LAUTERBACH A

Debugging via Intel® DCI User’s
Guide

Debugging via Intel® DCI User’s Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
Intel® DCI [Direct Connect INterface]cccccivicciiiciscsccmmeriir s sssssssssss s e s e e e s s ssssmsmmn e s e s e e snnsnas =
Debugging via Intel® DCI USer’'s GUIdEccciiicmmissmminissmismnissss s ssssss s ssssms s sssssssmssssas 1
oY o 11T] T] o 4
4-wire DCI OOB 4
DCI OOB Hardware 6
DCI DbC 7
Target System Requirements 8
Related Documents 8
Start a TRACE32 Session using Intel® DCIcccoiiiiiimmimnnimsrnnssss s s sssssmsees 9
Prepare Your Target 9
Connecting to an Intel® SoC using DCI OOB 9
Connecting to an Intel® Client or Server System using DCI OOB 10
Connecting to an Intel® SoC using DCI DbC 11
Connecting to an Intel® Client or Server System using DCI DbC 12
QLo 10 o= ¢ o T {3 T 13
DCI error: no response to connect pattern 13
Could not stop the target 13
Target Power Fail 13
Intel® DCI Specific COMMANAScccceriiiiiriims s s e s s s san s s nnnns 14
DCI Commands to configure the Intel® DCI trace handler 14
DCI.DESTination Set trace destination 14
DCI.ON Enable trace handler 14
DCI.OFF Disable trace handler 15
SYStem.DCl Intel® DCI specific SYStem commands 16
SYStem.DCI.Bridge Select DCI bridge 16
SYStem.DCI.BssbClock Configure DCI OOB clock rate 16
SYStem.DCI.CKDlIrouting Routing of the CK and DI signals 17
SYStem.DCI.DisCONnect Force DCI disconnect 17
SYStem.DCI.DOrouting Routing of the DO signals 18
SYStem.DCI.PortPower Configure VBUS 19
SYStem.DCI.TimeOut Configure timeouts of internal operations 20
Intel® DCI Specific FUNCLIONS ciiiiiiccirncs s ms s s s s s s e 21
©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide 2

In This Section 21

SYStem.DCI.Bridge() Currently selected DCI bridge 21
SYStem.DCI.BssbClock() Currently selected DCI OOB clock 21
SYStem.DCL.TIMEOUTY() Timeouts of internal operations 22

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 3

Debugging via Intel® DCI User’s Guide

Version 06-Jun-2024

Introduction

The Intel® Direct Connect Interface (DCI) allows debugging of Intel® targets using the USB3 port. The
technology supports debugging via the USB Stack (DCI DbC) as well as a dedicated protocol using a USB3
connector only (DCI OOB).

4-wire DCI OOB

DCI OOB uses a special protocol on the USB3 pins. This makes the mode independent of the actual USB
implementation on the target board. This allows debugging of cold boot scenarios, reset flows, and sleep
states.

TRACE32 PowerView

target system

DCI Module TAP
trace

debug host

B USB
o0 DMA

PowerDebug
Module CombiProbe

P

USB Port/PHY SoC/PCH

[Ab .~

The figure above illustrates a typical setup. A Power Debug Module with a CombiProbe and a Whisker Cable
DCI OOB (LA-4515) [A] is connected to the debug host running TRACE32 PowerView. On the target side
the Whisker Cable DCI OOB connects to a USB port of the target system using a short USB cable [B].

TRACE32 sends DCI commands encoded in the DCI OOB protocol to the target system. In the target
system the commands are decoded by the OOB module and forwarded to the DCI module where they are
translated to JTAG sequences. These JTAG sequences allow to access the internal TAP of the SoC/PCH as
well as externally connected JTAG devices (e.g., the CPU of a client or server system).

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 4

Trace data can be exported through the DCI module and recorded by the CombiProbe.

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 5

DCI OOB Hardware

In the following the available DCI OOB hardware is shown.

Whisker Cable DCI OOB for CombiProbe Version 1

A USB cable to target system D USB connector for target system

B VBUS jumper E 34-pin expansion connector (proprietary)

C Cable to CombiProbe

Whisker Cable DCI OOB for CombiProbe Version 2

A USB cable to target system D USB connector for target system

B VBUS slider E 34-pin expansion connector (proprietary)

C Cable to CombiProbe

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 6

DCI DbC

DCI DbC allows debugging using the OS USB stack.

TRACE32 PowerView

target system

DCI Module TAP

trace

TRACE32
USB Debug BackEnd

g OOB | USB
(libusb

DMA

debug host USB Port/PHY SoC/PCH

The figure above illustrates a typical setup. TRACES32 only runs on the debug host. The target system
connects to the debug host using a USB cable.

