LAUTERBACH A

Debugging Embedded Cores
in Xilinx FPGAs [Zyn(]

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r~
ArM/CORTEX/XSCALEiiiiiiiisiims s ssss s s ssms s ssn s s e smn s s an s s mmn s ams snssmnnnass r—
Arm Application NOTEScccciiiiiiiiiiiiccec s cs s e s ssmm e s e e e s e e s ee s s e s s s smmnnas =
Debugging Embedded Cores in Xilinx FPGAS [ZYyNQ]ccccociimmmissmsinnsmnnessssssssssansens 1

Y e Yo 11 T { o) 1 T 3
Physical Connection Requirementscccccviimminnnnemnnnnmssnsssmss s ssssssmsssssas 4
Requirements for Parallel Trace 4
Requirements for Serial HSSTP Trace 7
Trace-Adapter for FMC-featured Target Boards 8
ZYNQ-7000 DEVICESeceiriiiimmrriiiismnnrisssnmssrssssasss s sssssmms s s s ssmn s s sasmms s s e samne s ensnnnne s enssnnnns 9
Exporting the Zyng-7000 Trace Interface via FixedlO/MIO 10
Exporting the Zyng-7000 Trace Interface via FPGA Fabric/PL: Using a clock divider 12
Exporting the Zyng-7000 Trace Interface via FPGA Fabric/PL: Using DDR I/O registers 15
Performing a Debugger-Based Boot on the Zyng-7000 19
UItraScale+ DEVICEScciiceerirmriissmsmismsnismsissmsssssssssssansssssss s sass s sasa s sms snssmssassns snssmnnssen 20
Exporting the UltraScale+ Trace Interface via FixedlO/MIO 21
Exporting the UltraScale+ Trace Interface via FPGA Fabric/PL 23
Exporting the UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps) 26
Exporting the UltraScale+ Trace Interface via HSSTP (10 Gbps) 32
Exporting the UltraScale+ Trace Interface via PCle 38

Using the Example Design for the ZCU102 39
Performing a Debugger-Based Boot on the Zynq UltraScale+ 39

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 2

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

Version 06-Jun-2024

Introduction

Some Xilinx FPGAs contain hard processor cores. This document describes how to debug and trace these
cores.

The Xilinx Zynq-7000 and Xilinx UltraScale+ series contain embedded processor systems that include
multiple Arm cores.

This document covers several topics for working with TRACE32 and Xilinx-MPSoC-type SoCs such as
Zyng-7000 or Zynq Ultrascale+.

In This Document:
J Physical connection requirements

J How to export the off-chip trace on Zyng-7000

o How to perform a debugger-based boot sequence on the Zyng-7000
J How to export the off-chip trace on Zynq UltraScale+
J How to perform a debugger-based boot sequence on the Zynq UltraScale+

Overview of TRACE32 Commands used in this Application Note:

Analyzer.PortSize Set port size of physical trace interface, if it differs from TPIU.PortSize

TPIU.PortClock Set the lane rate for HSSTP serial trace

TPIU.PortMode Set the HSSTP protocol variant

TPIU.PoriSize Set the number of data pins driven by the Arm CoreSight hardware;
Set the number of HSSTP lanes, if applicable

TPIU.RefClock Configure a reference clock provided by the debugger to the target

Related Documents:

J “Integration for Xilinx Vivado” (int_vivado.pdf) describes how to use Lauterbach PowerDebug
hardware tools with Xilinx Vivado.

. “Arm Debugger” (debugger_arm.pdf) describes the processor-specific settings and features for
the Cortex-A/R (Armv7, 32-bit) debugger.

J “Armv8-A/R and Armv9 Debugger” (debugger_armv8a.pdf) describes the processor-specific
settings and features for the Cortex-A/R (Armv8, 32/64-bit) debugger.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 3

Physical Connection Requirements

MPSoC devices use a parallel TPIU trace interface to export trace data. This interface can either be
exported though PS pins (MIO) or PL pins via the EMIO interface.

For Zynq UltraScale+ FPGAs, this document also provides instructions on how to use the PL portion of the
device to convert the parallel interface into a serial HSSTP interface.

Requirements for Parallel Trace

There are two standard connectors for parallel TPIU trace. The first connector is called Mictor-38, while the
second connector is called MIPI-60.

These connectors also include the standard JTAG debug signals. It is possible to either use the JTAG
signals on the trace connector or a separate debug connector. We do not recommend routing the JTAG
signals to both connectors for reasons of signal integrity.

The required pins for the off-chip trace connection are shown in the table below.

Pin Name Description

VREF-TRACE Reference voltage for the TRACEDATA][...], TRACECLK | MANDATORY
and TRACECTL lines

TRACECLK Clock line for the trace interface (DDR) MANDATORY

TRACECTL Control line for the trace interface OPTIONAL

TRACEDATA[x:0] Data lines for the trace interface MANDATORY

For the MPSoC devices, we recommend that you use 16 data lines (TRACEDATA[15:0]). The optional pin
TRACECTL is only required for use with Wrapped mode (also called Normal mode in Arm terminology). As
all Lauterbach tools work equally well with the Continuous mode, we exclusively use this mode in this
application note and don’t require TRACECTL. For more information about the connectors and available

adaptors, visit:

o Mictor-38: www.lauterbach.com/adetmmictor.html

J MIPI-60: www.lauterbach.com/adetmmipi60.html

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

| 4

http://lauterbach.com/adetmmictor.html
http://lauterbach.com/adetmmipi60.html

Mictor-38 Pinout

Signal

N/C

N/C

GND

DBGRQ

RESET-
TDOI-ISWO

RTCK
TCKITCKCISWCLK
TMSITMSCISWDIO
TDI

TRST-
TRACEDATA[15]
TRACEDATA[14]
TRACEDATA[13]
TRACEDATA[12]
TRACEDATA[11]
TRACEDATA[10]
TRACEDATA[9]
TRACEDATA[8]

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38

Signal

N/C

N/C
TRACECLK
DBGACK
EXTRIG
VREF-TRACE
VREF-DEBUG
TRACEDATA[7]
TRACEDATA[6]
TRACEDATA[5]
TRACEDATA[4]
TRACEDATAJ[3]
TRACEDATA[2]
TRACEDATA[1]
GND

GND

VCC
TRACECTL
TRACEDATA[0]

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

5

MIPI-60 Pinout

Signal
VREF-DEBUG
TCKITCKCISWCLK
TDI

RTCK

TRST-

DBGACK TRIGOUT
TRACECLK
GND
TRACECTL
TRACEDATA[O]
TRACEDATA[1]
TRACEDATA[2]
TRACEDATA[3]
TRACEDATA[4]
TRACEDATA[5]
TRACEDATA[6]
TRACEDATA[7]
TRACEDATA[8]
TRACEDATA[9]
TRACEDATA[10]
TRACEDATA[11]
TRACEDATA[12]
TRACEDATA[13]
TRACEDATA[14]
TRACEDATA[15]
TRACEDATA[16]
TRACEDATA[17]
TRACEDATA[18]
GND

GND

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

Signal
TMSITMSCISWDIO
TDOI-ISWO
RESET-

TRST- PULLDOWN
DBGRQ TRIGIN
VREF-TRACE
GND

GND
TRACEDATA[19]
TRACEDATA[20]
TRACEDATA[21]
TRACEDATA[22]
TRACEDATA[23]
TRACEDATA[24]
TRACEDATA[25]
TRACEDATA[26]
TRACEDATA[27]
TRACEDATA[28]
TRACEDATA[29]
TRACEDATA[30]
TRACEDATA[31]
GND

GND

GND

GND

GND

GND

GND

GND

GND

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

6

Requirements for Serial HSSTP Trace

When exporting a HSSTP trace interface, a 40-pin SAMTEC connector is commonly used. The connector
also includes the standard JTAG debug signals. It is possible to either use the JTAG signals on the trace
connector or a separate debug connector. We do not recommend routing the JTAG signals to both
connectors for reasons of signal integrity.

