LAUTERBACH A

APS Debugger

APS Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
Y r—
Y = 7= o 11 ' o = N 1

L (oo L1 T o o 5

Brief Overview of Documents for New Users 5

Demo and Start-up Scripts 5
L= T 1 ' 6

L@ T TG - o 7

QLo 18] o == 0 T To7 £ 3V 9

O 10

CPU specific SYStem Settingscccccvvmmiininiminnsnrnnsssn s ssmsssneas 11
SYStem.CONFIG.state Display target configuration 11
SYStem.CONFIG Configure debugger according to target topology 12
Multicore Example 14
SYStem.CPU Select the used CPU 15
SYStem.JtagClock Define JTAG clock 16
SYStem.MemAccess Select run-time memory access method 16
SYStem.Mode Establish the communication with the target 17
SYStem.LOCK Lock and tristate the debug port 17
SYStem.Option.IMASKASM Disable interrupts while single stepping 18
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 19
SYStem.Option.IntelSOC Slave core is part of Intel® SoC 19
SYStem.Option.MonType Selects monitor type 20

Cortus monitor vs. built-in monitor 21
SYStem.Option.MonBase Register base address 21
Built-In Monitor 22

Custom Monitor 22
=== | o T T] 1= 23
Software breakpoints 23
On-chip breakpoints for instructions 23
©1989-2024 Lauterbach APS Debugger 2

(0 10T 1T o R0 = U = 24

Onchip.Mode Type of trace records 24
Quickstart 24
CPU specific TrOnchip Commandscccccccmmiiiiimmmmninessrnesssss s sssssssssssns 25
1 1=T 5 0 o] A 03 T L= 26
0 17X € 0o T3 T T e (o 27
JTAG Connector for ARM-like Designs 27
JTAG Connector for Atom-like Designs 28

©1989-2024 Lauterbach APS Debugger | 3

APS Debugger

Version 06-Jun-2024

©1989-2024 Lauterbach APS Debugger | 4

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known APS based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/aps/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach APS Debugger | 5

Warning

NOTE:

To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the debug cable from the target while the target power is off.
Connect the host system, the TRACES32 hardware and the debug cable.
Start the TRACES32 software to load the debugger firmware.

Connect the debug cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:
. Switch off the target power.
. Disconnect the debug cable from the target.

©1989-2024 Lauterbach

APS Debugger |

6

Quick Start

Starting up the debugger is done as follows:

1.

Select the device prompt for the ICD Debugger and reset the TRACE32 development tool.
B::

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

Specify the CPU specific settings.

SYStem.CPU <cpu_type>

After choosing the CPU, the default values of all other options are automatically set in such a way that
it should be possible to work without modifying them. But please consider that this might not be the
optimal configuration for your target.

NOTE: For a multi-core target it is most likely necessary to configure the multi-core settings using
SYStem.CONFIG before continuing.

Attach to the target and enter debug mode.

SYStem.Mode.Attach

Break

The first command attaches the debugger to the running target. The second command stops the
target and enters debug mode. After these commands are executed it is possible to access memory
and registers.

A typical start sequence for the Cortus APS3 is shown below. This sequence can be written to a PRACTICE
script file (*.cmm, ASCII format) and executed with the command DO <file>.

IBER

RESet

WinClear

SYStem.CPU APS3S

SYStem.Mode.Attach

7

Select the ICD device prompt
Reset the TRACE32 software
Clear all windows

Select CPU

Attach to the running target

©1989-2024 Lauterbach

APS Debugger

Break ; Stop the target and enter debug mode
Register.view /SpotLight ; Open register window @)

List.Mix ; Open source code window *)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach APS Debugger | 8

Troubleshooting

Error Message

Event

Reason

target power fail

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Target has no power or debug cable is
not connected. Check if the JTAG VCC
pin is driven by the target.

target processor in reset

SYStem.Down

ARM cable: The debugger senses a
reset on JTAG pin 15 (SRST-). Ignore
error message or tie pin to JTAG VCC
via pull-up.

Target not connected or
JTAG chain not
configured correctly:
Returned IR[1:0] != “01”

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

On every startup, the debugger checks
the JTAG Instruction Register (IR) of
the target. If the last two bits are not
“01”, verify your JTAG settings via
SYStem.CONFIG.

Cannot install built-in
monitor.

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Unexpected error during installation of
the built-in monitor. Please consult
your Lauterbach representative.

Warning: Standard
Cortus monitor not
found!