TRACE32 sends DCI commands encoded in the USB protocol to the target system using libusb and the
USB Stack of the operating system. In the target system the commands are decoded by the USB
implementation and forwarded to the DCI module where they are translated to JTAG sequences. These
JTAG sequences allow to access the internal TAP of the SoC/PCH as well as externally connected JTAG
devices (e.g., the CPU of a client or server system).

Trace data can be directly exported via USB and recorded by TRACE32 on the debug host. DCI DbC also
provides a DMA capability for fast download of the system RAM. Support of these capabilities by TRACE32
depends on the used target system.

For using DCI DbC, please observe the “System Requirements” (usbdebug_user.pdf).

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 7

Target System Requirements

For debugging using Intel® DCI your target system must fuffill the following:

The BIOS must enable DCI debugging or provide a user option to do so. Please contact your

BIOS manufacturer to clarify if your BIOS conforms to the Intef® BIOS Writer's Guide
requirements for DCI support.

For using DCI OOB, the USB part of your target system must be electrically designed such that
DCI OOB signaling is not blocked. This is of special importance for USB Type-C solutions.

Details about these requirements can be found in the appropriate Intef® Platform Design Guide.

Related Documents

. “Intel® x86/x64 Debugger” (debugger_x86.pdf)
J “Debugging via USB User’s Guide” (usbdebug_user.pdf)

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 8

Start a TRACE32 Session using Intel® DCI

Prepare Your Target

Irrespective of which DCI variant is used, debugging via DCI needs to be activated in the BIOS of the target
system first. Please contact your BIOS manufacturer for instructions.

Connecting to an Intel® SoC using DCl OOB

1. Connect your TRACES32 hardware and start the TRACE32 software, as described in “Starting a
TRACE32 PowerView Instance” (training_debugger_x86.pdf).

2. For SoCs configure the CPU, e.g., by executing the following command:

SYStem.CPU APOLLOLAKE

3. Establish the debug connection:

SYStem.Attach

On a successful connect, the TRACE32 state line displays “running” or “cpu power down:
|| Register || FPU || mMMX | || Register || FPU || MMX

(unning || UMl cou powier down pi |

You are now ready to debug the x86 core using DCI OOB. For information on how to continue, please

refer to:
. “Training Basic SMP Debugging for Intel® x86/x64” (training_debugger_x86.pdf) or
J “Intel® x86/x64 Debugger” (debugger_x86.pdf)

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 9

Connecting to an Intel® Client or Server System using DCI OOB

1. Connect your TRACES32 hardware and start the TRACES32 software, as described in “Starting a
TRACE32 PowerView Instance” (training_debugger_x86.pdf).

2. For client or server systems configure CPU, PCH, and core number e.g.:
SYStem.CONFIG PCH SUNRISEPOINT

SYStem.DETECT CPU
SYStem.DETECT CORES

The results are displayed in the AREA.view window:
= | BuAREAview =n| Wl <

-

SKYLAKE detected
IDCODE detected: Ox2a76d013
Hyperthread status: enabled
cores detected for selected CPU
4 10 2

3. Establish the debug connection:

SYStem.Attach

On a successful connect, the TRACES32 state line displays “running” or “cpu power down”:
|| Register || FPU || mMMX | || Register || FPU || MMX

(unning | | UMl cou powier down pi |

You are now ready to debug the x86 core using DCI OOB. For information on how to continue, please

refer to:
. “Training Basic SMP Debugging for Intel® x86/x64” (training_debugger_x86.pdf) or
J “Intel® x86/x64 Debugger” (debugger_x86.pdf)

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 10

Connecting to an Intel® SoC using DCI DbC

1.

Install the target USB driver and start a TRACE32 session for USB debugging as described in
“Debugging via USB User’s Guide” (usbdebug_user.pdf).

For SoCs configure the CPU, e.g., by executing the following command:

SYStem.CPU APOLLOLAKE

Select the IntelUSBO debug port and configure the USB parameters for the debug connection,
e.g., by executing the following commands:

SYStem.CONFIG DEBUGPORT IntelUSBO
SYStem.CONFIG USB SETDEVice Debug 1. 0x8087 0x0A73

In this example, “1.” is the number of the debug enabled interface, “0x8087” is the vendor ID of the
target system and “Ox0A73” is the product ID of the target system.

These parameters can be determined interactively as described in “Select a USB Device via the
GUI” (usbdebug_user.pdf). For details, please refer to SYStem.CONFIG.USB.