The connector includes six TXP/TXN pairs. With the UltraScale+ target, there is no benefit in using more
than two lanes.

The TX lanes are terminated by the PowerTrace serial or the serial preprocessor. On the target PCB, they
should be routed directly between the connector and the FPGA as a 50 Q ifferential pair.

For more information about the target connector, visit www.lauterbach.com/adetmhsstp.html

The FPGA requires a reference clock for its gigabit transceivers. A clock whose frequency is 1/20 of the bit
rate can be provided by the debugger on the CLKP/CLKN pins. It is also possible to provide a clock
generator on the target. Check the Xilinx documentation for the allowable frequencies.

Signal Pin Pin Signal

TXP[4] 1 2 VREF-DEBUG
TXN[4] 3 4 TCKITCKCISWCLK
GND 5 6 GND

TXP[2] 7 8 TMSITMSCISWDIO
TXN[2] 9 10 TRST-

GND 11 12 GND

TXPI[0] 13 14 TDI

TXN[O] 15 16 TDOI-ISWO
GND 17 18 GND

CLKP 19 20 RESET-

CLKN 21 22 DBGRQ

GND 23 24 GND

TXP[1] 25 26 DBGACK
TXNI[1] 27 28 RTCK

GND 29 30 GND

TXP[3] 31 32 TRIGIN
TXNI[3] 33 34 TRIGOUT
GND 35 36 RESERVED
TXP[5] 37 38 RESERVED
TXN[5] 39 40 RESERVED

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] |

7

http://lauterbach.com/adetmhsstp.html

Trace-Adapter for FMC-featured Target Boards

Many common evaluation boards are featured with a FMC connector (FPGA Mezzanine Card). Lauterbach
offers a HSSTP/MICTOR-to-FMC converter, which allows to connect tools for parallel and serial trace. The
order number is LA-2785.

TPINTG-1 181207

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 8

Zyng-7000 Devices

Lauterbach supports three methods for exporting the off-chip trace interface of Zyng-7000 devices:
1. Directly using the FixedIO/MIO pins of the Processing System (PS)

2. Routing trace data through the Programmable Logic (PL) portion of the SoC, dividing the clock by
two

3. Routing trace data through the PL portion of the SoC, dividing the data width by two and using
DDR output registers to increase the bandwidth

Method 1 is the only method that works while the PL is not yet programmed. However, it is limited to a trace
port width of 16 bits. In addition, the signal quality of PS pins is worse than on the I/Os belonging to the PL.

Method 2 allows trace port widths up to 32 bits and trace clock frequencies up to 125 MHz. It consumes a
small amount of PL resources for pipeline registers and routing. A clock divider is used to generate the
TRACECLK signal from the internal single data rate trace clock. The maximum operating frequency is
limited by the maximum clock frequency of the PS-PL TPIU interface.

Method 3 is similar to method 2, but instead of dividing the trace clock by two, the width of the data path is
reduced internally. This allows using an external 16-bit trace port by internally utilizing the full 32-bit PS-PL
TPIU interface. Alternatively, an external 8-bit port can also be created. The maximum frequency achievable
using this method is 250 MHz, which corresponds to 1 GB/s (decimal) when used with a 16-bit trace port.

NOTE: We recommend using method 2 or 3. Note that these methods are
interchangeable for a given PCB design. Designing a PCB to use method 1
limits the achievable trace bandwidth.

The remainder of this section contains a step-by-step procedure to each of these methods, followed by
instructions related to board bring-up using a debugger.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zyngq] | 9

Exporting the Zyng-7000 Trace Interface via FixedlO/MIO

p 0D

Create a new Vivado project with an instance of the Zynqg processing system.
Enter the configuration of the Zynq processing system.
Enable the trace pin export via MIO by selecting the desired port size, see [A] in the figure below.

Select the external pins that are connected to the trace port, see [B] in the figure below.

ﬁ Re-customize IP @

ZYNQ7 Processing System (5.5) '
m Documentation @ Presets |7 IP Location @p Import XPS Settings
Page Mavigator < | | IO Configuration Summary Report
Zynq Block Design 4= Bank 0 1/O Voltage| LVCMOS 3.3V - Bank 11/0 Voltage | LVCMOS 3.3V -
PS-PL Configuration Search:

=
Peripheral 10 Pins iy

= Peripheral 10 Signal 10 Type Speed Pullup Direction Polarity
MIO Configuration EE - Memory Interfaces

- 1/0 Peripherals

Clock Configuration c

Application Processor Unit

E| Programmable Logic Test and Debu
DDR. Configuration = 2 g

MO 12.. 13 ¥

SMC Timing Calculah‘on: MIO 14.. 15

Interrupts MIO10.. 11 =
MIO 16.. 19 «

MIO2. 9 -

MIO 12 trace_clk |LWVCMOS 3.3V = |slow = | enabled = out
MIO 13 trace_ctl LWVCMOS 3.3V = |slow - enabled = out
[ok i [Cancel]

Select an internal clock source (Arm PLL, DDR PLL or IO PLL) and the desired frequency for the
TPIU (Trace Port Interface Unit).

Please note that the exported TRACECLK is a DDR clock signal whose actual frequency will be half
the frequency selected in this configuration window:

ﬁ Re-customize IP @

ZYNQ7 Processing System (5.5) '
m Documentation @ Presets |7 IP Location @p Import XPS Settings
Page Mavigator < | | Clock Configuration Summary Report
Zynq Block Design Basic Clocking | Advanced Clocking
PS-PL Configuration 4= Input Frequency (MHz) 33.333333 CPU Clock Ratio| 6:2:1 -
Peripheral 10 Pins Search:
g
MIO Configuration =2 Component Clock Source Requested Frequency(MHz) ~ Actual Frequency(MHz) Range{MHz)
Clock Configuration : = -- Processor Memory Clocks
(- 10 Peripheral Clocks
DDR Configuration [PL Fabric Clocks

E| System Debug Clocks

SMC Timing Calculation - 190.476196 10.000000 : 300,000000

(- Timers
Interrupts

[oK H Cancel]

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 10

6. Finish your Vivado design and export the project to the SDK.
7. Generate or regenerate your FSBL (first-stage boot loader).
8. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see Performing a Debugger-Based Boot on the Zynqg-
7000).

You are now ready to debug and trace your target with TRACES32.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 11

Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using a clock
divider

1. Create a new Vivado project with an instance of the Zynq processing system.
2. Enter the configuration of the Zynq processing system.

3. Enable the trace pin export via MIO by selecting the desired port size and the pins that will be
connected to the trace connector.