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Your APS3 executable does not

contain the original Cortus monitor

program.

- Recompile your project with default
settings

- Reload the executable into the target

- If you have written your own monitor
program:
SYStem.Option.MonType.CUSTOM

Warning: Standard Built-
In monitor not found!

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Either the interrupt vector table or the
assigned register base address reside
in a non-volatile memory (ROM,
Flash).

- Check SYStem.Option.MonBase

- Consult your Lauterbach
representative

Register address must
be aligned to 4-byte
boundary!

SYStem.Option.MonBase

Only register base addresses are

allowed which are a multiple of 4 bytes.

No response from
monitor program, CPU
forced to stop

Break

The CPU has not entered the monitor
program, probably because one (or
more) enable bits have been disabled:
1) PSR -> IEN

2) Interrupt Controller -> GIC -> IEN
3) Interrupt Controller -> PIRC4 -> IEN

©1989-2024 Lauterbach

APS Debugger |

9

The number of
<number> accessed
bytes in memory is not a
multiple of the access
size <size> bytes.

No special event

Internal error, please consult your
Lauterbach representative.

Memory address
<address> is not aligned
to access size <size>.

No special event

Internal error, please consult your
Lauterbach representative.

Invalid memory access
size: <size> bytes (@
address <address>)

No special event

Internal error, please consult your
Lauterbach representative.

Memory access timeout:
Reading from address
<address>

No special event

Corrupted JTAG connection. Check
JTAG hardware and settings.

lllegal instruction at
address <address>

SYStem.Mode.Go
Go
Step

The CPU has encountered an illegal

instruction.

- Check CPU type: SYStem.CPU

- Check program execution flow of your
APS3 executable

Critical error at address
<address>!

SYStem.Mode.Go
Go

The CPU has encountered an
undefined exception. Check program

Step execution flow of your APS3
executable.
Unknown interrupt Break Your APS3 executable has written data
<integer> Breakpoint to the reserved RAM area of the

monitor program.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach APS Debugger | 10

https://support.lauterbach.com/kb

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: Jtag | Miscellaneous

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

Miscellaneous For multicore systems, you can define on this tab whether cores are
organized in a shared-memory or local-memory manner.
(default: OFF)

©1989-2024 Lauterbach APS Debugger | 11

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>
<parameter>: IRPRE <bits>
IRPOST <bits>

DRPRE <bits>

DRPOST <bits>

IRLength <bits>
MultiCoreLocal [ON | OFF]
CoreNumber <number>
TriState [ON | OFF]

Slave [ON | OFF]
TAPState <state>
TCKLevel </evel>

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger of the TAP
controller position in the JTAG chain if there is more than one core in the JTAG chain. The information is
required before the debugger can be activated, e.g., by a SYStem.Mode.Attach.

TriState has to be used if several debuggers are connected to a common JTAG port at the same time.
TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches
to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or
pull-down resistor, other trigger inputs need to be kept in inactive state.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

IRLength Size of the JTAG instruction register in <bits>. Useful in case the TAP of
the APS3 IP is under development and differs from the default size.
(default: 8)

©1989-2024 Lauterbach APS Debugger | 12

MultiCoreLocal

CoreNumber

TriState [ON | OFF]

Slave [ON | OFF]

TAPState

TCKLevel [0] 1]

For multicore systems this option defines whether cores are organized in
a shared-memory or local-memory manner.
(default: OFF)

<number> of cores in a shared-memory or local-memory multicore
system. (default: 1)

The debugger switches to tristate mode after each debug port access. If
several debuggers share the same debug port, this option is required.
Then other debuggers can access the port. (default: OFF)

Defines the master in a multicore chip. Only one core can be the master
of the chip reset, the TAP reset and the chip initialization features. All
other cores are slave cores. (default: OFF)

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.
(default: 7 = Select-DR-Scan)

Level of TCK signal when all debuggers are tristated. (default: 0)

©1989-2024 Lauterbach

APS Debugger | 13

Multicore Example

TDl——-® Core A —Core B

- Core C—» Core D

— TDO

Chip0

Chip 1

Assume you want to debug Core C. The instruction register lengths of the other cores are:

o Core A: 3 bit
o Core B: 5 bit
o Core D: 6 bit

Then the multicore settings must be configured as follows:

SYStem.CONFIG.IRPRE 6

SYStem.CONFIG.IRPOST 8

SYStem.CONFIG.DRPRE 1

SYStem.CONFIG.DRPOST 2

; IR Core D

; IR Core A + B

; DR Core D

; DR Core A + B

©1989-2024 Lauterbach

APS Debugger

14

TapStates

0 Exit2-DR

© 00 N o o0~ W N =

—_ - e e o
a A WO MDD =+ O

Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

Test-Logic-Reset

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: APS3 | APS3S | APS3B | APS3BS | CryptoCell

Default: APS3

Selects the processor type.

