
MANUAL

TRACE32 as TCF Agent

TRACE32 as TCF Agent

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 TRACE32 as TCF Agent .. 1

 Introduction .. 4

 Restrictions 5

 Documentation Updates 5

 Related Documents and Tutorials 5

 Initial Setup and Requirements ... 6

 TRACE32 6

 Eclipse 7

 Wind River Workbench 9

 Synopsys MetaWare IDE 11

 TRACE32 Setup .. 14

 Installing the TRACE32 TCF Eclipse Plug-In 14

 Option A: Manual Configuration 16

 Option B: Select Executable and Configuration File 21

 Enable TCF Agent 23

 Establish a Debug Session ... 24

 Start TRACE32 24

 TCF Discovery 26

 Manual Debug Target Setup 28

 Open Debug Perspective Automatically 30

 TRACE32 View 31

 Troubleshooting ... 32

 TRACE32 32

 TCF=(illegal command) 32

 Eclipse 32

 No TRACE32 PowerView instance under “Available Targets” 32

 Cannot locate peer TCP:<ip>:<port> 32

 Help Us to Help You 33

 Export the TRACE32 System Information 33

 Export the Eclipse Error Log 33

 Export the Eclipse Configuration 34

 TCF Commands .. 35
TRACE32 as TCF Agent | 2©1989-2024 Lauterbach

 SYStem.TCFconfig TCF-specific setups 35

 SYStem.TCFconfig.TASKCONTEXT Enable/disable task contexts 35
TRACE32 as TCF Agent | 3©1989-2024 Lauterbach

TRACE32 as TCF Agent

Version 06-Jun-2024

Introduction

The Target Communication Framework (TCF) is a vendor-neutral lightweight network protocol mainly for
communication with embedded systems (http://wiki.eclipse.org/TCF).

TRACE32 PowerView can be configured as a TCF agent. This TCF interface is useful to access the debug
functionality of TRACE32 from within an Eclipse-based interface. Simultaneous usage of TRACE32
PowerView and Eclipse is also possible.

The TRACE32 TCF integration supports the following debugging features:

• Run control (Go, Break, Step,...)

• Software and on-chip breakpoints

• Register view

• Expressions view

• Memory view

• Display of the source code and the disassembly (mixed mode) for the selected context

• Stack trace

• Display of the operating system tasks in the Eclipse Debug view.

• Function sample-based profiling

• Debug Symbol Browser for the Wind River Workbench

• Multi-core debug in AMP and SMP

The TRACE32 TCF integration also provides a synchronization between TRACE32 PowerView and Eclipse.
For example, setting a breakpoint or executing a single step at the TRACE32 side will be reported to Eclipse
and vice versa.

NOTE: The TRACE32 TCF integration is available for all architectures and compilers
supported by TRACE32.

NOTE: The debug symbols have to be loaded in TRACE32 PowerView and do not
need to be loaded in Eclipse.
TRACE32 as TCF Agent | 4©1989-2024 Lauterbach

Restrictions

This solution is not a full integration of TRACE32 in the described IDEs. Not all features of TRACE32
PowerView are available in Eclipse or Wind River® Workbench. This solution should be only be used for
debugging bare-metal applications or simple operating systems as FreeRTOS.

The following features are for instance not supported by this solution:

• Peripheral views, MMU and Cache views

• Memory access classes. The memory view in Eclipse only shows the current context.

• Trace

• MMU and Cache views

• OS Awareness

• Hypervisor debugging

• FLASH programming

Please contact support@lauterbach.com for more information.

Documentation Updates

The latest version of this document is available for download from:
www.lauterbach.com/pdf/app_tcf_setup.pdf

Related Documents and Tutorials

• For information about how to install TRACE32, see “TRACE32 Installation Guide”
(installation.pdf).

