
MANUAL                                                       

APS Debugger



APS Debugger

TRACE32 Online Help  

TRACE32 Directory  

TRACE32 Index  

TRACE32 Documents  ...................................................................................................................... 

   ICD In-Circuit Debugger  ................................................................................................................ 

      Processor Architecture Manuals  .............................................................................................. 

         APS  ........................................................................................................................................... 

            APS Debugger  ...................................................................................................................... 1

               Introduction  ....................................................................................................................... 5

                  Brief Overview of Documents for New Users 5

                  Demo and Start-up Scripts 5

               Warning  .............................................................................................................................. 6

               Quick Start  ......................................................................................................................... 7

               Troubleshooting  ................................................................................................................ 9

               FAQ  ..................................................................................................................................... 10

               CPU specific SYStem Settings  ......................................................................................... 11

                  SYStem.CONFIG.state Display target configuration 11

                  SYStem.CONFIG Configure debugger according to target topology 12

                     Multicore Example 14

                  SYStem.CPU Select the used CPU 15

                  SYStem.JtagClock Define JTAG clock 16

                  SYStem.MemAccess Select run-time memory access method 16

                  SYStem.Mode Establish the communication with the target 17

                  SYStem.LOCK Lock and tristate the debug port 17

                  SYStem.Option.IMASKASM Disable interrupts while single stepping 18

                  SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 19

                  SYStem.Option.IntelSOC Slave core is part of Intel® SoC 19

                  SYStem.Option.MonType Selects monitor type 20

                     Cortus monitor vs. built-in monitor 21

                  SYStem.Option.MonBase Register base address 21

                     Built-In Monitor 22

                     Custom Monitor 22

               Breakpoints  ........................................................................................................................ 23

                  Software breakpoints 23

                  On-chip breakpoints for instructions 23
APS Debugger     |    2©1989-2024   Lauterbach                                                        



               Onchip Trace  ..................................................................................................................... 24

                  Onchip.Mode Type of trace records 24

                     Quickstart 24

               CPU specific TrOnchip Commands  ................................................................................. 25

               Memory Classes  ................................................................................................................ 26

               JTAG Connector  ................................................................................................................ 27

                  JTAG Connector for ARM-like Designs 27

                  JTAG Connector for Atom-like Designs 28
APS Debugger     |    3©1989-2024   Lauterbach                                                        



APS Debugger

Version 06-Jun-2024
APS Debugger     |    4©1989-2024   Lauterbach                                                        



Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the 
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by 
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your 
first choice. 

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a 
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances 
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the 
processor architecture supported by your Debug Cable. To access the manual for your processor 
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating 
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the 
OS-aware debugging. 

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known APS based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts 
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/aps/ subfolder of the system directory of TRACE32.
APS Debugger     |    5©1989-2024   Lauterbach                                                        



Warning

NOTE: To prevent debugger and target from damage it is recommended to connect or 
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:
• Disconnect the debug cable from the target while the target power is off.
• Connect the host system, the TRACE32 hardware and the debug cable.
• Start the TRACE32 software to load the debugger firmware.
• Connect the debug cable to the target.
• Switch the target power ON.
• Configure your debugger e.g. via a start-up script.

Power down:
• Switch off the target power.
• Disconnect the debug cable from the target.
APS Debugger     |    6©1989-2024   Lauterbach                                                        



Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the TRACE32 development tool.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the 
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do 
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings. 

After choosing the CPU, the default values of all other options are automatically set in such a way that 
it should be possible to work without modifying them. But please consider that this might not be the 
optimal configuration for your target.
NOTE: For a multi-core target it is most likely necessary to configure the multi-core settings using 
SYStem.CONFIG before continuing.

3. Attach to the target and enter debug mode.

The first command attaches the debugger to the running target. The second command stops the 
target and enters debug mode. After these commands are executed it is possible to access memory 
and registers.

A typical start sequence for the Cortus APS3 is shown below. This sequence can be written to a PRACTICE 
script file (*.cmm, ASCII format) and executed with the command DO <file>. 

B::

RESet

SYStem.CPU <cpu_type>

SYStem.Mode.Attach

Break

B:: ; Select the ICD device prompt

RESet ; Reset the TRACE32 software

WinClear ; Clear all windows

SYStem.CPU APS3S ; Select CPU

SYStem.Mode.Attach ; Attach to the running target
APS Debugger     |    7©1989-2024   Lauterbach                                                        



*) These commands open windows on the screen. The window position can be specified with the WinPOS 
command.

