LAUTERBACH A

CSWP Debug Back-End

CSWP Debug Back-End

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTS .ccuuiiieeiireesiirensisssssssisnsssssessssssssssrsssssssnsssssssssssssssssessssssnsssssnsssssanssssnnsssssnssssnnnns r—
[T=T 10 T == Ve T r—~
CSWP Debug BacCKk-ENdccoiiiimmiiimniimsines s isses s sss s s sss s sassss s ssns s ssmssnssms sassmn snssmnnas 1

L 1= (o 3

014 e o 11 Lo £ oY o R 4

Set Up the Debug and Trace SeSSIONcccciicicmmirsiinimmiisssisss s s s ssss s s sassnsas 5

Start TRACE32 PowerView 5

Install the USB Drivers 5
Configure the Debug Session for Arm CoreSight 5
Configure the Trace Recording 8
ComMMANA REfEIENCE ...cieceiireeeiireeeirressiirsnssirssssrransrrassssransssssnsssssnnsssrasssssansssssnsssssnnssssansssnnnnns 10
SYStem.CSWP Configure CSWP communication 10
SYStem.CSWP.Connect Connect to server 10
SYStem.CSWP.DisConnect Terminate CSWP session 10
SYStem.CSWP.Init Initialize CSWP session 10
SYStem.CSWP.SETDEVICE Set device list 11
©1989-2024 Lauterbach CSWP Debug Back-End | 2

CSWP Debug Back-End

Version 06-Jun-2024

History

12-Feb-24 Initial version of the manual.

©1989-2024 Lauterbach CSWP Debug Back-End | 3

Introduction

The CoreSight Wire Protocol (CSWP) serves as a communication protocol specifically designed for
debugging and tracing Arm-based System-on-Chips (SoCs) through functional interfaces like USB. The

communication link between the SoC and the debug and trace software running on the host computer is
managed by a CSWP server, an on-target debug agent. Lauterbach enables debugging in stop mode by
using this technology and fully supporting all CoreSight components. Additionally, support for the SoC's

CoreSight trace infrastructure enables the streaming of trace data, offering transparency into the internal

processes of the SoC.

NOTE:

For now, TRACE32 only supports CSWP with USB connection.

The system comprises two processes:

1. The process that enables TRACE32 to debug the target and control trace generation.
2. CSWP Client/Server manage the process responsible for communication through the functional
interface.

Host Computer

D) TRACES2 Powertiew

[Nk A+ e 2R

File Edit View Var Bresk Run CPU Misc Trace Peff Cov Peripherals Window Help

LI EYd

e

eup » Go

W Break | 1% Mode &[] & Find: sieve.c
=

0id) _attribute_ ((section (".data"))) = 0;
(swatchdogTrigger) (void);

monHook () ;
707 if (watchdogTrigger)
wat

<tchdogTrigger O ;

3 List PERF. S¥stem Step. Go other previous

[Roppedatbreaport B[| e [up

HostMCI

CoreSight
SOC-600

USB 3.x

CSWP Server

Multiple PowerView instances can be connected to one CSWP client/back-end in oder to perform AMP

debugging.

©1989-2024 Lauterbach

CSWP Debug Back-End

4

Set Up the Debug and Trace Session

Start TRACE32 PowerView

Start one or more TRACE32 PowerView instances as described in “PowerView System Configurations”
in TRACE32 Debug Back-Ends, page 6 (backend_overview.pdf).

Install the USB Drivers

In order to use TRACES32 for USB debugging, it is necessary that the required USB driver is installed on the
host PC. Refer to “Installation of the USB Driver” in Debugging via USB User’s Guide, page 6
(usbdebug_user.pdf) for details.

Configure the Debug Session for Arm CoreSight

The following steps are necessary for each TRACE32 PowerView instance started:

1. Specify Arm CoreSight Wire Protocol (CSWP) as debug protocol.

I SYStem.CONFIG.DEBUGPORT CSWP0

2. Prepare multicore debugging setup.

For details refer to “Quick Start for Multicore Debugging” in Armv8 and Armv9 Debugger, page
33 (debugger_armv8v9.pdf).

3. Configure debugger for CoreSight components.

For core debug registers (mandatory):

SYStem.CONFIG.COREDEBUG.Base <access_class>:<base_address>
[<access_class>:<base_address> ...]

