
MANUAL

TRACE32 as GDB Back-End

TRACE32 as GDB Back-End

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 GDB Support .. 

 TRACE32 as GDB Back-End ... 1

 Introduction ... 3

 Documentation Updates 3

 Related Documents 3

 Supported Architectures .. 4

 Operation Theory and Restrictions ... 5

 TRACE32 Setup ... 6

 GDB Front-Ends Setup ... 7

 The GNU Project Debugger GDB 7

 Eclipse 9

 Microsoft Visual Studio 12

 Visual Studio Code 14

 Remote Serial Protocol ... 17

 Protocol Extensions 17

 Symmetrical Multiprocessing Support 17
TRACE32 as GDB Back-End | 2©1989-2024 Lauterbach

TRACE32 as GDB Back-End

Version 06-Jun-2024

Introduction

TRACE32 PowerView implements a GDB server/stub functionality. This provides an interface to any
application using the GDB Remote Serial Protocol (RSP) to control TRACE32 PowerView via TCP.

For the end users, this document presents:

• The supported target architectures.

• The operation theory of the GDB back-end and the solution restrictions.

• How to configure TRACE32 as a GDB back-end.

• TRACE32 integration to some example front-ends via the GDB interface.

For the users interested in the integration of TRACE32 with their custom GDB front-end, this document
presents the limitations of the RSP and the protocol extensions defined to overcome them.

For information about using TRACE32 to debug e.g a virtual target over its GDB stub or to debug an
application over gdbserver, please refer to “TRACE32 as GDB Front-End” (frontend_gdb.pdf).

Documentation Updates

The latest version of this document is available for download from:
www.lauterbach.com/pdf/backend_gdb.pdf

Related Documents

• For information about how to install TRACE32, see “TRACE32 Installation Guide”
(installation.pdf).

• For information about TRACE32 configuration, please refer to “Debugger Basics - Training”
(training_debugger.fm).
TRACE32 as GDB Back-End | 3©1989-2024 Lauterbach

http://www.lauterbach.com/pdf/backend_gdb.pdf

Supported Architectures

The TRACE32 GDB stub is supported for the following architectures:

• 68K/ColdFire

• 8051/XC800/M51

• Arm (32 and 64 bit)

• GTM

• Intel x86/x86 64

• MicroBlaze

• MIPS32/MIPS64

• PowerArchitecture (32 and 64 bit)

• RISC-V

• SuperH

• TriCore

• V850/RH850

• Xtensa

Other architectures could be supported on demand. Please send your request to
support@lauterbach.com
TRACE32 as GDB Back-End | 4©1989-2024 Lauterbach

Operation Theory and Restrictions

TRACE32 PowerView receives commands from the remote GDB front-end, executes them and sends
the response back to the front-end.

The Communication to TRACE32 PowerView is implemented as a socket interface. This means, that the
GDB front-end and TRACE32 PowerView can reside on two different hosts, using network connections for
the communication. TRACE32 PowerView routes the GDB requests to the TRACE32 hardware. The answer
to the request goes exactly the opposite way, returning information to the GDB front-end.

The GDB requests are operated just beside normal TRACE32 operation. You can use both, TRACE32
PowerView and the GDB front-end interchangeable, although it is not recommended. The GDB front-end
won't be informed about changes that are done in TRACE32 PowerView.

Due to some limitations of the Remote Serial Protocol, extended TRACE32 functionality like trace views,
MMU views and OS-aware debugging is not supported.
TRACE32 as GDB Back-End | 5©1989-2024 Lauterbach

TRACE32 Setup

To configure TRACE32 PowerView as GDB back-end, use the command SETUP.API.GDB.ON. You can
specify a port number using the /PORT option. If no port number is specified, the default port 30000 will be
used.

Example 1:

Example 2:

SETUP.API.GDB.ON ; enable GDB server in TRACE32
; using default port 30000

SETUP.API.GDB.ON /PORT 12345 ; enable GDB server in TRACE32
; using port 12345
TRACE32 as GDB Back-End | 6©1989-2024 Lauterbach

GDB Front-Ends Setup

TRACE32 PowerView could be controlled by any front-end that supports the GDB Remote Serial Protocol.
This section presents some examples of third party tools that could be configured to control TRACE32
PowerView via its GDB stub.

The GNU Project Debugger GDB

In the following example gdb-multiarch is used. The other alternative, is to use the appropriate gdb for the
selected architecture:

1. Make sure that you set the correct architecture. In this example, the architecture arm is used to
control TRACE32 PowerView for Arm:

2. Connect to TRACE32 PowerView using TCP. Here the localhost address 127.0.0.1 is used. If
TRACE32 PowerView is started on a different machine than the one running gdb, the remote
machine IP address needs to be used. At this level, there are two different way to start the GDB
session. This depends on the status of the communication between TRACE32 debugger and the
target:

- If the debug communication between TRACE32 and the target is already established.
TRACE32 PowerView should show for example “system ready” in the status bar. Then, the
command target remote needs to be used.

