LAUTERBACH A

Verilog Debug Back-End

Verilog Debug Back-End

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 Documentsccccceriiiiemmniinssmssnnnsssnsnssnsssnnns
Debug Back-Endsooieiiiiiiiennn s
Verilog Debug Back-Endcccceevvmmmmmnisiemmnnnnsinnnns

INtroducCtionoccciiieeeiirreir e e a e ran s
Related Documents
Contacting Support

Abbreviations and Definitionscccccccccviiriieeeee.

Features ... e
Supported Transactors and Simulators
JTAG Transactor

System Architecturescccccccmmrriiiicciisscssnceeeennns
PowerView System Configurationsc.ceueees

RTL Simulator Integrationcccoecciiniiiecnnnnnnnes
Step 1: Connecting Signals
Step 2: Loading the trace32_verilog_transactor.so
GPLCVER-2.12a Simulator
VCS Simulator

Connecting TRACE32 to the Verilog Transactor

Keep the Graphical User Interface Responsive .
Timing Adaplion ... e
Troubleshooting the JTAG Transactor

-

N O 0000 o W ww

11
11
12
13
13

14
15
16
17

©1989-2024 Lauterbach

Verilog Debug Back-End

2

Verilog Debug Back-End

Version 06-Jun-2024

Introduction

The Verilog Transactor is used to interact with a software Verilog RTL Simulator. Software RTL simulator
models can be extremely slow. Therefore the focus of using the transactor is to test the design together with
TRACE32 rather than to debug an application. TRACES32 is no ASIC verification tool, but it provides
PRACTICE as scripting language to automate tests and access the model by its debug modules.

It is not intended to use the Verilog Transactor with emulators because the transactor is not accelerated and
would slow down the emulation.

TRACE32 PowerView provides special commands to allow a minimum of sequences to be send to the
simulation to test a certain feature.

Related Documents

. “T32Start” (app_t32start.pdf): The T32Start application assists you in setting up multicore /
multiprocessor debug environments, and software-only debug environments. T32Start is only
available for Windows.

For more information about software-only debug environments, please refer to:
“Software-only Debugging (Host MCI)” (app_t32start.pdf).

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

. To contact your local TRACES32 support team directly.

. To register and submit a support ticket to the TRACE32 global center.
. To log in and manage your support tickets.

o To benefit from the TRACES32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@ lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration.

©1989-2024 Lauterbach Verilog Debug Back-End | 3

https://support.lauterbach.com

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

Lauterbach Homepage
Support
N About TRACE32

b & System Information...
2 Update TRACE32...
B Technical Support Contacts

4 Contact Lauterbach .

P Generate TRACE32 Support Information E@.
Press the following button to get help on how to generate Support Information:
Company: Lauterbach Department: |
Prefix:

Firstname: Andrea

Surname: Martin

Street: Altlaufstr, 40 P.O.Box:

City: Hoehenkirchen-Siegertsbr. ZIP Code: 85635

Country: Germany

Telephone: (+49) 8102-9876-355

eMail: andrea.martin@lauterbach.com |

Product: PowerTrace PX |

Target CPU: ARMSA0T

Hostsystern: | Windows 10 v

Compiler: Arm

Realtime05: MNeno Safe Mode: []
Generate Support Information: Save to Clipboard | | Save to File

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.
3. Click Save to Clipboard, and then paste the system information into your e-mail.

©1989-2024 Lauterbach

Verilog Debug Back-End |

4

Abbreviations and Definitions

AMP Asymmetric Multi-Processing
DUT Device Under Test. A DUT is the part of the model that is being tested.
RTL Register Transfer Level. Models of this level describe a digital system by

registers, signals and processes, not using a complete net list with timing
information.

RTL simulator

A software RTL simulator executes a model on RTL level without using
special acceleration hardware.

Transactor A transactor is a part of a system that interacts with the DUT in order to
analyze and control the DUT by an external tool.

Verilog Hardware description language on RTL level.

VPI Verilog Procedural Interface. The Verilog Procedural Interface is used to

interface from Verilog models into behavioral system parts written in the
programming language “C".

