
MANUAL

Trace Export for Third-Party
Timing Tools

Trace Export for Third-Party Timing Tools

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness for OSEK/ORTI .. 

 Application Note for OSEK/ORTI ... 

 Trace Export for Third-Party Timing Tools .. 1

 Introduction ... 3

 Requirements .. 5

 Processing ... 6

 Example .. 8

 Related Documents 8

 Environment 8

 Step 1: Create an AUTOSAR/OSEK Application 9

 Step 2: Set up TRACE32 and Run the Application 10

 Step 3: Set up Real-time Trace within TRACE32 12

 TRACE32 Instruction Set Simulator 12

 NEXUS Class 3 13

 NEXUS Class 2 14

 Step 4: Run the Program Execution to Fill the Trace 15

 Step 5: Set up Markers for Trace Export 18

 Step 6: Export Task Events 19

 Timing Tools .. 20

 Symtavision TraceAnalyzer 20

 INCHRON chronVIEW 21

 Timing Architects - Inspector 25
Trace Export for Third-Party Timing Tools | 2©1989-2024 Lauterbach

Trace Export for Third-Party Timing Tools

Version 06-Jun-2024

Introduction

There are timing tools on the market that are specialized in trace-based timing analysis and visualization.
Examples of such tools are:

• Symtavision: TraceAnalyzer

• INCHRON: chronVIEW

• Timing Architects: Inspector

TRACE32 provides the following command to export trace information, recorded with TRACE32, for analysis
with a third-party timing tool:

All timing tools listed above are used in the automotive industry, so we limit ourselves in this document to
AUTOSAR/OSEK operating systems. But the topic can be, of course, applied to other operating systems
too.

Trace.EXPORT.TASKEVENTS <file>
Trace Export for Third-Party Timing Tools | 3©1989-2024 Lauterbach

The command Trace.EXPORT.TASKEVENTS generates a CSV (Comma-Separated Values) file that
includes task events and their timing. See screenshots below. The generated format is intentionally generic
so that it is suitable for any tool or any proprietary analysis.
Trace Export for Third-Party Timing Tools | 4©1989-2024 Lauterbach

Requirements

Recorded trace information has to fulfil the following requirements before it can be exported by the
Trace.EXPORT.TASKEVENTS command:

• The recorded trace has to include the complete instruction execution sequence plus all task
switches.

• All functions that start a task have to be marked with a TASKSTART marker.

• All functions that terminate a task have to be marked with a TASKTERMINATE marker.

• All functions that start an interrupt service routine have to be marked with an ISRSTART marker
(AUTOSAR/OSEK specific).

• All functions that terminate an interrupt service routine have to be marked with an ISREND
marker (AUTOSAR/OSEK specific).

• All functions that start an AUTOSAR “Runnable” have to be marked with a
RUNNABLESTARTPLUSSTOP marker (AUTOSAR specific). The end of the function is
automatically used as end of this runnable.

sYmbol.MARKER.Create TASKSTART <address>

sYmbol.MARKER.Create TASKTERMINATE <address>

sYmbol.MARKER.Create ISRSTART <address>

sYmbol.MARKER.Create ISREND <address>

sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP <address>
Trace Export for Third-Party Timing Tools | 5©1989-2024 Lauterbach

Processing

The task events are identified by processing the instruction execution sequence and the task switches
recorded in the trace. The picture shows the state machine used.

However, not all states can be identified. States that cannot be identified are crossed out. E.g. the state
"waiting" cannot be identified – instead the state "preempted" is reached.

The events (state transitions) in the CSV file have the following meanings:

activate a suspended task is activated and goes into “ready” state

schedule an activated task is scheduled for running in the OS

start the function body of a task is called

stop the task ends by itself (by ending the function or terminating)

terminate the task is terminated

preempt the task is preempted by a higher prio task

resume the task is resumed from preemption and scheduled

wait the task goes into waiting state
Trace Export for Third-Party Timing Tools | 6©1989-2024 Lauterbach

release the task is released from waiting state and scheduled

switch the task is scheduled for running, but the previous state is unknown;
could be schedule, resume or release.

runnablestart the function body of a “runnable” is called.

runnablestop the function of a “runnable” exited.
Trace Export for Third-Party Timing Tools | 7©1989-2024 Lauterbach

Example

To better understand how the trace recording has to be prepared so that the task events and their timing can
be exported with the command Trace.EXPORT.TASKEVENTS, we present a complete example. Important
are especially steps 3-6.

Related Documents

The following documents can help you to better understand the demonstrated example:

• “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf).

• “Training Nexus Tracing” (training_nexus.pdf).