- If the debug communication between TRACE32 and the target is not yet established.
TRACE32 PowerView should show for example “system down” in the status bar. Then, the
command target extended-remote needs to be used. In the following example, the monitor
commands are used to initiate the communication between TRACE32 and the target. For
more details please see Monitor Commands.

$gdb-multiarch GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.5) 7.11.1
Copyright (C) 2016 Free Software Foundation, Inc.

(gdb) set architecture arm
The target architecture is assumed to be arm

(gdb) target remote 127.0.0.1:30000
Remote debugging using 127.0.0.1:30000
0x000011fc in ?? ()

(gdb) target extended-remote 127.0.0.1:30000
Remote debugging using 127.0.0.1:30000
(gdb) monitor B::SYStem.CPU CortexA9
(gdb) monitor B::SYStem.Up
TRACE32 as GDB Back-End | 7©1989-2024 Lauterbach

3. Now you can continue debugging using the GDB command line. E.g:

- Set the symbol file relative to the application loaded into the target memory

- Set a breakpoint

- Continue the program execution

Monitor Commands

The TRACE32 GDB stub supports the following monitor commands:

(gdb) symbol-file sieve.elf
Reading symbols from sieve.elf...done.

(gdb) break sieve
Breakpoint 1 at 0x15e6: file ./src/sieve.c, line 798.

(gdb) continue
Continuing.
Breakpoint 1, sieve () at ./src/sieve.c:798
798 count = 0;

help The command “monitor help” returns the string “TRACE32”

B::<cmd> Execute a TRACE32 PRACTICE command.
Example: “monitor B::Var.set mcount=1”

eval <func> Get the return value of a PRACTICE function.
Example: “monitor eval Register(PC)”

Practice-State The command “monitor Practice-State” returns the run-state of
PRACTICE.
0: not running
1: running
2: dialog window open

set step-mode [hll
| asm]

Execute an assembly or high-level single step when getting a GDB RSP
step packet. Default is asm.

sync [on | off] Enable / disable the software component that allows a TRACE32
instance to connect to other instances by executing the TRACE32
command SYnch.ON or SYnch.OFF.
TRACE32 as GDB Back-End | 8©1989-2024 Lauterbach

Examples:

Eclipse

It is possible to control TRACE32 PowerView via its GDB stub from Eclipse. However, it is recommended to
use the Target Communication Framework (TCF) instead, since it offers more features. For more details,
please refer to “TRACE32 as TCF Agent” (app_tcf_setup.pdf).

The following screenshots are generated using Eclipse IDE for C/C++ Developers, Oxygen.2 Release
(4.7.2).

You need to configure Eclipse as follows:

1. Add a debug configuration for remote application to your Eclipse work space. In the Debug
Configurations window, you need to select the configuration “GDB (DSF) manual Remote
Debugging Launcher”.

default-reset
[core | system]

core: execute the command SYStem.Option.EnReset OFF.
system: execute the command SYStem.Option.EnReset ON.

reset debug Execute a SYStem.Mode Up.

(gdb) monitor help
TRACE32
(gdb) monitor eval Var.Value(mcount)
00000792
(gdb) monitor B::Data.Set 0x100 %Long 0
(gdb) monitor eval Var.Value(mcount)
00000000
(gdb) monitor B::QUIT
Remote connection closed
TRACE32 as GDB Back-End | 9©1989-2024 Lauterbach

2. In the Debugger tab, select your GDB debugger according to your target architecture.

3. Set up the connection configuration according to your TRACE32 PowerView setup.

- Set the Host name or IP address of the machine running the TRACE32 PowerView instance.
TRACE32 as GDB Back-End | 10©1989-2024 Lauterbach

- Set the Port number according to the GDB port configuration of the PowerView instance.

4. Before you try to start debugging from Eclipse, you need to make sure that the debug
communication between TRACE32 and the target is already established. TRACE32 PowerView
should show for example “system ready” in the status bar.
TRACE32 as GDB Back-End | 11©1989-2024 Lauterbach

Microsoft Visual Studio

Starting from Microsoft Visual Studio 2015, it is possible to install the GDB Debugger extension for Visual
C++. This introduces a new project type, that provides additional project properties and allows to connect
the Visual Studio debugger to a GDB stub.

The following screenshots are based on Microsoft Visual Studio Professional 2015.

You need to configure Visual Studio as follows:

1. Create a new project by selecting the template “Makefile Project (GDB)”.

2. Set up the debugging configuration on the project properties page:

- Chose the item Local GDB.

- Set up the correct GDB debugger executable according to your target architecture. In this
example, a configuration for Arm architecture is used.

