
MANUAL

Debugging Embedded Cores
in Xilinx FPGAs [Zynq]

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Arm/CORTEX/XSCALE .. 

 Arm Application Notes ... 

 Debugging Embedded Cores in Xilinx FPGAs [Zynq] ... 1

 Introduction .. 3

 Physical Connection Requirements ... 4

 Requirements for Parallel Trace 4

 Requirements for Serial HSSTP Trace 7

 Trace-Adapter for FMC-featured Target Boards 8

 Zynq-7000 Devices ... 9

 Exporting the Zynq-7000 Trace Interface via FixedIO/MIO 10

 Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using a clock divider 12

 Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using DDR I/O registers 15

 Performing a Debugger-Based Boot on the Zynq-7000 19

 UltraScale+ Devices ... 20

 Exporting the UltraScale+ Trace Interface via FixedIO/MIO 21

 Exporting the UltraScale+ Trace Interface via FPGA Fabric/PL 23

 Exporting the UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps) 26

 Exporting the UltraScale+ Trace Interface via HSSTP (10 Gbps) 32

 Exporting the UltraScale+ Trace Interface via PCIe 38

 Using the Example Design for the ZCU102 39

 Performing a Debugger-Based Boot on the Zynq UltraScale+ 39
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 2©1989-2024 Lauterbach

Debugging Embedded Cores in Xilinx FPGAs [Zynq]

Version 06-Jun-2024

Introduction

Some Xilinx FPGAs contain hard processor cores. This document describes how to debug and trace these
cores.

The Xilinx Zynq-7000 and Xilinx UltraScale+ series contain embedded processor systems that include
multiple Arm cores.

This document covers several topics for working with TRACE32 and Xilinx-MPSoC-type SoCs such as
Zynq-7000 or Zynq Ultrascale+.

In This Document:

• Physical connection requirements

• How to export the off-chip trace on Zynq-7000

• How to perform a debugger-based boot sequence on the Zynq-7000

• How to export the off-chip trace on Zynq UltraScale+

• How to perform a debugger-based boot sequence on the Zynq UltraScale+

Overview of TRACE32 Commands used in this Application Note:

Related Documents:

• “Integration for Xilinx Vivado” (int_vivado.pdf) describes how to use Lauterbach PowerDebug
hardware tools with Xilinx Vivado.

• “Arm Debugger” (debugger_arm.pdf) describes the processor-specific settings and features for
the Cortex-A/R (Armv7, 32-bit) debugger.

• “Armv8-A/R and Armv9 Debugger” (debugger_armv8a.pdf) describes the processor-specific
settings and features for the Cortex-A/R (Armv8, 32/64-bit) debugger.

Analyzer.PortSize Set port size of physical trace interface, if it differs from TPIU.PortSize

TPIU.PortClock Set the lane rate for HSSTP serial trace

TPIU.PortMode Set the HSSTP protocol variant

TPIU.PortSize Set the number of data pins driven by the Arm CoreSight hardware;
Set the number of HSSTP lanes, if applicable

TPIU.RefClock Configure a reference clock provided by the debugger to the target
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 3©1989-2024 Lauterbach

Physical Connection Requirements

MPSoC devices use a parallel TPIU trace interface to export trace data. This interface can either be
exported though PS pins (MIO) or PL pins via the EMIO interface.

For Zynq UltraScale+ FPGAs, this document also provides instructions on how to use the PL portion of the
device to convert the parallel interface into a serial HSSTP interface.

Requirements for Parallel Trace

There are two standard connectors for parallel TPIU trace. The first connector is called Mictor-38, while the
second connector is called MIPI-60.

These connectors also include the standard JTAG debug signals. It is possible to either use the JTAG
signals on the trace connector or a separate debug connector. We do not recommend routing the JTAG
signals to both connectors for reasons of signal integrity.

The required pins for the off-chip trace connection are shown in the table below.

For the MPSoC devices, we recommend that you use 16 data lines (TRACEDATA[15:0]). The optional pin
TRACECTL is only required for use with Wrapped mode (also called Normal mode in Arm terminology). As
all Lauterbach tools work equally well with the Continuous mode, we exclusively use this mode in this
application note and don’t require TRACECTL. For more information about the connectors and available
adaptors, visit:

• Mictor-38: www.lauterbach.com/adetmmictor.html

• MIPI-60: www.lauterbach.com/adetmmipi60.html

Pin Name Description

VREF-TRACE Reference voltage for the TRACEDATA[…], TRACECLK
and TRACECTL lines

MANDATORY

TRACECLK Clock line for the trace interface (DDR) MANDATORY

TRACECTL Control line for the trace interface OPTIONAL

TRACEDATA[x:0] Data lines for the trace interface MANDATORY
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 4©1989-2024 Lauterbach

http://lauterbach.com/adetmmictor.html
http://lauterbach.com/adetmmipi60.html

Mictor-38 Pinout

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
GND 5 6 TRACECLK
DBGRQ 7 8 DBGACK
RESET- 9 10 EXTRIG
TDO|-|SWO 11 12 VREF-TRACE
RTCK 13 14 VREF-DEBUG
TCK|TCKC|SWCLK 15 16 TRACEDATA[7]
TMS|TMSC|SWDIO 17 18 TRACEDATA[6]
TDI 19 20 TRACEDATA[5]
TRST- 21 22 TRACEDATA[4]
TRACEDATA[15] 23 24 TRACEDATA[3]
TRACEDATA[14] 25 26 TRACEDATA[2]
TRACEDATA[13] 27 28 TRACEDATA[1]
TRACEDATA[12] 29 30 GND
TRACEDATA[11] 31 32 GND
TRACEDATA[10] 33 34 VCC
TRACEDATA[9] 35 36 TRACECTL
TRACEDATA[8] 37 38 TRACEDATA[0]
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 5©1989-2024 Lauterbach

