CPU is in Exception level EL2. This
is the table pointed to by MMU register TTBR_EL2. The option is available
only if Exception level EL2 is implemented in the CPU.

EL3PageTable Displays the translation table used if the CPU is in Exception level EL3. This
is the table pointed to by MMU register TTBR_EL3. The option is available
only if Exception level EL3 is implemented in the CPU and EL3 uses
AArch64 mode.

Format: MMU.SCAN <table> [<range> <address>] [/<option>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation
Armv8 and Armv9 Debugger | 238©1989-2024 Lauterbach

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID and/or machine ID: loads

the translation table of the specified process and/or machine
• else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

<option> For description of the options, see MMU.DUMP.
Armv8 and Armv9 Debugger | 239©1989-2024 Lauterbach

CPU specific Tables in MMU.SCAN <table>

TRACE32 TLB Support by CPU Type

Armv8 cores with virtual memory system may provide read access to internal TLB structures. The
organization of the hierarchical TLB structures may vary strongly between core implementations and each
may grant external debuggers different levels of access. A short comparison for different types is shown
here:

OEMAddressTable Loads the OEM Address Table from the CPU to the debugger-internal
translation table.

EL1PageTable Scans the translation table used if the CPU is in Exception level EL0 or EL1.
This is the table pointed to by MMU registers TTBR0_EL1 and TTBR1_EL1.
The option is enabled if Exception levels EL0 or EL1 use AArch64 mode.

EL2PageTable Scans the translation table used if the CPU is in Exception level EL2. This is
the table pointed to by MMU register TTBR_EL2. The option is available only
if Exception level EL2 is implemented in the CPU.

EL3PageTable Scans the translation table used if the CPU is in Exception level EL3. This is
the table pointed to by MMU register TTBR_EL3. The option is available only
if Exception level EL3 is implemented in the CPU and EL3 uses AArch64
mode.

Armv8/v9
Core

ITLB DTLB TLB0 TLB1

Cortex-A32 Reads main TLB - -

Cortex-A34 Reads main TLB - -

Cortex-A35 Reads main TLB - -

Cortex-A53 Reads main TLB - -

Cortex-A55 - - Reads L2 TLB -

Cortex-A57 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Cortex-A65 - - Reads L2 TLB -

Cortex-A65AE - - Reads L2 TLB -

Cortex-A72 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Cortex-A73 - - Reads L2 TLB
RAM0

Reads L2 TLB
Ram1
Armv8 and Armv9 Debugger | 240©1989-2024 Lauterbach

Cortex-A75 - - Reads L2 TLB
RAM0

Reads L2 TLB
Ram1

Cortex-A76
Cortex-A76AE

Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Cortex-A77 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Cortex-A78 Reads L1
instruction TLB

Reads L1 data Reads L2 TLB -

Cortex-A78AE Reads L1
instruction TLB

Reads L1 data Reads L2 TLB -

Cortex-A78C Reads L1
instruction TLB

Reads L1 data Reads L2 TLB -

Cortex-A510 - - Reads L2 TLB Reads L2 TLB

Cortex-A520 - - Reads L2 TLB Reads L2 TLB

Cortex-A710 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB Reads L2 TLB

Cortex-A715 - - Reads L2 TLB Reads L2 TLB

Cortex-A720 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB
Array0

Reads L2 TLB
Array1

Cortex-R82 - - - -

Cortex-X1 Reads L1
instruction TLB

Reads L1 data Reads L2 TLB -

Cortex-X1C Reads L1
instruction TLB

Reads L1 data Reads L2 TLB -

Cortex-X2 Reads L1
instruction TLB

Reads L1 data Reads L2 TLB -

Cortex-X3 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Cortex-X4 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB Reads L2 TLB

Neoverse E1 - - Reads main TLB -

Neoverse N1 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Armv8/v9
Core

ITLB DTLB TLB0 TLB1
Armv8 and Armv9 Debugger | 241©1989-2024 Lauterbach

Reads L1
instruction TLB

Reads L1 data Reads L2 TLB Reads L2 TLB

Neoverse V1 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Neoverse V2 Reads L1
instruction TLB

Reads L1 data
TLB

Reads L2 TLB -

Armv8/v9
Core

ITLB DTLB TLB0 TLB1
Armv8 and Armv9 Debugger | 242©1989-2024 Lauterbach

CPU specific SMMU Commands

SMMU Hardware system MMU (SMMU)

Using the SMMU command group, you can analyze the current setup of up to 20 system MMU instances.
Selecting a CPU with a built-in SMMU activates the SMMU command group.

Some SoC CPU types have already SMMUs predefined as component, visible in the SYStem.CONFIG
component dialog window.

TRACE32 supports the SMMU types MMU-400, MMU-401 and MMU-500 (based on the Arm SMMU
architecture specification v2, short SMMU-v2) and MMU-600 (based on the Arm SMMU architecture
specification v3, short SMMU-v3).

The TRACE32 SMMU support visualizes most of the configuration settings of an SMMU. These
visualizations include:

• The Stream Table with all Stream Map Register Groups (SMRG, for SMMU-v2) or all Stream
Table Entries (STE, for SMMU-v3)

• Access to both the non-secure and the secure SMMU view

• Tabular overview over principal data of each SMRG or STE listed in the Stream Table such as

- Stream matching register settings (for SMMU-v2)

- Translation context type (stage 1 / stage 2 enabled / bypass / fault)

- The context’s stream world of a SMRG (HYPC and MONC flags) or STE (EL1/EL2/EL3)

- Stage 1 / stage 2 context bank indices (for SMMU-v2)

- The availability of stage1 and stage 2 page tables, their format and the MMU-enable/disableT
state for the stage 1 and/or stage 2 address translation

- VMID and the number of stage 1 Context Descriptors for a STE (for SMMU-v3)

• The stage 1 Context Descriptor Table for a given STE (for SMMU-v3)

• Page table lists or dumps for stage 1 and/or stage 2 address translation contexts

• A quick indication of contexts where a fault has occurred or contexts that are stalled (SMMU-v2)

• A quick indication of the global SMMU fault status

• CMD Queue and Event Queue dumps with filtering options (for SMMU-v3)

SYStem.CPU CortexA53 ;for example, the ‘CortexA53’ CPU is SMMU-capable

SMMU.ADD ... ;you can now define an SMMU, e.g. an SMMU for a
 ;graphics processing unit (GPU)
Armv8 and Armv9 Debugger | 243©1989-2024 Lauterbach

• Peripheral register view:

- Global Configuration Registers of the SMMU

- The SMRG / STE Registers

- The Context Bank Registers (SMMU-v2) / Context Descriptor Registers (SMMU-v3)

- MMU-specific Registers such as Performance Measurement Unit Registers, Translation
Control Unit Registers or Translation Buffer Unit Registers (for SMMU-v3)

A good way to familiarize yourself with the SMMU command group is to start with:

• The SMMU.ADD command

• The SMMU.StreamTable command which offers GUI-based access to almost all SMMU data

• The guide Overview - How To

• Glossary - SMMU

• Arguments in SMMU Commands

The SMMU.StreamTable command and the window of the same name serve as your SMMU command
and control center in TRACE32. The right-click popup menu in the SMMU.StreamTable window allows you
to execute all frequently-used SMMU commands through the user interface TRACE32 PowerView.

The other SMMU commands are designed primarily for use in PRACTICE scripts (*.cmm) and for users
accustomed to working with the command line.

Overview - How To

This chapter is a brief guide which commands can be used to perform common tasks. The guide is split into
two parts: one for MMU-400, MMU-401 and MMU-500 which follow the SMMU-v2 specification and one for
MMU-600 and newer which follow the SMMU-v3 specification.

NOTE: The primary table of streams is called Stream Map Table in the SMMU-v2
architecture specification, whereas it is called Stream Table in the SMMU-v3
architecture specification.

To keep the TRACE32 user interface simple, a single unified command,
SMMU.StreamTable, is used to access the table of streams for all supported
SMMU architecture versions.

SMMU.StreamTable replaces the deprecated command
SMMU.StreamMapTable which was used for SMMU-v2 Stream Map Table
access in older TRACE32 versions. However, SMMU.StreamMapTable
remains an accepted command in scripts to preserve backward compatibility.
Armv8 and Armv9 Debugger | 244©1989-2024 Lauterbach

MMU-400, MMU-401 and MMU-500:

How To... GUI action or commands

Define a new SMMU SMMU.Add

To get the non-secure/secure SMMU view, specify
a non-secure/secure base address.

View the Stream Table with all SMRGs

View the stream configurations and see the
context bank indices of stage 1 and stage 2

SMMU.StreamTable

List or dump stage 1 or stage 2 page tables of a
stream

In SMMU.StreamTable window: use popup
menu or double click on column stage 1
pagetbl. fmt or stage 2 pagetbl. fmt

SMMU.StreamMapRegGrp.list
SMMU.StreamMapRegGrp.Dump

View a stream’s SMRG registers In SMMU.StreamTable window: use popup
menu or double click on any column of stream
matching or context type

SMMU.StreamMapRegGrp.Register
SMMU.Register.StreamMapRegGrp

View stage 1 or stage 2 context bank registers In SMMU.StreamTable window: use popup
menu or double click on column stage 1 cbndx
or stage 2 cbndx

SMMU.StreamMapRegGrp.ContextReg
SMMU.Register.ContextBank

View global SMMU registers In SMMU.StreamTable window: use popup
menu or double click status line

SMMU.Register.Global

View global SMMU fault flags Fault flags are displayed in the status line at the
bottom of the SMMU.StreamTable window.