Environment

For the example we are using an OSEK/VDX application based on ERIKA Enterprise.

The whole workspace, including a ready-compiled ELF file, is available in the TRACE32 demo directory:
~~/demo/powerpc/kernel/erika (example for the TRACE32 Instruction Set Simulator).

The development environment is available free of charge at http://erika.tuxfamily.org.

The binary build with ERIKA Enterprise will be executed on:

• A TRACE32 PowerPC Instruction Set Simulator.

• A Lauterbach Bolero MPC5646C evaluation board using TRACE32 hardware-based debug and
trace tools.
Trace Export for Third-Party Timing Tools | 8©1989-2024 Lauterbach

Step 1: Create an AUTOSAR/OSEK Application

Create your AUTOSAR/OSEK application as usual. Instruct the builder to create an ORTI file – this is
essential for the following process. If necessary, insert a PreTaskHook to export task switches to the trace.
See also “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf).
Trace Export for Third-Party Timing Tools | 9©1989-2024 Lauterbach

Step 2: Set up TRACE32 and Run the Application

After the application (ppc.elf) and ORTI file (system.orti) is built, set up your debug environment and load the
files.

The script work-settings.cmm in the "Debug" directory of the ERIKA project can be used as an example.

Use the press button in the PER button_led.per window to start the demo and use the break button to stop
it.

Data.LOAD.Elf <file> Load the ELF file

TASK.ORTI <file> Load the ORTI file
Trace Export for Third-Party Timing Tools | 10©1989-2024 Lauterbach

TRACE32 PowerView shows the OS resources after the demo stopped.
Trace Export for Third-Party Timing Tools | 11©1989-2024 Lauterbach

Step 3: Set up Real-time Trace within TRACE32

In order to provide all information for a detailed task analysis, the trace logic on the target has to be
configured to provide the complete instruction execution sequence plus all task switches.

TRACE32 Instruction Set Simulator

No special configuration is required for the TRACE32 Instruction Set Simulator.

It is recommended to increase the size of the simulated trace memory (as done is our example script).

Trace.SIZE 16777215.
Trace Export for Third-Party Timing Tools | 12©1989-2024 Lauterbach

NEXUS Class 3

If your chip provides a NEXUS Class 3+ module, this NEXUS module has to be configured to generated
trace information for the instruction execution sequence and the task switches.

For details refer to “OS-Aware Tracing (ORTI File)” in Nexus Training, page 187 (training_nexus.pdf).

NEXUS.BTM ON

Break.Set TASK.CONFIG(magic) /TraceData
Trace Export for Third-Party Timing Tools | 13©1989-2024 Lauterbach

NEXUS Class 2

If your chip provides a NEXUS Class 2+ module, this NEXUS module has to be configured to generated
trace information for the instruction execution sequence and the task switches.

For details refer to “OS-Aware Tracing (ORTI File)” in Nexus Training, page 187 (training_nexus.pdf).

You may need to write a PreTaskHook for this, if your OS version does not support ownership trace
messages on task switches.

NEXUS.BTM ON

NEXUS.OTM ON
Trace Export for Third-Party Timing Tools | 14©1989-2024 Lauterbach

Step 4: Run the Program Execution to Fill the Trace

Display a Trace Configuration window (Trace.state) and start the program execution.

Stop the program execution by pushing the [Break] button.
Trace Export for Third-Party Timing Tools | 15©1989-2024 Lauterbach

Use the Trace.Chart.sYmbol command to check if the trace information was recorded without errors.

Details on possible errors and their causes can be found in “FlowErrors” in Nexus Training, page 48
(training_nexus.pdf) and “FIFOFULL” in Nexus Training, page 44 (training_nexus.pdf). Please be aware
that an error-free trace is required in order to export task event information.

Use the Trace.Chart.TASK command to inspect the task switches.
Trace Export for Third-Party Timing Tools | 16©1989-2024 Lauterbach

The command Trace.STATistic.TASK provides the same result in a numeric display.
Trace Export for Third-Party Timing Tools | 17©1989-2024 Lauterbach

Step 5: Set up Markers for Trace Export

In order to identify the task events exported by the command Trace.EXPORT.TASKEVENTS the following
program events have to be marked in the trace recording:

• Start addresses of tasks.

• Termination calls (if any).

• ISR routines.

In the example here, we declared:

• All task function entries as TASKSTART.

• The OS_TerminateTask call as TASKTERMINATE (another may be OS_ChainTask, which is not
used here).

• The entry to the Counter_Interrupt routine as ISRSTART.