Break ; Stop the target and enter debug mode

Register.view /SpotLight ; Open register window    *)

List.Mix ; Open source code window *)
APS Debugger     |    8©1989-2024   Lauterbach                                                        



Troubleshooting

Error Message Event Reason

target power fail SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Target has no power or debug cable is 
not connected. Check if the JTAG VCC 
pin is driven by the target.

target processor in reset SYStem.Down ARM cable: The debugger senses a 
reset on JTAG pin 15 (SRST-). Ignore 
error message or tie pin to JTAG VCC 
via pull-up.

Target not connected or 
JTAG chain not 
configured correctly: 
Returned IR[1:0] != “01”

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

On every startup, the debugger checks 
the JTAG Instruction Register (IR) of 
the target. If the last two bits are not 
“01”, verify your JTAG settings via 
SYStem.CONFIG. 

Cannot install built-in 
monitor.

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Unexpected error during installation of
the built-in monitor. Please consult
your Lauterbach representative.

Warning: Standard 
Cortus monitor not 
found!

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Your APS3 executable does not 
contain the original Cortus monitor 
program. 
- Recompile your project with default       
  settings
- Reload the executable into the target
- If you have written your own monitor    
  program:
  SYStem.Option.MonType.CUSTOM 

Warning: Standard Built-
In monitor not found!

SYStem.Mode.Up
SYStem.Mode.Go
SYStem.Mode.Attach

Either the interrupt vector table or the 
assigned register base address reside 
in a non-volatile memory (ROM, 
Flash).
- Check SYStem.Option.MonBase
- Consult your Lauterbach 
representative

Register address must 
be aligned to 4-byte 
boundary!

SYStem.Option.MonBase Only register base addresses are 
allowed which are a multiple of 4 bytes.

No response from 
monitor program, CPU 
forced to stop

Break The CPU has not entered the monitor 
program, probably because one (or 
more) enable bits have been disabled:
1) PSR -> IEN
2) Interrupt Controller -> GIC -> IEN
3) Interrupt Controller -> PIRC4 -> IEN
APS Debugger     |    9©1989-2024   Lauterbach                                                        



FAQ

Please refer to https://support.lauterbach.com/kb.

The number of 
<number> accessed 
bytes in memory is not a 
multiple of the access 
size <size> bytes.

No special event Internal error, please consult your 
Lauterbach representative.

Memory address 
<address> is not aligned 
to access size <size>.

No special event Internal error, please consult your 
Lauterbach representative.

Invalid memory access 
size: <size> bytes (@ 
address <address>)

No special event Internal error, please consult your 
Lauterbach representative.

Memory access timeout: 
Reading from address 
<address>

No special event Corrupted JTAG connection. Check 
JTAG hardware and settings.

Illegal instruction at 
address <address>

SYStem.Mode.Go
Go
Step

The CPU has encountered an illegal 
instruction.
- Check CPU type: SYStem.CPU
- Check program execution flow of your 
  APS3 executable

Critical error at address 
<address>!

SYStem.Mode.Go
Go
Step

The CPU has encountered an 
undefined exception. Check program 
execution flow of your APS3 
executable. 

Unknown interrupt 
<integer>

Break
Breakpoint

Your APS3 executable has written data 
to the reserved RAM area of the 
monitor program.
APS Debugger     |    10©1989-2024   Lauterbach                                                        

https://support.lauterbach.com/kb


CPU specific SYStem Settings

SYStem.CONFIG.state     Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target 
configuration settings. The configuration settings tell the debugger how to communicate with the chip on 
the target board and how to access the on-chip debug and trace facilities in order to accomplish the 
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the 
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG 
commands for settings that are not included in the SYStem.CONFIG.state window.
    

Format: SYStem.CONFIG.state [/<tab>] 

<tab>: Jtag | Miscellaneous

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab 
descriptions, see below.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in 
the JTAG chain which the debugger needs to talk to in order to access the 
debug and trace facilities on the chip.

Miscellaneous For multicore systems, you can define on this tab whether cores are 
organized in a shared-memory or local-memory manner. 
(default: OFF)
APS Debugger     |    11©1989-2024   Lauterbach                                                        



SYStem.CONFIG     Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger of the TAP 
controller position in the JTAG chain if there is more than one core in the JTAG chain. The information is 
required before the debugger can be activated, e.g., by a SYStem.Mode.Attach.

TriState has to be used if several debuggers are connected to a common JTAG port at the same time. 
TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches 
to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or 
pull-down resistor, other trigger inputs need to be kept in inactive state.