- Configure the Local Debugger Server Address with the IP address or host name of the
machine, running the TRACE32 PowerView instance, and the GDB port number of the
TRACE32 PowerView instance.
TRACE32 as GDB Back-End | 12©1989-2024 Lauterbach

3. Make sure that the debug communication between TRACE32 and the target is already
established. The TRACE32 PowerView should show for example “system ready” in the status
bar.
TRACE32 as GDB Back-End | 13©1989-2024 Lauterbach

Visual Studio Code

You need to configure Visual Studio Code as follows to establish a connection with TRACE32 PowerView:

1. Select the menu Run > Add Configuration then add an empty configuration {}.

2. Set the following parameters:

Example:

"name" Select the name you want to give to your configuration

"type" "gdb"

"request" "launch"

"target" ELF file

"gdbpath" GDB executable

"cwd" Current working directory

"valuesFormatting" "parseText"

"autorun" "target remote localhost:30000",
"symbol-file < ELF file >",

{
 "configurations": [
 {
 "name": "TRACE32 Debug",
 "type": "gdb",
 "request": "launch",
 // set the path to the project’s ELF file:
 "target":"C:/T32/demo/arm/compiler/gnu/sieve.elf",
 // set the path to the gdb executable on the host:
 "gdbpath": "C:/ARMGCC/bin/arm-none-eabi-gdb.exe",
 "cwd": "C:/T32/demo/arm/compiler/gnu/",
 "valuesFormatting": "parseText",
 "autorun": [
 // connect to TRACE32 PowerView listening to port
 // number 3000
 "target remote localhost:30000",
 // load the debug symbols in VSCode
 "symbol-file C:/T32/demo/arm/compiler/gnu/sieve.elf",
]
 }
]
}

TRACE32 as GDB Back-End | 14©1989-2024 Lauterbach

3. Start TRACE32 PowerView with a startup script in order to establish connection with the target.
Example:

4. To start debugging, select the menu Run > Start Debugging or press F5.

You can additionally replace the TRACE32 built-in editor call with a call to the Visual Studio Code editor
using the command SETUP.EDITEXT:

C:\T32\bin\windows64\t32marm.exe -s \
 C:\T32\demo\arm\compiler\gnu\demo_sram.cmm

NOTE: VSCode may display a red message “Exception has occurred” at the program
counter position and the message “Not implemented stop reason (assuming
exception): undefined” in the debug console.
This message can be ignored.

SETUP.EDITEXT ON "<path_to_vscode>\Code.exe -g ""*:#"""
TRACE32 as GDB Back-End | 15©1989-2024 Lauterbach

If you do the a right mouse click in the TRACE32 List window then select Edit Source, the file will be
displayed in Visual Studio Code on the selected line number.
TRACE32 as GDB Back-End | 16©1989-2024 Lauterbach

Remote Serial Protocol

TRACE32 GDB stub supports almost all the packets defined by the Remote Serial Protocol except some
packets that are generally not needed to control TRACE32 PowerView via the GDB stub.If you need the
exhaustive list of the supported packets please send a request to support@lauterbach.com.

Protocol Extensions

The Remote Serial Protocol does not provide a way to distinguish between different memory types.
When the RSP protocol is used to communicate with a GDB stub other than the GNU gdbserver, the
memory address is not always sufficient to identify a unique physical memory location. Depending on
the access mode, the same memory address could refer to different physical memory locations (e.g.
secure/non secure memory for Arm architecture). To overcome these limitations, Lauterbach has
defined a protocol extension:

• A packet to read <length> addressable memory of type defined by <access_class> starting at
address <address>.

• A packet to write <length> addressable memory of type defined by <access_class> starting at
address <address>. The data is given by <values>; each byte is transmitted as a two-digit
hexadecimal number.

• If the TRACE32 software version implements this protocol extension, it should include the string
”qtrace32.memory+;Qtrace32.memory+” in the reply to the “qSupported” packet.

Symmetrical Multiprocessing Support

In order to support Symmetrical Multi-Processing (SMP) debugging over the GDB interface, TRACE32
considers each core from an SMP system as a thread. Thus, all the RSP packets relative to the multi-thread
handling are used for multi-core handling.

qtrace32.memory:<access_class>,<address>,<length>

Qtrace32.memory:<access_class>,<address>,<length>,<values>

The available access classes are dependent on the processor architecture
in use. Therefore refer to the Access Class/Memory Class section of your
Processor Architecture Manual for more details.
TRACE32 as GDB Back-End | 17©1989-2024 Lauterbach

	TRACE32 as GDB Back-End
	Introduction
	Documentation Updates
	Related Documents

	Supported Architectures
	Operation Theory and Restrictions
	TRACE32 Setup
	GDB Front-Ends Setup
	The GNU Project Debugger GDB
	Eclipse
	Microsoft Visual Studio
	Visual Studio Code

	Remote Serial Protocol
	Protocol Extensions
	Symmetrical Multiprocessing Support