• For a video tutorial about TRACE32 as a TCF agent for Wind River Workbench, visit:
support.lauterbach.com/kb/articles/demo-of-the-trace32-integration-to-the-wind-river-
workbench

• For a video tutorial about TRACE32 as a TCF agent for Eclipse, visit:
support.lauterbach.com/kb/articles/demo-of-the-trace32-integration-to-eclipse
TRACE32 as TCF Agent | 5©1989-2024 Lauterbach

http://www.lauterbach.com/pdf/app_tcf_setup.pdf
https://support.lauterbach.com/kb/articles/demo-of-the-trace32-integration-to-the-wind-river-workbench
https://support.lauterbach.com/kb/articles/demo-of-the-trace32-integration-to-the-wind-river-workbench
https://support.lauterbach.com/kb/articles/demo-of-the-trace32-integration-to-eclipse

Initial Setup and Requirements

In this chapter:

• TRACE32

• Eclipse: If you want to integrate TRACE32 with Eclipse, then skip the Wind River Workbench
section in this document.

• Wind River Workbench:

- If you want to integrate TRACE32 with Wind River Workbench, then you have to take the
additional steps described in section “Wind River Workbench”.

- After that, continue with section “TRACE32 Setup”, page 14

• Synopsys MetaWare IDE: If you want to integrate TRACE32 with the MetaWare IDE (a special
version of Eclipse)

TRACE32

For information about how to install TRACE32 under MS Windows, see “MS Windows” in TRACE32
Installation Guide, page 21 (installation.pdf). We recommend that you install TRACE32 on the system
path suggested by the installer: C:\T32.

For information about how to install TRACE32 under Linux, see “PC_LINUX” in TRACE32 Installation
Guide, page 23 (installation.pdf).

A TRACE32 version from February 2016 or later is required. If the TRACE32 version is too old, then you
will get an error box with the message “TCF=(illegal command”)” when trying to start TRACE32
PowerView as a TCF agent.

• To check the TRACE32 version, choose Help menu > About TRACE32.

For a description of how to configure and start TRACE32 as a TCF agent, see “TRACE32 Setup”, page 14.
TRACE32 as TCF Agent | 6©1989-2024 Lauterbach

Eclipse

According to the Eclipse TCF documentation, the following components are required:

• JDK 1.8.0 or later

• Eclipse SDK 3.8 or later

• CDT (C/C++ Development Tools) SDK 8.1 or later

For more information about the minimal required setup, please refer to the TCF Wiki page
(http://wiki.eclipse.org/TCF).

NOTE: For Eclipse 3.7 (Indigo) and 3.6 (Helios) you need to install the “Target
Communication Framework (Incubation)” plug-in from
http://download.eclipse.org/tools/cdt/releases/indigo.
TRACE32 as TCF Agent | 7©1989-2024 Lauterbach

To install the TCF C/C++ Debugger in Eclipse (3.8 or newer):

1. Choose Help menu > Install New Software.

2. From the Work with list, select -- All Available Sites -- or select an update site for your Eclipse
version under http://www.eclipse.org/tcf/downloads.php.

3. Type “TCF” in the search field.

You may have to wait for the list to be populated.

4. Select the TCF C/C++ Debugger.

5. Click the various Next buttons and follow the instructions of the install wizard to finish the
installation.

6. Restart Eclipse.
TRACE32 as TCF Agent | 8©1989-2024 Lauterbach

Wind River Workbench

You need to enable the TCF C/C++ Debugger in the Wind River Workbench.

1. Choose Windows menu > Preferences.

2. In the Preferences dialog, click Wind River > Capabilities.

3. Select the check box TCF C/C++ Debugger.

NOTE: For the Wind River Workbench 3.3, you need to install the “Target Communication
Framework (Incubation)” plug-in from
http://download.eclipse.org/tools/cdt/releases/indigo.
The On Chip Debug (OCD) version of the Workbench is not supported by this
integration.
TRACE32 as TCF Agent | 9©1989-2024 Lauterbach

Moreover, you need to disable the launch configuration filter for the Target Communication Framework.

1. Choose Windows menu > Preferences

2. In the Preferences dialog, click Run/Debug > Launching > Launch Configurations.

3. Clear the check box Target Communication Framework.
TRACE32 as TCF Agent | 10©1989-2024 Lauterbach

Synopsys MetaWare IDE

The MetaWare IDE is based on Eclipse. Thus you can basically you can use TCF the same way than
described for native Eclipse before.

