LAUTERBACH A

Converter from GEL
to PRACTICE

Converter from GEL to PRACTICE

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
PRACTICE Script LANQUAQJEcccceceriiiismmrriisssmmsssisssmsssssssssmsssssssssmssssssssmssssssssnmssssssssnmssssssssmnmssnnas r—~
Application Notes for PRACTICE ..ot ssssss s s ssssss s s s ssms s sms s sasamnnas r—~
Converter from GEL 10 PRACTICEocoooiiimirieess s ss s s s ssmms s s smmsn s 1
L oo LU T o o
Brief Overview of Documents for New USErScccciicemiiissmissmnsessinsesnssess s snsssssnsans
LaunChing CONVEIENciicccciiiiiienrrinieess s ms s s s s s s s sam s s e mm s e amm e s e ammnn e
Using @prog, @data and @0cccciiiiieiniinismnrinss s s s
Using Menuitem, Hotmenu, Dialog and Sliderccocimiiiiirmimnnincmmnnnnsemss e
Recognizing Types of Identifiers in GELcccciiiimniiniimmninemr s

FUNCLIONS Parametersccciiiiieeceiiiiiieseeiiiiissssssisressssssssessssnssssssessssnssssssssnnsnssssesssnnnnnnns

Callback GEL FUNCLIONSciiceceeiiiiiieeeciisirssmessss s ssssmssssss s nsmssssssrsmnnsssssssssmnssssssssnnnnsssssenes
(= WTT5 T o Y e =L I T o e { o] o =
Using PRACTICE Commands from GEL ScCriptccccciiiiinssmminnimss s ssssss s snssnenns

Converter-specific Reserved Wordscccccciiiinmmmnnnemnisssr s sssssssssssssnses

—

3

3

4

5

6

6

7

g =T o o T =TT o 7
7

7

9

9
Target CPU Register Names ... s sssss s s s s s ssmsss s ssmmssnnas 0
0

—h

Lo 0] o == o T {3V T,

©1989-2024 Lauterbach Converter from GEL to PRACTICE | 2

Converter from GEL to PRACTICE

Version 06-Jun-2024

Introduction

This document describes using General Extension Language to PRACTICE Converter. The executable file
can be found in the TRACES32 installation directory under ~~/demof/tools/gel_converter.

The General Extension Language (GEL) is an interpretive language similar to C that lets you create
functions to extend Code Composer Studio’s usefulness. This converter allows you to convert this language
into PRACTICE cmm scripts, which can be used directly in TRACES32.

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACES32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach Converter from GEL to PRACTICE | 3

Launching Converter

Format:

[_
aARCH_NAM
El

<input_file>

<output_file>

converter [-aARCH_NAME] [-d] <input_file> <output_file>

Optional parameter. Selects target architecture. This option enables CPU
register names recognition in GEL code for selected target. Valid architectures
are:

C620X, C6201, C621X, C64X, C6416, C64X+, C670X, C671X, C6713, C54X,
C55X, C5510.

If no architecture is selected, register names are treated as target symbols,
except of register names that are used as local variables in functions.

Optional parameter. Disables errors if not supported GEL functions are used
and marks places in CMM output file with commented functions names.

Optional parameter. Redirects output from GEL_TextOut and
GEL_TargetTextOut functions to default TRACE32 AREA window instead of
named AREA window (‘windowName’ parameter)

Input GEL file.

Output CMM file

©1989-2024 Lauterbach

Converter from GEL to PRACTICE |

4

Using @prog, @data and @io

Only following formats are supported by converter when using @prog, @data and @io GEL constructions.

*(sign_modifier data_type *)constant@suffix

*(sign_modifier *)constant@suffix
Where:
sign_modifier = unsigned | signed
data_type = char | void | short | int | long | long long
constant = hexadecimal number | decimal_ number
suffix = prog | data | io

Additional simplified format can be used:

*constant@suffix

NOTE: Integer is always treated as 32-bit data type.