MIPI-60 Pinout

Signal Pin Pin Signal
VREF-DEBUG 1 2 TMS|TMSC|SWDIO
TCK|TCKC|SWCLK 3 4 TDO|-|SWO
TDI 5 6 RESET-
RTCK 7 8 TRST- PULLDOWN
TRST- 9 10 DBGRQ TRIGIN
DBGACK TRIGOUT 11 12 VREF-TRACE
TRACECLK 13 14 GND
GND 15 16 GND
TRACECTL 17 18 TRACEDATA[19]
TRACEDATA[0] 19 20 TRACEDATA[20]
TRACEDATA[1] 21 22 TRACEDATA[21]
TRACEDATA[2] 23 24 TRACEDATA[22]
TRACEDATA[3] 25 26 TRACEDATA[23]
TRACEDATA[4] 27 28 TRACEDATA[24]
TRACEDATA[5] 29 30 TRACEDATA[25]
TRACEDATA[6] 31 32 TRACEDATA[26]
TRACEDATA[7] 33 34 TRACEDATA[27]
TRACEDATA[8] 35 36 TRACEDATA[28]
TRACEDATA[9] 37 38 TRACEDATA[29]
TRACEDATA[10] 39 40 TRACEDATA[30]
TRACEDATA[11] 41 42 TRACEDATA[31]
TRACEDATA[12] 43 44 GND
TRACEDATA[13] 45 46 GND
TRACEDATA[14] 47 48 GND
TRACEDATA[15] 49 50 GND
TRACEDATA[16] 51 52 GND
TRACEDATA[17] 53 54 GND
TRACEDATA[18] 55 56 GND
GND 57 58 GND
GND 59 60 GND
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 6©1989-2024 Lauterbach

Requirements for Serial HSSTP Trace

When exporting a HSSTP trace interface, a 40-pin SAMTEC connector is commonly used. The connector
also includes the standard JTAG debug signals. It is possible to either use the JTAG signals on the trace
connector or a separate debug connector. We do not recommend routing the JTAG signals to both
connectors for reasons of signal integrity.

The connector includes six TXP/TXN pairs. With the UltraScale+ target, there is no benefit in using more
than two lanes.

The TX lanes are terminated by the PowerTrace serial or the serial preprocessor. On the target PCB, they
should be routed directly between the connector and the FPGA as a 50  ifferential pair.

For more information about the target connector, visit www.lauterbach.com/adetmhsstp.html

The FPGA requires a reference clock for its gigabit transceivers. A clock whose frequency is 1/20 of the bit
rate can be provided by the debugger on the CLKP/CLKN pins. It is also possible to provide a clock
generator on the target. Check the Xilinx documentation for the allowable frequencies.

Signal Pin Pin Signal
TXP[4] 1 2 VREF-DEBUG
TXN[4] 3 4 TCK|TCKC|SWCLK
GND 5 6 GND
TXP[2] 7 8 TMS|TMSC|SWDIO
TXN[2] 9 10 TRST-
GND 11 12 GND
TXP[0] 13 14 TDI
TXN[0] 15 16 TDO|-|SWO
GND 17 18 GND
CLKP 19 20 RESET-
CLKN 21 22 DBGRQ
GND 23 24 GND
TXP[1] 25 26 DBGACK
TXN[1] 27 28 RTCK
GND 29 30 GND
TXP[3] 31 32 TRIGIN
TXN[3] 33 34 TRIGOUT
GND 35 36 RESERVED
TXP[5] 37 38 RESERVED
TXN[5] 39 40 RESERVED
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 7©1989-2024 Lauterbach

http://lauterbach.com/adetmhsstp.html

Trace-Adapter for FMC-featured Target Boards

Many common evaluation boards are featured with a FMC connector (FPGA Mezzanine Card). Lauterbach
offers a HSSTP/MICTOR-to-FMC converter, which allows to connect tools for parallel and serial trace. The
order number is LA-2785.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 8©1989-2024 Lauterbach

Zynq-7000 Devices

Lauterbach supports three methods for exporting the off-chip trace interface of Zynq-7000 devices:

1. Directly using the FixedIO/MIO pins of the Processing System (PS)

2. Routing trace data through the Programmable Logic (PL) portion of the SoC, dividing the clock by
two

3. Routing trace data through the PL portion of the SoC, dividing the data width by two and using
DDR output registers to increase the bandwidth

Method 1 is the only method that works while the PL is not yet programmed. However, it is limited to a trace
port width of 16 bits. In addition, the signal quality of PS pins is worse than on the I/Os belonging to the PL.