©1989-2024 Lauterbach

Verilog Debug Back-End |

5

Features

Supported Transactors and Simulators

Supported transactors are:

o JTAG Transactor

All simulators are supported that interface by VPI 2.0 (Verilog Procedural Interface) such as:
J Cadence NC-Verilog

J Synopsys VCS

. GPLCVER

. and many others

JTAG Transactor

The JTAG Transactor provides the following features:

J Access to JTAG signals using JTAG commands and API functions described in “API for Remote
Control and JTAG Access in C” (api_remote_c.pdf), chapter “ICD TAP Access API Functions”.

. JTAG shift engine including Arm RTCK

. Runtime Counter by Run-Line or Stopped-Trigger-Line
J Virtual PodBus Trigger

. Reset signal trigger

. Artificial high JTAG frequency to encounter JTAG protocol overhead

©1989-2024 Lauterbach Verilog Debug Back-End | 6

System Architectures

Linux

Workstation / Simulation Host

Debugger Process(es)

Front-End(s)
PowerView

Back-End
hostmci.so

RTL Simulator

trace32_

/ verilog_
transactor.so

VPI 2.0

trace32_
transactor_
jtag.v

DUT

In all cases, the shared library file trace32_verilog_transactor.so must be started together with

the RTL simulator. The RTL simulator calls the library through the VPI 2.0 interface in the module
trace32_transactor_jtag.v that exports the JTAG signals.

The transactor library communicates through named pipes with another shared library hostmci . so. This

library contains the low-level algorithms that do high-performance accesses, requiring low latency.

©1989-2024 Lauterbach

Verilog Debug Back-End

7

PowerView System Configurations

The TRACES32 PowerView instances can be set up in different ways.

1. A single TRACE32 PowerView instance runs on the same host as the back-end, see Setup 1. This
configuration can’t handle AMP debug scenarios.

2. Multiple TRACES32 PowerView instances run on the same host as the back-end, see Setup 2.

3. The TRACE32 PowerView instances run on a dedicated workstation; the back-end runs on another

host, see Setup 3.

The Lauterbach Debug Driver library (hostmci . so for Linux/Mac users and hostmci.dl1l for Windows
users) can be integrated into the TRACE32 PowerView application or run as a separate process, called
t32mciserver. Running it as a separate process provides two main benefits:

1. The MCI server can execute on one host, whilst one or more instances of TRACE32 PowerView
execute on another host.

2. Multiple instances of TRACE32 PowerView can execute on a single host, sharing the MCI
connection.
Setup 1

Setup with a single TRACE32 PowerView instance running on the same host as the back-end:

Workstation / Simulation Host
Linux / Windows

PowerView

hostmci.so/.dll

Modify the config.t32 file as follows:

PBI=MCILIB ; configure system to use hostmci.so

©1989-2024 Lauterbach Verilog Debug Back-End | 8

Setup 2

Setup with multiple TRACE32 PowerView instances (AMP) running on the same host as the back-end:

Linux / Windows

Workstation / Simulation Host

PowerView 1

hostmci.so/.dll

PowerView 2

PowerView n

TCP

Modify the config.t32 as follows:

PBI=MCISERVER
PORT=30000
INSTANCE=AUTO

set up the usage of hostmci.so and open
server at 30000 for the first instance.
consecutive number of instance or AUTO

©1989-2024 Lauterbach

Verilog Debug Back-End

9

Setup 3

Setup with multiple TRACE32 PowerView instances (AMP) running on another host:

Workstation Simulation Host

Windows / Linux Linux / Windows
PowerView 1 t32mciserver
PowerView 2 TCP hostmci.so/.dll

PowerView n

Start t32mciserver on the simulation host:

./t32mciserver port=30000 ; start t32mciserver at port 30000

Modify the config.t32 file as follows:

PBI=MCISERVER ; set up connection to t32mciserver
NODE=192.168.0.1 ; connect to IP 192.168.0.1
PORT=30000 ; at port 30000

INSTANCE=AUTO ; consecutive number of instances
DEDICATED ; avoid to fall into Setup2 case