Please note that the MetaWare IDE contains proprietary changes to Eclipse. As a result Lauterbach can’t
ensure that controlling TRACE32 via TCF is fully functional. Thus it is recommended to use native Eclipse.

To install the TCF C/C++ Debugger in Synopsys MetaWare IDE:

1. Choose Help menu > About MetaWare IDE > Installation Details > Features

2. Check the version number of the Eclipse Platform. This is the Eclipse version on which you copy
of MetaWare IDE is based on. You must have version 4.2 or higher.

3. Choose Help menu > Install New Software...

MetaWare IDE based on Eclipse Platform Comment

L-2016.06 10.3 Eclipse 4.4 (Luna) TCF successfully tested

L-2016.03 10.2 Eclipse 4.4 (Luna)

K-2015.12 10.1 Eclipse 4.4 (Luna)

K-2015.09 10.0 Eclipse 4.4 (Luna)

J-2015.03 9.8 Eclipse 4.4 (Luna)

J-2014.12 9.7 Eclipse 4.4 (Luna)

J-2014.06-SP1 9.6 Eclipse 4.4 (Luna)

J-2014.06 9.5 Eclipse 4.3 (Kepler

I-2013.12.1 9.4 Eclipse 4.3 (Kepler)

I-2013.12 9.3 Eclipse 4.3 (Kepler)
TRACE32 as TCF Agent | 11©1989-2024 Lauterbach

4. In dialog windows “Install” add the in the Work with box the update site according to the version
of the Eclipse platform you got before.

You can get a full list of all “p2 Repositories” at https://wiki.eclipse.org/Simultaneous_Release

5. Type “TCF” in the search field. (You may have to wait for the list to be populated.)

6. Select the TCF C/C++ Debugger.

7. Click on Next and follow the dialogs, which guide you through the installation process.

It’s recommended to install the TRACE32 TCF Eclipse Plug-In as described below.

Eclipse Platform Update Site (p2 Repository)

Eclipse 4.14 (2019-12) http://download.eclipse.org/releases/2019-12

Eclipse 4.13 (2019-09) http://download.eclipse.org/releases/2019-09

Eclipse 4.12 (2019-06) http://download.eclipse.org/releases/2019-06

Eclipse 4.11 (2019-03) http://download.eclipse.org/releases/2019-03

Eclipse 4.10 (2018-12) http://download.eclipse.org/releases/2018-12

Eclipse 4.9 (2018-09) http://download.eclipse.org/releases/2018-09

Eclipse 4.8 (Photon) http://download.eclipse.org/releases/photon

Eclipse 4.7 (Oxygen) http://download.eclipse.org/releases/oxygen

Eclipse 4.6 (Neon) http://download.eclipse.org/releases/neon

Eclipse 4.5 (Mars) http://download.eclipse.org/releases/mars

Eclipse 4.4 (Luna) http://download.eclipse.org/releases/luna

Eclipse 4.3 (Kepler) http://download.eclipse.org/releases/kepler
TRACE32 as TCF Agent | 12©1989-2024 Lauterbach

https://wiki.eclipse.org/Simultaneous_Release

The MetaWare IDE uses several special proprietary views (child windows) when it is connected to a
MetaWare (or SeeCode) debugger. When using TCF you have to use the native Eclipse debug views.
To get the right views used Window menu > Show View (> Other...)

(* If marked with ‘*’ you can also use the native Eclipse view instead.)

Data to display MetaWare view Native Eclipse View TRACE32 Command

Core Register Register (CDI) Register Register.view

Breakpoints Breakpoints (MetaWare)* Breakpoints Break.List

Watchpoints Watchpoints Breakpoints Break.List

Disassembled Code Disassembly (MetaWare) Disassembly List.Mix

Raw Memory Memory (MetaWare)* Memory Var.DUMP

Local Variables Locals* Variables Var.Local

Global Variables Global Variables* Expressions Var.Watch

HLL Expressions Expressions (MetaWare)* Expressions Var.Watch

Call Stack Call Stack* Debug Frame.view

ELF Sections Modules (MetaWare) Modules sYmbol.List.SECtion

Auxiliary Register Auxiliary register N/A Data.dump AUX:0

Hierarchic Symbol
Tree

Executable sYmbol.Browse

Don’t mix up the Target Communication Framework (TCF) with the ARC target
configuration files (TCF files). Both have nothing in commen except theire
abbreviation.
TRACE32 as TCF Agent | 13©1989-2024 Lauterbach

TRACE32 Setup

Installing the TRACE32 TCF Eclipse Plug-In

Lauterbach offers an Eclipse plug-in with a simplified and adapted launch configuration. Using this plug-in,
you can configure and start TRACE32 from within Eclipse or the Wind River Workbench.