Method 2 allows trace port widths up to 32 bits and trace clock frequencies up to 125 MHz. It consumes a
small amount of PL resources for pipeline registers and routing. A clock divider is used to generate the
TRACECLK signal from the internal single data rate trace clock. The maximum operating frequency is
limited by the maximum clock frequency of the PS-PL TPIU interface.

Method 3 is similar to method 2, but instead of dividing the trace clock by two, the width of the data path is
reduced internally. This allows using an external 16-bit trace port by internally utilizing the full 32-bit PS-PL
TPIU interface. Alternatively, an external 8-bit port can also be created. The maximum frequency achievable
using this method is 250 MHz, which corresponds to 1 GB/s (decimal) when used with a 16-bit trace port.

The remainder of this section contains a step-by-step procedure to each of these methods, followed by
instructions related to board bring-up using a debugger.

NOTE: We recommend using method 2 or 3. Note that these methods are
interchangeable for a given PCB design. Designing a PCB to use method 1
limits the achievable trace bandwidth.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 9©1989-2024 Lauterbach

Exporting the Zynq-7000 Trace Interface via FixedIO/MIO

1. Create a new Vivado project with an instance of the Zynq processing system.

2. Enter the configuration of the Zynq processing system.

3. Enable the trace pin export via MIO by selecting the desired port size, see [A] in the figure below.

4. Select the external pins that are connected to the trace port, see [B] in the figure below.

5. Select an internal clock source (Arm PLL, DDR PLL or IO PLL) and the desired frequency for the
TPIU (Trace Port Interface Unit).

Please note that the exported TRACECLK is a DDR clock signal whose actual frequency will be half
the frequency selected in this configuration window:

A B
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 10©1989-2024 Lauterbach

6. Finish your Vivado design and export the project to the SDK.

7. Generate or regenerate your FSBL (first-stage boot loader).

8. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see Performing a Debugger-Based Boot on the Zynq-
7000).

You are now ready to debug and trace your target with TRACE32.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 11©1989-2024 Lauterbach

Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using a clock
divider

1. Create a new Vivado project with an instance of the Zynq processing system.

2. Enter the configuration of the Zynq processing system.

3. Enable the trace pin export via MIO by selecting the desired port size and the pins that will be
connected to the trace connector.

4. Activate at least one of the FCLK_CLK<x> clock signals, which will later be used as the TPIU
clock. The exported TRACECLK will be half this frequency. Select External as the TPIU clock
source.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 12©1989-2024 Lauterbach

5. Connect and export the signals as follows:

To use continuous mode, we do not need the TRACE_CTL signal. The TRACE_CLK_OUT signal
will be generated by the HDL wrapper. We rename FCLK_CLK0 to TRACE_CLK_SDR and will use
this signal to sample TRACE_DATA.

6. Finish your block design and generate the HDL wrapper.

7. Modify the HDL wrapper to include the pipeline registers and DDR clock generation for routing
the PS trace interface to PL pins:

entity zynq_wrapper is
 port (
 oTraceClkDdr: out std_logic;
 oTraceData: out std_logic_vector(15 downto 0)
);
end entity;

architecture SDR of zynq_wrapper is
 signal wTraceClkSdr: std_logic;
 signal wTraceData: std_logic_vector(15 downto 0);

 signal rTraceClkDdr: std_logic;
 signal rTraceData_q: std_logic_vector(15 downto 0);
 signal rTraceData_qq: std_logic_vector(15 downto 0);

begin
 zynq_i: entity work.zynq port map (
 TRACE_CLK_SDR => wTraceClkSdr,
 TRACE_DATA => wTraceData
);

 trace_pipeline: process(wTraceClkSdr)
 begin
 if rising_edge(wTraceClkSdr) then
 rTraceClkDdr <= not rTraceClkDdr;
 rTraceData_qq <= rTraceData_q;
 rTraceData_q <= wTraceData;
 end if;
 end process;

 oTraceData <= rTraceData_qq;
 oTraceClkDdr <= rTraceClkDdr;
end architecture;
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 13©1989-2024 Lauterbach

8. Assign the oTraceData[x:0] and oTraceClkDdr to the appropriate FPGA pins matching your
board layout. Select the same I/O standard for all pins and the slew rate appropriate for the
desired trace port speed.

9. Finish your Vivado design and export the project to the SDK.

10. Generate or regenerate your FSBL (first-stage boot loader).

11. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq-
7000”, page 19).

You are now ready to debug and trace your target with TRACE32.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 14©1989-2024 Lauterbach

Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using DDR
I/O registers

1. Create a new Vivado project with an instance of the Zynq processing system.

2. Enter the configuration of the Zynq processing system.

3. Enable the trace pin export via MIO by selecting twice the desired port size and the pins that will
be connected to the trace connector. To use this method, you must select d[0:1] … d[16:31] for
an external 16-bit trace port or d[0:1] … d[8:15] for an external 8-bit trace port.