©1989-2024 Lauterbach

APS Debugger

15

SYStem.JtagClock Define JTAG clock

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK | CTCK | CRTCK]
SYStem.BdmClock [<frequency> | ...] (deprecated)

Default: 1 MHz.

Selects the frequency for the debug interface. RTCK, ARTCK, CTCK and CRTCK are not supported.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | Denied | StopAndGo

Default: Denied.

Enable Memory access during program execution to target is enabled. Only run-
CPU (deprecated) time memory classes can be accessed.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.

Denied Memory access during program execution to target is disabled.

©1989-2024 Lauterbach APS Debugger | 16

SYStem.Mode Establish the communication with the target
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
Go
Attach
Up
Down Disables the debugger (default). The state of the CPU remains
unchanged.
Go Resets the target and starts execution.
Attach Connects the debugger to the running target. The state of the CPU
remains unchanged.
Up Resets the target and stops the CPU at the reset vector.
NoDebug Not supported.
StandBy Not supported.
Prepare Not supported.
SYStem.LOCK Lock and tristate the debug port
Format: SYStem.LOCK [ON | OFF]
Default: OFF

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach

APS Debugger | 17

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

©1989-2024 Lauterbach APS Debugger | 18

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC
Format: SYStem.Option.IntelSOC [ON | OFF]
Default: OFF.

Informs the debugger that the core is part of an Intel® SoC. When enabled, all IR and DR pre/post settings
are handled automatically, no manual configuration is necessary.

Requires that the debugger for this core is slave in a multicore setup with x86 as the master debugger and
that SYStem.Option.CLTAPOnly is enabled in the x86 debugger.

©1989-2024 Lauterbach APS Debugger | 19

SYStem.Option.MonType Selects monitor type

Format:

<type>:

SYStem.Option.MonType <type>

Cortus
Built-In
CUSTOM

Default: Cortus

Cortus

Built-In

CUSTOM

The standard monitor stub provided by Cortus.

Usually the Cortus monitor program is part of the startup code of the
APSS toolchain. It can be found in file crt0.c, which will be included in
every APS3 executable by default.

A small monitor program dynamically loaded into the target.

If this option is selected, TRACES32 loads a small monitor program into
the RAM of the target. It will completely be removed from the target’s
memory after a power down.

In contrast to the Cortus monitor, no dedicated startup code is required.
However it must be ensured, that the built-in monitor does not interfere
with application data (also see SYStem.Option.MonBase)!

A custom defined monitor program.
Please refer to SYStem.Option.MonBase for how to write your own
monitor program.

©1989-2024 Lauterbach

APS Debugger | 20

Cortus monitor vs. built-in monitor

Reserved MonBase Non-vola- Stack Miscellaneous
RAM space tile memory usage
(size) consumed
Cortus 72 bytes 0 .. 2M6-size yes 0 bytes Single stepping
not available in
startup code.
Built_In 300 bytes 0 .. 2/A32-size no 8 bytes Single stepping
available on 3rd
instruction after
reset.
SYStem.Option.MonBase Register base address
Format: SYStem.Option.MonBase <address>

Defines the base address of mirrored CPU registers in RAM. This option only becomes available if the built-

in or custom monitor has been selected via SYStem.Option.MonType.

As a limiting characteristic of the APS3, the CPU registers (RO to R15, RTT and PSR) cannot be accessed
via JTAG directly. Hence a monitor program has to forward all read- and write accesses from and to the CPU
registers. To be more precisely, the CPU registers are mirrored to a location in RAM.

©1989-2024 Lauterbach

APS Debugger |

21

Based on the Cortus monitor, the structure of the mirrored registers must always be organized as follows:

MonBase RO

R1

R15

RTT

MonBase + 72. PSR

Built-In Monitor

A total of 228 instruction bytes are necessary for the built-in monitor to work. These instructions are
appended in RAM to the mirrored registers, resulting in a RAM usage of 300 bytes. Therefore no application
data should be placed within the address range of MonBase .. MonBase + 300. Additionally the application
must reserve 8 bytes of the stack for the built-in monitor.