To install the TRACE32 TCF Eclipse plug-in:

1. Choose Help menu > Install New Software.

2. In the Work with box, type the update site: https://www.lauterbach.com/eclipse/tcf

3. Press Enter.

4. Make the selection shown below.

5. Click the various Next buttons and follow the instructions of the install wizard to finish the
installation.

6. Restart Eclipse.

7. Choose Run menu > Debug Configurations.

You should now have the TRACE32 TCF configuration in the Debug Configurations window, as
shown below.
TRACE32 as TCF Agent | 14©1989-2024 Lauterbach

https://www.lauterbach.com/eclipse/tcf

8. Double-click TRACE32 TCF to access the new TRACE32 tab.

9. On the TRACE32 tab, choose one of the following configuration methods:

Option A If you have not worked with TRACE32 before, we recommend that you
configure the different TRACE32 settings in the Eclipse plug-in by selecting
the Manual configuration option.
See “Option A: Manual Configuration”, page 16.

Option B If you already have a working TRACE32 configuration, we recommend that
you specify the TRACE32 executable and the configuration file directly by
selecting the Select executable and configuration file option.
See “Option B: Select Executable and Configuration File”, page 21.
TRACE32 as TCF Agent | 15©1989-2024 Lauterbach

Option A: Manual Configuration

1. If you want to configure the TRACE32 options manually, select Manual configuration from the
TRACE32 configuration drop-down list in Eclipse.

The fields for a manual configuration are will be displayed on the TRACE32 tab.

2. Make your settings.

- For a description of the fields on the TRACE32 tab, see tables below.

- A temporary configuration file will be created in the default temporary directory when
TRACE32 is started.

- For examples of the connection types USB and Ethernet, click here.

3. Click Apply when you are done.

You are now ready to start TRACE32 as described in “Start TRACE32”, page 24.

A

B

C

D

E

F

TRACE32 as TCF Agent | 16©1989-2024 Lauterbach

[A] Parameters to launch TRACE32

[B] Paths

To determine the system path of a particular TRACE32 installation:

1. Start TRACE32.

2. Type at the TRACE32 command line:

[C] Interfaces

Device Select if you are using a JTAG Debugger or a TRACE32 Instruction Set
Simulator.

Connection Type For a JTAG Debugger, select if you have a USB or Ethernet connection to
the Lauterbach debugger hardware.

Node Name / IP
Address

For USB connection, optionally set the name of the connected device.
This option is useful if multiple Lauterbach debuggers are connected per
USB to one PC.

For Ethernet connection, set the IP address or the host name of the
used Lauterbach debugger hardware.

Architecture From the drop-down list, select the used target architecture (e.g. Arm,
TriCore...).

Working Path Active directory after starting the TRACE32 instance.

System Path Directory where the executable and system files of TRACE32 are located
(e.g. C:\T32).

If you have observed our recommendation and installed TRACE32 on the
system path suggested by the installer, you can ignore the step-by-step
procedure below.

PRINT OS.PresentSystemDirectory()
 ;the message line below the TRACE32 command line
 ;displays the system path of this particular
 ;TRACE32 installation

TCF Discovery Enable/disable the TCF discovery. If the discovery is disabled, a TCF port
number must be specified (default: 1534).
The TCF discovery is a mechanism where agents advertise their peers by
sending UDP packets to other agents.

TRACE32 API Enable/disable the TRACE32 Remote API
TRACE32 as TCF Agent | 17©1989-2024 Lauterbach

[D] Display

[E] Start-up Script

[F] Start TRACE32 with the debug configuration

Title Set the window title of the TRACE32 instance. The title will be displayed in
the Name column under Available Targets if the TCF discovery is
enabled.