• The exit of the Counter_Interrupt routine as ISREND.

sYmbol.MARKER.Create TASKSTART FuncTask1
sYmbol.MARKER.Create TASKSTART FuncTask2
sYmbol.MARKER.Create TASKSTART FuncTask3
sYmbol.MARKER.Create TASKSTART FuncTask4
sYmbol.MARKER.Create TASKSTART FuncTask5
sYmbol.MARKER.Create TASKSTART FuncTask6
sYmbol.MARKER.Create TASKSTART FuncTask7
sYmbol.MARKER.Create TASKTERMINATE EE_oo_TerminateTask
sYmbol.MARKER.Create ISRSTART Counter_Interrupt
sYmbol.MARKER.Create ISREND sYmbol.EXIT(Counter_Interrupt)
Trace Export for Third-Party Timing Tools | 18©1989-2024 Lauterbach

Step 6: Export Task Events

Now we're ready to export the task events. Simply use the command Trace.EXPORT.TASKEVENTS with
the output file as parameter.

As a result, you get a file in the CSV format (comma-separated value). This file contains state transitions of
all tasks and ISRs found in the trace. You can edit the file with any application that understands this format,
e.g. Notepad or any spreadsheet program:

Trace.EXPORT.TASKEVENTS bolero.csv
Trace Export for Third-Party Timing Tools | 19©1989-2024 Lauterbach

Timing Tools

Symtavision TraceAnalyzer

In order to analyze your trace recording with Symtavision TraceAnalyzer proceed as follows:

1. Start Symtavision TraceAnalyzer (tested with 3.5.0).

2. Create new project folder (File --> New --> Symtavision Project).

3. Copy the CSV file exported with TRACE32 and the Symtavision Trace Converter python script
into the project (drag and drop the files into the project).

4. Mark both files, right click and select Import from the context menu.

5. Select Trace Import -> CSV Trace with Python preprocessing"
After processing, a new XML file is available.

6. Unfold the XML file.

7. Select SymtaSystem.
Gantt View should now update automatically showing an analysis of the imported information.
Trace Export for Third-Party Timing Tools | 20©1989-2024 Lauterbach

INCHRON chronVIEW

In order to analyze your trace recording with INCHRON chronVIEW proceed as follows:

1. Open INCHRON chronVIEW.

2. Import the CSV file into chronVIEW (File --> Import CSV Trace --> bolero.csv).

3. Define trace file syntax.
Trace Export for Third-Party Timing Tools | 21©1989-2024 Lauterbach

4. Define column semantics.

5. Specify tasks, ISRs and functions.
Trace Export for Third-Party Timing Tools | 22©1989-2024 Lauterbach

6. Define action semantics.
Trace Export for Third-Party Timing Tools | 23©1989-2024 Lauterbach

7. Define timestamp interpretation.

8. Press the Finish button to get the result.
Trace Export for Third-Party Timing Tools | 24©1989-2024 Lauterbach

Timing Architects - Inspector

In order to analyze your trace recording with the TA inspector proceed as follows:

1. Start the TA Tool Suite and make sure that a TA project is present inside the workspace.

2. Right-click on the project in the Model Selector window.

3. Select Import… from the appearing context menu.

4. Inform TA that you will import a trace file exported by a Lauterbach TRACE32 tool by choosing
Lauterbach Trace import from the Trace folder.
Trace Export for Third-Party Timing Tools | 25©1989-2024 Lauterbach

5. In the next step select the trace file you want to import.

6. Then select the project and specify the name for the timing model.

7. Click finish to start the import process.
Trace Export for Third-Party Timing Tools | 26©1989-2024 Lauterbach

8. After the import is completed left-click the Inspector button (top right corner).

9. Select a trace file and start the calculation.

10. The calculation needs a requirement-set for your timing model.
Trace Export for Third-Party Timing Tools | 27©1989-2024 Lauterbach

11. Additionally the evaluation configuration parameters need to be specified.

12. When the calculation is done, the results are displayed.
Trace Export for Third-Party Timing Tools | 28©1989-2024 Lauterbach

	Trace Export for Third-Party Timing Tools
	Introduction
	Requirements
	Processing
	Example
	Related Documents
	Environment
	Step 1: Create an AUTOSAR/OSEK Application
	Step 2: Set up TRACE32 and Run the Application
	Step 3: Set up Real-time Trace within TRACE32
	TRACE32 Instruction Set Simulator
	NEXUS Class 3
	NEXUS Class 2

	Step 4: Run the Program Execution to Fill the Trace
	Step 5: Set up Markers for Trace Export
	Step 6: Export Task Events

	Timing Tools
	Symtavision TraceAnalyzer
	INCHRON chronVIEW
	Timing Architects - Inspector