ﬁ Re-customize IP @

ZYNQ7 Processing System (5.5) '
m Documentation ﬁ Presets |7 IP Location @ Import XPS Settings
Page Mavigator < | | IO Configuration Summary Report
Zynq Block Design 4= Bank 0 1/O Voltage| LVCMOS 3.3V - Bank 11/0 Voltage | LVCMOS 3.3V -
PS-PL Configuration B
Peripheral 10 Pins
Peripheral 10 Signal 10 Type Speed Pullup Direction Polarity

[+ Memory Interfaces
1/0 Peripherals
Application Processor Unit

[=- Programmable Logic Test and Debu
DDR. Configuration ey L 9

: g A
SMC Timing Calculation

MIO Configuration

Clock Configuration

@ wi |1k

d[0:1] EMLU
Interrupts d[2:3] EMIO
d[#:7] EMIO
d[s:19] EMIC
d[16:31]
] pImaG

[ook |[Cancel]

4, Activate at least one of the FCLK_CLK<x> clock signals, which will later be used as the TPIU
clock. The exported TRACECLK will be half this frequency. Select External as the TPIU clock
source.

ﬁ Re-customize IP @

ZYNQ7 Processing System (5.5) '
m Documentation ﬁ Presets |7 IP Location @ Import XPS Settings
Page Mavigator < | | Clock Configuration Summary Report
Zyng Block Design Basic Clocking]’ndvanoed Clocking
PS-PL Configuration 4= Input Frequency (MHz) 33.333333 CPU Clock Ratio| 6:2:1 -
Peripheral 10 Pins Search:
(=]
MIO Configuration =2 Component Clock Source Requested Frequency(MHz) ~ Actual Frequency(MHz) Range{MHz)
B

Processor Memory Clocks
(- 10 Peripheral Clocks

Clock Configuration ;

DDR Configuration El- PL Fabric Clocks
FCLE_CLKD v 190.475196 0.100000 : 250.000000
SMC Timing Calculation
I:‘ FCLE_CLK1 10 PLL au 10.000000 0,100000 : 250.000000
Interrupts I:‘ FCLE_CLK2 IO PLL 50 10.000000 0.100000 : 250.000000
I:‘ FCLKE_CLK3 IO PLL 50 10.000000 0,100000 : 250.000000
System Debug Clocks
e TPIU > 200 200.000000 10.000000 : 300.000000
[~ Timers
OK i [Cancel

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 12

5. Connect and export the signals as follows:
processing_system7_0

FIXED_I0 |||
TRACE 0= |||
TRACE_CLK_OUTH =

ZYNQ‘ TRACE_CLK4 =

TRACE_CTLW ~
TRACE_DATA[15:0]» { TRACE_DATA[15:0]
FCLK_CLKO {3 TRACE_CLK_SDR

ZYNQ7 Processing System

To use continuous mode, we do not need the TRACE_CTL signal. The TRACE_CLK_OUT signal
will be generated by the HDL wrapper. We rename FCLK_CLKO to TRACE_CLK_SDR and will use
this signal to sample TRACE_DATA.

6. Finish your block design and generate the HDL wrapper.

7. Modify the HDL wrapper to include the pipeline registers and DDR clock generation for routing
the PS trace interface to PL pins:

entity zyng wrapper is
port (
oTraceClkDdr: out std_logic;
oTraceData: out std_logic_vector (15 downto 0)
¥
end entity;

architecture SDR of zyng wrapper is
signal wTraceClkSdr: std_logic;
signal wTraceData: std_logic_vector (15 downto 0) ;

signal rTraceClkDdr: std_logic;
signal rTraceData_g: std_logic_vector(l5 downto 0) ;
signal rTraceData_gqg: std_logic_vector (15 downto 0) ;

begin
zyng i: entity work.zyng port map (
TRACE_CLK_SDR => wTraceClkSdr,
TRACE_DATA => wTlraceData
) 2

trace_pipeline: process (wTraceClkSdr)
begin
if rising_edge (wTraceClkSdr) then
rTraceClkDdr <= not rTraceClkDdr;
rTraceData_qgqg <= rTraceData_d;
rTraceData_qg <= wTraceData;
end if;
end process;

oTraceData <= rTraceData_qq;
oTraceClkDdr <= rTraceClkDdr;
end architecture;

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 13

8. Assign the oTraceData[x:0] and oTraceClkDdr to the appropriate FPGA pins matching your
board layout. Select the same I/O standard for all pins and the slew rate appropriate for the
desired trace port speed.

9. Finish your Vivado design and export the project to the SDK.
10. Generate or regenerate your FSBL (first-stage boot loader).
11. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zyng-
70007, page 19).

You are now ready to debug and trace your target with TRACE32.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 14

Exporting the Zynqg-7000 Trace Interface via FPGA Fabric/PL: Using DDR
I/O registers

1. Create a new Vivado project with an instance of the Zynq processing system.
2. Enter the configuration of the Zynq processing system.
3. Enable the trace pin export via MIO by selecting twice the desired port size and the pins that will

be connected to the trace connector. To use this method, you must select d[0:1] ... d[16:31] for
an external 16-bit trace port or d[0:1] ... d[8:15] for an external 8-bit trace port.

ﬁ Re-customize IP &J
ZYNQ7 Processing System (5.5) '
ﬁﬂ Documentation @ Presets |7 IP Location @ Import XPS Settings
Page Mavigator < | | IO Configuration Summary Report
Zynq Block Design 4= Bank 0 1/O Voltage| LVCMOS 3.3V - Bank 11/0 Voltage | LVCMOS 3.3V -
v &

PS-PL Configuration B

-

(=]
Peripheral 10 Pins iy

= Peripheral 10 Signal 10 Type Speed Pullup Direction Polarity
MIO Configuration a—j +- Memory Interfaces

=4 .
- 1/0 Peripherals

Clock Configuration o +- Application Processor Unit

X : - Programmable Logic Test and Debug
DDR. Configuration H :
SMC Timing Calculation

d[0:1] EMLU

Interrupts d2:3] EMIO
d[4:7] EMIO
d[8:15] EMIO
d[16:31] EMIO
[ook | I Cancel I
4, Activate at least one of the FCLK_CLK<x> clock signals, which will later be used as the TPIU
clock. The exported TRACECLK will be using this frequency. Select External as the TPIU clock
source.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 15

ﬁ Re-customize IP

ZYNQ7 Processing System (5.5)

Page Mavigator < | | Clock Configuration

ﬁj Documentation ﬁ Presets |7 IP Location @ Import XPS Settings

Zyng Block Design

Basic Clocking rad\ranced Clocking

Summary Report

PS-PL Configuration

Peripheral 10 Pins Search:

i 14

MIO Configuration

4= Input Frequency (MHz) 33.333333

CPU Clock Ratio| 6:2:1

= Component Clock Source Requested Frequency(MHz) ~ Actual Frequency(MHz) Range(MHz)
Clock Configuration | E% [#- Processor/Memory Clocks
H 10 Peripheral Clocks
DDR Configuration : PL Fabric Clocks
; FCLE_CLKD V 190.475196 0.100000 : 250.000000
SMC Timing Calculation
I:‘ FCLE_CLK1 10 PLL au 10.000000 0,100000 : 250.000000
Interrupts I:‘ FCLE_CLK2 IO PLL 50 10.000000 0.100000 : 250.000000
I:‘ FCLKE_CLK3 IO PLL 50 10.000000 0,100000 : 250.000000
System Debug Clocks
TPIU > 200 200.000000 10.000000 : 300.000000
[Timers
OK i [Cancel
5. Connect and export the signals as follows:

processing_system7_0

ZYNQ

FIXED_IO+R|

TRACE 0= |||
TRACE_CLK_OUTH =
TRACE_CLK4
TRACE CTLM

TRACE_DATA[31:0]m
FCLK_CLKOD

{> TRACE_DATA[31:0]

ZYNQ7 Processing System

D FCLK_CLKO

To use continuous mode, we do not need the TRACE_CTL signal. The TRACE_CLK_OUT signal

will be generated by the HDL wrapper. We use FCLK_CLKO to sample TRACE_DATA.