Run TRACE32
PowerView in
background

Start TRACE32 PowerView without a graphical user interface. TRACE32
can be terminated using the Eclipse Terminate button.

Source When a TRACE32 instance starts, the PRACTICE script autostart.cmm is
executed, which then calls the following scripts:
• system-settings.cmm (from the TRACE32 system directory, usu-

ally C:\t32)
• user-settings.cmm (from the user settings directory: on Windows

%APPDATA%\TRACE32 or ~/.trace32 otherwise)
• work-settings.cmm (from the current working directory)

In the TRACE32 TCF plug-in you can specify an additional PRACTICE
script which is automatically started afterwards.

The TRACE32 TCF plug-in supports two types of start-up scripts:
• File
• Built-in Script
When Source is set to File, the script assigned to the File item will be
executed.

File If Source is set to File, specify the start-up script (*.cmm) here.

Parameters Set the parameters that are passed to the start-up script (*.cmm) from
File.

Built-in Script The start-up script can be edited and stored directly.

Target ID This option can be used only if TCF discovery is disabled.
A new target with a specific port must be declared first (see Manual
Debug Target Setup). The new “Target ID” should be then written into this
box.

Delay An optional delay time until TRACE32 completes its start-up.

NOTE: The TRACE32 TCF plug-in automatically creates a TRACE32 configuration file
when you start TRACE32 from within Eclipse.
TRACE32 as TCF Agent | 18©1989-2024 Lauterbach

Example of the Connection Type USB
TRACE32 as TCF Agent | 19©1989-2024 Lauterbach

Example of the Connection Type Ethernet
TRACE32 as TCF Agent | 20©1989-2024 Lauterbach

Option B: Select Executable and Configuration File

You can, instead of configuring the TRACE32 parameters manually, directly set the path to the TRACE32
executable and configuration file.

1. From the TRACE32 configuration drop-down list, Select Executable and configuration file.

The fields for a direct configuration are will be displayed on the TRACE32 tab.

2. Make your settings.

For a description of the fields on the TRACE32 tab, see tables below.

3. Click Apply when you are done.

B

A

C

TRACE32 as TCF Agent | 21©1989-2024 Lauterbach

[A] Parameters to launch TRACE32

[B] Start TRACE32 with the debug configuration

[C] Start TRACE32 on remote host

When checked, TRACE32 PowerView will be open in a remote machine using Telnet or SSH protocol.

The parameters specified in [A] should exists in the remote machine.

TRACE32 executable Used TRACE32 executable e.g.
C:\T32\bin\windows64\t32marm.exe

Configuration file Used TRACE32 configuration file e.g. C:\T32\config.t32.

Configuration file parameters Parameters for the configuration file

Start-up script When a TRACE32 instance starts, the PRACTICE script
autostart.cmm is executed, which then calls the following
scripts:
• system-settings.cmm (from the TRACE32 system

directory, usually C:\t32)
• user-settings.cmm (from the user settings directory:

on Windows %APPDATA%\TRACE32 or ~/.trace32
otherwise)

• work-settings.cmm (from the current working direc-
tory)

Here you can specify an additional PRACTICE script which
is automatically started afterwards.

Script parameters Parameters for the start-up script file

Working path Active directory after starting the TRACE32 instance.

Target ID This option can be used only if TCF discovery in disabled.
A new target with a specific port must be declared first (see Manual
Debug Target Setup), then its “Target ID” should be written into this box.

Delay An optional delay time until TRACE32 complete its startup.
TRACE32 as TCF Agent | 22©1989-2024 Lauterbach

Enable TCF Agent

To configure TRACE32 as a TCF agent, use the command SETUP.API.TCF.ON.

Optionally, you can specify a TCF port number using the command SETUP.API.TCF.PORT. Note that using
a fixed port number disables the TCF discovery mechanism. Consequently, the TCF front-end (Eclipse)
must connect to TRACE32 using the specified port number. This process is detailed later in this document.
Settings the port number must be done before enabling the TCF agent using SETUP.API.TCF.ON. ettings
the port number to 0 re-enables the TCF discovery mechanism.

