LAUTERBACH A

Application Note Benchmark
Counter RH850

Application Note Benchmark Counter RH850

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns

Processor Architecture Manualscciiciiimiiiieiirerrr s s e an s an s an s s ennsssennssss

VAU URN RN

RH850 Application NOLESccciciiimimimmmmmmmmmeseeesssssss s e r s s s s s msmssssssssssssssssssssnsnnes

—

Application Note Benchmark Counter RH850ccccovecminiiiminscmmnsins s s ssses e

1 4o o LB T { Lo o R
Intended Audience
Prerequisites
Related Documents

Measuring RUNTIMESeceiiiiiieiniiine e s s s e e s
Measuring a Single Function
Breaking when a Function Takes Longer than a Specified Time
Measuring Multiple Functions
Measuring a Task or Thread

—
A ND O N PP BHA WOOWW®

—

Multi-Core Considerationscccccccciiiiiimeeiiiiiieese s rsnsssss e resnnssssesesnnns

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 2

Application Note Benchmark Counter RH850

Version 06-Jun-2024

Introduction

The Renesas RH850 family of devices all provide on-chip performance counters. These can be
programmed to provide very accurate runtime measurements of a single block of code.

TRACES2 uses the BMC (Bench Mark Counter) command group to program and control these on-chip
performance counters. The intent of this application note is to demonstrate the use of the RH850
performance counters with TRACE32.

Intended Audience

Developers, who want to be able to:

J Accurately profile a block of code or single function.
J Accurately measure the runtimes of several functions.
. Be able to halt the target when a block of code exceeds a certain execution time.

All this can be done with a TRACES32 debugger, no trace capability is required.

Prerequisites

It is assumed that TRACE32 has been correctly configured for the target and the symbols for the application
being debugged are loaded into TRACES32. The reader should also be familiar with developing embedded
systems in C or C++ and have a basic understanding of JTAG debugging embedded targets.

. The CPU core clock must not be altered during the sampling period. The core must not be
allowed to go into low power where clocks are temporarily disabled/suspended.

J When measuring tasks or threads, the TRACE32 OS Awareness for the target OS must be
correctly configured.

Related Documents

J General setup for RH850 debuggers: “RH850 Debugger and Trace” (debugger_rh850.pdf)

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 3

Measuring Runtimes

In this section:

. Measuring a Single Function

. Breaking when a function takes longer than a specified time
U Measuring Multiple Functions

. Measuring a Task or Thread

Measuring a Single Function

A single function or contiguous block of code may be marked for runtime measurement. The instructions

below will show how to do this.

To measure a single function:

1. Measure the CPU core clock frequency.

The menu item shown in the diagram below will do this.

Perf Cov RHE50 Window Help
& Perf Configuration... [
E Perf List

E Perf List Dynamic

Function Runtime
Distribution
Duration Ato B

Distance trace records

* v v v

&3 BenchMarkCounters

@:@ZI Function Runtime (by BMC}

Reset

2. Select the function to be

Perf Cov RHE50 Window Help
& Perf Configuration...

E Perf List

E Perf List Dynamic

Function Runtime
Distribution
Duration Ato B

Distance trace records

* v v v

@) BenchMarkCounters
@:@ZI Function Runtime (by BMC}

Reset

Measure CoreClock

Prepare Single-Function

Prepare Multi-Function

measured by using the menu item shown here.

Measure CoreClock

Prepare Single-Function

Prepare Multi-Function

This will open a list of all functions that have been loaded into the TRACE32 symbol database and a

window showing the state of the Benchmarking Counters (BMC.state). It should look like the image

below.

©1989-2024 Lauterbach

Application Note Benchmark Counter RH850

4

% s¥mbolBrowse.Function ---> Select Function by Double-Click <--- =R

‘\\"*\" .| | "3 Type: Functions ~ []Source

isymbol address i
|_DebugBreak P:000010A8--000010A9 A
|_exit P:00001094--000010A7