Alternatively, open the global SMMU registers with
SMMU.Register.Global and view register
SMMU_GFSR / SMMU_sGFSR (non-sec/sec)

Check if an SMMU stream is in a fault state Open the SMMU.StreamTable window:
Streams in fault/stall/multi state have red F/S/M
marks in column stage 1 state or stage 2 state

View Security State Determination Table (SSD) In SMMU.StreamTable window: use popup
menu

SMMU.SSDtable
Armv8 and Armv9 Debugger | 245©1989-2024 Lauterbach

MMU-600 and newer:

How To... GUI action or commands

Define a new SMMU SMMU.Add

Use a secure base address.
Default SMMU view is non-secure. Switch to
secure view with option /SECure in most
commands or use check box Show secure
entries in the header of most SMMU windows.

View the Stream Table with all valid STEs

View the stream configuration, VMID, stream
world, stage 2 page table format, number of CDs

SMMU.StreamTable

View the Context Descriptor Table of a STE with a
list of all valid substreams (CDs)

View the ASID, stage 1 page table format and
TT0/TT1 translation enable state of substreams

In SMMU.StreamTable window: use popup
menu or click on the STE’s list CDT button in the
S1 PT fmt column to open the Context Descriptor
Table window.

SMMU.CtxtDescTable

List or dump stage 2 page tables of a STE In SMMU.StreamTable window: use popup
menu or double click on column S2 PT fmt or
stage 2 pagetbl. fmt

SMMU.StreamTblEntry.list
SMMU.StreamTblEntry.Dump

List or dump stage 1 page tables of a STE/CD If STE has only one CD: use popup menu in
SMMU.StreamTable window or double click on
column S1 PT fmt to view the CD’s page table.

If STE has more than one CD: click on the STE’s
list CDT button in the S1 PT fmt column to open
the Context Descriptor Table window. Here, use
popup menu or double click on column S1 PT fmt.

SMMU.StreamTblEntry.list
SMMU.StreamTblEntry.Dump

View a stream’s STE registers In SMMU.StreamTable window: use popup
menu or double click on column configuration

SMMU.StreamTblEntry.Register
SMMU.Register.StreamTblEntry
Armv8 and Armv9 Debugger | 246©1989-2024 Lauterbach

View the stage 1 CD registers for a substream If STE has only one CD: use popup menu in
SMMU.StreamTable window or double click on
column ASID to view the CD registers.

If STE has more than one CD: click on the STE’s
list CDT button in the S1 PT fmt column to open
the Context Descriptor Table window. Here, use
popup menu or double click on column ASID.

SMMU.Register.S1Context

View global SMMU registers In SMMU.StreamTable window: use popup
menu or double click status line

SMMU.Register.Global

View global SMMU fault flags Fault flags are displayed in the status line at the
bottom of the SMMU.StreamTable window.

Alternatively, open the global SMMU registers with
SMMU.Register.Global and view register
SMMU_GERROR / SMMU_S_GERROR

Check if an SMMU stream or substream is in a
fault state

Dump Event Queue entries

In the SMMU.StreamTable or the
SMMU.CtxtDescTable window:

• either use popup menu Dump Queue
Entries - Event Queue to dump all Event
Queue entries

• or, with mouse over STE or CD of
interest, use popup menu Dump
associated Queue Entries - Event
Queue to dump Event Queue entries
filtered by Stream ID and Substream ID

SMMU.DumpQueue.Event

Dump CMD Queue entries In the SMMU.StreamTable or the
SMMU.CtxtDescTable window:

• either use popup menu Dump Queue
Entries - CMD Queue to dump all CMD
Queue entries

• or, with mouse over STE or CD of
interest, use popup menu Dump
associated Queue Entries - CMD
Queue to dump CMD Queue entries
filtered by Stream ID and Substream ID

SMMU.DumpQueue.CMD

How To... GUI action or commands
Armv8 and Armv9 Debugger | 247©1989-2024 Lauterbach

Glossary - SMMU

The following two figures illustrate a few SMMU terms. For explanations of the illustrated SMMU terms and
other important SMMU terms not shown here, see below.

MMU-400, MMU-401 and MMU-500:

MMU-600 and newer:

A See stream table.

B Each row stands for a stream map register group (SMRG).

C Index of a translation context bank.

D Data from stream matching registers, see stream matching.

A See stream table.

B Each row stands for a stream table entry (STE).

C Stream configuration and stage 2 context.

D Substream data and either stage 1 context or button to view the STE’s Context Descriptor Table.

A

D B

C C

A

C BD
Armv8 and Armv9 Debugger | 248©1989-2024 Lauterbach

Context Descriptor (CD)

MMU-600 and newer only
A data structure in memory containing register fields which describe a stage 1 translation context, including
a pointer to the stage 1 translation table. A CD is identified by its substream ID and by the stream ID of the it
belongs to.

Context Descriptor Table (CDT)

MMU-600 and newer only
A table in memory with one or two levels which holds a number of Context Descriptors. Each Context
Descriptor Table belongs to one Stream Table Entry.

A CDT can be displayed using command SMMU.CtxtDescTable.

Memory Transaction Stream

A stream of memory access transactions sent from a device through the SMMU to the system memory bus.
The stream consists of the address to be accessed and a number of design specific memory attributes such
as the privilege, cacheability, security attributes or other attributes.

The streams carry a stream ID which the SMMU uses to determine a translation context for the memory
transaction stream. As a result, the SMMU may or may not translate the address and/or the memory
attributes of the stream before it is forwarded to the system memory bus.

Queue

MMU-600 and newer only
Data structure consisting of a circular buffer in memory which holds queue entries. Queue entries may hold
commands for the SMMU (in the CMD Queue) or events generated by the SMMU (in the Event Queue).
Queues can be viewed using command SMMU.DumpQueue.

Security State Determination Table (SSD Table)

MMU-400, MMU-401 and MMU-500 only
If the SMMU supports two security states (secure and non-secure) an SSD index qualifies memory
transactions sent to the SMMU. The SSD index is a hardware signal which is used by the SMMU to decide
whether the incoming memory transaction belongs to the secure or the non-secure domain.

The information whether a SSD index belongs to the secure or to the non-secure domain is contained in the
SMMU’s SSD table.
Armv8 and Armv9 Debugger | 249©1989-2024 Lauterbach

Stream ID

Peripheral devices connected to an SMMU issue memory transaction streams. Every incoming memory
transaction stream carries a Stream Identifier which is used by the SMMU to associate a translation context
to the transaction stream. The streams are stored in the Stream Table of the SMMU.

Stream Map Register Group (SMRG)

MMU-400, MMU-401 and MMU-500 only
A group of SMMU registers determining the translation context for a memory transaction stream. The
Stream Table holds the SMRGs.

Stream Table (ST) / Stream Mapping Table (SMT)

An SMMU table which describes what to do with an incoming memory transaction stream from a peripheral
device. In particular, this table associates an incoming memory transaction stream with a translation context,
using the stream ID of the stream as selector of a translation context.

In MMU-400, MMU-401 and MMU-500 (Arm SMMU-v2 specification based), this table of streams is referred
to as Stream Mapping Table. In MMU-600 and newer (Arm SMMU-v3 specification based), this table of
streams is referred to as Stream Table. The Stream (Mapping) Table is the central table of the SMMU.

• MMU-400, MMU-401 and MMU-500): each Stream Mapping Table entry consists of a group of
registers, called Stream Map Register Group, which describe the translation context. In case an
SMMU supports stream matching, TRACE32 also displays the stream matching registers
associated with an entry’s stream map register group.

• MMU-600 and newer: the stream table is a data structure in memory and consists of Stream
Table Entries which describe the translation context type, the stage 2 translation tables and points
to a Context Descriptor Table which holds stage 1 translation contexts.

A Stream Table can be displayed using command SMMU.StreamTable.

Stream Matching

MMU-400, MMU-401 and MMU-500 only
In an SMMU which supports stream matching, the stream ID of an incoming memory transaction stream
undergoes a matching process to determine which entry of the Stream Table will used to specify the
translation context for the stream.
TRACE32 displays the reference ID and the bit mask used by the SMMU to perform the Stream ID matching
process in the SMMU.StreamTable window.

Stream Table Entry (STE)

MMU-600 and newer only
A data structure in memory describing the translation context for each stream. This data structure register
contains fields which describe the type of context, the stage 2 translation context, including a pointer to the
stage 2 translation table and a pointer to a Context Descriptor Table holding stage 1 contexts. Each STE is
identified by its Stream ID.

Note: for MMU-400, MMU-401 and MMU-500 the entries of the Stream Table are called Stream Map
Register Group.
Armv8 and Armv9 Debugger | 250©1989-2024 Lauterbach

Substream ID

Peripheral devices connected to an SMMU issue memory transaction streams. Every incoming memory
transaction stream carries a Stream Identifier which is used by the SMMU to associate a translation context
to the transaction stream. The streams are stored in the Stream Table of the SMMU.

Translation Context

A translation context describes the translation process of a incoming memory transaction stream. An
incoming memory transaction stream may undergo a stage 1 address translation and/or a stage 2 address
translation. Further, the memory attributes of the incoming memory transaction stream may be changed. It is
also possible that an incoming memory transaction stream is rendered as fault.

The Stream Table determines which translation context is applied to an incoming memory transaction
stream.

Translation Context Bank (short: Context Bank)

MMU-400, MMU-401 and MMU-500 only
A group of SMMU registers specifying the translation context for an incoming memory transaction stream.
The registers carry largely the same names and contain the same information as the core’s MMU registers
describing the address translation process.

The registers of a translation context bank describe the translation table base address, the memory
attributes to be used during the translation table walk and translation attribute remapping.
Armv8 and Armv9 Debugger | 251©1989-2024 Lauterbach

Arguments in SMMU Commands

This table provides an overview of frequently-used arguments in SMMU commands. Arguments that are
only used in one SMMU command are described together with that SMMU command.

<name> User-defined name of an SMMU.
Use the SMMU.ADD command to define an SMMU and its name. This
name will be used to identify an SMMU in all other SMMU commands.

<smrg_index> Index of a stream map register group, e.g. 0x04. The indices are listed in
the index column of the SMMU.StreamTable.
The <smrg_index> is equivalent to the <stream_id> used in MMU-600
and newer.
Only applicable for MMU-400, MMU-401 and MMU-500.