Linux example: To start TRACES32 PowerView with a specific config file, use e.g.:

bin/pc_linux/t32marm -c config.t32

In a multi-user, multi-simulation environment, the pipe name needs to be unique. Both shared libraries use a
default file name that is derived from the USER environment variable:

/tmp/t32verilog_transactor_SUSER

This pipe name can be redefined by specifying the environment variable T3 2VERILOGTRANSACTORPIPE.
For hostmci . so the default pipe name can also be set up with the following command:

I SYStem.CONFIG.TRANSACTORPIPENAME Set up pipe name

©1989-2024 Lauterbach Verilog Debug Back-End | 10

RTL Simulator Integration

This section describes how to integrate the Verilog Transactor into the simulation. In a first step, the DUTs
signals must be connected to the Verilog part of the transactor. In a second step, transactor library must be

loaded together with the simulator.

Step 1: Connecting Signals

The JTAG transactor is implemented in the module trace32_transactor_jtag.v. The module
trace32_transactor_jtag_debugport_vl is used to interface with TRACES32 by connecting it to
the JTAG TAP Controller of the design. The module interfaces through multiple signals and parameters.

In most cases, the smaller interface of the module trace32_transactor_jtag can be used to connect
only mandatory JTAG signals to the TAP of the DUT.

The following table describes the signals of trace32_transactor_jtag_debugport_vl and
trace32_transactor_jtag:

Mandatory Direction Description

Signal

tck_o Out TCK signal to DUT

tms_o Out TMS signal to DUT

tdi_o Out TDI signal to DUT

tdo_i In TDO signal from DUT

ntrst_o Out NTRST signal to DUT (low active)

The following table describes the additional signals of trace32_transactor_jtag_debugport_vl:

Additional Direction Description

Signal

nreset_o Out NRESET signal to DUT (low active). The debugger uses this
signal to reset the DUT.

nreset_i In NRESET signal from DUT (low active). The signal is used to
detect a reset of the DUT e.g. when other transactors reset the
simulation model.

power._i In POWER signal from DUT. When the level is 0, the TRACE32
will show Power Down.

©1989-2024 Lauterbach

Verilog Debug Back-End | 11

Additional Direction Description

Signal

trigger_i In A trigger signal from DUT. The trigger signal appears as
PodBus trigger in TRACE32. By the TrBus.state dialog different
actions can be programmed when a trigger appears.

trigger_o Out A trigger signal to the DUT. The trigger signal appears as
PodBus trigger in TRACE32.

runline_i In A line to allow exact runtime measurement of code. When the
line is “1” the runtime counter counts in simulation time. The
time is displayed in the RunTime.state dialog.

rick_i In RTCK signal from the DUT (used by some Arm architecture
JTAG TAPs in order to signal that TDO is ready to sample.).

The following parameters are used to configure the input signals. A value of “0” means that a signal is
ignored by the transactor. The input signal will be used when the value is “1”.

Parameter

Default

Description

instance

-1

Used to manage multiple instances in future versions.
Overwrite by “0” always!

poll_frequency_hz 1000

Internal poll rate in Hz to trigger communication from
PowerView. A high poll rate reduces the latency to
hostmci.so, but consumes more simulation time.

has_reset_i 1 Specify if nreset_i signal shall be used.
has_power_i 0 Specify if power_i signal shall be used.
has_trigger_i 0 Specify if trigger_i signal shall be used.
has_runline_i 0 Specify if runline_i signal shall be used.
has_rtck_i 0 Specify if rtck_i signal shall be used.

Step 2: Loading the trace32_verilog_transactor.so

The simulation process need to call the transactor shared library, therefore the library must be loaded by the
simulation process. The library is located in ~~/demo/etc/verilog_transactor/bin. Depending to the
environment the right library must be chosen. How the library is loaded depends to the simulator and is
described in the manual of the simulator. In general the library fulfills the VPI interface standard.