char () P:00000F6C--0000100D
P:00000D08--00000D2B
P:00000D54--00000D71

| low_level_init
compare_int_pel
factorial_pel

fibonacci_pel P:00000D74--00000DAL v
o [= 3][=]
control profile snoop CLOCK runtime
RESet Il PROfile &SNDOPE!’ List 119.0101781 0.000us
@ Tnit [] Autolnit []5noopSet B PROfleChart
counter name levent] atob size value ratio ratio value [ov [trig value [tmode [tstat
— TCNTO OFF (DisabTe Timecounter) [OFF 32BIT OFF 0] OFF
— TCNTL OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT2 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT3 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT4 AVERAGE (TCNTO/TCNT3) 32BIT 0| OFF
— BCNTO CLOCKS (Core Clocks) TOTAL 32BIT 0| runtime(X/CLOCK) 0.000us 0| OFF
— BCNTL CLOCKS (Core Clocks) MIN 32BIT n/a | runtime(X/CLOCK) 36.089s 0| OFF
— BCNT2 CLOCKS (Core Clocks) MAX. 32BIT 0| runtime(X/CLOCK) 0.000us 0| OFF
— BCNT3 ATOB (AtoB Events) . TOTAL 32BIT 0 FF) 0| OFF
— BCNT4 AVERAGE (BCNTO/BCNT3) 32BIT 0| runtime(X/CLOCK] 0.000us

3. Double-click a function name to set the entry and exit markers.

8 B::Break List =n| Wl <

[Delete All|[O Disable Alll @ Enable Al @ it [& 1mpl... | 2 Store...][£ Load... || ¥ Set... |

address types imp]l action i
C:000004C4 [[Program ONCHIP |ATpha sieve -
C:0000051E ||Program ONCHIP |Beta sievel23

These will be displayed in a Break.List window and look something like the image above. The
starting point is marked with an Alpha breakpoint and the ending point is marked with a Beta
breakpoint. A single starting point can be paired with up to 7 ending points; ideal if a function has
more than one return point. In the example below, function perfect () has two exit points and the
automated marking process has detected these and marked them both.

& st =l ==

K Delete All| O Disable All @ Enable Al @ Init | & Impl... | 52 Store...| 52 Load... | EdlSet...

address types imp]l action i
C:00000ALE]Program ONCHIP [ATpha perfect

C:00000A3A|Program ONCHIP |[Beta perfect’ 8+0x2
C:00000A3E ||Program ONCHIP |[Beta perfect’10+0x2

4. Start the target running.

The Benchmark Counter window is updated about twice a second and looks like this.

€ B:BMCstate =)=]
control profile snoop CLOCK runtime
RESet g PROfile &SNDDP&F 4 List 119.0155791 6.819s
@ Init [Autolnit [snoopSet B PROfileChart
counter name |event atob |size |value ratio ratio value |ov [trig value [tmode [tstat | ;
TCNTO OFF (Disable Timecounter) [OFF 328IT OFF 0
TCNTL OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
TCNTZ2 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
TCNT3 OFF (Disable Timecounter) | OFF 328BIT OFF 0| OFF
TCNT4 AVERAGE (TCNTO/TCNT3 32BIT 0| OFF .
BCNTO CLOCKS (Core Clocks) TOTAL | 32BIT 266232582 | runtime(X/CLOCK) 2.237s 0| OFF
BCNTL CLOCKS (Core Clocks) MIN 32BIT 623 | runtime(X/CLOCK) 5.235us 0| OFF
BCNT2 CLOCKS (Core Clocks) MAX 32BIT 624 | runtime(X/CLOCK) 5.243us 0| OFF
BCNT3 ATOB (AtoB Events) i TOTAL | 32BIT 430684 | OFF X i 0| OFF
BCNT4 AVERAGE (BCNTO/BCNT3) 32BIT 622 | runtime(X/CLOCK) 5.226us

Be aware the measured times include the execution times of all subfunction calls and interrupt

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 5

requests. The data is interpreted as:

Row Value Ratio Value

BCNTO Total number of measured CPU Time for the measured CPU clock cycles
cycles

BCNT1 Minimum number of clock cycles Minimum time for the selected function.
measured for this function.

BCNT2 The maximum number of clock The maximum time for the selected
cycles for the selected function. function.

BCNT3 Number of events (times the end N/A
marker has been counted).

BCNT4 Mean number of cycles for the The mean execution time for the selected
selected function. function.

©1989-2024 Lauterbach

Application Note Benchmark Counter RH850 |

6

Breaking when a Function Takes Longer than a Specified Time

It is possible to cause the target to halt when a particular piece of code takes longer than a specified time to
execute. If this is combined with the program flow trace then the sequence of events leading up to a missed
deadline can be examined. For information about program flow trace, see “NEXUS On-chip Trace” in
RH850 Debugger and Trace, page 36 (debugger_rh850.pdf).