6. Finish your block design and generate the HDL wrapper.

7. Locate the file ~~/demo/arm/hardware/zynqg-7000/parallel_trace_adapter.vhd from your
TRACERS2 installation and add it to the project.

8. Modify the HDL wrapper to include the parallel_trace_adapter for routing the PS trace interface to

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq] |

16

PL pins:

entity zyng wrapper is

port (

oTraceClkDdr:

oTraceData:
)
end entity;

out std_logic;
out std_logic_vector (15 downto 0)

architecture DDR of zyng wrapper is
signal wTraceClkSdr: std_logic;
signal wTraceData: std_logic_vector (31 downto 0) ;

begin

zyng 1i: entity work.zyng port map (

FCLK_CLKO
TRACE_DATA
)

=> wTraceClkSdr,
=> wTraceData

adapter_i: entity work.parallel_trace_adapter generic map (

gbPlatform =>
gBitsIn =>
gBitsOut =>
) port map (
iClk =>
iData
oClk
oData

1l
\%

>

1l
\%

) 7
end architecture;

"ZYNQ7000",
32,
16

wTraceClkSdr,
wTraceData,
oTraceClkDdr,
oTraceData

9. Assign the oTraceData[x:0] and oTraceClkDdr to the appropriate FPGA pins matching your
board layout. Select the same I/O standard for all pins and the slew rate appropriate for the

desired trace port speed.

10. Finish your Vivado design and export the project to the SDK.

11. Generate or regenerate your FSBL (first-stage boot loader).

12. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zyng-

70007, page 19).

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

17

NOTE:

To use the off-chip trace port from TRACE32, you need to apply the following
special settings:

TPIU.PortSize 32 ; internal port size (PS -> PL),
; same as gBitsIn

Analyzer.PortSize 16 ; external port size (PL -> TRACE32)
; same as gBitsOut

7

You are now ready to debug and trace your target with TRACE32.

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq] |

18

Performing a Debugger-Based Boot on the Zynq-7000

This section focuses on the JTAG-BOOT mode of the Zyng-7000. In contrast to all other boot modes, this
mode is only intended for development. The basic idea is that the CPUs will wait in an endless loop after
executing the boot ROM, allowing the JTAG probe to perform all further initialization.

To perform a debugger-based boot:
1. Set the boot mode to JTAG-BOOT using the MIO lines.

2. Reset the SoC, for example by asserting the RESET line. Not all boards have a RESET line
connected to the SoC, thus a power cycle or similar might be required.

Execute the boot ROM.

3
4. Load the FSBL boot code using the debugger.
5 Execute the FSBL boot code.

6

Optionally load the FPGA fabric using the debugger.
You are now ready to load the next stage boot loader, OS, etc., and to use the optional off-chip trace.

Example files following the above sequence are included in the TRACE32 installation directory under
~~/demo/arm/hardware/zynqg-7000

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 19

UltraScale+ Devices

On the Zynq UltraScale+ series, Lauterbach currently supports four ways to export trace data:

-y

Parallel trace exported using the FixedlO/MIO pins of the Processing System (PS)

Parallel trace routed through the EMIO pins and the Programmable Logic (PL) portion of the SoC

2
3. HSSTP (serial) trace via PL gigabit transceivers (GTH)
4

PCle (serial) trace via PS gigabit transceivers (GTR)

Each method uses a different kind of SoC resource that is not available to the application while the
application is being traced. The following table provides an overview of different configurations, their
resource usage, achievable data rate and required Lauterbach hardware.

Method SoC PL Data Rate Lauterbach
Resources Used Trace
Hardware
1 (16 bit @125 MHz DDR) 17 PS 1/Os no 500 MB/s PowerTrace or
. PowerTrace Il /
2 (16 bit @ 250 MHz DDR) 17 PL I/Os yes 1000 MB/s PowerTrace Il /
2 (8 bit @ 250 MHz DDR) 9 PL I/Os yes 500 MB/s | PowerTrace PX
with AutoFocus
preprocessor
3 (2 Lanes @ 6.25 Gbps) 2GTH yes 1000 MB/s PowerTrace Il /
PowerTrace Il /
3 (1 Lane @ 6.25 Gbps) 1 GTH yes 625 MB/s PowerTrace PX
with serial
preprocessor or
PowerTrace
Serial
3 (1 Lane @ 10Gbps) 1 GTH yes 1000 MB/s PowerTrace
Serial
4 (PCle v2 x2) 2GTR no 1000 MB/s
4 (PCle v2 x1) 1 GTR no 500 MB/s
NOTE:] Lauterbach recommends using one of the methods with a data rate of
1000 MB/s, especially if a multi-core program is to be traced.
. Due to the complexity involved in setting up PCle trace, we only recom-
mend this method if a PCle expansion slot is already present on the tar-
get board.

This section includes a step-by-step introduction for each method as well as a step-by-step introduction for
performing a debugger-based boot sequence.

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq] |

20

Exporting the UltraScale+ Trace Interface via FixedlO/MIO

1. Create a new Vivado project with an instance of the Zynq processing system.
2. Enter the configuration of the Zynq processing system.
3. Enable the trace pin export via MIO by selecting the desired port size and the pins that will be

connected to the trace connector.

ﬁ Re-customize IP @

ZYNQ UltraScale+ MPSoc (1.1) '
m Documentation | IP Location
Page Navigator <« | | O Configuration
Dg' o | 4= 4 MIO Voltage Standard
Bank0 [MIO 0:25]| Bank1 [MIO 26:51] | Bank2 [MIO 52:77]
PS UltraScale + Block Design | (=2 LVCMOS33 v |LVCMOS33 v |LVCMOS33
(=]
10 Configuration % Search:
Clock Configuration [
d ‘B Peripheral 1jo Signal I/fOType Drive Strength(mA) Speed Pull Type Direction
DDR. Configuration EI--L_ow Speed ~
: -Memory Interfaces
PS-PL Configuration E-1f0 Peripherals E
E!--Applicah’on Processing Unit
FE-SWOT
- [¥] Trace MIOO0.. 17 -

~Trace Width 16Bit ™

~TRACE e dk schmitt - | 12 slow - |pullup - out

~TRACE MIO1 ctl schmitt - | 12 slow - |pullup - out

~TRACE MIO2 tracedq[0] schmitt - | 12 slow - |pullup - out

" rLrats tememdaldl prmrra| T [e | e Y S

[oK H Cancel]

4. Select an internal clock source (IOPLL, DPLL, or APLL) and the desired frequency for DBG
Trace. Please note that the exported TRACECLK is a DDR clock signal whose actual frequency
will be half the frequency selected in this configuration window.

ﬁ Re-customize IP @

ZYNQ UltraScale+ MPSoc (1.1) '

m Documentation | IP Location

Page Navigator «| | Clock Configuration
[Switch To Advanced Mo Automatic Mode rManuaI Mode

PS UltraScale + Block Design +- Search:

1/0 Configuration =2 Name Source Requested Freq (MHz) Actual Freq (MHz) Range (MHz)
(=]
" |l e | E-PLL reference Clocks
EladsCmioxating EA --Low Power Domain Clocks
DDR. Configuration : E|--F_u|| Power Domain Clocks

[#-Processor fMemory Clocks

PS-PL Configuration
- Interconnect and Switch clocks
[=-System Debug Clocks

I:‘ DBG FPD — — 249,997 0,000000 : 250.000000

- [/] DBG Trace [&pLL - || 200 I 199,998 0.000000 : 250000000
‘- [] DBG TSTMP = — 249,997 0.000000 : 250,000000
oK] [Cancel

5. Finish your Vivado design and export the project to the SDK.
6. Generate or regenerate your FSBL (first-stage boot loader).
7. Do one of the following:

- Either program the resulting FSBL to the boot device,

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 21

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

You are now ready to debug and trace your target with TRACES32.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 22

Exporting the UltraScale+ Trace Interface via FPGA Fabric/PL

1. Create a new Vivado project with an instance of the Zynq processing system.
2. Enter the configuration of the Zynq processing system.