<cbndx> Index of a translation context bank.
Only applicable for MMU-400, MMU-401 and MMU-500.

<stream_id> |
<range>

Index of a StreamTable Entry or a range of Stream Table Entries. The
indices are listed in the index column of the SMMU.StreamTable.
The <stream_id> is equivalent to the <smrg_index> used in MMU-400,
MMU-401 and MMU-500.
Only applicable for MMU-600 and newer.

<substream_id> |
<range>

Index of a Context Descriptor Table Entry or a range of Context
Descriptor Table Entries.
Only applicable for MMU-600 and newer.

<address> | <range> Logical address or logical address range describing the start address or
the address range to be displayed in the SMMU page table list or dump
windows.

IntermediatePT Used to switch between stage 1 and stage 2 page table or register view:
• Omit this option to view the translation table entries or registers of

stage 1.
• Include this option to view the translation table entries or registers of

stage 2.

SECure Used to switch between the non-secure and the secure SMMU content.
• Omit this option to view the non-secure table entries or registers
• Include this option to view the secure table entries or registers
Only applicable for MMU-600 and newer.
Armv8 and Armv9 Debugger | 252©1989-2024 Lauterbach

SMMU.ADD Define a new hardware system MMU

Defines a new SMMU (a hardware system MMU). A maximum of 20 SMMUs can be defined.

Arguments:

Format: SMMU.ADD "<name>" <smmu_type> <base_address>

<smmu_
type>:

MMU400 | MMU401 | MMU500 | MMU600

NOTE: For some CPUs with SMMUs, TRACE32 will automatically configure the SMMU
parameters, so that you can immediately work with the SMMUs and do not
need to manually configure them.
After selecting the CPU type, check one of the following locations in TRACE32
to see if there are any pre-configured SMMUs:
• The CPU menu > SMMU popup menu
• The SYStem.CONFIG.state /COmponents window

<name> User-defined name of an SMMU. The name must be unique and can be
max. 9 characters long.

NOTE:
• For the SMMU.ADD command, the name must be quoted.
• For all other SMMU commands, omit the quotation marks from the

name identifying an SMMU. See also PRACTICE script example
below.

<smmu_type> Defines the type of the Arm system MMU IP block:

• SMMUv2 based: MMU400, MMU401 or MMU500

• SMMUv3 based: MMU600
Armv8 and Armv9 Debugger | 253©1989-2024 Lauterbach

Example:

<base_address> Logical or physical base address of the memory-mapped SMMU register
space.

NOTE for MMU400, MMU401, MMU500:
If the SMMU supports two security states (secure and non-secure), not all
SMMU registers are visible from the non-secure domain.
• If you specify a secure address as the SMMU base address, you

will see the secure view of the SMMU.
• If you specify a non-secure address as the SMMU base address,

you will only see the non-secure SMMU view. Secure SMMU regis-
ters will not be visible.

To specify a secure address, precede the base address with an access
class such as AZSD: or ZSD:

Always specify either a secure or a non-secure base address so that the
SMMU security view is clearly determined.
When executing command SMMU.ADD, an access class with ambiguous
security status will be augmented to either secure or non-secure,
according to the current CPU security status and a warning message will
be printed.
Access classes with a distinct security status will be left unchanged, e.g.
the access classes NSD:, NUD:, HD: etc.

NOTE for MMU600 and newer:
if CPU supports two security states, always specify the SMMU base
address as a secure address (e.g. ZSD: or AZSD:) so that TRACE32 can
access both the secure and non-secure SMMU registers.

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;display the stream table of the SMMU named “myGPU”
SMMU.StreamTable myGPU
Armv8 and Armv9 Debugger | 254©1989-2024 Lauterbach

SMMU.Clear Delete an SMMU

Deletes an SMMU definition, which was created with the SMMU.ADD command of TRACE32. The
SMMU.Clear command does not affect your target SMMU.

To delete all SMMU definitions created with the SMMU.ADD command of TRACE32, use SMMU.RESet.

Argument:

Example:

SMMU.CtxtDescTable List a context descriptor table
MMU-600 and newer only

Opens a window and lists all valid stage 1 Context Descriptors in the Context Descriptor Table of the
Stream Table Entry specified by <stream_id>. Specify option /SECure to select the secure SMMU view. A
description of the columns is given in this table. The status line of the window shows the global error flags
which are currently set for the SMMU.

If you want to limit the Substream IDs displayed in the window, you can specify a numeric <substream_id>
as lower limit for the displayed SubstreamIDs. Alternatively, you can specify a range as <substream_id> to
set a lower and an upper limit to the displayed Substream IDs.

Format: SMMU.Clear <name>

<name> For a description of <name>, click here.

SMMU.Clear myGPU ;deletes the SMMU named myGPU

Format: SMMU.CtxtDescTable <args>

<args> : <name> <stream_id> [<substream_id> | <range>] [/SECure]
Armv8 and Armv9 Debugger | 255©1989-2024 Lauterbach

Examples:

SMMU.DumpQueue.<queue> Dump entries of a queue
MMU-600 and newer only

Using the SMMU.DumpQueue command group, you can dump entries of SMMU Queues. Analyzing
entries of the Event Queue is important to find error conditions of SMMU streams - in addition to global error
flags of the SMMU.

The commands SMMU.DumpQueue.CMD and SMMU.DumpQueue.Event open a window which shows
all valid entries of the queue in the sequence of their creation.

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;list the context descriptors of the stream table with Stream ID 0x6B9743
of the SMMU named “myGPU”
SMMU.CtxtDescTable myGPU 0x6B9743

;same as above, but limit the listing to Substream IDs >= 0x1000
SMMU.CtxtDescTable myGPU 0x6B9743 0x1000

;list the context descriptors of the stream table with secure Stream ID
0x1D73D281 of the SMMU named “myGPU”. List only Substream ID in the range
0x1000--0x1FFF
SMMU.CtxtDescTable myGPU 0x1D73D281 0x1000--0x1FFF /SECure

SMMU.DumpQueue.CMD Dump entries of the Cmd Queue

SMMU.DumpQueue.Event Dump entries of the Event Queue
Armv8 and Armv9 Debugger | 256©1989-2024 Lauterbach

Description of Columns and Status Line

The dump queue windows displays the following columns:

The status line of the window shows the following information:

• the number of entries the queue can hold, i.e. its size

• the number of valid entries it holds currently

• the current producer index

• the current consumer index

• if the queue is full, a message “Queue is FULL” is displayed.

Column Description

index Index of the entry. Entries are dumped in the sequence of their creation.
The oldest entry always carries index 0 in the dump window. This is the
entry pointed to by the queue’s Consumer Index register. The newest
entry has the largest index in the dump window. This is the entry pointed
to by the queue’s Producer Index register.

entry type Decoded type of the queue entry.

secure
(CMD queue only)

Indicates the state of the SSec bit in the queue entry. If secure is 1, the
entry targets the secure SMMU view, otherwise the non-secure view.

streamID Shows the content of the entry’s Stream ID field. Blank if the entry has no
Stream ID field.

substr.ID Shows the content of the entry’s Substream ID field.Blank if the entry has
no Substream ID field.
For the CMD queue, UNKNOWN is displayed if the entry has a Substream
ID field but the entry’s SSV (SubStream Valid) bit is 0.

additional qualifiers Depending on the event type, additional event record fields such as
addresses and flags are decoded and printed in this column.
Note: it is not supported to filter entries by additional qualifier fields.

address of entry Displays the physical address of the queue table entry record.

NOTE: Use the popup menu to quickly open SMMU.StreamTable or
SMMU.CtxtDescrTable window. This conveniently allows to view the Stream Table
Entry or Context Descriptor associated with the queue entry underneath the mouse
pointer.
Armv8 and Armv9 Debugger | 257©1989-2024 Lauterbach

Filter options

As queues can hold a very large number of entries, command SMMU.DumpQueue.<queue> offers filter
options allowing dump only entries satisfying certain criteria. The following filter options are available:

Note that for sake of Stream ID and/or Substream ID filtering, TRACE32 evaluates the event record fields
StreamID, SubStreamID and SSV regardless of the queue entry type.

SMMU.DumpQueue.CMD Dump cmd queue entries
MMU-600 and newer only

Opens the SMMU.DumpQueue window and dumps all valid entries of the non-secure or the secure
Cmd Queue. See SMMU.DumpQueue for a description of the dump queue window.

Filter option Description

/QETYPE <qe_type> Dump only queue entries with entry type <qe_type>
The values allowed for <qe_type> are specific to the queue type and the
SMMU type.

/StreamID
<stream_id> |
<range>

Dump only entries with a certain Stream ID.
<stream_id> can either be a single numeric value or a numeric range. If it
is a range, only those queue entries will be dumped if their Stream ID field
falls into the specified range.

/SubStreamID
<substream_id> |
<range>

Dump only entries with a certain Substream ID.
<substream_id> can either be a single numeric value or a numeric range.
If it is a range, only those queue entries will be dumped if their Substream
ID field falls into the specified range.
In event queue, entries where the SSV (SubStream Valid) bit is 0 are not
dumped at all if the /SubStreamID filter is active.

Format: SMMU.DumpQueue.CMD <name> [<entry_idx> | <range>] [/SECure]
[<filter_opts>]

<entry_idx> |
<range>

Starts the dump with <entry_index> or dumps only entries with index in
<range>

<filter_opts>: [/QETYPE <qe_type>] [/StreamID <stream_id>] [/SubstreamID
<substream_id>]
Armv8 and Armv9 Debugger | 258©1989-2024 Lauterbach

SMMU.DumpQueue.Event Dump event queue entries
MMU-600 and newer only

Opens the SMMU.DumpQueue window and dumps all valid entries of the non-secure or the secure
Event Queue. See SMMU.DumpQueue for a description of the dump queue window.