In this example, the function perfect_pel () will be used. It has two exit points which provides us with two
distinct runtime groupings. The initial setup is the same as for measuring a single function.

The counters will only trigger if a cycle count exceeds a maximum value. This can be converted into a time
value using the formula below:

No. Cycles / CPU clock (Hz) = time

To break when a function takes longer than a specified time:

1. Calculate the number of cycles using the formula above:

n 0x54e-6s * 119015579 Hz
= 64.268 cycles
Use a value of 65.

2. Double-click the intersection of the BCNT2 (max) row and the trig value column.

© [=[=]==]

control profile snoop CLOCK runtime

RESet [l PROfile & SHOOPer A List 119.0155791 1.334ks
& Init 1 Autonit []snoopset B PROfileChart
icounter name |event atob |size |value ratio ratio value |ov [trig value [tmode [tstat |

32BIT
32BIT

OFF (Disable Timecounter)
OFF (Disable Timecounter)
OFF (Disable Timecounter)
OFF (Disable Timecounter)
AVERAGE (TCNTO/TCNT3)

CLOCKS (Core Clocks)

CLOCKS (Core Clocks)

runt i me (X/CLOCK)
runtime(X,/CLOCK)
X, |

0
4294967173
20

I:El;o [=1==F='
[=]

|B: :[BMC. BCNTZ2. TRIGVAL 65. <

<vaiue=

The Trigger register only supports 32-bit values. It is not possible to enter a larger value; the top bits
will be quietly discarded.

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 7

3. Enter the required value on the TRACE32 command line. Note the final “” to indicate to
TRACERS2 that we want this to be treated as a decimal number.

@ B:BMCatate [=)=]
control profile snoop CLOCK runtime
RESet Il PROfile ﬂSNDDPer List 119.0155791 1.456ks
@ Init [Autolnit [Jsnoopset Bk PROfileChart
counter name |event atob size value ratio ratio value ov [trig value [tmode [tstat | |
TCNTO OFF [Disable Timecounter) | OFF 32BIT OFF 0] OFF
TCNTL OFF (Disable Timecounter) | OFF 328BIT OFF 0| OFF
TCNT2 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
TCNT3 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
TCNT4 AVERAGE (TCNTO/TCNT3) 32BIT 0| OFF
BCNTO CLOCKS (Core Clocks) TOTAL | 32BIT 4294967173 runt1 me (X/CLOCK) 36.087s 0| OFF
BCNTL CLOCKS (Core ('Iucks) MIN 32BIT 20 runtwme(X/CLOCK) 0. 168us 0| OFF
5
BCNT3 ATOB (AtoB Events i TOTAL | 32BIT 88078686 | OFF i 0| OFF OFF
BCNT4 AVERAGE (BCNTO/BCNT3) 32BIT 49 [runtime(X/CLOCK) 0.412us m

4. Right-click tmode column on the same row and change from OFF to BREAK. This is shown in
the image above.

5. Start the target. If the time between two marked points (Alpha and Beta) exceeds the number of
cycles, the target will be halted. TRACES32 status line changes to read “stopped by BMC” and
BMC.state window shows which counter caused the break.

© B:BMC state (=[O)
control profile snoop CLOCK runtime
RESet I PROfile JBSNDDPET 1.872ms
@ Init [AutoInit [Jsnoopset B PROfileChart
counter name [event atob [size |value ratio ratio value [ov [trig value tmode [tstat
— TCNTO OFF (Disable Timecounter) | OFF 32BIT OFF 0
— TCNTL OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT2 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
—— TCNT3 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT4 AVERAGE (TCNTO/TCNT3) 32BIT 0 [OFF
— BCNTO CLOCKS (Core Clocks) TOTAL | 32BIT 263 | runtime(X/CLOCK) 2.210us 0| OFF
— BCNTL cLocks (Core Clocks) MIN 32BIT 263 | runtime(X/CLOCK) 2.210us 0| OFF
— BCNT2 CLOCKS (Core Clocks) MAX 32BIT 263 | runtime(X/CLOCK) 2.210us 65 | BREAK | #
— BCNT3 ATOB (AtoB Events) TOTAL | 32BIT 1| OFF 0| OFF
L— BCNT4 AVERAGE (BCNTO/BCNT3) 32BIT 263 | runtime(X,/CLOCK) 2.210us

B::

components, trace Data Var List PERF SYStem Step Go Break sYmbol i —

Frame Register
P:00000CFE \\runtime_perfimain_pel\t32_start_pel+0x6E I stopped by BMC I
——

There is a small latency when using this feature. The range has been measured between 5 and 9 clock
cycles using the example provided, although it is dependent upon the complexity of the application code at
that point. The event must be detected by the core’s counter logic and then transferred to the core-break
logic and the halt event must then be inserted into the core’s instruction pipeline. When the event reaches
the core, it will halt.