3. Enable the trace pin export via EMIO. Select 32Bit as the trace width. This setting will later be
overridden by the debugger.

ﬁ Re-customize IP ﬁ

ZYNQ UltraScale+ MPSoc (2.0) 4!
m Documentation | IP Location
Page Navigator <« || | HO Configuration
4 MIO Voltage Standard

[=

Q, BankD [MIO 0:25]| Bank1 [MIO 26:51]| Bank2 [MIO 52:77]
PS UltraScale+ Block Design - LVCMOS33 | LVCMOS33 - | LYCMOS33 -

(=]
10 Configuration g

= Peripheral 1jo Signal IfOType Drive Strength{mA) Speed Pull Type Direction
Clock Configuration 3 w Speed

Memory Interfaces
1/0 Peripherals
[=)-Processing Unit

. E-SWDT

- [#] Trace EMIO -

 -Trace Width 32Bit =
i BETIC

--High Speed

[¥-Reference Clocks

DDR. Configuration

PS-PL Configuration

[oK H Cancel]

4. Activate at least one of the PL Fabric Clocks (for example PL0), which will later be used as the
TPIU clock. The exported TRACECLK will be using this frequency. Select the same frequency for
the DBG_TRACE clock.

ﬁ Re-customize IP ﬁ

ZYNQ UltraScale+ MPSoc (2.0) 4!

m Documentation | IP Location
Page Navigator <« || | Clock Configuration

[Switch To Advanced Mo m Output Clocks

PS UltraScale + Block Desigr « [Enable Manual Mode

Q,
1/0 Configuration = [PLL Options
(=]
i
I@ = Mame Source Requested Freq (MHz) Divisor 1 Divisor 2 Actual Frequency (MHz) Range
DDR Configuration EI--L_ow Power Domain Clocks
[-Processor/Memory Clocks
PS-PL Configuration [#l-Peripherals/I0 Clocks
: [1-PL Fabric Clocks
IOPLL - |250] 1 249,997 0,000000 : 400.000000
= = 5 1 199.993 0,000000 : 400.000000
RPLL - || 100 4 1 324.997 0,000000 : 400.000000
RPLL - || 100 4 1 324.997 0,000000 : 400.000000

[+-System Debug Clocks
[=I-Full Power Domain Clocks
--Processorﬂdemory Clocks
--Peripheralsﬂo Clocks
[=-System Debug Clocks

~DBG_FPD = 2 249,997 0,000000 : 250.000000
~DBG_TRACE 249,997 0,000000 : 250.000000

— — 2 249,997 0,000000 : 250.000000
[#- Advance Clocks

[¥]

oK] [Cancel

5. Connect and export the signals as follows

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 23

zyng_ultra_ps_e_0

TRACE_0= ||

ps_pl_tracectls —
pl_ps_trace_dk Z Y N Q ps_pl_tracedata[31:0]» D TRACE_DATA[31:0]
® trace_clk_out

UltraSCALE+ pl_ako [, TRACE_CLK_SDR

ZYNQ UltraScale+ MPSoc (Beta)

To use continuous mode, we do not need the TRACE_CTL signal. The trace_clk_out signal will be
generated by the HDL wrapper. We rename pl_clk0 to TRACE_CLK_SDR and will use this signal to
sample TRACE_DATA.

Finish your block design and generate the HDL wrapper.

Locate the file ~~/demo/arm/hardware/zynq_ultrascale/hdl/parallel_trace_adapter.vhd from
your TRACERB2 installation and add it to the project.

Modify the HDL wrapper to include the parallel trace adapter that exports the trace port without a
clock divider:

library IEEE;
use IEEE.std_logic_1164.all;

entity zyng wrapper is
port (
oTraceClk: out std_logic;
oTraceData: out std_logic_vector (15 downto 0)
) ;
end entity;

architecture behavioral of zyng wrapper is
signal wTraceClkSdr: std_logic;
signal wTraceDataSdr: std_logic_vector (31 downto 0) ;

begin
yZyng: entity work.zyng port map (
TRACE_CLK_SDR => wTraceClkSdr,
TRACE_DATA => wTraceDataSdr

) 8

yvAdapter: entity work.parallel_ trace_adapter generic map (

gbPlatform => "ULTRASCALE",
gBitsIn => 32,

gBitsOut => 16

) port map (

iClk => wTraceClkSdr,
iData => wTraceDataSdr,
oClk => oTraceClk,
oData => oTraceData

) 7
end architecture;

Assign the oTraceData[x:0] and oTraceClk to the appropriate FPGA pins matching your board
layout. Select the same I/O standard for all pins and the slew rate appropriate for the desired

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 24

trace port speed.
10. Finish your Vivado design and export the project to the SDK.
11. Generate or regenerate your FSBL (first-stage boot loader).
12. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

13. Use the following TPIU and Analyzer commands in your PRACTICE start-up script (*.cmm) to
configure the trace:

TPIU.PortSize 32 ; internal port size (PS -> PL),
; same as gBitsIn

Analyzer.PortSize 16 ; external port size (PL -> TRACE32),
; same as gBitsOut

You are now ready to debug and trace your target with TRACES32.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 25

Exporting the UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps)

Use the following step-by-step procedure to produce an FPGA design that supports tracing the Arm cores
via HSSTP at a bit rate of 6.25 Gbps or lower. This is the maximum supported data rate of the serial
preprocessor LA-7988. If you use the PowerTrace Serial, LA-3520, you may want to consider using a higher
bit rate, as described in the next section, “Exporting the UltraScale+ Trace Interface via HSSTP (10
Gbps)”, page 32.

Note that the bandwidth of the trace infrastructure of the PS is limited to 1000 MB/s. Therefore, using more
than two lanes is only beneficial if the lane rate is limited by other factors.

1. Perform steps 1 through 6 of the previous section, “Exporting the UltraScale+ Trace Interface
via FPGA Fabric/PL’, page 23. Depending on the desired number of lanes, select an appropriate
trace port frequency to avoid FIFO overflows:

- For one lane at 6.25 Gbps, set the frequency to 150 MHz.
- Fortwo lanes at 6.25 Gbps, set the frequency to 250 MHz.

- For any other setup, calculate the maximum frequency as:
1B 1Hz
The selected frequency must be lower than this frequency and at most 250 MHz.

fmax = (number of lanes) - (lane rate) -

2. Create a second block design to hold the Xilinx Aurora encoder and a FIFO. In this example, it is
called aurora_and._fifo.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 26

3. In the block design, take the following steps to instantiate an Aurora 8B10B core:
- Select the desired line rate and set the Lane width to 4.

- Choose the number of lanes and the location of the GT lane(s) that are connected to the trace

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 27

port.

- Select appropriate clock sources for the reference and initialization clocks.

- Itis also important to select Little Endian Support.