For CTI registers (mandatory):

SYStem.CONFIG.CTI1.Base <access_class>:<base_address>
[<access_class>:<base_address> ...]

Details about the configuration of the other CoreSight components can be found in “Setup of the
Debugger for a CoreSight System” (app_arm_coresight.pdf).

©1989-2024 Lauterbach CSWP Debug Back-End | 5

4, Open USB debug connection.

I SYStem.CONFIG.USB.SETDEVice Debug <interface_number> <vid>l<pid>

Refer to “Debugging via USB User’s Guide” (usbdebug_user.pdf) for additional USB debug
connection details.

5. Initiate CSWP connection.

SYStem.CSWP.Connect
SYStem.CSWP.Init

6. Specify CoreSight device for debugging.

I SYStem.CSWP.SETDEVICE <device_number> "<device_name>" "<device_type>"

7. Specify APB bus for CSWP device access.

I SYStem.CONFIG.APBAP1.CSWPDEV <device_number>
8. Establish debug communication.
SYStem.Attach
Break

9. Additional preparations for debugging.

Load the application and perform any further necessary steps.

©1989-2024 Lauterbach CSWP Debug Back-End | 6

This is how a startup script might be written.

; enable Arm CoreSight Wire Protocol (CSWP)
SYStem.CONFIG.DEBUGPORT CSWPO

; prepare multicore debugging setup
SYStem.CPU CortexA78AE
SYStem.CONFIG.CoreNumber 16.
SYStem.CONFIG CORE 1. 1.
CORE.ASSIGN 1.

; configure debugger for CoreSight components
SYStem.CONFIG.COREDEBUG.Base APB:0x51010000 APB:0x51110000 \
APB:0x51210000 APB:0x51310000 APB:0x52010000 APB:0x52110000 \
APB:0x52210000 APB:0x52310000 APB:0x53010000 APB:0x53110000 \
APB:0x53210000 APB:0x53310000 APB:0x54010000 APB:0x54110000 \
APB:0x54210000 APB:0x54310000

SYStem.CONFIG.CTI1l.Base APB:0x51020000 APB:0x51120000 APB:0x51220000 \
APB:0x51320000 APB:0x52020000 APB:0x52120000 APB:0x52220000 \
APB:0x52320000 APB:0x53020000 APB:0x53120000 APB:0x53220000 \
APB:0x53320000 APB:0x54020000 APB:0x54120000 APB:0x54220000 \
APB:0x54320000

; open USB debug connection
SYStem.CONFIG USB SETDEVice Debug 1. 0x5c0 0x2

; initiate CSWP connection
SYStem.CSWP.Connect
SYStem.CSWP.Init

; specify CoreSight device for debugging
SYStem.CSWP.SETDEVICE 0. "CSMEMAP" "mem-ap.v2"

; specify APB bus for CSWP device access
SYStem.CONFIG.APBAP1.CSWPDEV O.

; establish debug communication
SYStem.Attach

Break

; load application
DO ~~/demo/arm/compiler/gnu-pic/demo_sieve.cmm 0x0

ENDDO

©1989-2024 Lauterbach CSWP Debug Back-End | 7

Configure the Trace Recording

To stream trace data off-chip, you must adjust the debug configuration accordingly.
1. Configure the trace CoreSight components

For ETM registers (mandatory):

SYStem.CONFIG.ETM.Base <access_class>:<base_address>
[<access_class>:<base_address> ...]

2. Open USB trace connection.

I SYStem.CONFIG.USB.SETDEVice Debug <interface_number> <vid>l<pid>

Refer to “Debugging via USB User’s Guide” (usbdebug_user.pdf) for additional USB connection
details.

3. Set the trace port type to CSWP

©1989-2024 Lauterbach CSWP Debug Back-End |

8

A typical start sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed with
the command DO <file>.

SYStem.CONFIG.DEBUGPORT CSWPO

SYStem.CPU CortexA78AE

SYStem.CONFIG CoreNumber 16.

SYStem.CONFIG CORE 1. 1.

CORE.ASSIGN 1.