For tracing via DbC, add the configuration for the trace interface, e.g.:

SYStem.CONFIG USB SETDEVice Trace 2. 0x08087 0x0A73

For using DMA via DbC, add the configuration for the DMA interface, e.g.:

SYStem.CONFIG USB SETDEVice DMA 3. 0x08087 0x0A73

Establish the debug connection:

SYStem.Attach

On a successful connect, the TRACE32 state line displays “running” or “cpu power down:
|| Register || FPU || mMMX | || Register || FPU || MMX

(unning || UMl cou powier down pi |

You are now ready to debug the x86 core using DCI DbC. For information on how to continue, please
refer to:

“Training Basic SMP Debugging for Intel® x86/x64” (training_debugger_x86.pdf) or
“Intel® x86/x64 Debugger” (debugger_x86.pdf)

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide |

11

Connecting to an Intel® Client or Server System using DCI DbC

1. Install the target USB driver and start a TRACE32 session for USB debugging as described in
“Debugging via USB User’s Guide” (usbdebug_user.pdf).

2. Configure the PCH your board is using, e.g., by executing the following command:

SYStem.CONFIG PCH SUNRISEPOINT

3. Configure the USB parameters for the debug connection, e.g., by executing the following
commands:

SYStem.CONFIG DEBUGPORT IntelUSBO
SYStem.CONFIG USB SETDEVice Debug 1. 0x8087 0x0A6E

In this example, “1.” is the number of the debug enabled interface, “0x8087” is the vendor ID of the
target system and “Ox0A73” is the product ID of the target system.

These parameters can be determined interactively as described in “Select a USB Device via the
GUI” (usbdebug_user.pdf). For details, please refer to SYStem.CONFIG.USB.

4. Run the following commands to detect CPU and core number automatically:

SYStem.DETECT CPU
SYStem.DETECT CORES

The results are displayed in the AREA.view window:

= | B:AREA.view EI@

SKYLAKE detected
IDCODE detected: Ox2a76d013
Hyperthread status: enabled
cores detected for selected CPU
4 10 2

5. Establish the debug connection:

SYStem.Attach

On a successful connect, the TRACES32 state line displays “running” or “cpu power down”:
|| Register || FPU || MMX | || Register || FPU || MMX

running || UMl cou powier down i |

You are now ready to debug the x86 core using DCI DbC. For information on how to continue, please

refer to:
J “Training Basic SMP Debugging for Intel® x86/x64” (training_debugger_x86.pdf) or
J “Intel® x86/x64 Debugger” (debugger_x86.pdf)

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 12

Troubleshooting

The following describes some possible error scenarios, along with suggestions how to resolve them:

DCI error: no response to connect pattern

TRACE32 did not receive any response from the target.

Make sure the USB cable is connected to a DCI enabled USB port.

Make sure DCI is enabled in the BIOS of the target system.

Configure the DO-Routing manually. For details, see SYStem.DCI.DOrouting.
In case you are using a USB Type-C connector, try flipping the plug.

Consider removing common mode chokes in the USB path.

Could not stop the target

TRACE32 could not halt the processor, but the DCI connection is working.

Make sure debugging is enabled in the BIOS of the target system.

Target Power Fail

Using DCI TRACES32 cannot detect whether the target system is powered. Thus all connection losses are
interpreted as power fails. In case you are encountering target power fails, but your target system is
powered:

Try a lower DCI OOB clock. For details, see SYStem.DCI.BssbClock.

Consider removing common mode chokes in the USB path.

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 13

Intel® DCI Specific Commands

DCI Commands to configure the Intel® DCI trace handler

The Intel® DCI trace handler is a hardware module of the Intel® DCI implementation on the target system.
This module is responsible for forwarding trace data coming from the Intel® Trace Hub to a DCI transport.

The DCI command group allows expert control of this hardware module. If using the Intel® Trace Hub
commands this configuration is done automatically (see ITH commands).

See also
B DCI.DESTination MW DCI.OFF H DCI.ON W SYStem.DCI
DCI.DESTination Set trace destination
Format: DCI.DESTination [OOB | DBC]

Configures to which destination the trace data is routed.

OOB (default) Stream the trace data to the Intel® DCI OOB interface.
DBC Stream the trace data to the Intel® DCI DbC interface (USB).
See also
m DCI
DCI.ON Enable trace handler
Format: DCI.ON

Enables the trace handler.

See also
H DCI

©1989-2024 Lauterbach Debugging via Intel® DCI User's Guide | 14

DCI.OFF Disable trace handler

Format: DCI.OFF

Disables the trace handler.