ﬁ Re-customize IP

Aurora 8B10B (11.0)
m Documentation | IP Location

[show disabled parts

| <HISER_DATA_S_ANI JBRE_STATUS k|||
|||4HGT_DIFF_REFCLKI GT_SERIAL T[]

||| =ET1_DRP user_clk_out
||| SHCORE_COMTROL Sys_reset_out
bx_systern_peset sync_clk_out
gt_reset gt_reset_out
init_clk_in gt_refelkl_out

Component Mame | aurora_with_fifo_aurora_sb10b_0_0

Core Options rShared Logic]

Physical Layer

Lane Width (Bytes) I 4
Line Rate {Gbps) 6,25
Column Used left
Lanes 2
Starting GT Quad Quad X0Y3
Starting GT Lane X0Y12
GT Refdlk Selection MGTREFCLK1 of Quad X0Y3
GT Refdk (MHz) 156,25
@) ok (vz) [74.25

Link Layer
Dataflow Mode TX-only Simplex -
Interface Framing -
Flow Control None -
Back Channel Timer -

[Scrambler [Descrambler

Little Endian Support

[

w

om

[

i

On the second page of the configuration window, select include Shared Logic in core.

ﬁ Re-customize IP

i

Aurora 8B10B (11.0)
m Documentation | IP Location

[show disabled parts

Component Mame | aurora_with_fifo_aurora_sb10b_0_0

Core Opﬁon/s/YShared Logic

| <HISER_DATA_S_ANI JBRE_STATUS k|||
|||4HGT_DIFF_REFCLKI GT_SERIAL T[]

||| =ET1_DRP user_clk_out
||| SHCORE_COMTROL Sys_reset_out
bx_systern_peset sync_clk_out
gt_reset gt_reset_out
init_clk_in gt_refelkl_out

y

Shared Logic

Select whether the transceiver quad PLL, transceiver differential refdk buffer, docking and
reset logic are induded in the core itself or in the example design

@ indude Shared Logic in core

() indude Shared Logic in example design

[»

[

oK H Cancel]

In the same block design, instantiate an AXI4-Stream Data FIFO. Set TDATA Width to four times
the number of lanes. The FIFO is used for synchronisation between the Aurora user clock and
the trace clock and to buffer data while the Aurora core is busy sending clock compensation

sequences and frame delimiters. It is sufficient to make it 32 entries deep.

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 28

T ™y
ﬂ Re-customize IP M

AXI4-Stream Data FIFO (1.1) ‘

@ Documentation T—_'] IP Location

[Show disabled ports Component Name | aurora_with_fifo_axis_data_fifo_0_0
FIFO Depth 32 -
Enable Packet Mode No A
Asynchronous Clocks Yes -
Synchronization Stages across Cross Clock Domain Logic | 2 hd
ACLKEM Conversion Mode None A

Signal Properties

@I ToATA viidth (bytes -517]
@I encble TSTRE No ~
m Enable TKEEP Yes hd

m Enable TLAST Yes hd

@I 10 viidth (bits) 0 0-32

@I ToesT width (its) [0 0-32

@I TuseR widh (its) [0 [0 - 4096]

Hdh5_ANIS

M_AXISqR =
_alis_aresetn " i

axis_data_count[31:0]
axis_wir_data_count[31:0]
aris_rd_data_count[31:0]

_anis_aresetn
_avis_aclk

_avis_aclk

[oK] [Cancel

L

6. Connect the two components and export the pins as follows:
at_refelkl_n[—»
axis_data fifo_0
s nas =
s_axis_tvalid [—————=f s axis_tvalid ansM;::]diA =]
= tread - fbl0b_0
s axis_tdata[63:0] [:::ﬁ- : &mﬁ;ﬁn‘]’: S sl
s_axis_tkeep[7:0]1[> Ps_axis_tkeep[7:0] LR
< axis_thst [e m_ais_tkeep[7: 0] i plnot_lacked auth = > pll_not_locked_out
< asz aré etn > i - m_ais_tasth bt | - USER_DATA_S_AXI_TX bi_channel_upe =T tx_channel_up
SR 5.s,_aresetr ais_data_count[31:0] ||| ~GT_oFF_RerciLkr tx_hard_ere ——{ % tx_hard_err
m_axis_aresetn [m_anis_aresetn
- < ;xis adk > axis_actk ands_wr_data_count[31:0] L—— Pat_refcki_n tx_lane_up[0:1] —| »ti_lane_up[0:1]
= —-:Lms.pclc axis_rel_clata_count[31:0] _ﬂ Pat_refelkl_p b bocks [e lock
_LGT1_DRP bi_resetdone_oute =[5 1w_resetdone_out
gt_refelkl_p AXI4-Stream Data FIFO (Pre-Production) ||| —core_conTrROL GT_SERIAL_TX— ||
loopback[2:0] [D— —— Ploopback[2:0] ten[0: 1] > txn[0:1]
power_down [#power_down Lep[0:A]F % txp[0:1]
tx_system_reset [be_system_reset user_clk_aut {» user_clk_out
at_reset [qt_reset Sys_reset_out [sys_reset_out
init_clk_in > init_dk_in syne_clk_out [sync_dk_out
gt_reset_out {» at_reset_out
gt_refelkl_out [at_refelkl_out
Aurora BB10B (Pre-Production)
— > s_axis_tready

7. Locate the directory ~~/demo/arm/hardware/zynq_ultrascale/hdl/ from your TRACE32
installation and add the following files to the project:

- serial_trace_adapter_axis.vhd

- stream_width_expander.vhd

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 29

- tpiu_to_stream.vhd

8.
an adapter from the HDL files imported in step 7:

library IEEE;
use IEEE.std _logic_1164.all;

entity zyng wrapper is

generic (
-- adapt this to match the FIFO configuration
gBytes: positive := 8;
-- adapt this to match the desired number of HSSTP
gLanes: positive := 2
)
port (
iInitClk: in std_logic;
iRst: in std_logic;
iAuroraRefN: in std_logic;
iAuroraRefP: in std_logic;
oAuroraTxN: out std_logic_vector (0 to gLanes - 1);
oAuroraTxP: out std_logic_vector (0 to gLanes - 1)

) 5
end entity;

architecture behavioral of zyng wrapper is

Modify the generated wrapper for the Zyng UltaScale+ MPSoC to include both block designs and

lanes

signal wTraceClkSdr: std_logic;
signal wTraceDataSdr: std_logic_vector (31 downto O0) ;
signal wFifoData: std_logic_vector (8*gBytes - 1 downto O0) ;
signal wFifovalid: std_logic;
signal wFifolLast: std_logic;
signal wFifoKeep: std_logic_vector (gBytes - 1 downto 0);
signal wRstN: std_logic;
begin
yDesign: entity work.mpsoc port map (

TRACE_CLK_SDR
TRACE_DATA

=> wTraceClkSdr,
=> wTraceDataSdr

) 5

yvAdapter: entity work.serial trace_adapter_axis generic map (
gBytes => gBytes
) port map (
iClk => wTraceClkSdr,
iRst => iRst,
iData => wTraceDataSdr,
oData => wFifoData,
ovalid => wFifovalid,
oLast => wFifoLast,
oKeep => wFifoKeep

) 5

-- continued on next page

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq] |

30

YAurora:

-- continued from previous page

loopback
power_down
gt_refclkl n
gt_refclkl p
txn
txp
m_axlis_aresetn
S_axils_aresetn
s_axis_aclk
s_axis_tdata
s_axis_tvalid
s_axis_tlast
s_axis_tkeep
gt_reset
init_clk_in
tx_system_reset
) ;

wRStN <= not iRst;
end architecture;

=>
=>
=>
=>

"000",

'O',
iAuroraRefN,
iAuroraRefP,
OoAuroraTxN,
OAuroraTxP,
wWRStN,
wWRStN,
wTraceClkSdr,
wFifoData,
wFifovalid,
wFifoLast,
wFifoKeep,
iRst,
1iInitClk,
wRStN,

9. Finish your Vivado design and export the project to the SDK.

10.