©1989-2024 Lauterbach

Verilog Debug Back-End | 12

GPLCVER-2.12a Simulator

On the Linux command line, run cver with the transactor and use trace32_jtag_tb.v as top level
module to run a test bench that just contain a signle JTAG TAP:

/usr/bin/cver \
+loadvpi=trace32_verilog transactor.so:vpi_compat_bootstrap \
trace32_jtag_tb.v

VCS Simulator

VCS need to be compiled with additional options:

VCS_OPTS += +vpi+l
VCS_OPTS += -P trace32_pli.tab
VCS_OPTS += trace32_verilog_transactor.so

©1989-2024 Lauterbach Verilog Debug Back-End | 13

Connecting TRACE32 to the Verilog Transactor

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

RESet

;set up connection to Simulator and try to connect
SYStem.CONFIG.DebugPort VerilogTransactor(

;used to configure pipe name in case former transactor is used
;SYStem.CONFIG.TRANSACTORPIPENAME "/tmp/t32verilog actuator_user"

;set up the JTAG clock (simulation clock based)
;find out the maximum JTAG frequency to speedup all operations!
SYStem.JtagClock 1Mhz

; configure usage of model time base instead host base to avoid timeouts
; while the emulation is paused.

SYStem.VirtualTime.TimeinTargetTime ON
SYStem.VirtualTime.PauseinTargetTime ON

;make the pauses and timeouts 100 times shorter
SYStem.VirtualTiming.TimeScale 0.01

;this will limit any pause statements to 10us target time
SYStem.VirtualTiming.MaxPause 10us

;this will limit any small time-out to read register to lms
SYStem.VirtualTiming.MaxTimeout 1ms

;select the CPU

SYStem.CPU CortexA9

;tell the system that a DAP is present
SYStem.CONFIG COREBASE APB:0x80009000

;connect to JTAG quickly
SYStem.Mode.Prepare

;access to busses now working
Data.Set DAP:0x00000000 %long 0x0 /Verify

©1989-2024 Lauterbach Verilog Debug Back-End | 14

Keep the Graphical User Interface Responsive

Due to slow RTL simulation, small operations such as reading the state or showing memory dumps take a
long time. This chapter describes how to adjust the virtual time scale to ultra-slow simulators and how to
reduce screen flicker caused by slow RTL simulation. To keep the user interface smooth multiple tuning
options can be set.

The most important setting is SETUP.URATE to configure the update rate of the TRACE32 windows. The
processors state is also polled by this rate.

SETUP.URATE 10s ; screen will be updated every 10s

To avoid screen update while PRACTICE scripts are running:

SCREEN.OFF ; switch off update of the windows when
; a PRACTICE script is executed

SCREEN ; trigger a manual update of the windows
; inside a PRACTICE script

To switch off state polling when the CPU is stopped, the command SYStem.POLLING can be used, but the
debugger can’t detect when another CPU changes the state from stopped to running e.g. by soft reset.

SYStem.POLLING DEF OFF ; disable processor state polling when
; stopped

The command MAP.UpdateOnce can be used to read memory regions only one time after a break is
detected.

MAP.UpdateOnce 0x0++0x1000 ; read memory of regions 0x0--0x1000
; only one time after break

For analysis and data display purposes it is recommended that you use the code from the TRACE32 virtual
memory (VM:) instead of the code from the target memory. Therefore, the code needs to be copied to the
virtual memory when an *.elf file is being loaded.

Data.Load.ELF *.elf /VM ; download code to target and copy it to
; VM:

Data.List VM: ; open source window, but use VM: memory

Onchip.Access VM ; use VM memory for trace analysis

©1989-2024 Lauterbach Verilog Debug Back-End | 15

Timing Adaption

TRACE32 software includes of a set of efficient low-level driver routines to access the target. These routines
have a certain timing that must be adjusted to ultra-slow simulators that can be million times slower than real
silicon. In general, there are code parts that pause the execution, wait until a time-out is reached or just use
a certain point of time.

For example, when the simulation is 1,000,000 times slower than real time, these commands can be used to
adjust the timing in most cases:

; configure usage of model time base instead host base to avoid timeouts
; while the emulation is paused.