Examples:

Format: SMMU.DumpQueue.Event <name> [<entry_idx> | <range>] [/SECure]
[<filter_opts>]

<entry_idx> |
<range>

Starts the dump with <entry_index> or dumps only entries with index in
<range>

<filter_opts>: [/QETYPE <qe_type>] [/StreamID <stream_id>] [/SubstreamID
<substream_id>]

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;open the event queue dump window for the non-secure SMMU view and dump
all entries
SMMU.DumpQueue.Event myGPU

;open the queue dump window for the secure SMMU view and dump all entries
starting with index 0x200
SMMU.DumpQueue.Event myGPU 0x200 /SECure

;dump only entries of type F_TRANSLATION
SMMU.DumpQueue.Event myGPU /QETYPE F_TRANSLATION

;dump only entries where the Stream ID field is in the range 0x5000--
0x5FFF
SMMU.DumpQueue.Event myGPU /StreamID 0x5000--0x5FFF

;dump only entries where the Stream ID field is 0x6BE900 and the
SubStream ID field is in the range 0x140--0x17F
SMMU.DumpQueue.Event myGPU /StreamID 0x6BE900 /SubStreamID 0x140--0x17F
Armv8 and Armv9 Debugger | 259©1989-2024 Lauterbach

SMMU.Register Peripheral registers of an SMMU

Using the SMMU.Register command group, you can view and modify the peripheral registers of an SMMU.
The command group provides the following commands:

Example:

SMMU.Register.Global Display the global registers of an SMMU

SMMU.Register.ContextBank Display the registers of a context bank
MMU-400, MMU-401 and MMU-500 only.

SMMU.Register.StreamMapRegGrp Display the registers of an SMRG
MMU-400, MMU-401 and MMU-500 only.

SMMU.Register.StreamTableEntry Display the registers of a Stream Table Entry.
MMU-600 and newer only.

SMMU.Register.Stage1Context Display the registers of a Context Descriptor Table
Entry (the stage 1 context of a substream).
MMU-600 and newer only.

;open the SMMU.Register.StreamMapRegGrp window of SMMU “myGPU” and show
the registers of Stream Table Entry with Stream ID 0x02010A
SMMU.Register.StreamTableEntry myGPU 0x02010A

;highlight changes in orange in any SMMU.Register.* window
SETUP.Var %SpotLight.on
Armv8 and Armv9 Debugger | 260©1989-2024 Lauterbach

SMMU.Register.ContextBank Display registers of context bank
MMU-400, MMU-401 and MMU-500 only

Opens the peripheral register window SMMU.Register.ContextBank. This window displays the registers of
the specified context bank. These are listed under the section heading Context Bank Registers.

Argument:

Example:

Format: SMMU.Register.ContextBank <name> <cbndx>

A Register name and content.

B Names of the register bit fields and bit field values.

NOTE: The commands SMMU.Register.ContextBank and
SMMU.StreamMapRegGrp.ContextReg are similar.

The difference between the two commands is:
• The first command expects a <cbndx> as an argument and allows to

view an arbitrary context bank.
• The second command expects an <smrg_index> with an optional Inter-

mediatePT as arguments and displays either a stage 1 or stage 2 con-
text bank associated with the <smrg_index>.

<name> For a description of <name>, etc., click here.

SMMU.Register.ContextBank myGPU 0x16

A B
Armv8 and Armv9 Debugger | 261©1989-2024 Lauterbach

SMMU.Register.Global Display global registers of SMMU

Opens the peripheral register window SMMU.Register.Global. This window displays the global registers of
the specified SMMU. These are listed under the section heading Global Configuration Registers.

Argument:

Example:

To display the global registers of an SMMU via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Global
Configuration Registers from the popup menu.

SMMU.Register.MMUregs Display MMU specific registers
MMU-600 and newer only

Opens the peripheral register window and shows the MMU specific register blocks which are not part of
the SMMU architectural registers. Examples for MMU specific registers are registers for the SMMU
Translation Control Unit (TCU), Translation Buffer Unit (TBU) and Performance Measurement Unit
(PMU) described in the Arm MMU-600 specification.

Format: SMMU.Register.Global <name>

A Register name and content.

B Names of the register bit fields and bit field values.

<name> For a description of <name>, click here.

SMMU.Register.Global myGPU

Format: SMMU.Register.MMUregs <name>

A B
Armv8 and Armv9 Debugger | 262©1989-2024 Lauterbach

SMMU.Register.S1Context Display stage 1 context descriptor registers
MMU-600 and newer only

Opens the peripheral register window for the SMMU named <name> and displays the registers of a
stage 1 Context Descriptor specified by <stream_id> and <substream_id>.

If the Stream Table Entry specified by <stream_id> has only one Context Descriptor, you can omit option
/SubstreamID <substream_id>. In this case, the Context Descriptor with Substream ID 0 will be displayed.

Specify option /SECure to select the secure SMMU view.

SMMU.Register.StreamTblEntry Display stream table entry registers
MMU-600 and newer only

Opens the peripheral register window for the SMMU named <name> and displays the registers of the
Stream Table Entry which is specified by <stream_id>.

Specify option /SECure to select the secure SMMU view.

Example:

Format: SMMU.Register.S1Context <args>

<args>: <name> <stream_id> [/SubstreamID <substream_id>] [/SECure]

Format: SMMU.Register.StreamTblEntry <args>

<args> : <name> <stream_id> [/SECure]

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;list the Stream Table Entry with Stream ID 0x6B9743 from the secure
Stream Table of SMMU “myGPU”
SMMU.StreamTable myGPU 0x6B9743 /SECure
Armv8 and Armv9 Debugger | 263©1989-2024 Lauterbach

SMMU.Register.StreamMapRegGrp Display registers of an SMRG
MMU-400, MMU-401 and MMU-500 only

Opens the peripheral register window SMMU.Register.StreamMapRegGrp. This window displays the
registers of the specified SMRG. These are listed under the gray section heading Stream Map Register
Group.

Arguments:

Example:

Format: SMMU.Register.StreamMapRegGrp <args>
SMMU.StreamMapRegGrp.Register <args> (as an alias)

<args>: <name> <smrg_index>

A 0x0D is the <smrg_index> of the selected SMRG.

B Register name and content.

C Names of the register bit fields and bit field values.

Compare also to SMMU.StreamMapRegGrp.ContextReg.

<name> For a description of <name>, etc., click here.

SMMU.StreamMapRegGrp.Register myGPU 0x06

B C

A

Armv8 and Armv9 Debugger | 264©1989-2024 Lauterbach

To view the registers of an SMRG via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Stream
Mapping Registers from the popup menu.

SMMU.RESet Delete all SMMU definitions

Deletes all SMMU definitions created with SMMU.ADD from TRACE32. The SMMU.RESet command does
not affect your target SMMU.

To delete an individual SMMU created with SMMU.ADD, use SMMU.Clear.

Format: SMMU.RESet
Armv8 and Armv9 Debugger | 265©1989-2024 Lauterbach

SMMU.SSDtable Display security state determination table
MMU-400, MMU-401 and MMU-500 only

Displays the security state determination table (SSD table) as a bit field consisting of s (secure) or ns
(non-secure) entries. If the SMMU has no SSD table defined, you receive an error message in the AREA
window.

Format: SMMU.SSDtable <name> [<start_index>]

A In the SSD table, the black arrow indicates the <start_index>, here 0x00B

B Right-click to dump the SSD table raw data in memory.

For each SSD index of an incoming memory transaction stream, the SSD table indicates whether
the outgoing memory transaction stream accesses the secure (s) or non-secure (ns) memory
domain.

You may find the SSD table easier to interpret by reducing the width of the SMMU.SSDtable
window. Example for the raw data 0x68 in the SSD table:

C In the Data.dump window, the black arrow indicates the dumped raw data from the SSD table.

D The 1st white column (00 to 07) relates to the 1st raw data column.
The 2nd white column (08 to 0F) relates to the 2nd raw data column, etc.

A

B

C

D D

1
ns

0y 0
s

1
ns

0
s

1
ns

0
s

0
s

0
s

0x 6 8

0=s
1=ns
Armv8 and Armv9 Debugger | 266©1989-2024 Lauterbach

Arguments:

Example:

To view the SSD table via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click any SMRG, and then select Security State
Determination Table (SSD) from the popup menu.

SMMU.StreamMapRegGrp Access to stream map table entries
MMU-400, MMU-401 and MMU-500 only

The SMMU.StreamMapRegGrp command group allows to view the details of the translation context
associated with stage 1 and/or stage 2 of an SMRG. Every SMRG is identified by its <smrg_index>.

The SMMU.StreamMapRegGrp command group provides the following commands:

<name> For a description of <name>, click here.

<start_index> Starts the display of the SSD table at the specified SSD index.
See SSD index column in the SMMU.SSDtable window.

;display the SSD table starting at the SSD index 0x000B
SMMU.SSDtable myGPU 0x000B

NOTE: The menu item is grayed out if the SMMU does not support the two security
states s (secure) or ns (non-secure).

SMMU.StreamMapRegGrp.ContextReg Shows the registers of the context bank associated with
the stage 1 and/or stage 2 translation.

SMMU.StreamMapRegGrp.Dump Dumps the page table associated with the stage 1 and/or
stage 2 translation page wise.

SMMU.StreamMapRegGrp.list Lists the page table entries associated with the stage 1
and/or stage 2 translation in a compact format.
Armv8 and Armv9 Debugger | 267©1989-2024 Lauterbach

SMMU.StreamMapRegGrp.ContextReg Display context bank registers
MMU-400, MMU-401 and MMU-500 only

Opens the peripheral register window SMMU.StreamMapRegGrp.ContextReg, displaying the context
bank registers of stage 1 or stage 2 of the specified <smrg_index> [A]. The context bank index (cbndx) of the
shown context bank registers is printed in the gray section heading Context Bank Registers [C].