11. Do one of the following:

Generate or regenerate your FSBL (first-stage boot loader).

- Either program the resulting FSBL to the boot device,

entity work.aurora_and fifo port map (

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

12.

TPIU

TPIU.
TPIU.
TPIU.
TPIU.

.PortSize 32
PortSize lLane
PortMode Continuous
PortClock 6250Mbps
RefClock 1/20

or 2Lane

Vivado uses the term

‘lane rate’

to enable the PortClock/20

reference clock

here

Use the following commands in your PRACTICE start-up script (*.cmm) to configure the trace:

If your design requires the reference clock from the debugger, you must make sure that the FPGA is
reset or programmed after the debugger has been connected and configured.

You are now ready to debug and trace your target with TRACE32.

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

31

Exporting the UltraScale+ Trace Interface via HSSTP (10 Gbps)

Use the following step-by-step procedure to produce an FPGA design that supports tracing the Arm cores
via HSSTP at a lane rate of 10 Gbps. Because the Xilinx Aurora 8b10b core does not support this lane rate,
this step-by-step procedure uses a custom Aurora encoder coupled with the UltraScale FPGAs transceivers
wizard.

Note that the bandwidth of the trace infrastructure of the PS is limited to 1000 MB/s. Therefore, using a
higher lane rate than 10 Gbps or multiple lanes does not provide any benefit.

We recommend that users first verify their hardware using the previous section, “Exporting the
UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps)”, page 26, before following these steps.

1. Perform steps 1 through 6 as described in “Exporting the UltraScale+ Trace Interface via FPGA
Fabric/PL’, page 23. Use a TPIU clock frequency of 250 MHz.

2. From the IP catalog, choose the UltraScale FPGAs Transceivers Wizard.
ﬁ Customize [P

UltraScale FPGAs Transceivers Wizard (1.6)

ﬁﬂ Documentation @ Presets [IP Location [Switch to Defaults

IP Symbol rPhysicaI Resources] Component Mame |gt_1lane
Show disabled ports ’_/ETPhysical Resources rOpﬁonaI Features rSh'ucthaI Options

- Select the preset GTH-Aurora_8B10B.
- Set the line rate to 10 GB/s.

- Choose a suitable reference clock. The debugger can provide a 500 MHz reference clock.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 32

- Choose 8B/10B as the encoding.

Since the wizard does not have a simplex option, we also need to configure the receiver, even though
it is not used. It is simplest to use the same settings as for the transmitter.

Component Mame | gt_1lane
_/mrPhysial Resources rOpﬁonaI Features rShucthaI Options]
System i~
Transceiver configuration presel -
Transceiver type GTH -
Transmitter Receiver
Line rate (Gb/s) Line rate (Gb/s) 10
PLL type QPLLO - PLL type QPLLO -
QPLL Fractional-N options ¥ QPLL Fractional-N options ¥ i
élcob;flﬁagrence 500 - élcob;flﬁagrence 500 -
Encoding hd Decoding 8B/10B -
User data width 32 A User data width 32 -
Internal data width | 40 A Internal data width | 40 hd
Buffer Enable (1) hd Buffer Enable (1) -
TXOUTCLK source | TXPROGDIVCLE h R¥OUTCLK source | RXOUTCLEPMA -
Advanced ¥ Advanced ¥ :
[oK] [Cancel]

On the Physical Resources tab, select the channel and reference clock to be used. You also
need to provide a free-running clock for initialization and specify its frequency.

{F customize IP

UltraScale FPGAs Transceivers Wizard (1.6)

il Documentation £ Presets [IP Location (3 Switch to Defaults

- Physical Resources

Right-dick on channels to enable and edit

-

I

R Y

I

bclk1

Component Name | gt_llane

"Basic”” Physical Resources | Optional Features | Structural Options |

| Free-running and DRP dock fiequency iz} | 74.25

Disable All Channels

TX Master channel | X0Y12 - RX Master channel | X0Y12 -

I

Channel table (1/24 channels used) ES
Search: i
Channel Enable TX REFCLK source (QPLLO) RX REFCLK source (QPLLO) RXRECCLKOUT buffer

- Left column (1/12 channels used)
£l Quad X0Y3in SLR 0 (1/4 channels used)
GTHES_CHANNEL _X0Y15
GTHES_CHANNEL X0Y14
GTHES_CHANNEL _X0Y13
GTHES_CHANNEL _X0Y12

EOOO

I MGTREFCLK1 I

~ MGTREFCLK1 * No

On the Structural Options tab, set all auxiliary components to be included in the core.

{F customize IP

P Symbol | Physical Resources

7] Bhai disabled portd

UltraScale FPGAs Transceivers Wizard (1.6) '

il Documentation £ Presets [IP Location (3 Switch to Defaults

CampanentName |gt_llane
~Basic | Physical Resources | Optionsl Features”” Structural Options |

Simplify transceiver usage by organizing resaurces and helper blocks

Include transceiver COMMON in the [eoe — ~
Include simple transmitter user clocking network in the [Core T
[eom =
[eom =
[eom =
Include transmitter buffer bypsss controller inthe [Coe <
Include recsiver elastic buffer bypass controller n the [Core <
Include In-System BERT core [Notdonetindude) ~ i

Lm

Incude smple receiver user docking network in the
Indude reset contraller in the

Indude user data width sizing in the

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 33

5. Locate the directory ~~/demo/arm/hardware/zynq_ultrascale/hdl/ from your TRACE32
installation and add the following files to the project:

- serial_trace_adapter_gt.vhd
- tpiu_to_stream.vhd

- fifo_inferred.vhd

- synchronizer.vhd

- util_pkg.vhd

- aurora_encoder.vhd

- aurora_idle_generator.vhd

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 34

- lIfsr_65_1034.vhd

6. Modify the generated wrapper for the Zynq UltaScale+ MPSoC to include the Processing System

block design, the transceiver IP generated in steps 2 to 4 and an adapter contained in the HDL

files imported in step 5:

library IEEE;

use IEEE.std _logic_1164.all;

library UNISIM;

use UNISIM.Vcomponents.all;

entity zyng wrapper is

port (
iInitClk: in std_logic;
iRst: in std_logic;
iAuroraRefN: in std_logic;
iAuroraRefP: in std_logic;
oAuroraTxN: out std_logic_vector (0 to 0);
oAuroraTxP: out std_logic_vector (0 to 0)

) 5

end entity;

architecture behavioral of zyng wrapper is
signal wTraceClkSdr:
signal wTraceDataSdr:

signal wAuroraRef:
signal wUserClk:

signal wTxData:
signal wTxDataK:

begin
yDesign:
TRACE_CLK_SDR =>
TRACE_DATA =>
D
yAdapter: entity work.
iTraceClk =>
iTraceRst =>
iUserClk =>
iUserRst =>
iData =>
oData =>
oDatak =>