SETUP.API.TCF.ON ; enable TCF agent in TRACE32

SETUP.API.TCF.PORT 1234
SETUP.API.TCF.ON

; use 1234 as TCF port
; enable TCF agent
TRACE32 as TCF Agent | 23©1989-2024 Lauterbach

Establish a Debug Session

Start TRACE32

To start TRACE32 from within Eclipse:

1. Choose Run menu > Debug Configurations.

2. In the left window pane of the Debug Configurations window, click a configuration under the
entry TRACE32 TCF.

3. Click the TRACE32 tab.

4. Click the Start TRACE32 button.

After starting, TRACE32 executes the PRACTICE start-up script (*.cmm) you have specified.

5. Have you specified a fixed TCF port number in the TRACE32 configuration file?

- No: Please continue with section TCF Discovery.
TRACE32 as TCF Agent | 24©1989-2024 Lauterbach

- Yes: Please continue with section Manual Debug Target Setup.

If this button is not displayed in the tool bar, take these steps:

• Choose Windows menu > Perspective > Customize Perspective.

• On the Tool Bar Visibility tab, select the check box Lauterbach TRACE32.

NOTE: The TRACE32 TCF Eclipse plug-in also adds a new button to the tool bar with
the Lauterbach logo to start TRACE32.
TRACE32 as TCF Agent | 25©1989-2024 Lauterbach

TCF Discovery

To establish a debug connection using the TCF discovery:

1. In the Debug Configurations dialog, click Target Communication Framework.

2. In case you are using the standard Target Communication Framework configuration, clear all
three check boxes on the Target tab:

- Run TCF symbols server on the local host

- Run instance of TCF agent on the local host

- Use local host as the target

A See Step 2. below.

B If the TCF discovery has been enabled in TRACE32, then you should see the TRACE32
PowerView instance on the Target Tab under Available Targets.

C A double-click on the Name will show the properties of the TRACE32 PowerView instance
including the target architecture, the TRACE32 software version and the used TRACE32
hardware.

C

B

A

TRACE32 as TCF Agent | 26©1989-2024 Lauterbach

3. To establish a debug connection, select the TRACE32 instance under Available Targets, and
then click the Debug button.

4. Choose Windows menu > Perspective > Other > Debug.

If the TCF discovery is enabled in TRACE32, the TCF port number will be
automatically selected. This means that a new port number could be used
each time a new TRACE32 PowerView instance is used.
TRACE32 as TCF Agent | 27©1989-2024 Lauterbach

Manual Debug Target Setup

If the TCF discovery has been disabled in TRACE32 by specifying a fixed TCF port number in the
configuration file, then you need to create a new target setup.

To create a new target setup:

1. Choose Run menu > Debug Configurations dialog > Target Communication Framework to
open the Debug Configuration window.

2. Click the New button on the Target tab.

The TCF Debug Target Setup dialog opens.

3. Select Manual setup of TCF connection properties, and then click Next.

4. In the Peer name field, enter any name e.g. “TRACE32”

5. For the Port property, set the port number used by TRACE32, e.g. we use here the default port
number 1534, then press Finish.

A new entry with the selected name will then appear on the Target tab under Available Targets, see
screenshot below.
TRACE32 as TCF Agent | 28©1989-2024 Lauterbach

6. To establish a debug connection, select the TRACE32 instance under Available Targets, and
then click the Debug button.

7. Choose Windows menu > Perspective > Other > Debug.
TRACE32 as TCF Agent | 29©1989-2024 Lauterbach

Open Debug Perspective Automatically

To activate the Debug perspective when a program is launched, do the following:

1. Choose Windows menu > Preferences.

2. In the left window pane, click Run/Debug > Perspectives.

• Under Open the associated perspective when launching, select the Always option.
This will cause the perspective associated with a program to become active whenever it is launched.
TRACE32 as TCF Agent | 30©1989-2024 Lauterbach

TRACE32 View

In addition to the TCF communication, it is possible to control TRACE32 PowerView via a second UDP/IP
channel using the Remote API. The TRACE32 View [A] can be used for this purpose. To open this view go
to Window > Show View > Others > Debug > TRACE32. The command line [B] can be used to execute
TRACE32 and PRACTICE commands similar to the TRACE32 command line. TRACE32 PowerView
messages are then printed in the AREA field [C]. A TRACE32 menu is additionally added to the Eclipse
menu bar and contains shortcuts for special TRACE32 commands.