The cbndx columns in the SMMU.StreamTable window tell you which context bank is associated with
stage 1 or stage 2: If there is no context bank defined for stage 1 or stage 2, then the respective cbndx cell
is empty. In this case, the peripheral register window SMMU.StreamMapRegGrp.ContextReg does not
open.

Arguments:

Format: SMMU.StreamMapRegGrp.ContextReg <args>

<args>: <name> <smrg_index> [/IntermediatePT]

A 0x0A is the <smrg_index> of the selected SMRG.

B The option IntermediatePT is used to display the context bank registers of stage 2.

C 0x15 is the index from the cbndx column of a stage 2 context bank. See example below.

Compare also to SMMU.StreamMapRegGrp.Register.

NOTE: The commands SMMU.Register.ContextBank and
SMMU.StreamMapRegGrp.ContextReg are similar.

The difference between the two commands is:
• The first command expects a <cbndx> as an argument and allows to

view an arbitrary context bank.
• The second command expects an <smrg_index> with an optional Inter-

mediatePT as arguments and displays either a stage 1 or stage 2 con-
text bank associated with the <smrg_index>.

<name> For a description of <name>, etc., click here.

A

B

C

Armv8 and Armv9 Debugger | 268©1989-2024 Lauterbach

PRACTICE Script Example and Illustration of the Context Bank Look-up:

To display the context bank registers via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Context
Bank Registers of Stage 1 or 2 from the popup menu.

SMMU.StreamMapRegGrp.ContextReg myGPU 0x06 /IntermediatePT
Armv8 and Armv9 Debugger | 269©1989-2024 Lauterbach

SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table
MMU-400, MMU-401 and MMU-500 only

Opens the SMMU.StreamMapRegGrp.Dump window for the specified SMRG, displaying the page table
entries of the SMRG page wise. If no valid translation context is defined, the window displays the error
message “registerset undefined”.

Arguments:

Example:

To display an SMMU page table page-wise via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select from the popup menu:

- Stage 1 Page Table > Dump or

- Stage 2 Page Table > Dump

Format: SMMU.StreamMapRegGrp.Dump <args>

<args>: <name> <smrg_index> [<address> | <range> [<ttb_address>]] [/<option>]

A To view the details of the page table walk, scroll to the right-most column of the window.
For a description of the columns in the SMMU.StreamMapRegGrp.Dump window, click here.

<name> For a description of <name>, etc., click here.

<address> | <range> If specified, start the dump with <address> or, alternatively, limit the
dumped address range to address to <range>.

<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the SMRG context.

IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.

In SMMUs that support only stage 2 page tables, this option can be
omitted.

SMMU.StreamMapRegGrp.Dump myGPU 0x0C

A

Armv8 and Armv9 Debugger | 270©1989-2024 Lauterbach

Description of Columns

This table describes the columns of the following windows:

• SMMU.StreamMapRegGrp.list / SMMU.StreamTblEntry.list

• SMMU.StreamMapRegGrp.Dump / SMMU.StreamTblEntry.Dump

Column Description

logical Logical page address range

physical Physical page address range

sec Security state of entry (s=secure, ns=non-secure, sns=non-secure entry in
secure page table)

d Domain

size Size of mapped page in bytes

permissions Access permissions (P=privileged, U=unprivileged, exec=execution
allowed)

glb Global page

shr Shareability (no=non-shareable, yes=shareable, inn=inner shareable,
out=outer shareable)

pageflags Memory attributes (see Description of the memory attributes.)

tablewalk Only for SMMU.StreamMapRegGrp.Dump:
• Details of table walk for logical page address (one sub column for

each table level, showing the table base address, entry index, entry
width in bytes and value of table entry)
Armv8 and Armv9 Debugger | 271©1989-2024 Lauterbach

SMMU.StreamMapRegGrp.list List page table entries
MMU-400, MMU-401 and MMU-500 only

Opens the SMMU.StreamMapRegGrp.list window for the specified SMMU, listing the page table entries
of a stream map group. If no valid translation context is defined, the window displays an error message.

For a description of the columns in the SMMU.StreamMapRegGrp.list window, click here.

Arguments:

Example:

To list the page table entries via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select from the popup menu:

- Stage 1 Page Table > List or

- Stage 2 Page Table > List

Format: SMMU.StreamMapRegGrp.list <args>

<args>: <name> <smrg_index> [<address> | <range> [<ttb_address>]] [/Intermedi-
atePT]

<name> For a description of <name>, etc., click here.

<address> | <range> If specified, start the page table list with <address> or, alternatively, limit
the listed address range to address to <range>.

<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the SMRG context.

IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.

In SMMUs that support only stage 2 page tables, this option can be
omitted.

SMMU.StreamMapRegGrp.list myGPU 0x0C
Armv8 and Armv9 Debugger | 272©1989-2024 Lauterbach

SMMU.StreamTable Display a stream table
[About the Window] [Popup Menu] [Columns] [Values] [Global Faults] [Example]

Opens the SMMU.StreamTable window for the SMMU that has the specified <name>. The content and
popup menu depends on the SMMU type for which the SMMU.StreamTable window is opened. The two
variants of the window are described as follows:

MMU-400, MMU-401, MMU-500:
The window lists all Stream Map Register Groups of the secure or non-secure view of the SMMU. The
window provides an overview of the secure or non-secure SMMU configuration.

Format: SMMU.StreamTable <args>

SMMU.StreamMapTable <args> (as an alias)

<args>: <name> [/StreamID <value>]
(for MMU-400, MMU-401 and MMU-500)

<name> [<stream_id>] [/SECure]
(for MMU-600 and newer)

A The gray window status bar displays the <smmu_type> and the SMMU <base_address>.
In addition, the window status bar informs you of global faults in the SMMU, if there are any faults.

A

Armv8 and Armv9 Debugger | 273©1989-2024 Lauterbach

MMU-600 and newer:
The window lists all valid Stream Table Entries of either the secure or the non-secure view of the SMMU. The
security status of the view can be changed using option /SECure or, alternatively, using the Show secure
entries checkbox in the window header.

The Stream ID range displayed can be limited if argument <stream_id> is used. You can either specify a
number as start value or a range.

Arguments

A The gray window status bar displays the <smmu_type> and the SMMU <base_address>.
In addition, the window status bar informs you of global faults in the SMMU, if there are any faults.

B For STEs with more than one substream, click the button list CDT to view the substreams.

<name> For a description of <name>, click here.

StreamID <value>

(MMU-400, MMU-401
and MMU-500 only)

Only available for SMMUs that support stream ID matching. The StreamID
option highlights all SMRGs in yellow that match the specified stream ID
<value>. SMRGs highlighted in yellow help you identify incorrect settings
of the stream matching registers.

For <value>, specify the stream ID of an incoming memory transaction
stream.

• The highlighted SMRG indicates which stream map table entry will
be used to translate the incoming memory transaction stream.

• More than one highlighted row indicates a potential, global SMMU
fault called stream match conflict fault.

The stream ID matching algorithm of TRACE32 mimics the SMMU stream
matching on the real hardware.

The reference ID, mask and validity fields of the stream match register are
listed in the ref. id, id mask and valid columns.

<stream_id>

(MMU-600 and newer
only)

Either the start point (if a single number is given) or numeric range (if a
numeric range is given) of Stream IDs that are displayed in the window.

A

B

Armv8 and Armv9 Debugger | 274©1989-2024 Lauterbach

Examples

[Back to Top]
MMU-400, MMU-401, MMU-500:
This PRACTICE script example shows how to define an SMMU with the SMMU.ADD command. Then the
script opens the SMMU in the SMMU.StreamTable window, searches for the <stream_id> 0x324A and
highlights the matching SMRG 0x024A in yellow.

The row highlighted in yellow in the SMMU.StreamTable window is a correct match for the Stream
ID 0x324A we searched for.

See also function SMMU.StreamID2SMRG() in “General Function Reference” (general_func.pdf).

MMU-600 and newer:
This PRACTICE script example shows how to define an SMMU with the SMMU.ADD command. Then the
script opens the SMMU in the SMMU.StreamTable window starting with Stream ID 0x10000

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU500 AZSD:0x50000000

;open the window and highlight the matching SMRG in yellow
SMMU.StreamTable myGPU /StreamID 0x324A

NOTE: At first glance, the Stream ID 0x324A does not seem to match the SMRG
0x024A.

However, if you take the ID mask 0x7000 (= 0y0111_0000_0000_0000) into
account, the match is correct.

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;open the Stream Table window, showing entries starting with
Stream ID 0x10000
SMMU.StreamTable myGPU 0x10000
Armv8 and Armv9 Debugger | 275©1989-2024 Lauterbach

About the SMMU.StreamTable Window

[Back to Top]
By right-clicking an entry or double-clicking certain cells of an entry, you can open additional windows to
receive more information about the selected entry.

• Right-clicking opens the Popup Menu.

MMU-400, MMU-401, MMU-500:

• Double-clicking an entry in the columns ref. id, id mask, valid, or context type opens the
SMMU.StreamMapRegGrp.Register window.

• Double-clicking an SMRG in the two columns pagetbl. fmt opens the
SMMU.StreamMapRegGrp.list window, displaying the page table for stage 1 or stage 2.

• Double-clicking an SMRG in the two cbndx columns or the two state columns opens the
SMMU.StreamMapRegGrp.ContextReg window, displaying the context bank registers for
stage 1 or stage 2.

MMU-600 and newer:

• Double-clicking an entry in the columns configuration, VMID, stream world, or # sstrms opens
the SMMU.StreamTblEntry.Register window showing the stream entry registers.

• Double-clicking an entry in the column S2 PT fmt opens the SMMU.StreamTblEntry.list window,
displaying the stage 2 page table.

If an entry has only one stage 1 context descriptor:

• Double-clicking valid data in columns ASID or state ttb0/1 opens the SMMU.Register.S1Context
window, displaying the stage 1 context registers.