If the target has been configured to provide trace data, the tracing will also stop being sampled at that point,
allowing the user to look backwards through the trace buffer in order to determine the cause of the missed
deadline.

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 8

Measuring Multiple Functions

The runtime values of multiple functions can be measured by using the Benchmark Counters. To do this, a
list of functions to measure is generated and each is sampled in turn for a user specified period. When all of
the samples have been collected, a table is updated showing min, max and mean runtimes for each function
in the list.

Prerequisite:

o To start, the CPU clock must be measured. Instructions for how to do this can be found here
“Measuring a Single Function”, page 4.

To measure multiple functions:

1. Select Prepare Multi-Function from the BMC perf menu.

Perf Cov RHE50 Window Help
& Perf Configuration...

= Perf List

= Perf List Dynamic

Function Runtime
Distribution
Duration Ato B

Distance trace records

* v v v

&3 BenchMarkCounters

@l Function Runtime (by BMC} Measure CoreClock

Reset Prepare Single-Function

Prepare Multi-Function
This will open the main control window which looks like the image below.

_-k RH250 RuntimeCounter Statistics EI@

Selected Functions > | functions.lst | \)

Edit Functions List Close Functions List
[AutoInit GateTime (sec)
Start Measurement
Open/Close Statistics | 1.

2. Enter the GateTime (seconds) you want. The GateTime value determines the length of time of
the sampling period for each function on the list.

3. A file with a previously prepared list of functions to be profiled can be loaded by clicking the V
button. The file is a plain text file with the functions placed one per line with a final return at the
end of the file. Alternatively, a new file can be prepared by clicking the Edit Functions List button.

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 9

This will open a symbol browser window and an edit window. Functions can be added to the list

in the editor by double-clicking them in the browse window or by manually typing them. See

example below. (Remember to save the list when finished.)

% s¥mbol.Browse.Function ---> Double-Click on function <--- =N | = =r=]
‘ = ‘ +. | 3| Type: Functions ~| []Source P Save | & Save As.. | %P Save+Close E? Quit+Close
symbol ‘type address | | [factorial_pel
[DebugBreak void P :000010A8--000010AT Fibonacci_pel
|_exit P: 00001094 --000010A7 D?FFECt—D‘El
|_low_Tevel_init ar P:00000F6C--0000100D sieve pel
compare_int_pel P :00000D08--00000D2B
factorial_pel P:00000D54--00000D71
fibonacci_pel P:00000D74--00000DAL
get_pelD P:00000F60--00000F 6B
get,wakeuﬁ,{actur P:00000E40--00000E47
Tnit_clocks P:00000990--00000C71
main P:00001010--00001031
main_pel P : 00000E00--00000ELF
main_pe2 P:00001054--00001061
0STMO_init P :00000E20--00000E2D
perfect_pel P:00000D2C--00000D53
peripheral_safety P:00000E30--00000E3D
sieve_pel P: 00000DA4 --00000DFF
SYSTEM_check P:00000C74--00000C7F
t32_start_pel P : 00000C90--00000D07
unused_isr P:00000C80--00000C 8F
1]
4. Selecting the Autolnit check box will clear any existing results before starting the current sample

run(s). If the Autolnit check box is not checked the new data will be added to any existing data for
functions that have already been sampled.

5. The current statistics can be viewed by clicking the Open/Close Statistics button. If this window
is not visible when a test is started, it will automatically be opened.