4. Activate at least one of the FCLK_CLK<x> clock signals, which will later be used as the TPIU
clock. The exported TRACECLK will be using this frequency. Select External as the TPIU clock
source.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 15©1989-2024 Lauterbach

5. Connect and export the signals as follows:

To use continuous mode, we do not need the TRACE_CTL signal. The TRACE_CLK_OUT signal
will be generated by the HDL wrapper. We use FCLK_CLK0 to sample TRACE_DATA.

6. Finish your block design and generate the HDL wrapper.

7. Locate the file ~~/demo/arm/hardware/zynq-7000/parallel_trace_adapter.vhd from your
TRACE32 installation and add it to the project.

8. Modify the HDL wrapper to include the parallel_trace_adapter for routing the PS trace interface to
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 16©1989-2024 Lauterbach

PL pins:

9. Assign the oTraceData[x:0] and oTraceClkDdr to the appropriate FPGA pins matching your
board layout. Select the same I/O standard for all pins and the slew rate appropriate for the
desired trace port speed.

10. Finish your Vivado design and export the project to the SDK.

11. Generate or regenerate your FSBL (first-stage boot loader).

12. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq-
7000”, page 19).

entity zynq_wrapper is
 port (
 oTraceClkDdr: out std_logic;
 oTraceData: out std_logic_vector(15 downto 0)
);
end entity;

architecture DDR of zynq_wrapper is
 signal wTraceClkSdr: std_logic;
 signal wTraceData: std_logic_vector(31 downto 0);

begin
 zynq_i: entity work.zynq port map (
 FCLK_CLK0 => wTraceClkSdr,
 TRACE_DATA => wTraceData
);

 adapter_i: entity work.parallel_trace_adapter generic map (
 gPlatform => "ZYNQ7000",
 gBitsIn => 32,
 gBitsOut => 16
) port map (
 iClk => wTraceClkSdr,
 iData => wTraceData,
 oClk => oTraceClkDdr,
 oData => oTraceData
);
end architecture;
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 17©1989-2024 Lauterbach

You are now ready to debug and trace your target with TRACE32.

NOTE: To use the off-chip trace port from TRACE32, you need to apply the following
special settings:

TPIU.PortSize 32 ; internal port size (PS -> PL),
 ; same as gBitsIn
Analyzer.PortSize 16 ; external port size (PL -> TRACE32),
 ; same as gBitsOut
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 18©1989-2024 Lauterbach

Performing a Debugger-Based Boot on the Zynq-7000

This section focuses on the JTAG-BOOT mode of the Zynq-7000. In contrast to all other boot modes, this
mode is only intended for development. The basic idea is that the CPUs will wait in an endless loop after
executing the boot ROM, allowing the JTAG probe to perform all further initialization.

To perform a debugger-based boot:

1. Set the boot mode to JTAG-BOOT using the MIO lines.

2. Reset the SoC, for example by asserting the RESET line. Not all boards have a RESET line
connected to the SoC, thus a power cycle or similar might be required.

3. Execute the boot ROM.

4. Load the FSBL boot code using the debugger.

5. Execute the FSBL boot code.

6. Optionally load the FPGA fabric using the debugger.

You are now ready to load the next stage boot loader, OS, etc., and to use the optional off-chip trace.

Example files following the above sequence are included in the TRACE32 installation directory under
~~/demo/arm/hardware/zynq-7000
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 19©1989-2024 Lauterbach

UltraScale+ Devices

On the Zynq UltraScale+ series, Lauterbach currently supports four ways to export trace data:

1. Parallel trace exported using the FixedIO/MIO pins of the Processing System (PS)

2. Parallel trace routed through the EMIO pins and the Programmable Logic (PL) portion of the SoC

3. HSSTP (serial) trace via PL gigabit transceivers (GTH)

4. PCIe (serial) trace via PS gigabit transceivers (GTR)

Each method uses a different kind of SoC resource that is not available to the application while the
application is being traced. The following table provides an overview of different configurations, their
resource usage, achievable data rate and required Lauterbach hardware.

This section includes a step-by-step introduction for each method as well as a step-by-step introduction for
performing a debugger-based boot sequence.

Method SoC
Resources

PL
Used

Data Rate Lauterbach
Trace
Hardware

1 (16 bit @125 MHz DDR) 17 PS I/Os no 500 MB/s PowerTrace or
PowerTrace II /
PowerTrace III /
PowerTrace PX
with AutoFocus
preprocessor

2 (16 bit @ 250 MHz DDR) 17 PL I/Os yes 1000 MB/s

2 (8 bit @ 250 MHz DDR) 9 PL I/Os yes 500 MB/s

3 (2 Lanes @ 6.25 Gbps) 2 GTH yes 1000 MB/s PowerTrace II /
PowerTrace III /
PowerTrace PX
with serial
preprocessor or
PowerTrace
Serial

3 (1 Lane @ 6.25 Gbps) 1 GTH yes 625 MB/s

3 (1 Lane @ 10Gbps) 1 GTH yes 1000 MB/s PowerTrace
Serial

4 (PCIe v2 ×2) 2 GTR no 1000 MB/s

4 (PCIe v2 ×1) 1 GTR no 500 MB/s

NOTE: • Lauterbach recommends using one of the methods with a data rate of
1000 MB/s, especially if a multi-core program is to be traced.