©1989-2024 Lauterbach Converter from GEL to PRACTICE | 5

Using Menuitem, Hotmenu, Dialog and Slider

slider keyword is not supported. Functions marked by s1ider are discarded while converting GEL script
to PRACTICE cmm script.

Only following construction is supported:

menuitem “menu_item name”;

hotmenu HotmenuFunctionName ()

{
3

dialog DialogFunctionName (dialog_function_ parameters...)

{

}

There can be more than one dialog or hotmenu after menuitem. Order of dialog and hotmenu is
unrestricted. There cannot be any other functions than hotmenu or dialog after menuitem. If there are
any, it is assumed to be the end of menui tem block.

Recognizing Types of Identifiers in GEL

Following types of identifiers may appear in GEL language:

. Local variables

. Global variables

U Target symbols

. Target CPU register names

Following order is used when recognizing type of identifiers in GEL script.
1. If architecture is defined - CPU register names.
2. Local script function variables / Global script variables.

3. Target symbols.

©1989-2024 Lauterbach Converter from GEL to PRACTICE | 6

Functions Parameters

Functions parameters (except target symbols as parameters) are passed to function as in GEL. Target

symbols are passed to function as their numeric values, not the names.

Preprocessor

Converter supports #define GEL directive, however #define macro cannot be used before its

declaration.

Callback GEL Functions

GEL callback functions are not supported, however You can call them directly like other script functions.

Built-in GEL Functions

Converter and PRACTICE supports some subset of Built-in GEL functions with some limitations. Not
supported functions calling causes converting error. Errors can be disabled by option -d

Supported functions:

GEL_AsmStepInto ()
GEL_AsmStepOver ()
GEL_BreakPtAdd ()
GEL_BreakPtDel ()
GEL_BreakPtDisable ()
GEL_BreakPtReset ()
GEL_CloseWindow ()
GEL_Exit ()

GEL_Go ()

GEL_Halt ()
GEL_HWBreakPtAdd ()
GEL_HWBreakPtDel ()
GEL_HWBreakPtDisable ()
GEL_HWBreakPtReset ()
GEL_MemoryFill ()
GEL_MemoryLoad ()

GEL_OpenDisassemblyWindow ()

GEL_PatchAssembly ()
GEL_RefreshWindows ()

GEL_Reset ()

GEL_Run ()

GEL_RunF ()
GEL_SrcDirAdd ()
GEL_SrcDirRemoveAll ()
GEL_SrcStepInto ()
GEL_SrcStepOver ()
GEL_StepInto ()
GEL_StepOut ()
GEL_StepOver ()
GEL_SyncHalt ()
GEL_SyncRun ()
GEL_SyncStepInto ()
GEL_SyncStepOut ()
GEL_SyncStepOver ()
GEL_System ()
GEL_UnloadAllSymbols ()
GEL_WatchDel ()

©1989-2024 Lauterbach

Converter from GEL to PRACTICE

7

Partial supported functions:

GEL_Animate()

GEL_lIsInRealTimeMode()
GEL_Load()
GEL_LoadGEL()

GEL_MemorySave()

GEL_OpenMemoryWindow()

GEL_OpenWindow()
GEL_SymbolAdd()
GEL_SymbolLoad()
GEL_SymbolRemove()

GEL_TargetTextOut()

GEL_TextOut()

GEL_WatchAdd()

Runs the program until a breakpoint is encountered. At the
breakpoint, execution stops. After updating windows, program
resumes its execution until next breakpoint.

Always returns TRUE.
'‘CpuName' and 'boardName' parameters are not supported

Supports only PRACTICE scripts. GEL scripts need to be
converted to PRACTICE scripts first.

'io_Format' and 'append' parameters are not supported. Memory
block is always saved in hexadecimal format and file is always
overwritten.