See also
H DCI

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 15

SYStem.DCI Intel® DCI specific SYStem commands

Using the SYStem.DCI command group, you can configure target properties as well as the DCI OOB

hardware.

See also

B SYStem.DCI.Bridge B SYStem.DCI.BssbClock B SYStem.DCI.CKDIrouting B SYStem.DCI.DisCONnect
B SYStem.DCI.DOrouting B SYStem.DCI.PortPower B SYStem.DCI.TimeOut B SYStem.state

H DCI 1 SYStem.DCI.Bridge() 1 SYStem.DCI.BssbClock()

A ’Intel® DCI Specific Functions’ in ’Debugging via Intel® DCI User’s Guide’

SYStem.DCI.Bridge Select DCI bridge

Format: SYStem.DCI.Bridge <bridge_name>

Configures TRACE32 for the specific DCI bridge implementation used in your system. For known Intel®
SoCs and PCHs this setting is done automatically based on CPU/PCH settings.

See also
B SYStem.DCI 1d SYStem.DCI.Bridge()
SYStem.DCIl.BssbClock Configure DCI OOB clock rate
Format: SYStem.DCI.BssbClock <frequency> [<slow_frequency>]

Configures the operating frequency used by the TRACE32 DCI OOB hardware. The maximum frequency is

100 MHz.
<frequency> Frequency during normal operation. Default: 100MHz.
<slow_frequency> Frequency used during connect and during low power phases. The default

is based on the selected platform.

©1989-2024 Lauterbach Debugging via Intel® DCI User's Guide | 16

Example: Set frequency to 50 MHz.

SYStem.DCI.BssbClock 50.MHz

See also
B SYStem.DCI 1 SYStem.DCI.BssbClock()
SYStem.DCI.CKDIrouting Routing of the CK and DI signals
Format: SYStem.DCI.CKDIrouting [STRAIGHTthrough | CROSSover]

Configures how the CK and DI signals are mapped to the super speed rx signals on the USB 3 connector of
the target. This configuration option is available for 4-wire DCI OOB only. The configuration must be set
before trying to connect.

STRAIGHTthrough The signals CK and DI are routed in compliance with the Intel DCI
specification. Set if the rx signals are connected one-to-one from the chip
to the USB port.

CROSSover The signals CK and DI are routed contrary to the Intel DCI specification.
Set if the rx signals are connected cross-over from the chip to the USB
port.
See also
B SYStem.DCI
SYStem.DCI.DisCONnect Force DCI disconnect
Format: SYStem.DCI.DisCONnect

Terminates the low-level DCI connection.

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 17

Normally TRACE32 will manage the connect and disconnect of the DCI connection used for the debug
session automatically. However, in some cases explicit termination of the DCI connection is required, e.g.,
when TRACE32 is used together with the T32 Remote API.

NOTE: SYStem.DCI.DisCONnect will not care about the overall state of your debug
session before disconnecting.
To avoid problems, execute SYStem.Down on all TRACE32 instances before
executing this command.

See also
B SYStem.DCI
SYStem.DCI.DOrouting Routing of the DO signals
Format: SYStem.DCI.DOrouting [AUTO | STRAIGHTthrough | CROSSover]

Configures how the DO signal pair is mapped to the super speed tx signals on the USB 3 connector of the
target. This configuration option is available for 4-wire DCI OOB only. The configuration must be set before
trying to connect.

AUTO (default) TRACERS2 tries to detect the routing automatically.

STRAIGHTthrough The signals DO+ and DO- are routed in compliance with the Intel DCI
specification. Set if the tx signals are connected one-to-one from the chip
to the USB port.

CROSSover The signals DO+ and DO- are routed opposed to the Intel DCI
specification. Set if the tx signals are connected cross-over from the chip
to the USB port.

See also
B SYStem.DCI

©1989-2024 Lauterbach Debugging via Intel® DCI User's Guide | 18

SYStem.DCI.PortPower

Configure VBUS

Format:

<mode>:;

SYStem.DCI.PortPower <mode>

OFF
DIScharge
SDP

CDP
DCPAUTO
DCPBC12
DCPDIV

Some TRACE32 DCI OOB hardware can drive the VBUS pin of the USB port from the debugger and

emulate a USB charging port.

Preconditions:

. Base module is PowerDebug USB3.0 or PowerDebug Pro.

J “Whisker Cable DCI OOB for CombiProbe Version 2”, page 6.

. The yellow slider on the CombiProbe Whisker must be set to on.