  

Format: SYStem.CONFIG <parameter> 

<parameter>: IRPRE <bits> 
IRPOST<bits> 
DRPRE <bits> 
DRPOST <bits> 
IRLength <bits> 
MultiCoreLocal [ON | OFF]
CoreNumber <number> 
TriState [ON | OFF]
Slave [ON | OFF]
TAPState <state> 
TCKLevel <level> 

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of 
interest and the TDO signal of the debugger. If each core in the system 
contributes only one TAP to the JTAG chain, DRPRE is the number of 
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal 
of the debugger and the core of interest. If each core in the system 
contributes only one TAP to the JTAG chain, DRPOST is the number of 
cores between the TDI signal of the debugger and the core of interest. 

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain 
between the core of interest and the TDO signal of the debugger. This is 
the sum of the instruction register length of all TAPs between the core of 
interest and the TDO signal of the debugger. 

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain 
between the TDI signal and the core of interest. This is the sum of the 
instruction register lengths of all TAPs between the TDI signal of the 
debugger and the core of interest. 

IRLength Size of the JTAG instruction register in <bits>. Useful in case the TAP of 
the APS3 IP is under development and differs from the default size. 
(default: 8) 
APS Debugger     |    12©1989-2024   Lauterbach                                                        



MultiCoreLocal For multicore systems this option defines whether cores are organized in 
a shared-memory or local-memory manner. 
(default: OFF)

CoreNumber <number> of cores in a shared-memory or local-memory multicore 
system. (default: 1)

TriState [ON | OFF] The debugger switches to tristate mode after each debug port access. If 
several debuggers share the same debug port, this option is required. 
Then other debuggers can access the port. (default: OFF) 

Slave [ON | OFF] Defines the master in a multicore chip. Only one core can be the master 
of the chip reset, the TAP reset and the chip initialization features. All 
other cores are slave cores. (default: OFF) 

TAPState This is the state of the TAP controller when the debugger switches to 
tristate mode. All states of the JTAG TAP controller are selectable. 
(default: 7 = Select-DR-Scan) 

TCKLevel [0 | 1] Level of TCK signal when all debuggers are tristated. (default: 0) 
APS Debugger     |    13©1989-2024   Lauterbach                                                        



Multicore Example

Assume you want to debug Core C. The instruction register lengths of the other cores are:

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

Then the multicore settings must be configured as follows:

SYStem.CONFIG.IRPRE 6 ; IR Core D

SYStem.CONFIG.IRPOST 8 ; IR Core A + B

SYStem.CONFIG.DRPRE 1 ; DR Core D

SYStem.CONFIG.DRPOST 2 ; DR Core A + B

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
APS Debugger     |    14©1989-2024   Lauterbach                                                        



TapStates

SYStem.CPU     Select the used CPU

Default: APS3

Selects the processor type.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Format: SYStem.CPU <cpu> 

<cpu>: APS3 | APS3S | APS3B | APS3BS | CryptoCell
APS Debugger     |    15©1989-2024   Lauterbach                                                        



SYStem.JtagClock     Define JTAG clock

Default: 1 MHz.

Selects the frequency for the debug interface. RTCK, ARTCK, CTCK and CRTCK are not supported.

SYStem.MemAccess     Select run-time memory access method

Default: Denied.  

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK | CTCK | CRTCK]
SYStem.BdmClock [<frequency> | ...] (deprecated)

Format: SYStem.MemAccess Enable | Denied | StopAndGo

Enable
CPU (deprecated)

Memory access during program execution to target is enabled. Only run-
time memory classes can be accessed.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop 
takes some time depending on the speed of the JTAG port, the number of 
the assigned cores, and the operations that should be performed.
For more information, see below.

Denied Memory access during program execution to target is disabled.
APS Debugger     |    16©1989-2024   Lauterbach                                                        



SYStem.Mode     Establish the communication with the target

SYStem.LOCK     Lock and tristate the debug port

Default: OFF

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the 
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give 
debug access to another tool.

Format: SYStem.Mode <mode> 

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Go
Attach
Up

Down Disables the debugger (default). The state of the CPU remains 
unchanged. 

Go Resets the target and starts execution.

Attach Connects the debugger to the running target. The state of the CPU 
remains unchanged. 

Up Resets the target and stops the CPU at the reset vector.

NoDebug Not supported.

StandBy Not supported.

Prepare Not supported.