Custom Monitor

As soon as the standard Cortus monitor is modified or replaced, the new monitor program should be
declared as "custom’ with MonBase set accordingly.

Steps to write your own monitor program:

Assign your routines to interrupt request lines IRQ1 to IRQ4.
Enable the interrupt controller.

Enable IRQ4 (IRQ1 to IRQ3 are not maskable).

Enable interrupt bit in the IEN register.

In the interrupt routines, pass interrupt source in RO.

For more detailed information, please consult the Cortus startup code in file crt0.c

©1989-2024 Lauterbach APS Debugger | 22

Breakpoints

Software breakpoints

If a software breakpoint is set, the corresponding program code is replaced by a trap instruction. Thus
software breakpoints can only be applied to program code residing in a RAM.

There is no restriction in the number of software breakpoints.

On-chip breakpoints for instructions

The APS3 breakpoint module provides three on-chip breakpoints for instructions. These can be located
either in a volatile or non-volatile memory.

©1989-2024 Lauterbach APS Debugger | 23

Onchip Trace

This trace method can only be used if the APS3 core features a trace module and trace buffer. Otherwise the
activation of the onchip trace might result in an undefined behavior of the APS3.

Onchip.Mode Type of trace records
Format: Onchip.Mode <mode>
<mode>: PcOnly
PcRegs

Default: PcOnly

PcOnly Records the PC only.
A trace record is written to the trace buffer whenever the CPU is
interrupted from its straightforward program execution. Events that cause
an interruption are: Calls, jumps, (un)conditional breaks, traps, interrupts
and returns from interrupts.
This option currently only works for the built-in monitor!

PcRegs Records PC and register writes.
In addition to writes to the PC, also writes to registers R0-R15, RTT and
PSR are recorded. Read accesses are not traced.
For this reason the trace buffer is filled with data more quickly and the
program execution flow cannot be traced back as far as in PcOnly mode.
However interrupts can be detected properly in PCRegs mode only.

Quickstart
. The onchip trace is automatically initialized on activation and is ready for use instantly.
. If the onchip mode is changed, the trace must be reset via Onchip.RESet.

. Every Onchip.RESet must be followed by an Onchip.Init.

. Onchip.List displays the reconstructed program flow. If the trace mode is PcOnly, interrupt
addresses cannot be determined exactly. Interrupt labels in the trace window then are placed
right before the next branch, jump, call, etc. instruction, which will be incorrect in most cases.

Onchip.List /BusTrace displays the decoded content of the trace buffer.

©1989-2024 Lauterbach APS Debugger | 24

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the APS debugger.

©1989-2024 Lauterbach APS Debugger | 25

Memory Classes

The following memory access rights classes are available:

Access Class Description

D Data

P Program

ED Run-time data memory access (see SYStem.MemAccess)

EP Run-time program memory access (see SYStem.MemAccess)

To access a memory class, write the class in front of the address.

Example:

Data.dump ED:0x00

©1989-2024 Lauterbach APS Debugger | 26

JTAG Connector

JTAG Connector for ARM-like Designs

Signal
VREF-DEBUG
TRST-

TDI
TMSITMSCISWDIO
TCKITCKCISWCLK
RTCK

TDOI-ISWO
RESET-

DBGRQ

DBGACK

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20

Signal
VSUPPLY (not used)
GND
GND
GND
GND
GND
GND
GND
GND
GND

©1989-2024 Lauterbach

APS Debugger

27

JTAG Connector for Atom-like Designs

Signal
GND
PREQ-
PRDY-
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
PWRGOOD
N/C
VTREF
N/C
N/C
GND
N/C
N/C
N/C
TCK
GND

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

Signal
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
N/C
RESET-
DBR-
GND
TDO
TRST-
TDI
TMS
GND

©1989-2024 Lauterbach

APS Debugger

28

	APS Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	FAQ
	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Multicore Example

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.LOCK Lock and tristate the debug port
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.MonType Selects monitor type
	Cortus monitor vs. built-in monitor

	SYStem.Option.MonBase Register base address
	Built-In Monitor
	Custom Monitor

	Breakpoints
	Software breakpoints
	On-chip breakpoints for instructions

	Onchip Trace
	Onchip.Mode Type of trace records
	Quickstart

	CPU specific TrOnchip Commands
	Memory Classes
	JTAG Connector
	JTAG Connector for ARM-like Designs
	JTAG Connector for Atom-like Designs