• Due to the complexity involved in setting up PCIe trace, we only recom-
mend this method if a PCIe expansion slot is already present on the tar-
get board.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 20©1989-2024 Lauterbach

Exporting the UltraScale+ Trace Interface via FixedIO/MIO

1. Create a new Vivado project with an instance of the Zynq processing system.

2. Enter the configuration of the Zynq processing system.

3. Enable the trace pin export via MIO by selecting the desired port size and the pins that will be
connected to the trace connector.

4. Select an internal clock source (IOPLL, DPLL, or APLL) and the desired frequency for DBG
Trace. Please note that the exported TRACECLK is a DDR clock signal whose actual frequency
will be half the frequency selected in this configuration window.

5. Finish your Vivado design and export the project to the SDK.

6. Generate or regenerate your FSBL (first-stage boot loader).

7. Do one of the following:

- Either program the resulting FSBL to the boot device,
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 21©1989-2024 Lauterbach

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

You are now ready to debug and trace your target with TRACE32.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 22©1989-2024 Lauterbach

Exporting the UltraScale+ Trace Interface via FPGA Fabric/PL

1. Create a new Vivado project with an instance of the Zynq processing system.

2. Enter the configuration of the Zynq processing system.

3. Enable the trace pin export via EMIO. Select 32Bit as the trace width. This setting will later be
overridden by the debugger.

4. Activate at least one of the PL Fabric Clocks (for example PL0), which will later be used as the
TPIU clock. The exported TRACECLK will be using this frequency. Select the same frequency for
the DBG_TRACE clock.

5. Connect and export the signals as follows
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 23©1989-2024 Lauterbach

:

To use continuous mode, we do not need the TRACE_CTL signal. The trace_clk_out signal will be
generated by the HDL wrapper. We rename pl_clk0 to TRACE_CLK_SDR and will use this signal to
sample TRACE_DATA.

6. Finish your block design and generate the HDL wrapper.

7. Locate the file ~~/demo/arm/hardware/zynq_ultrascale/hdl/parallel_trace_adapter.vhd from
your TRACE32 installation and add it to the project.

8. Modify the HDL wrapper to include the parallel trace adapter that exports the trace port without a
clock divider:

9. Assign the oTraceData[x:0] and oTraceClk to the appropriate FPGA pins matching your board
layout. Select the same I/O standard for all pins and the slew rate appropriate for the desired

library IEEE;
use IEEE.std_logic_1164.all;

entity zynq_wrapper is
 port (
 oTraceClk: out std_logic;
 oTraceData: out std_logic_vector(15 downto 0)
);
end entity;

architecture behavioral of zynq_wrapper is
 signal wTraceClkSdr: std_logic;
 signal wTraceDataSdr: std_logic_vector(31 downto 0);

begin
 yZynq: entity work.zynq port map (
 TRACE_CLK_SDR => wTraceClkSdr,
 TRACE_DATA => wTraceDataSdr
);

 yAdapter: entity work.parallel_trace_adapter generic map (
 gPlatform => "ULTRASCALE",
 gBitsIn => 32,
 gBitsOut => 16
) port map (
 iClk => wTraceClkSdr,
 iData => wTraceDataSdr,
 oClk => oTraceClk,
 oData => oTraceData
);
end architecture;
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 24©1989-2024 Lauterbach

trace port speed.

10. Finish your Vivado design and export the project to the SDK.

11. Generate or regenerate your FSBL (first-stage boot loader).

12. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

13. Use the following TPIU and Analyzer commands in your PRACTICE start-up script (*.cmm) to
configure the trace:

You are now ready to debug and trace your target with TRACE32.

TPIU.PortSize 32 ; internal port size (PS -> PL),
 ; same as gBitsIn
Analyzer.PortSize 16 ; external port size (PL -> TRACE32),
 ; same as gBitsOut
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 25©1989-2024 Lauterbach

Exporting the UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps)

Use the following step-by-step procedure to produce an FPGA design that supports tracing the Arm cores
via HSSTP at a bit rate of 6.25 Gbps or lower. This is the maximum supported data rate of the serial
preprocessor LA-7988. If you use the PowerTrace Serial, LA-3520, you may want to consider using a higher
bit rate, as described in the next section, “Exporting the UltraScale+ Trace Interface via HSSTP (10
Gbps)”, page 32.

Note that the bandwidth of the trace infrastructure of the PS is limited to 1000 MB/s. Therefore, using more
than two lanes is only beneficial if the lane rate is limited by other factors.

1. Perform steps 1 through 6 of the previous section, “Exporting the UltraScale+ Trace Interface
via FPGA Fabric/PL”, page 23. Depending on the desired number of lanes, select an appropriate
trace port frequency to avoid FIFO overflows:

- For one lane at 6.25 Gbps, set the frequency to 150 MHz.