Format: SYStem.LOCK [ON | OFF]
APS Debugger     |    17©1989-2024   Lauterbach                                                        



SYStem.Option.IMASKASM     Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step 
operations. After the single step, the interrupt enable flag is restored to the value it had before the step. 

Format: SYStem.Option.IMASKASM  [ON | OFF]
APS Debugger     |    18©1989-2024   Lauterbach                                                        



SYStem.Option.IMASKHLL     Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step 
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.IntelSOC     Slave core is part of Intel® SoC

Default: OFF.

Informs the debugger that the core is part of an Intel® SoC. When enabled, all IR and DR pre/post settings 
are handled automatically, no manual configuration is necessary.

Requires that the debugger for this core is slave in a multicore setup with x86 as the master debugger and 
that SYStem.Option.CLTAPOnly is enabled in the x86 debugger.

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.IntelSOC [ON | OFF]
APS Debugger     |    19©1989-2024   Lauterbach                                                        



SYStem.Option.MonType     Selects monitor type

Default: Cortus

Format: SYStem.Option.MonType <type>

<type>: Cortus
Built-In
CUSTOM

Cortus The standard monitor stub provided by Cortus.
Usually the Cortus monitor program is part of the startup code of the 
APS3 toolchain. It can be found in file crt0.c, which will be included in 
every APS3 executable by default.

Built-In A small monitor program dynamically loaded into the target.
If this option is selected, TRACE32 loads a small monitor program into 
the RAM of the target. It will completely be removed from the target’s 
memory after a power down.
In contrast to the Cortus monitor, no dedicated startup code is required. 
However it must be ensured, that the built-in monitor does not interfere 
with application data (also see SYStem.Option.MonBase)!

CUSTOM A custom defined monitor program.
Please refer to SYStem.Option.MonBase for how to write your own 
monitor program.
APS Debugger     |    20©1989-2024   Lauterbach                                                        



Cortus monitor vs. built-in monitor 

SYStem.Option.MonBase     Register base address

Defines the base address of mirrored CPU registers in RAM. This option only becomes available if the built-
in or custom monitor has been selected via SYStem.Option.MonType.

As a limiting characteristic of the APS3, the CPU registers (R0 to R15, RTT and PSR) cannot be accessed 
via JTAG directly. Hence a monitor program has to forward all read- and write accesses from and to the CPU 
registers. To be more precisely, the CPU registers are mirrored to a location in RAM. 

Reserved 
RAM space 
(size)

MonBase Non-vola-
tile memory 
consumed

Stack 
usage

Miscellaneous

Cortus 72 bytes 0 .. 2^16-size yes 0 bytes Single stepping 
not available in 
startup code.

Built_In 300 bytes 0 .. 2^32-size no 8 bytes Single stepping 
available on 3rd 
instruction after 
reset.

Format: SYStem.Option.MonBase <address> 
APS Debugger     |    21©1989-2024   Lauterbach                                                        



Based on the Cortus monitor, the structure of the mirrored registers must always be organized as follows:

Built-In Monitor

A total of 228 instruction bytes are necessary for the built-in monitor to work. These instructions are 
appended in RAM to the mirrored registers, resulting in a RAM usage of 300 bytes. Therefore no application 
data should be placed within the address range of MonBase .. MonBase + 300. Additionally the application 
must reserve 8 bytes of the stack for the built-in monitor.

Custom Monitor

As soon as the standard Cortus monitor is modified or replaced, the new monitor program should be 
declared as ’custom’ with MonBase set accordingly.

Steps to write your own monitor program:

• Assign your routines to interrupt request lines IRQ1 to IRQ4.

• Enable the interrupt controller.

• Enable IRQ4 (IRQ1 to IRQ3 are not maskable).

• Enable interrupt bit in the IEN register.

• In the interrupt routines, pass interrupt source in R0.

For more detailed information, please consult the Cortus startup code in file crt0.c 

MonBase

MonBase + 72. 

R0

R1

R15

RTT

PSR
APS Debugger     |    22©1989-2024   Lauterbach                                                        



Breakpoints

Software breakpoints

If a software breakpoint is set, the corresponding program code is replaced by a trap instruction. Thus 
software breakpoints can only be applied to program code residing in a RAM.

There is no restriction in the number of software breakpoints.

On-chip breakpoints for instructions

The APS3 breakpoint module provides three on-chip breakpoints for instructions. These can be located 
either in a volatile or non-volatile memory.
APS Debugger     |    23©1989-2024   Lauterbach                                                        



Onchip Trace

This trace method can only be used if the APS3 core features a trace module and trace buffer. Otherwise the 
activation of the onchip trace might result in an undefined behavior of the APS3.