) 5

std_logic;
std_logic_vector (31 downto 0) ;

std_logic;
std_logic;

std_logic_vector (31 downto 0) ;
std_logic_vector(3 downto 0);

entity work.mpsoc port map (

wTraceClkSdr,
wTraceDataSdr

serial_trace_adapter_gt port map
wTraceClkSdr,

iRst,

wUserClk,

iRst,

wTraceDataSdr,

wTxData,

wTxDatak

-- continued on next page

(

©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

35

-- continued from previous page

yvGt: entity work.gt_llane port map (
gtwiz_reset_clk freerun_in(0)
gtwiz_reset_all_in(0)
gtrefclk00_in(0)

gtwiz_userclk_tx reset_in
gtwiz_userclk_tx usrclk2_out (0)
gtwiz_reset_tx pll_and_datapath_in
gtwiz_reset_tx datapath_in
gtwiz_userdata_tx_in
tx8bl0ben_in

txctrlO_in

txctrll_in

txctrl2 in(7 downto 4)
txctrl2_in(3 downto 0)
gthtxn_out

gthtxp_out

gtwiz_userclk_rx reset_in
gtwiz_reset_rx pll_and_datapath_in
gtwiz_reset_rx datapath_in
gthrxn_in

gthrxp_in

rx8bl0ben_in

rxbufreset_in

rxcommadeten_in

rxmcommaalignen_in
rxpcommaalignen_in

)

yvBufAurora: IBUFDS_GTE4 port map (

(0] => wAuroraRef,
I => jAuroraRefP,
IB => jAuroraRefN,
CEB => '0"'

end architecture;

7. Finish your Vivado design and export the project to the SDK.
8. Generate or regenerate your FSBL (first-stage boot loader).
9. Do one of the following:

- Either program the resulting FSBL to the boot device,

iInitClk,
iRst,
wAuroraRef,

(others => '0'),
wUserClk,
(others => '0'),
(others => '0'),
wTxData,
(others => '1"')
(others => '0'),
(others => '0"')
(others => '0"')
wTxDatak,
oAuroraHpclTxN,
oAuroraHpclTxP,
(others => '0'
(others => '
(others => '
(others => '
(others => '
(others => '
(
(
(
(

I

1
I

1
I

1
I

1
I

I
1

others => '
others => '
others => '
others => '

I

1
I

1
I

0")
0")
0")
0")
0")
0")
0")
0")
0")
0")

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 36

UltraScale+”, page 39).

10. Use the following TPIU commands in your PRACTICE start-up script (*.cmm) to configure the
trace:

TPIU.PortSize 32

TPIU.PortSize 1lLane

TPIU.PortMode Continuous

TPIU.PortClock 10000Mbps

TPIU.RefClock 1/20 ; if you require the 500 MHz reference clock

If your design requires the reference clock from the debugger, you must make sure that the FPGA is
reset or programmed after the debugger has been connected and configured.

You are now ready to debug and trace your target with TRACE32.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 37

Exporting the UltraScale+ Trace Interface via PCle

Off-chip trace via PCle differs from the other trace methods because it requires assistance from the target
code. The debugger acts as a slave device to the PCle root complex in the PS. The operating system
running on the target must enumerate the debugger and assign an address to it.

This means that the debugger must already be ready and configured while the target is booting. Trace
capture is only possible after the device has booted and the debugger must not be disconnected from the
target while it is running.

1.
2.

Create a new Vivado project with an instance of the Zynq processing system.
Enter the configuration of the Zynq processing system.

Enable the PCle root port and select the correct number of lanes. Using four lanes is possible,
but will not increase the bandwidth available for trace.

ﬁ Re-customize IP [&J
ZYNQ UltraScale+ MPSoc (2.0) 4!
ﬁﬂ Documentation | IP Location

Page Navigator <« | | MO Configuration
Switch To Advanced Mo| | 4= 4 MIO Voltage Standard
Q, BankD [MIO 0:25]| Bank1 [MIO 26:51]| Bank2 [MIO 52:77]
PS UtraScale +Block Desian | _° [Tycwos33 - [LvcMOs33 - [LvcMOss3 -~
(=]
10 Configuration g
= Peripheral 1jo Signal IfOType Drive Strength{mA) Speed Pull Type Direction
Clock Configuration) E-Low Speed
f--High Speed
DDR. Configuration e
PS-PL Configuration
Rootport Mode Reset | MIO 31 -
L-PCIE MIO31 reset n [schmitt - [12 - |slow - [pulup - [out
Lane Selection —>|x1 "
PCle Laned GT Laned
Display Port
- B[] SATA
+-Reference Clocks
oK | | Cancel

Finish your Vivado design and export the project to the SDK.
Generate or regenerate your FSBL (first-stage boot loader).

When setting up the target’s operating system, make sure that the appropriate drivers are
enabled for PCle support.

Verify that PCle is operational using an expansion card such as a PCle-to-USB converter.
Do one of the following:
- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

You are now ready to debug and trace your target with TRACES32.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 38

Using the Example Design for the ZCU102

For the ZCU102 evaluation board, Lauterbach provides an example Vivado project for download at
https://www.lauterbach.com/support/static/armdemos/20170313ZCU102_trace_example.xpr.zip.

The design contains five top-level entities for different trace setups:
. top_parallel_8bit

. top_parallel_16bit

J top_hsstp_1lane_6250mbps

J top_hsstp_2lane_6250mbps

. top_hsstp_1lane_10000mbps

Use “Set as Top” on one of these entities in the project manager before generating a bitstream.

Parallel trace is exported on the P6 connector on the ZCU102, while serial trace requires an adapter to be
plugged into the J4 port (HPC1). Contact Lauterbach to obtain this adapter.

Performing a Debugger-Based Boot on the Zynq UltraScale+

This section focuses on the JTAG-BOOT mode of the ZynqUIltraScale+. In contrast to all other boot modes,
this mode is only intended for development. The basic idea is that the CPUs will wait in an endless loop after
executing the boot ROM, allowing the JTAG probe to perform all further initialization.

To perform a debugger-based boot:
1. Set the boot mode to JTAG-BOOT using the MIO lines.

2. Reset the SoC, for example by asserting the RESET line. Not all boards have a RESET line
connected to the SoC, thus a power cycle or similar might be required.

3 Execute the boot ROM.

4. Load the FSBL boot code using the debugger.

5. Execute the FSBL boot code.

6 Optionally load the FPGA fabric using the debugger.

You are now ready to load the next stage boot loader, OS, etc., and to use the optional off-chip trace.

Example files following the above sequence are included in the TRACE32 installation directory under
~~/demo/arm/hardware/zynq_ultrascale.

©1989-2024 Lauterbach Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 39

https://lauterbach.com/support/static/armdemos/20170313ZCU102_trace_example.xpr.zip

	Debugging Embedded Cores in Xilinx FPGAs [Zynq]
	Introduction
	Physical Connection Requirements
	Requirements for Parallel Trace
	Requirements for Serial HSSTP Trace
	Trace-Adapter for FMC-featured Target Boards

	Zynq-7000 Devices
	Exporting the Zynq-7000 Trace Interface via FixedIO/MIO
	Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using a clock divider
	Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using DDR I/O registers
	Performing a Debugger-Based Boot on the Zynq-7000

	UltraScale+ Devices
	Exporting the UltraScale+ Trace Interface via FixedIO/MIO
	Exporting the UltraScale+ Trace Interface via FPGA Fabric/PL
	Exporting the UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps)
	Exporting the UltraScale+ Trace Interface via HSSTP (10 Gbps)
	Exporting the UltraScale+ Trace Interface via PCIe
	Using the Example Design for the ZCU102
	Performing a Debugger-Based Boot on the Zynq UltraScale+