The following modes are available:

OFF (default) Do not drive VBUS.
DIScharge Discharge VBUS.
SDP Standard Downstream Port according to the USB2.0 specification.
CDP Charging Downstream Port according to the USB 2.0 BC1.2
specification.
DCPauto Dedicated Charging Port
In this mode the used DCP scheme is automatically detected.
DCPBC12 Dedicated Charging Port according to USB 2.0 BC1.2 specification.
DCPDIV Dedicated Charging Port - Divider Mode
D+ and D- of the USB port are driven to 2V and 2.7V, respectively.
See also
B SYStem.DCI

©1989-2024 Lauterbach

Debugging via Intel® DCI User’s Guide

19

SYStem.DCI.TimeOut Configure timeouts of internal operations

Format: SYStem.DCIL.TimeOut <operation> <time>
<operation>: SETtings

JTAG

PMChandshake

Configure the timeout for certain internal operations. Do not change unless instructed to do so by the
Lauterbach support.

The current value can be obtained using the SYStem.DCIL.TimeOut() function.

See also
B SYStem.DCI 1 SYStem.DCIL.TIMEOUTY()

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 20

Intel® DCI Specific Functions

In This Section

See also
B SYStem.DCI 1 SYStem.DCI.Bridge() 1 SYStem.DCI.BssbClock() 1 SYStem.DCI.TIMEOUTY()
SYStem.DCI.Bridge() Currently selected DCI bridge
[build 68208 - DVD 09/2016]
Syntax: SYStem.DClI.Bridge()

Returns the name of the currently selected DCI bridge. The bridge is selected with the SYStem.DCI.Bridge
command.

Return Value Type: String.
Example:

PRINT SYStem.DCI.Bridge ()

SYStem.DCI.BssbClock() Currently selected DCI OOB clock
[build 68208 - DVD 09/2016]
Syntax: SYStem.DCIl.BssbClock(<clock_name>)
<clock_ ACTIVE | DEFault | SLOW
name>:

Returns the value of the current DCI OOB clock rate. The clock rate is configured with the
SYStem.DCI.BssbClock command.

Parameter Type: String.

ACTIVE The currently active DCI OOB clock.

DEFault The value of the DCI OOB clock used during normal operation.

SLOW The value of the DCI OOB clock used during connect and low power
phases.

Return Value Type: Decimal value.

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 21

Example:

PRINT SYStem.DCI.BssbClock (ACTIVE)

SYStem.DCIL.TIMEOUT() Timeouts of internal operations
[build 79617 - DVD 02/2017]
Syntax: SYStem.DCIL.TIMEOUT(<operation>)
<operation>: JTAG | SETtings | PMChandshake

Returns the current timeout of an internal operation. The timeout can be configured using the
SYStem.CONFIG DCIL.TimeOut command.

Parameter Type: String.

Return Value Type: Time value.

©1989-2024 Lauterbach Debugging via Intel® DCI User’s Guide | 22

	Debugging via Intel® DCI User´s Guide
	Introduction
	4-wire DCI OOB
	DCI OOB Hardware
	DCI DbC
	Target System Requirements
	Related Documents

	Start a TRACE32 Session using Intel® DCI
	Prepare Your Target
	Connecting to an Intel® SoC using DCI OOB
	Connecting to an Intel® Client or Server System using DCI OOB
	Connecting to an Intel® SoC using DCI DbC
	Connecting to an Intel® Client or Server System using DCI DbC

	Troubleshooting
	DCI error: no response to connect pattern
	Could not stop the target
	Target Power Fail

	Intel® DCI Specific Commands
	DCI Commands to configure the Intel® DCI trace handler
	DCI.DESTination Set trace destination
	DCI.ON Enable trace handler
	DCI.OFF Disable trace handler
	SYStem.DCI Intel® DCI specific SYStem commands
	SYStem.DCI.Bridge Select DCI bridge
	SYStem.DCI.BssbClock Configure DCI OOB clock rate
	SYStem.DCI.CKDIrouting Routing of the CK and DI signals
	SYStem.DCI.DisCONnect Force DCI disconnect
	SYStem.DCI.DOrouting Routing of the DO signals
	SYStem.DCI.PortPower Configure VBUS
	SYStem.DCI.TimeOut Configure timeouts of internal operations

	Intel® DCI Specific Functions
	In This Section
	SYStem.DCI.Bridge() Currently selected DCI bridge
	SYStem.DCI.BssbClock() Currently selected DCI OOB clock
	SYStem.DCI.TIMEOUT() Timeouts of internal operations