- For two lanes at 6.25 Gbps, set the frequency to 250 MHz.

- For any other setup, calculate the maximum frequency as:

The selected frequency must be lower than this frequency and at most 250 MHz.

2. Create a second block design to hold the Xilinx Aurora encoder and a FIFO. In this example, it is
called aurora_and_fifo.

fmax = (number of lanes) · (lane rate) · 1B

10 bit
· 1Hz
4 B/s
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 26©1989-2024 Lauterbach

3. In the block design, take the following steps to instantiate an Aurora 8B10B core:

- Select the desired line rate and set the Lane width to 4.

- Choose the number of lanes and the location of the GT lane(s) that are connected to the trace
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 27©1989-2024 Lauterbach

port.

- Select appropriate clock sources for the reference and initialization clocks.

- It is also important to select Little Endian Support.

4. On the second page of the configuration window, select include Shared Logic in core.

5. In the same block design, instantiate an AXI4-Stream Data FIFO. Set TDATA Width to four times
the number of lanes. The FIFO is used for synchronisation between the Aurora user clock and
the trace clock and to buffer data while the Aurora core is busy sending clock compensation
sequences and frame delimiters. It is sufficient to make it 32 entries deep.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 28©1989-2024 Lauterbach

6. Connect the two components and export the pins as follows:

7. Locate the directory ~~/demo/arm/hardware/zynq_ultrascale/hdl/ from your TRACE32
installation and add the following files to the project:

- serial_trace_adapter_axis.vhd

- stream_width_expander.vhd
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 29©1989-2024 Lauterbach

- tpiu_to_stream.vhd

8. Modify the generated wrapper for the Zynq UltaScale+ MPSoC to include both block designs and
an adapter from the HDL files imported in step 7:

library IEEE;
use IEEE.std_logic_1164.all;

entity zynq_wrapper is
 generic (
 -- adapt this to match the FIFO configuration
 gBytes: positive := 8;
 -- adapt this to match the desired number of HSSTP lanes
 gLanes: positive := 2
);
 port (
 iInitClk: in std_logic;
 iRst: in std_logic;
 iAuroraRefN: in std_logic;
 iAuroraRefP: in std_logic;
 oAuroraTxN: out std_logic_vector(0 to gLanes - 1);
 oAuroraTxP: out std_logic_vector(0 to gLanes - 1)
);
end entity;

architecture behavioral of zynq_wrapper is
 signal wTraceClkSdr: std_logic;
 signal wTraceDataSdr: std_logic_vector(31 downto 0);

 signal wFifoData: std_logic_vector(8*gBytes - 1 downto 0);
 signal wFifoValid: std_logic;
 signal wFifoLast: std_logic;
 signal wFifoKeep: std_logic_vector(gBytes - 1 downto 0);

 signal wRstN: std_logic;

begin
 yDesign: entity work.mpsoc port map (
 TRACE_CLK_SDR => wTraceClkSdr,
 TRACE_DATA => wTraceDataSdr
);

 yAdapter: entity work.serial_trace_adapter_axis generic map (
 gBytes => gBytes
) port map (
 iClk => wTraceClkSdr,
 iRst => iRst,
 iData => wTraceDataSdr,
 oData => wFifoData,
 oValid => wFifoValid,
 oLast => wFifoLast,
 oKeep => wFifoKeep
);
 -- continued on next page
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 30©1989-2024 Lauterbach

9. Finish your Vivado design and export the project to the SDK.

10. Generate or regenerate your FSBL (first-stage boot loader).

11. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

12. Use the following commands in your PRACTICE start-up script (*.cmm) to configure the trace:

If your design requires the reference clock from the debugger, you must make sure that the FPGA is
reset or programmed after the debugger has been connected and configured.

You are now ready to debug and trace your target with TRACE32.

 -- continued from previous page
 yAurora: entity work.aurora_and_fifo port map (
 loopback => "000",
 power_down => '0',
 gt_refclk1_n => iAuroraRefN,
 gt_refclk1_p => iAuroraRefP,
 txn => oAuroraTxN,
 txp => oAuroraTxP,
 m_axis_aresetn => wRstN,
 s_axis_aresetn => wRstN,
 s_axis_aclk => wTraceClkSdr,
 s_axis_tdata => wFifoData,
 s_axis_tvalid => wFifoValid,
 s_axis_tlast => wFifoLast,
 s_axis_tkeep => wFifoKeep,
 gt_reset => iRst,
 init_clk_in => iInitClk,
 tx_system_reset => wRstN,
);

 wRstN <= not iRst;
end architecture;

TPIU.PortSize 32
TPIU.PortSize 1Lane ; or 2Lane
TPIU.PortMode Continuous
TPIU.PortClock 6250Mbps : Vivado uses the term ‘lane rate’ here
TPIU.RefClock 1/20 ; to enable the PortClock/20
 ; reference clock
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 31©1989-2024 Lauterbach

Exporting the UltraScale+ Trace Interface via HSSTP (10 Gbps)

Use the following step-by-step procedure to produce an FPGA design that supports tracing the Arm cores
via HSSTP at a lane rate of 10 Gbps. Because the Xilinx Aurora 8b10b core does not support this lane rate,
this step-by-step procedure uses a custom Aurora encoder coupled with the UltraScale FPGAs transceivers
wizard.