• Double-clicking valid data in column S1 PT fmt opens the SMMU.StreamTblEntry.list window,
displaying the stage 1 page table.

If an entry has more than one stage 1 context descriptor:

• Click on the list CDT button in column S1 PT fmt to open the SMMU.CtxtDescTable window,
listing all valid Context Descriptors for the stream entry. The SMMU.CtxtDescTable window
allows to view the registers and stage 1 page tables associated with each Context Descriptor.
Armv8 and Armv9 Debugger | 276©1989-2024 Lauterbach

Popup Menu: Show MMU-<type>

[Back to Top]

The entries visible in the popup menus depend on the capabilities of the SMMU such as the capability to
support stage 1 or stage 2 and if the SMMU supports two security states.

The popup menu in the SMMU.StreamTable window provides convenient shortcuts to the following
commands:

MMU-400, MMU-401 and MMU-500:

A Example popup menu for MMU-400, MMU-401 and MMU-500

B Example popup menu for MMU-600 and newer

Popup Menu Command

Stage 1 Page Table >
Stage 2 Page Table >

(--)

• List
• Dump

• SMMU.StreamMapRegGrp.list
• SMMU.StreamMapRegGrp.Dump

Peripherals > (--)

• Global Configuration Registers
• Stream Mapping Registers
• Context Bank Registers of Stage 1 and

Context Bank Registers of Stage 2

• SMMU.Register.Global
• SMMU.Register.StreamMapRegGrp
• SMMU.Register.ContextBank

Security State Determination Table (SSD) SMMU.SSDtable

A B
Armv8 and Armv9 Debugger | 277©1989-2024 Lauterbach

MMU-600 and newer:

Popup Menu Command

Stage 1 Context Descriptor Table SMMU.CtxtDescTable

Stage 1 Page Table >
Stage 2 Page Table >

(--)

• List
• Dump

• SMMU.StreamTblEntry.list
• SMMU.StreamTblEntry.Dump

Peripherals > (--)

• Global Configuration Registers
• MMU specific Registers
• Stream Table Entry Registers
• Stage 1 Context Descriptor Registers

• SMMU.Register.Global
• SMMU.Register.MMU
• SMMU.Register.StreamTblEntry
• SMMU.Register.S1Context

Dump Queue >
Dump associated Queue Entries >

(--)

• Event Queue
• Cmd Queue

• SMMU.DumpQueue.Event
• SMMU.DumpQueue.CMD
Armv8 and Armv9 Debugger | 278©1989-2024 Lauterbach

Description of Columns: SMMU.StreamTable Window

[Back to Top]

MMU-400, MMU-401 and MMU-500:

Column Name Description

stream map reg.
grp

• visibility: The column is only visible if the SMMU supports the two
security states secure and non-secure.

The label sec/nsec indicates that the SMRG is visible to secure and
non-secure accesses.

The label sec only indicates that the SMRG is visible to secure
accesses only.

• index: The index numbers start at 0x00 and are incremented by 1 per
SMRG.

stream matching See description of the columns ref. id, id mask, and valid below.

ref. id,
id mask,
and valid

If the SMMU supports stream matching, then the following columns are
visible: ref. id, id mask, and valid.
Otherwise, these columns are hidden.

context type Depending on the translation context of a stream mapping register group, the
following values are displayed [Description of Values]:
• s2 translation only
• s1 trsl - s2 trsl
• s1 trsl - s2 fault
• s1 trsl - s2 byp
• fault (s1 trsl-s2 trsl)
• fault (s1 trsl-s2 flt)
• fault (s1 trsl-s2 byp)
• fault
• bypass mode
• reserved
• HYPC or MONC

stage 1
pagetbl. fmt
or
stage 2
pagetbl. fmt

Displays the page table format of stage 1 or stage 2 [Description of Values]:
• Short descr. (32-bit Arm architecture only)
• Long descr. (32-bit Arm architecture only)
• AArch32 Short (64-bit Arm architecture only)
• AArch32 Long (64-bit Arm architecture only)
• AArch64 Long (64-bit Arm architecture only)

cbndx Displays the context bank index (cbndx) associated with the translation
context of stage 1 or stage 2.
Armv8 and Armv9 Debugger | 279©1989-2024 Lauterbach

MMU-600 and newer:

state Displays whether the MMU of stage 1 or stage 2 is enabled (ON) or disabled
(OFF) and whether a fault has occurred in a translation context bank:
• F: any single fault
• M: multiple faults
• S: the SMMU is stalled

The letters F, M, and S are highlighted in red in the SMMU.StreamTable
window (example).

The information about the faults is derived from the register
SMMU_CBn_FSR (fault status register of the context bank).

Double-click the respective state cell to open the
SMMU.StreamMapRegGrp.ContextReg window. The register
SMMU_CBn_FSR provides details about the fault.

Column Name Description

configuration Depending on the translation context of a stream entry, the following values
are displayed [Description of Values]:
• s1 translation only
• s2 translation only
• s1 trsl - s2 trsl
• bypass
• abort
A misconfiguration of the stream entry is indicated by a display of ILLEGAL.

S2 PT fmt
or
S1 PT fmt

Displays the page table format of stage 2 or stage 1:
• AArch32
• AArch64

VMID Displays the VMID of the stream table entry stage 2 registers

stream world Depending of the stream world of a stream entry, the following values are
displayed:
• NS-EL1
• EL2
• EL2-E2H
• EL3
• Secure
• Reserved

sstrms Displays the max. number of stage 1 context descriptors for the stream table
entry, as configured in the S1CDMAX field

ASID Displays the ASID of a stage 1 context descriptor

Column Name Description
Armv8 and Armv9 Debugger | 280©1989-2024 Lauterbach

S1 PT fmt If only a single context descriptor entry exists in the CDT associated with the
stream table entry, it’s stage 1page table format is displayed (AArch32 or
AArch64).
If the CDT contains more than one entry, a button labelled list CDT is
displayed which directly opens the CDT.

state ttb0/1 Displays the state of the stage 1 context tt0 / tt1 translation table disable bits,
where
tt0 refers to the address translation of the lower address range.
tt1 refers to the address translation of the upper address range.

Possible values for: tt0 / tt1
• on means the translation for the tt0 / tt1 address range is enabled
• off means the translation for the tt0 / tt1 address range is disabled

address of stream
table entries
or
address of con-
text desciptor
table entries

Displays table walk details, i.e. the physical addresses of the level 1 and/or
level 2 table entries.
If the table has only one level, one address is displayed, for a 2-level table two
addresses are displayed.

Column Name Description
Armv8 and Armv9 Debugger | 281©1989-2024 Lauterbach

Description of Values

[Back to Top]

MMU-400, MMU-401 and MMU-500:

Values in the Column
“context type”

Description

s2 translation only Context defines a stage 2 translation only

s1 trsl - s2 trsl Context defines a stage 1 translation, followed by a stage 2
translation (nested translation)

s1 trsl - s2 fault Context defines a stage 1 translation followed by a stage 2 fault

s1 trsl - s2 byp Context defines a stage 1 translation followed by a stage 2 bypass

fault (s1 trsl-s2 trsl) Context defines a stage 1 translation followed by a stage 2
translation, but SMMU has no stage 1 (SMMU configuration fault)

fault (s1 trsl-s2 flt) Context defines a stage 1 translation followed by a stage 2 fault, but
SMMU has no stage 1 (SMMU configuration fault)

fault (s1 trsl-s2 byp) Context defines a stage 1 translation followed by a stage 2 bypassn,
but SMMU has no stage 1 (SMMU configuration fault)

fault Context defines a fault

bypass mode Context defines bypass mode

reserved Context type is improperly defined

HYPC Is displayed on the right-hand side of the column if the context is a
hypervisor context.

MONC Is displayed on the right-hand side of the column if the context is a
monitor context.

Values in the Columns
“stage 1 pagetbl. fmt”
“stage 2 pagetbl. fmt”

Description

Short descr. Page table uses the 32-bit short descriptor format
(32-bit targets only)

Long descr. Page table uses the 32-bit long descriptor (LPAE) format
(32-bit targets only)

AArch32 Short Page table uses the 32-bit short descriptor format
(64-bit targets only)

AArch32 Long Page table uses the 32-bit long descriptor (LPAE) format
(64-bit targets only)

AArch64 Long Page table uses the 64-bit long descriptor (LPAE) format
(64-bit targets only)
Armv8 and Armv9 Debugger | 282©1989-2024 Lauterbach

MMU-600 and newer:

Values in the Column
“configuration”

Description

s1 translation only Context defines a stage 1 translation only

s2 translation only Context defines a stage 2 translation only

s1 trsl - s2 trsl Context defines a stage 1 translation, followed by a stage 2
translation

bypass Context defines bypass mode, no translation is performed.

abort Context defines an abort condition.

ILLEGAL (s1 trsl only) Misconfiguration of the stream table entry:
stage 1 translation is configured but not supported

ILLEGAL (s2 trsl only) Misconfiguration of the stream table entry:
stage 2 translation is configured but not supported

ILLEGAL (s1 + s2 trsl) Misconfiguration of the stream table entry:
stage 1+2 translations are configured but not supported

ILLEGAL (secure+s2 trsl) Misconfiguration of the stream table entry:
stage 2 translation is configured in a secure stream table entry
Armv8 and Armv9 Debugger | 283©1989-2024 Lauterbach

Display of Global Faults or Global Errors in an SMMU
[Back to Top]

Codes in the gray window status bar at the bottom of the SMMU.StreamTable window indicate the current
global fault / global error status of the SMMU:

MMU-400, MMU-401, MMU-500:
These codes for the global faults are MULTI, UUT, PF, EF, CAF, UCIF, UCBF, SMCF, USF, ICF [A].
These flags correspond to the flags of the SMMU_sGFSR register.