Parameters: 'title', 'qValue', 'ref_buffer_on', 'ref_buffer_start',
‘ref_buffer_end', 'ref_buffer_auto_update', 'track_expression’,
‘bypass_cache’, 'highlight_cache_diffs' are not supported.

‘WindowType' and 'maxLines' parameters are not supported.
'‘CpuName' and 'boardName' parameters are not supported.
'‘CpuName' and 'boardName' parameters are not supported.

Only filename is supported - file path is discarded. 'CpuName'
and 'boardName' parameters are not supported.

Only 'startAddress', 'page' and 'windowName' parameters are
supported.

‘textColor', 'lineNumber' and 'appendToEnd' parameters are not
supported.

‘Label' parameter is not supported.

©1989-2024 Lauterbach

Converter from GEL to PRACTICE | 8

Using PRACTICE Commands from GEL Script

There is possibility to execute PRACTICE command directly from GEL script by using following syntax:

//!PRACTICE (practice_command) ;

Above construction must be placed in an empty line.

Converter-specific Reserved Words

Converter is using following subset of identifiers:

vo,

__LO, __ 11,

V1,

_ V2, .
L2, o

This identifiers cannot be used as labels, local/global variables, symbols and function names in GEL scripts.

©1989-2024 Lauterbach

Converter from GEL to PRACTICE

9

Target CPU Register Names

TARGET
C620X, C6201, C621X

C64X, C6416

C64X+

C670X, C671X, C6713
C54X

C55X, C5510

Troubleshooting

REGISTERS
A0-A15, AMR, B0-B15, CSR, EM, ER, IER, IFR, IRP, ISTP, NRP, PC

A0-A31, AMR, B0-B31, CSR, DIER, EM, ER, GFPGF, IER, IFR, IRP,
ISTP, NRP, PC

A0-A31, AMR, B0-B31, CSR, DIER, DNUM, ECR, EFR, EM, ER,
GFPGF, GPLYA, GPLYB, IER, IERR, IFR, ILC, IRP, ISTP, ITSR, NRP,
NTSR, PC, REP, RILC, SSR, TSCH, TSCL, TSR

A0-A15, AMR, B0-B15, CSR, FADCR, FAUCR, FMCR, IER, IFR, IRP,
ISTP, NRP, PC

A, ARO-AR?7, B, BK, BRC, DP, IFR, IMR, IPTR, PMST, REA, RSA, SP,
STO, ST1, T, TRN, XPC

ACO0-AC3, BKO03, BK47, BKC, BRCO, BRC1, BRS1, BSA01, BSA23,
BSA45, BSA67, BSAC, CFCT, CSR, DBIERO, DBIER1, IERO, IERT,
IFRO, IFR1, IVPD, IVPH, MDP, MDP05, MDP67, PC, PDP, REAO,
REA1, RETA, RPTC, RSA0, RSA1, STO-ST3, TO-T3, TRNO, TRN1,
XARO-XAR8, XCDP, XDP, XSP, XSSP

PROBLEM:

TRACE32 displays
error: “unknown
area”

SOLUTION:

GEL_TextOut() or GEL_TargetTextOut() function was used with

‘windowName’ parameter and TRACE32 AREA window with that name

is not yet created. Either create AREA window with
GEL_OpenWindow() or use converter option “-w” to redirect
GEL_TextOut() and GEL_TargetTextOut() to single default TRACE32
AREA window.

©1989-2024 Lauterbach

Converter from GEL to PRACTICE |

10

	Converter from GEL to PRACTICE
	Introduction
	Brief Overview of Documents for New Users
	Launching Converter
	Using @prog, @data and @io
	Using Menuitem, Hotmenu, Dialog and Slider
	Recognizing Types of Identifiers in GEL
	Functions Parameters
	Preprocessor
	Callback GEL Functions
	Built-in GEL Functions
	Using PRACTICE Commands from GEL Script
	Converter-specific Reserved Words
	Target CPU Register Names
	Troubleshooting