Note that the bandwidth of the trace infrastructure of the PS is limited to 1000 MB/s. Therefore, using a
higher lane rate than 10 Gbps or multiple lanes does not provide any benefit.

We recommend that users first verify their hardware using the previous section, “Exporting the
UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps)”, page 26, before following these steps.

1. Perform steps 1 through 6 as described in “Exporting the UltraScale+ Trace Interface via FPGA
Fabric/PL”, page 23. Use a TPIU clock frequency of 250 MHz.

2. From the IP catalog, choose the UltraScale FPGAs Transceivers Wizard.

- Select the preset GTH-Aurora_8B10B.

- Set the line rate to 10 GB/s.

- Choose a suitable reference clock. The debugger can provide a 500 MHz reference clock.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 32©1989-2024 Lauterbach

- Choose 8B/10B as the encoding.

Since the wizard does not have a simplex option, we also need to configure the receiver, even though
it is not used. It is simplest to use the same settings as for the transmitter.

3. On the Physical Resources tab, select the channel and reference clock to be used. You also
need to provide a free-running clock for initialization and specify its frequency.

4. On the Structural Options tab, set all auxiliary components to be included in the core.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 33©1989-2024 Lauterbach

5. Locate the directory ~~/demo/arm/hardware/zynq_ultrascale/hdl/ from your TRACE32
installation and add the following files to the project:

- serial_trace_adapter_gt.vhd

- tpiu_to_stream.vhd

- fifo_inferred.vhd

- synchronizer.vhd

- util_pkg.vhd

- aurora_encoder.vhd

- aurora_idle_generator.vhd
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 34©1989-2024 Lauterbach

- lfsr_65_1034.vhd

6. Modify the generated wrapper for the Zynq UltaScale+ MPSoC to include the Processing System
block design, the transceiver IP generated in steps 2 to 4 and an adapter contained in the HDL
files imported in step 5:

library IEEE;
use IEEE.std_logic_1164.all;

library UNISIM;
use UNISIM.Vcomponents.all;

entity zynq_wrapper is
 port (
 iInitClk: in std_logic;
 iRst: in std_logic;
 iAuroraRefN: in std_logic;
 iAuroraRefP: in std_logic;
 oAuroraTxN: out std_logic_vector(0 to 0);
 oAuroraTxP: out std_logic_vector(0 to 0)
);
end entity;

architecture behavioral of zynq_wrapper is
 signal wTraceClkSdr: std_logic;
 signal wTraceDataSdr: std_logic_vector(31 downto 0);

 signal wAuroraRef: std_logic;
 signal wUserClk: std_logic;

 signal wTxData: std_logic_vector(31 downto 0);
 signal wTxDataK: std_logic_vector(3 downto 0);

begin
 yDesign: entity work.mpsoc port map (
 TRACE_CLK_SDR => wTraceClkSdr,
 TRACE_DATA => wTraceDataSdr
);

 yAdapter: entity work.serial_trace_adapter_gt port map (
 iTraceClk => wTraceClkSdr,
 iTraceRst => iRst,
 iUserClk => wUserClk,
 iUserRst => iRst,
 iData => wTraceDataSdr,
 oData => wTxData,
 oDataK => wTxDataK
);
 -- continued on next page
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 35©1989-2024 Lauterbach

7. Finish your Vivado design and export the project to the SDK.

8. Generate or regenerate your FSBL (first-stage boot loader).

9. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq

 -- continued from previous page
 yGt: entity work.gt_1lane port map (
 gtwiz_reset_clk_freerun_in(0) => iInitClk,
 gtwiz_reset_all_in(0) => iRst,
 gtrefclk00_in(0) => wAuroraRef,

 gtwiz_userclk_tx_reset_in => (others => '0'),
 gtwiz_userclk_tx_usrclk2_out(0) => wUserClk,
 gtwiz_reset_tx_pll_and_datapath_in => (others => '0'),
 gtwiz_reset_tx_datapath_in => (others => '0'),
 gtwiz_userdata_tx_in => wTxData,
 tx8b10ben_in => (others => '1'),
 txctrl0_in => (others => '0'),
 txctrl1_in => (others => '0'),
 txctrl2_in(7 downto 4) => (others => '0'),
 txctrl2_in(3 downto 0) => wTxDataK,
 gthtxn_out => oAuroraHpc1TxN,
 gthtxp_out => oAuroraHpc1TxP,

 gtwiz_userclk_rx_reset_in => (others => '0'),
 gtwiz_reset_rx_pll_and_datapath_in => (others => '0'),
 gtwiz_reset_rx_datapath_in => (others => '0'),
 gthrxn_in => (others => '0'),
 gthrxp_in => (others => '0'),
 rx8b10ben_in => (others => '0'),
 rxbufreset_in => (others => '0'),
 rxcommadeten_in => (others => '0'),
 rxmcommaalignen_in => (others => '0'),
 rxpcommaalignen_in => (others => '0')
);

 yBufAurora: IBUFDS_GTE4 port map (
 O => wAuroraRef,
 I => iAuroraRefP,
 IB => iAuroraRefN,
 CEB => '0'
);
end architecture;
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 36©1989-2024 Lauterbach

UltraScale+”, page 39).