To view the descriptions of the global faults, double-click the gray window status bar to open the
SMMU.Register.Global window [A]. Scroll down to the SMMU_sGFSR [B] or the SMMU_GERROR
register. The global faults are described in the column on the right [C].

A Codes of global faults (for MMU-500 in this screen shot).

B The information about the global faults is derived from the register SMMU_sGFSR (secure global
fault status register).

C Descriptions of the global faults in the SMMU.Register.Global window.

C

B

A

Armv8 and Armv9 Debugger | 284©1989-2024 Lauterbach

MMU-600 and newer:
These codes for the global errors are SFM, MSI_GERROR, MSI_PRIQ, MSI_EVENTQ, MSI_CMDQ,
PRIQ, EVENTQ, CMDQ [A].
These flags correspond to the flags of the SMMU_GERROR register.

Finding streams which are in a fault / error state

MMU-400, MMU-401 and MMU-500:
A red letter in a stage 1 cbndx state column or a stage 2 state column of the SMMU.StreamTable window
indicates a fault in a context bank. For descriptions of these faults, see state column.

MMU-600 and newer:
Use the Event Queue Window SMMU.DumpQueue.Event to view error events.
The command supplies options to filter and view events for a certain <stream_id> and/or <substream_id>
range and it is possible to filter certain event types.

In SMMU.StreamTable or SMMU.CtxtDescTable window, use the popup menu entry Dump associated
Queue Entries to dump queue entries for specific stream entry or context descriptor table entry.

SMMU.StreamTblEntry Access to a stream table entry
MMU-600 and newer only

The SMMU.StreamTblEntry command group allows to view the details of the translation context associated
with a Stream Table Entry and/or a stage 1 Context Descriptor. Every STE is identified by its <stream_id>. A
CD is identified by both a <stream_id> and a <substream_id>. In case a stream table entry supports only a
single stage 1 CD the <substream_id> can be omitted.

A Codes of global error flags (for MMU-600 in this screen shot).

B The information about the global error flags set is derived from an XOR operation for the registers
SMMU_GERROR and SMMU_GERRORN.

C Descriptions of the global error flags in the SMMU.Register.Global window.

A

B

C

Armv8 and Armv9 Debugger | 285©1989-2024 Lauterbach

The SMMU.StreamTblEntry command group provides the following commands:

The three SMMU.StreamTblEntry commands feature common options:

• /SUBstream <substream_id>: apply the command for a CD with the <substream_id>

• /SECure: target the secure SMMU entries with the command

SMMU.StreamTblEntry.Register Shows the registers of a STE or a CD.

SMMU.StreamTblEntry.list Lists the page table associated with stage 1 or stage 2
translation in a compact format.

SMMU.StreamTblEntry.Dump Dumps the page table entries associated with stage 1 or
stage 2 translation page wise.
Armv8 and Armv9 Debugger | 286©1989-2024 Lauterbach

SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table
MMU-600 and newer only

Opens the SMMU.StreamTblEntry.Dump window for the specified <stream_id>. This window dumps the
page table content page-wise. If you prefer a compact view, use command SMMU.StreamTblEntry.list

If option /SECure is specified, the command targets the secure SMMU view.

You can dump any stage 1 or the stage 2 page table associated with the STE specified by <stream_id>.

To dump the stage 2 page table of the STE, specify only option /IntermediatePT.

To dump the stage 1 page table defined by a Context Descriptor of the STE, you must additionally specify
the Substream ID of the Context Descriptor using option /SubStreamID <substream_id>.

If no valid translation context is defined, the window displays the error message “registerset undefined”.

For a description of the columns in the SMMU.StreamTableEntry.Dump window, click here.

Arguments:

Format: SMMU.StreamTableEntry.Dump <args>

<args>: <name> <stream_id> [<address> | <range> [<ttb_address>]] [/SubStreamID
<substream_id>] [/IntermediatePT] [/SECure]

<name> For a description of <name>, etc., click here.

<stream_id> Defines the STE of which a page table has to be dumped.

<address> | <range> If specified, start the dump with <address> or, alternatively, limit the
dumped address range to address to <range>.

<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the STE and/or CD
context.

/SubStreamID
<substream_id>

Omit this option to view translation table entries of stage 2.
Include this option to view the stage 1 translation table entries of the Context
Descriptor with substream <substream_id>.

If the STE has only one Context Descriptor, you can omit option
/SubStreamID <substream_id>. In this case, the stage 1 page table of
the Context Descriptor with substream 0 will be displayed. I

IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.

In SMMUs that support only stage 2 page tables, this option can be
omitted.
Armv8 and Armv9 Debugger | 287©1989-2024 Lauterbach

Examples:

To display an SMMU page table page-wise via the user interface TRACE32 PowerView, see here.

SMMU.StreamTblEntry.list List page table entries
MMU-600 and newer only

Opens the SMMU.StreamTblEntry.list window for the specified <stream_id>. This window shows a
compact list of consecutive address ranges in the page table which have a uniform, valid translation.

The syntax and arguments are identical to command SMMU.StreamTblEntry.Dump and are described
there.

;Dump the stage 2 page table of the STE with Stream ID 0x6BE974B for SMMU
“myGPU”
SMMU.StreamTblEntry.Dump myGPU 0x6BE974B /IntermediatePE

;Dump the stage 1 page table of Substream ID 0x2 which belongs to the STE
with Stream ID 0x6BE974B.
SMMU.StreamTblEntry.Dump myGPU 0x6BE974B /SubStreamID 0x2

;As above, but start dumping at address 0x80000000
SMMU.StreamTblEntry.Dump myGPU 0x6BE974B 0x80000000 /SubStreamID 0x2

Format: SMMU.StreamTableEntry.list<args>

<args>: <name> <stream_id> [<address> | <range> [<ttb_address>]] [/SubStreamID
<substream_id>] [/IntermediatePT] [/SECure]
Armv8 and Armv9 Debugger | 288©1989-2024 Lauterbach

SMMU.StreamTblEntry.Register Display STE or CD registers
MMU-600 and newer only

If specified without option /SubStreamID <substream_id>, this is an alias for command
SMMU.Register.StreamTblEntry. It opens the peripheral register window for the SMMU named
<name> and displays the registers of the Stream Table Entry which is specified by <stream_id>.

If specified with option /SubStreamID <substream_id>, this command opens the peripheral register
window for the SMMU named <name> and displays the registers of the Context Descriptor with
substream <substream_id>, belonging to the Stream Table Entry with <stream_id>.

If option /SECure is specified, the command targets the secure SMMU view.

Example:

Format: SMMU.Register.StreamTblEntry <args>

<args> : <name> <stream_id> [/SubStreamID <substream_id>] [/SECure]

;list the registers of the Stream Table Entry with Stream ID 0x6B9743
from the secure Stream Table of SMMU “myGPU”
SMMU.StreamTable myGPU 0x6B9743 /SECure

;list the registers of the Context Descriptor with Substream ID 0x3,
belonging to the secure Stream Table Entry with Stream ID 0x6B9743
SMMU.StreamTable myGPU 0x6B9743 /SubStreamID 0x3 /SECure
Armv8 and Armv9 Debugger | 289©1989-2024 Lauterbach

Target Adaption

Probe Cables

For debugging, two kinds of probe cables can be used to connect the debugger to the target:
“Debug Cable” and “CombiProbe”.

The CombiProbe is mainly used in case a system trace port is available because it includes besides the
debug interface a 4-bit wide trace port which is sufficient for program trace or for system trace.

For off-chip program trace, an additional trace probe cable “Preprocessor” is needed.

Interface Standards JTAG, Serial Wire Debug, cJTAG

Debug Cable and CombiProbe support JTAG (IEEE 1149.1), Serial Wire Debug (CoreSight Arm), and
Compact JTAG (IEEE 1149.7, cJTAG) interface standards. The different modes are supported by the same
connector. Only some signals get a different function. The mode can be selected by debugger commands.
This assumes of course that your target supports this interface standard.

Serial Wire Debug is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [SWD | JTAG]. In a
multidrop configuration you need to specify the address of your debug client by SYStem.CONFIG
SWDPTARGETSEL.

cJTAG is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [CJTAG | JTAG]. Your system
might need bug fixes which can be activated by SYStem.CONFIG CJTAGFLAGS.

Serial Wire Debug (SWD) and Compact JTAG (cJTAG) require a Debug Cable version V4 or newer
(delivered since 2008) or a CombiProbe (any version) and one of the newer base modules (Power Debug
Pro, Power Debug Interface USB 2.0/USB 3.0, Power Debug Ethernet, PowerTrace or Power Debug II).
Armv8 and Armv9 Debugger | 290©1989-2024 Lauterbach

Connector Type and Pinout

Debug Cable

Adaptation for Arm Debug Cable: See https://www.lauterbach.com/adarmdbg.html.

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints, refer to “ARM JTAG Interface Specifications”
(app_arm_jtag.pdf).

CombiProbe

Adaptation for Arm CombiProbe: See https://www.lauterbach.com/adarmcombi.html.

The CombiProbe will always be delivered with 10-pin, 20-pin, 34-pin connectors. The CombiProbe cannot
detect which one is used. If you use the trace of the CombiProbe you need to inform about the used
connector because the trace signals can be at different locations: SYStem.CONFIG CONNECTOR [MIPI34
| MIPI20T].

If you use more than one CombiProbe cable (twin cable is no standard delivery) you need to specify which
one you want to use by SYStem.CONFIG DEBUGPORT [DebugCableA | DebugCableB]. The
CombiProbe can detect the location of the cable if only one is connected.

Preprocessor

Adaptation for Arm ETM Preprocessor Mictor: See https://www.lauterbach.com/adetmmictor.html.

Adaptation for Arm ETM Preprocessor MIPI-60: See https://www.lauterbach.com/adetmmipi60.html.

Adaptation for Arm ETM Preprocessor HSSTP: See https://www.lauterbach.com/adetmhsstp.html.