Onchip.Mode     Type of trace records

Default: PcOnly

Quickstart

• The onchip trace is automatically initialized on activation and is ready for use instantly.

• If the onchip mode is changed, the trace must be reset via Onchip.RESet.

• Every Onchip.RESet must be followed by an Onchip.Init.

• Onchip.List displays the reconstructed program flow. If the trace mode is PcOnly, interrupt 
addresses cannot be determined exactly. Interrupt labels in the trace window then are placed 
right before the next branch, jump, call, etc. instruction, which will be incorrect in most cases.

•  Onchip.List /BusTrace displays the decoded content of the trace buffer.

Format: Onchip.Mode <mode>

<mode>: PcOnly
PcRegs

PcOnly Records the PC only.
A trace record is written to the trace buffer whenever the CPU is 
interrupted from its straightforward program execution. Events that cause 
an interruption are: Calls, jumps, (un)conditional breaks, traps, interrupts 
and returns from interrupts. 
This option currently only works for the built-in monitor!

PcRegs Records PC and register writes.
In addition to writes to the PC, also writes to registers R0-R15, RTT and 
PSR are recorded. Read accesses are not traced.
For this reason the trace buffer is filled with data more quickly and the 
program execution flow cannot be traced back as far as in PcOnly mode. 
However interrupts can be detected properly in PCRegs mode only.
APS Debugger     |    24©1989-2024   Lauterbach                                                        



CPU specific TrOnchip Commands

The TrOnchip command group is not available for the APS debugger.
APS Debugger     |    25©1989-2024   Lauterbach                                                        



Memory Classes

The following memory access rights classes are available:

To access a memory class, write the class in front of the address.

Example:  

Access Class Description

D Data

P Program

ED Run-time data memory access (see SYStem.MemAccess)

EP Run-time program memory access (see SYStem.MemAccess)

Data.dump ED:0x00
APS Debugger     |    26©1989-2024   Lauterbach                                                        



JTAG Connector

JTAG Connector for ARM-like Designs
  

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
APS Debugger     |    27©1989-2024   Lauterbach                                                        



JTAG Connector for Atom-like Designs
  

Signal Pin Pin Signal
GND 1 2 GND

PREQ- 3 4 N/C
PRDY- 5 6 N/C

GND 7 8 GND
N/C 9 10 N/C
N/C 11 12 N/C

GND 13 14 GND
N/C 15 16 N/C
N/C 17 18 N/C

GND 19 20 GND
N/C 21 22 N/C
N/C 23 24 N/C

GND 25 26 GND
N/C 27 28 N/C
N/C 29 30 N/C

GND 31 32 GND
N/C 33 34 N/C
N/C 35 36 N/C

GND 37 38 GND
PWRGOOD 39 40 N/C

N/C 41 42 N/C
VTREF 43 44 N/C

N/C 45 46 RESET-
N/C 47 48 DBR-

GND 49 50 GND
N/C 51 52 TDO
N/C 53 54 TRST-
N/C 55 56 TDI
TCK 57 58 TMS
GND 59 60 GND
APS Debugger     |    28©1989-2024   Lauterbach                                                        


	APS Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	FAQ
	CPU specific SYStem Settings
	SYStem.CONFIG.state      Display target configuration
	SYStem.CONFIG      Configure debugger according to target topology
	Multicore Example

	SYStem.CPU      Select the used CPU
	SYStem.JtagClock      Define JTAG clock
	SYStem.MemAccess      Select run-time memory access method
	SYStem.Mode      Establish the communication with the target
	SYStem.LOCK      Lock and tristate the debug port
	SYStem.Option.IMASKASM      Disable interrupts while single stepping
	SYStem.Option.IMASKHLL      Disable interrupts while HLL single stepping
	SYStem.Option.IntelSOC      Slave core is part of Intel® SoC
	SYStem.Option.MonType      Selects monitor type
	Cortus monitor vs. built-in monitor

	SYStem.Option.MonBase      Register base address
	Built-In Monitor
	Custom Monitor


	Breakpoints
	Software breakpoints
	On-chip breakpoints for instructions

	Onchip Trace
	Onchip.Mode      Type of trace records
	Quickstart


	CPU specific TrOnchip Commands
	Memory Classes
	JTAG Connector
	JTAG Connector for ARM-like Designs
	JTAG Connector for Atom-like Designs