10. Use the following TPIU commands in your PRACTICE start-up script (*.cmm) to configure the
trace:

If your design requires the reference clock from the debugger, you must make sure that the FPGA is
reset or programmed after the debugger has been connected and configured.

You are now ready to debug and trace your target with TRACE32.

TPIU.PortSize 32
TPIU.PortSize 1Lane
TPIU.PortMode Continuous
TPIU.PortClock 10000Mbps
TPIU.RefClock 1/20 ; if you require the 500 MHz reference clock
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 37©1989-2024 Lauterbach

Exporting the UltraScale+ Trace Interface via PCIe

Off-chip trace via PCIe differs from the other trace methods because it requires assistance from the target
code. The debugger acts as a slave device to the PCIe root complex in the PS. The operating system
running on the target must enumerate the debugger and assign an address to it.

This means that the debugger must already be ready and configured while the target is booting. Trace
capture is only possible after the device has booted and the debugger must not be disconnected from the
target while it is running.

1. Create a new Vivado project with an instance of the Zynq processing system.

2. Enter the configuration of the Zynq processing system.

3. Enable the PCIe root port and select the correct number of lanes. Using four lanes is possible,
but will not increase the bandwidth available for trace.

4. Finish your Vivado design and export the project to the SDK.

5. Generate or regenerate your FSBL (first-stage boot loader).

6. When setting up the target’s operating system, make sure that the appropriate drivers are
enabled for PCIe support.

7. Verify that PCIe is operational using an expansion card such as a PCIe-to-USB converter.

8. Do one of the following:

- Either program the resulting FSBL to the boot device,

- Or perform a debugger-based boot (see “Performing a Debugger-Based Boot on the Zynq
UltraScale+”, page 39).

You are now ready to debug and trace your target with TRACE32.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 38©1989-2024 Lauterbach

Using the Example Design for the ZCU102

For the ZCU102 evaluation board, Lauterbach provides an example Vivado project for download at
https://www.lauterbach.com/support/static/armdemos/20170313ZCU102_trace_example.xpr.zip.

The design contains five top-level entities for different trace setups:

• top_parallel_8bit

• top_parallel_16bit

• top_hsstp_1lane_6250mbps

• top_hsstp_2lane_6250mbps

• top_hsstp_1lane_10000mbps

Use “Set as Top” on one of these entities in the project manager before generating a bitstream.

Parallel trace is exported on the P6 connector on the ZCU102, while serial trace requires an adapter to be
plugged into the J4 port (HPC1). Contact Lauterbach to obtain this adapter.

Performing a Debugger-Based Boot on the Zynq UltraScale+

This section focuses on the JTAG-BOOT mode of the ZynqUltraScale+. In contrast to all other boot modes,
this mode is only intended for development. The basic idea is that the CPUs will wait in an endless loop after
executing the boot ROM, allowing the JTAG probe to perform all further initialization.

To perform a debugger-based boot:

1. Set the boot mode to JTAG-BOOT using the MIO lines.

2. Reset the SoC, for example by asserting the RESET line. Not all boards have a RESET line
connected to the SoC, thus a power cycle or similar might be required.

3. Execute the boot ROM.

4. Load the FSBL boot code using the debugger.

5. Execute the FSBL boot code.

6. Optionally load the FPGA fabric using the debugger.

You are now ready to load the next stage boot loader, OS, etc., and to use the optional off-chip trace.

Example files following the above sequence are included in the TRACE32 installation directory under
~~/demo/arm/hardware/zynq_ultrascale.
Debugging Embedded Cores in Xilinx FPGAs [Zynq] | 39©1989-2024 Lauterbach

https://lauterbach.com/support/static/armdemos/20170313ZCU102_trace_example.xpr.zip

	Debugging Embedded Cores in Xilinx FPGAs [Zynq]
	Introduction
	Physical Connection Requirements
	Requirements for Parallel Trace
	Requirements for Serial HSSTP Trace
	Trace-Adapter for FMC-featured Target Boards

	Zynq-7000 Devices
	Exporting the Zynq-7000 Trace Interface via FixedIO/MIO
	Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using a clock divider
	Exporting the Zynq-7000 Trace Interface via FPGA Fabric/PL: Using DDR I/O registers
	Performing a Debugger-Based Boot on the Zynq-7000

	UltraScale+ Devices
	Exporting the UltraScale+ Trace Interface via FixedIO/MIO
	Exporting the UltraScale+ Trace Interface via FPGA Fabric/PL
	Exporting the UltraScale+ Trace Interface via HSSTP (up to 6.25 Gbps)
	Exporting the UltraScale+ Trace Interface via HSSTP (10 Gbps)
	Exporting the UltraScale+ Trace Interface via PCIe
	Using the Example Design for the ZCU102
	Performing a Debugger-Based Boot on the Zynq UltraScale+