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
Armv8 and Armv9 Debugger | 291©1989-2024 Lauterbach

https://www.lauterbach.com/adarmdbg.html
https://www.lauterbach.com/adarmcombi.html
https://www.lauterbach.com/adetmmictor.html
https://www.lauterbach.com/adetmmipi60.html
https://www.lauterbach.com/adetmhsstp.html

	Armv8 and Armv9 Debugger
	History
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Quick Start of the JTAG Debugger
	Configure Debugger for SoC Specific Reset Behavior

	Troubleshooting
	Communication between Debugger and Processor cannot be established

	FAQ
	Trace Extensions

	Quick Start for Multicore Debugging
	SMP Debugging - Quick Start
	1. How to Debug a System with Multiple Identical Cores
	2. Set up the SMP Debug Scenario
	3. Enter Debug Mode
	4. Switch Debug View between Cores
	5. Write a Start-up Script Summary

	AMP Debugging - Quick Start
	1. How to Debug a System with Multiple Heterogenous Cores
	2. Starting the TRACE32 PowerView GUIs
	3. Master-Slave Concept
	4. Setting up the Multicore Environment
	5. Synchronized Go / Step / Break
	6. Write a Start-up Script Summary

	Arm Specific Implementations
	AArch Mode Support
	AArch64 and AArch32 Debugging
	AArch64 and AArch32 Switching

	TrustZone Technology
	AArch64 Secure Model
	AArch32 Secure Model
	Debug Permission
	Checking Debug Permission
	Checking Secure State
	Changing the Secure State from within TRACE32
	AArch64 System Registers Access
	AArch32 Coprocessor Registers Access
	Accessing Cache and TLB Contents
	Breakpoints and Vector Catch Register
	Breakpoints and Secure Modes

	big.LITTLE
	Debugger Setup
	Consequence for Debugging
	Requirements for the Target Software
	big.LITTLE MP

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Example for Standard Breakpoints
	Secure, Non-Secure, Hypervisor Breakpoints
	Example for ETM Stopping Breakpoints

	Access Classes
	System Registers (AArch64 Mode)
	Coprocessors (AArch32 Mode)
	Accessing Memory at Run-time
	Semihosting
	AArch64 HLT Emulation Mode
	AArch64 DCC Communication Mode (DCC = Debug Communication Channel)
	AArch32 SVC (SWI) Emulation Mode
	AArch32 DCC Communication Mode (DCC = Debug Communication Channel)

	Virtual Terminal
	Large Physical Address Extension (LPAE)
	Consequence for Debugging

	Virtualization Extension, Hypervisor
	Consequence for Debugging

	Debug Field
	Run Mode

	Run-time Measurements
	Trigger

	Arm specific SYStem Commands
	SYStem.CLOCK Inform debugger about core clock
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CONFIG.BMCSnapshot.Base Synchronous BMC sampling
	SYStem.CONFIG.EXTWDTDIS Disable external watchdog
	SYStem.CONFIG.GICD Generic Interrupt Controller Distributor (GIC)
	SYStem.CONFIG.GICR Generic Interrupt Controller Redistributor
	SYStem.CONFIG.GICC Generic Interrupt Controller physical CPU interface
	SYStem.CONFIG.GICH Generic Interrupt Controller virtual interface control
	SYStem.CONFIG.GICV Generic Interrupt Controller virtual CPU interface
	SYStem.CONFIG.SMMU Internal use
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define the frequency of the debug port
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option Special setup
	SYStem.Option.Address32 Define address format display
	SYStem.Option.AXI32 Use 32-bit atomic AXI accesses instead of 64-bit
	SYStem.Option.BreakOS Allow break during OS-unlock
	SYStem.Option.CacheStatusCheck Check status bits during cache access
	SYStem.Option.CFLUSH FLUSH the cache before step/go
	SYStem.Option.CLTAPKEY Set key values for CLTAP operation
	SYStem.Option.CoreSightRESet Assert CPU reset via CTRL/STAT
	SYStem.Option.CTIGate CTI gate control
	SYStem.Option.CTITimerStop Stop system timer when CPU stops
	SYStem.Option.DACRBYPASS Ignore DACR access permission settings
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2
	SYStem.Option.DBGCLAIM Debug and PMU claim
	SYStem.Option.DBGSPR Use debugger view for SPR access
	SYStem.Option.DBGUNLOCK Unlock debug register via OSLAR
	SYStem.Option.DCacheMaintenance Data cache maintenance strategy
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DIAG Activate more log messages
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.EDACR Define 32-bit value written to EDACR register
	SYStem.Option.ENFORCECPSWITCH Try AArch32 for C1x access
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.FunctionalRESet Custom functional reset
	SYStem.Option.HRCWOVerRide Enable override mechanism
	SYStem.Option.ICacheMaintenance I-Cache maintenance strategy
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.INTDIS Disable all interrupts
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.KEYCODE Define key code to unsecure processor
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP
	SYStem.Option.MemStatusCheck Check status bits during memory access
	SYStem.Option.MMUPhysLogMemaccess Memory access preferences
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MPUBYPASS Ignore MPU access permission settings
	SYStem.Option.NOMA Use alternative memory access
	SYStem.Option.NoPRCRReset Disable warm reset via PRCR
	SYStem.Option.OSUnlockCatch Use the "OS Unlock Catch" debug event
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PALLADIUM Extend debugger timeout
	SYStem.Option.PWRDWN Allow power-down mode
	SYStem.Option.PAN Overwrite CPSR.PAN setting
	SYStem.Option.PWRREQ Request core power
	SYStem.Option.ResBreak Halt the core after reset
	SYStem.Option.ResetDetection Choose method to detect a target reset
	SYStem.RESetOut Assert nRESET/nSRST on JTAG connector
	SYStem.Option.RESetREGister Generic software reset
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.Option.SLaVeSOFTRESet Allow soft reset of slave cores
	SYStem.Option.SMPMultipleCall Send start event to each SMP core
	SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint
	SYStem.Option.SOFTQUAD Use 64-bit access to set breakpoint
	SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping
	SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint
	SYStem.Option.TraceFilterOverride Enable/Disable trace filter override
	SYStem.Option.TURBO Disable cache maintenance during memory access
	SYStem.state Display SYStem window
	SYStem.Option.SoftLockUNLOCK Unlock software lock via EDLAR
	SYStem.Option.SYSPWRUPREQ Force system power
	SYStem.Option.TRST Allow debugger to drive TRST
	SYStem.Option.WaitCTIREG Wait for CTI registers after reset
	SYStem.Option.WaitDAPPWR Wait for DAP power after DAP power request
	SYStem.Option.WaitDBGREG Wait for core debug registers after reset
	SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset
	SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
	SYStem.Option.ZoneSPACES Enable symbol management for Arm zones
	Overview of Debugging with Zones
	Operation System Support - Defining a Zone-specific OS Awareness

	SYStem.Option.ZYNQJTAGINDEPENDENT Configure JTAG cascading

	Arm specific Functions
	STATE.NOCTIACCESS()
	STATE.NOCPUACCESS()
	SYStem.Option.HRCWOVerRide()

	Arm specific Benchmarking Commands
	BMC.<counter>.CountEL<x> Select exception level events to be counted
	BMC.EXPORT Export benchmarking events from event bus
	BMC.LongCycle Configure cycle counter width
	BMC.PRESCALER Prescale the measured cycles

	Arm specific TrOnchip Commands
	TrOnchip.ContextID Enable context ID comparison
	TrOnchip.CONVert Allow extension of address range of breakpoint
	TrOnchip.MachineID Extend on-chip breakpoint/trace filter by machine ID
	TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID
	TrOnchip.MatchMachine Extend on-chip breakpoint/trace filter by machine
	TrOnchip.MatchZone Extend on-chip breakpoint/trace filter by zone
	TrOnchip.RESERVE Exclude breakpoint or watchpoint from debugger usage
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.Set Set bits in the vector catch register
	TrOnchip.StepVector Step into exception handler
	TrOnchip.StepVectorResume Catch exceptions and resume single step
	TrOnchip.VarCONVert Convert breakpoints on scalar variables
	TrOnchip.state Display on-chip trigger window

	Cache Analysis and Maintenance
	TRACE32 Cache Support by CPU Type

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	TRACE32 TLB Support by CPU Type

	CPU specific SMMU Commands
	SMMU Hardware system MMU (SMMU)
	SMMU.ADD Define a new hardware system MMU
	SMMU.Clear Delete an SMMU
	SMMU.CtxtDescTable List a context descriptor table
	SMMU.DumpQueue.<queue> Dump entries of a queue
	SMMU.DumpQueue.CMD Dump cmd queue entries
	SMMU.DumpQueue.Event Dump event queue entries
	SMMU.Register Peripheral registers of an SMMU
	SMMU.Register.ContextBank Display registers of context bank
	SMMU.Register.Global Display global registers of SMMU
	SMMU.Register.MMUregs Display MMU specific registers
	SMMU.Register.S1Context Display stage 1 context descriptor registers
	SMMU.Register.StreamTblEntry Display stream table entry registers
	SMMU.Register.StreamMapRegGrp Display registers of an SMRG
	SMMU.RESet Delete all SMMU definitions
	SMMU.SSDtable Display security state determination table
	SMMU.StreamMapRegGrp Access to stream map table entries
	SMMU.StreamMapRegGrp.ContextReg Display context bank registers
	SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table
	SMMU.StreamMapRegGrp.list List page table entries
	SMMU.StreamTable Display a stream table
	Display of Global Faults or Global Errors in an SMMU
	Finding streams which are in a fault / error state

	SMMU.StreamTblEntry Access to a stream table entry
	SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table
	SMMU.StreamTblEntry.list List page table entries
	SMMU.StreamTblEntry.Register Display STE or CD registers

	Target Adaption
	Probe Cables
	Interface Standards JTAG, Serial Wire Debug, cJTAG
	Connector Type and Pinout
	Debug Cable
	CombiProbe
	Preprocessor