SYStem.VirtualTiming.TimeinTargetTime ON
SYStem.VirtualTiming.PauseinTargetTime ON

;make the pauses and timeouts 100 times shorter
SYStem.VirtualTiming.TimeScale 0.01

;this will limit any pause statements to 10us target time
SYStem.VirtualTiming.MaxPause 10us

;this will limit any small time-out to read register to lms
SYStem.VirtualTiming.MaxTimeout Ilms

The following timing SYStem commands are available:

SYStem.VirtualTiming.MaxPause Limit pause
SYStem.VirtualTiming.MaxTimeout Override time-outs
SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base
SYStem.VirtualTiming.PauseScale Multiply pause with a factor
SYStem.VirtualTiming.TimeinTargetTime Set up general time-base
SYStem.VirtualTiming.TimeScale Multiply time-base with a factor
SYStem.VirtualTiming.HardwareTimeout Can disable hardware timeout
SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout
SYStem.VirtualTiming.InternalClock Base for artificial time calculation
SYStem.VirtualTiming.OperationPause Insert a pause after each action to slow
down timing.

©1989-2024 Lauterbach Verilog Debug Back-End | 16

Troubleshooting the JTAG Transactor

After the signals and parameters are connected with the TAP of the DUT, PowerView JTAG diagnostic
should run:

;show results and errors
AREA.view

;set up connection to Simulator
SYStem.CONFIG.DebugPort VerilogTransactor(

;use simulation time as time base
SYStem.VirtualTiming.TimeinTargetTime ON
SYStem.VritualTiming.PauseinTargetTime ON

;set up JTAG clock (simulation clock based)
SYStem.JtagClock 1Mhz

;analyze JTAG chain for testing purposes
SYStem.DETECT.DAISYCHAIN /GENERIC /TRST

Symptom Cause Remedy

Status line shows TRACE32 can’t connect to 1. Check that the simulation is running and

“power down” the simulator. executing the DUT when TRACERS2 start to
connect.

2. Check that hostmci.so is started in the
same user context or modify the pipe
names by
SYStem.CONFIG.TRANSACTORPIPENA
ME. The plug-in will create a pipe in “tmp”
starting with “t32verilog_transactor”

3. Check that the parameter “instance” is
set to “0”

4. Check that the simulator console output
contain lines beginning with “T32VT:”.
They indicate that the plug-in is active.

5. Check that the simulation has loaded
the transactor plug-in.

6. Check that DUT code call the function
“$trace32_transactor_jtag_init”

Status line shows TRACE32 can’t connect to The transactor plug-in can only
“power down” the simulator. communicate with hostmci.so when the
simulation executes the model.

©1989-2024 Lauterbach Verilog Debug Back-End | 17

Symptom

Cause Remedy

When the IR and
DR length are both

Probably TDI is connected to See Step 1: Connecting Signals.
TDO without a DUT JTAG

“0” TAP between them.

TDO stays TDO signal is not connected See Step 1: Connecting Signals.
constantly high or or the DUT TAP does not

low work, e.g. is held in reset.

Chain lengths

JTAG frequency might be too Use SYStem.JtagClock to lower the JTAG

cannot be high. frequency.

determined

Chain lengths The TAP state remain Connect TRST pin to the TAP controller or
cannot be undefined. assign an initial value to the TAP state.
determined

NOTE: The maximum clock of the TAP can be determined by the command

SYStem.DETECT JtagClock, but the final frequency that can be used also
depends to model behind the TAP. The detected frequency is just the upper limit.
The optimal frequency depends to the state of the simulation and can change
during one debug session.

©1989-2024 Lauterbach

Verilog Debug Back-End | 18

	Verilog Debug Back-End
	Introduction
	Related Documents
	Contacting Support

	Abbreviations and Definitions
	Features
	Supported Transactors and Simulators
	JTAG Transactor

	System Architectures
	PowerView System Configurations
	RTL Simulator Integration
	Step 1: Connecting Signals
	Step 2: Loading the trace32_verilog_transactor.so
	GPLCVER-2.12a Simulator
	VCS Simulator

	Connecting TRACE32 to the Verilog Transactor
	Keep the Graphical User Interface Responsive
	Timing Adaption
	Troubleshooting the JTAG Transactor