If TRACE32 is started from the TRACE32 Tab with an API port specified and the TRACE32 View is open, it
will connect automatically. You can also connect to TRACE32 using the Connect button [D].

A

D

A

B

C

TRACE32 as TCF Agent | 31©1989-2024 Lauterbach

Troubleshooting

TRACE32

TCF=(illegal command)

If you get this error message when starting TRACE32, then your TRACE32 version is too old and does not
support TCF. You should use a TRACE32 version from February 2016 or newer.

• To check your TRACE32 version, choose Help menu > About TRACE32.

Eclipse

No TRACE32 PowerView instance under “Available Targets”

Please make sure that TRACE32 PowerView has been started as TCF agent with enabled TCF discovery.

1. To check this, select the TRACE32 Help menu > About TRACE32.

Under Environment, you can see the used configuration file.

2. Click edit and check if the configuration file contains the TCF block.

If the TCF discovery has been disabled by using a fixed port number in the configuration file, the target setup
needs to be done manually. Moreover, you can use the PRACTICE function TCF.PORT() in TRACE32 to
print the used port number (requires TRACE32 build 71550 or newer):

Cannot locate peer TCP:<ip>:<port>

Please check that TRACE32 PowerView has been started as TCF agent and that you are using the correct
port number in Eclipse.

PRINT TCF.PORT()
TRACE32 as TCF Agent | 32©1989-2024 Lauterbach

Help Us to Help You

Export the TRACE32 System Information

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.

Export the Eclipse Error Log

Please include the full Eclipse Error Log as a file in your support request:

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.
TRACE32 as TCF Agent | 33©1989-2024 Lauterbach

1. Choose Window menu > Show View > Error Log to open the Error Log view in Eclipse.

2. On the Error Log view tool bar, click the Export icon.

3. Save the log as a file.

4. Attach this file to your support request.

Export the Eclipse Configuration

Export the Eclipse configuration settings in text form to the clipboard. With this we can check your Eclipse
configuration for any missing or outdated components.

1. Choose Help menu > About Eclipse.

2. Click the button Installation Details.

3. Click the Configuration tab.

4. Click Copy to Clipboard.

5. Paste the clipboard content into your support mail to Lauterbach.
TRACE32 as TCF Agent | 34©1989-2024 Lauterbach

TCF Commands

SYStem.TCFconfig TCF-specific setups

The SYStem.TCFconfig command group is used to define TCF-specific setups for debugging.

See also

■ SYStem.state

SYStem.TCFconfig.TASKCONTEXT Enable/disable task contexts

Default: ON.

Format: SYStem.TCFconfig.TASKCONTEXT [ON | OFF]

ON Operating system tasks are displayed in the Eclipse debug view as child
contexts.

OFF Operating system tasks are not displayed in the Eclipse debug view as
contexts. Only the name of the current task is displayed for information.
TRACE32 as TCF Agent | 35©1989-2024 Lauterbach

	TRACE32 as TCF Agent
	Introduction
	Restrictions
	Documentation Updates
	Related Documents and Tutorials

	Initial Setup and Requirements
	TRACE32
	Eclipse
	Wind River Workbench
	Synopsys MetaWare IDE

	TRACE32 Setup
	Installing the TRACE32 TCF Eclipse Plug-In
	Option A: Manual Configuration
	Option B: Select Executable and Configuration File
	Enable TCF Agent

	Establish a Debug Session
	Start TRACE32
	TCF Discovery
	Manual Debug Target Setup
	Open Debug Perspective Automatically
	TRACE32 View

	Troubleshooting
	TRACE32
	TCF=(illegal command)

	Eclipse
	No TRACE32 PowerView instance under “Available Targets”
	Cannot locate peer TCP:<ip>:<port>

	Help Us to Help You
	Export the TRACE32 System Information
	Export the Eclipse Error Log
	Export the Eclipse Configuration

	TCF Commands
	SYStem.TCFconfig TCF-specific setups
	SYStem.TCFconfig.TASKCONTEXT Enable/disable task contexts