SYStem.CONFIG.COREDEBUG.Base APB:0x51010000 APB:0x51110000 \
APB:0x51210000 APB:0x51310000 APB:0x52010000 APB:0x52110000 \
APB:0x52210000 APB:0x52310000 APB:0x53010000 APB:0x53110000 \
APB:0x53210000 APB:0x53310000 APB:0x54010000 APB:0x54110000 \
APB:0x54210000 APB:0x54310000

SYStem.CONFIG.CTI1.Base APB:0x51020000 APB:0x51120000 APB:0x51220000 \
APB:0x51320000 APB:0x52020000 APB:0x52120000 APB:0x52220000 \
APB:0x52320000 APB:0x53020000 APB:0x53120000 APB:0x53220000 \
APB:0x53320000 APB:0x54020000 APB:0x54120000 APB:0x54220000 \
APB:0x54320000

SYStem.CONFIG.ETM.Base APB:0x51040000 APB:0x51140000 APB:0x51240000 \
APB:0x51340000 APB:0x52040000 APB:0x52140000 APB:0x52240000 \
APB:0x52340000 APB:0x53040000 APB:0x53140000 APB:0x53240000 \
APB:0x53340000 APB:0x54040000 APB:0x54140000 APB:0x54240000 \
APB:0x54340000

SYStem.CONFIG.TRACEJUNCTIONL.Name "NPFUNNELS"
SYStem.CONFIG.TRACEJUNCTIONL.TraceSource ETM

SY¥Stem.CONFIG.TRACEPORT.Type CSWP
SY¥Stem.CONFIG.TRACEPORT.TraceSource TRACEJUNCTION

HAnalyzer.SIZE 1000000000.
Trace.METHOD HAnalyzer
HAnalyzer.TraceCONNECT TP-CSWP
HAnalyzer.AutoArm ON

SYStem.CONFIG USB SETDEVice Debug 1. 0x5c0 0x2
SYStem.CONFIG.USB.SETDEVice Trace 0. 0x5c0 0x2

SYStem.CSWP.Connect
SYStem.CSWP.Init

SYStem.CSWP.SETDEVICE 0. "CSMEMAP" "mem-ap.v2"
SYStem.CONFIG.APBAP1.CSWPDEV O.
SYStem.CSWP.REQ STREAM SET SINK 0. 0x83
SYStem.Mode Up

DO ~~/demo/arm/compiler/gnu-pic/demo_sieve.cmm 0x0
ENDDO

©1989-2024 Lauterbach CSWP Debug Back-End |

Command Reference

SYStem.CSWP Configure CSWP communication

The SYStem.CSWP command group consists of a variety of request messages designed to facilitate the
configuration of CSWP communication, for accessing CoreSight components via USB, for debugging and
tracing purposes.

See also
B SYStem.state

SYStem.CSWP.Connect Connect to server

Format: SYStem.CSWP.Connect

Uses the settings previously configured with the SYStem.CONFIG commands to establish a connection to

the CSWP server.
SYStem.CSWP.DisConnect Terminate CSWP session
Format: SYStem.CSWP.DisConnect

Disconnects from existing connection to the CSWP server to release any resources.

SYStem.CSWP.Init Initialize CSWP session

Format: SYStem.CSWP.Init

Starts the CSWP session and allows the target to initialize the necessary resources.

©1989-2024 Lauterbach CSWP Debug Back-End | 10

SYStem.CSWP.SETDEVICE Set device list

Format: SYStem.CSWP.SETDEVICE <number> “<name>" “<type>"

<type>: mem-ap.v2

Sets device in device the list by specifying the number, name, and type, only “mem-ap.v2” is supported for
the device type.

Example:

SYStem.CSWP.Connect

SYStem.CSWP.Init

SYStem.CSWP.SETDEVICE 0. "CSMEMAP" "mem-ap.v2"
SYStem.CONFIG.APBAP1.CSWPDEV O.

©1989-2024 Lauterbach CSWP Debug Back-End | 11

	CSWP Debug Back-End
	History
	Introduction
	Set Up the Debug and Trace Session
	Start TRACE32 PowerView
	Install the USB Drivers
	Configure the Debug Session for Arm CoreSight
	Configure the Trace Recording

	Command Reference
	SYStem.CSWP Configure CSWP communication
	SYStem.CSWP.Connect Connect to server
	SYStem.CSWP.DisConnect Terminate CSWP session
	SYStem.CSWP.Init Initialize CSWP session
	SYStem.CSWP.SETDEVICE Set device list