6. To start the measurements, click the Start Measurement button. The statistics window will open
and be filled as data for each new function becomes available. It will look something like this.
= | RuntimeCounter Statistics: GateTime = 1.0 sec EI@
J2 Setup... || {if Groups... | 38 Config... | (¥ Goto... | =|Detailed| = Tree | i Chart | & Profile
address [total min max avr count i
(other) - 0. 000us - - -
factorial | 437.223us 4.097us | 36.870us | 19.874us 22.
fibonacci | 550.608ms 1.117us | 47.298us 3.410us 161454,
perfect | 362.118us 2.607us 32.773us | 17.244us 21.
sieve 1.134ms | 49.284us | 49.284us | 49.284us 23.
< >

As the measurements for each function are performed, the main control window will be updated to

indicate which function is currently being measured.

A

Selected Functions -—->

Start Measurement

| functions.lst

Edit Functions List

[AutoInit
Open/Close Statistics

Close Functions List

GateTime (sec)
[|

1./4.: factorial

©1989-2024 Lauterbach

Application Note Benchmark Counter RH850

10

7. Export measurement results in CSV format.

;select destination of export
PRinTer.select ClipBoard CSV ; select clipboard or
PRinTer.select <my_file>.csv CSV ; select a file

; print measurement results to selected destination
WinPrint.BTrace.STATistic.Func %$TimeFixed Total MIN MAX AVeRage
Count

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 11

Measuring a Task or Thread

The runtimes of a task or thread can be measured in a similar fashion. In this section the word task is used
but could apply to task, process or thread; whatever makes sense for the chosen OS.

Examples of OS configuration PRACTICE scripts (*.cmm) can be found under ~~/demo/rh850/kernel.

NOTE: . The OS Awareness for TRACES32 must be correctly configured for your
chosen OS.
. Ensure that the OS does not change the CPU clock frequency or allow

the core to go into low power/sleep modes.

Prerequisite:

To start, the CPU clock must be measured. Instructions for how to do this can be found here
“Measuring a Single Function”, page 4.

To measure a task or thread:

1.

Open the Perf->Function Runtime (by BMC)->Prepare Single-Function menu item and close the
symbol browse window; we will not be selecting a function from the list but need the underlying
setup to be completed before we can proceed.

Now we need to mark the starting point for the counter by an Alpha breakpoint and the stopping
point by a Beta breakpoint.

Our starting point is the point of time where the kernel writes the identifier for our task to the variable
that contains the identifier of the currently running task. Our stopping point is the point of time where
the kernel writes another identifier to this variables.

This is done with the help of the following TRACES32 functions:
TASK.CONFIG(magic) Returns the address of the location that contains the currently

running task.

TASK.MAGIC("<task>") Returns the identifier (magic number) of the specified task name.

Break.Set TASK.CONFIG (magic) /WRITE /DATA TASK.MAGIC("task") /Alpha
Break.Set TASK.CONFIG (magic) /WRITE /DATA !TASK.MAGIC("task") /Beta

and the results will look like this.

a B::Break.List EI@
K Delete All| O Disable All @ Enable Al @ Init | & Impl... | 52 Store...| 52 Load... | EdlSet...
address types imp]l action count data i
C:00000B74 [[Program ONCHIP 0S_Error
C:FEFFB028|write ONCHIP |[Alpha OxFEFFB46C 05_Global+0x8
C:FEFFB028|Write ONCHIP |[Beta | OxFEFFB46C 05_Global+0x8

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 12

3. Start the target executing and review the results in the BMC.state window. It should look like this:

@) B:BMCastate [E=REER
— control profile snoop CLOCK runtime
RESet Il PROFile B SNOOPer List 13.2865
@ Init [AutoTnit [snoopset B PROfileChart
counter name [event atob |size value ratio ratio value |ov [trig value [tmode tstat | |
— TCNTO OFF (Disable Timecounter) | OFF 32BIT OFF 0] OFF
— TCNT1 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT2 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT3 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
— TCNT4 AVERAGE (TCNTO/TCNT3) 32BIT 0| OFF
—— BCNTO CLOCKS (Core Clocks) TOTAL | 32BIT 390042 | runtime(3.278ms 0| OFF
—— BCNTL CLOCKS (Core Clocks) MIN 32BIT 1960 | runtime(| 16.473us 0| OFF
— BCNTZ2 CLOCKS (Core Clocks) MAX 32BIT 1962 | runtime(| 16.490us 0| OFF
—— BCNT3 ATOB (AtQB Events) TOTAL | 32BIT 199 | oFF i 0| oFF
— BCNT4 AVERAGE (BCNTO/BCNT3) 32BIT 1960 | runtime(16.473us
©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 13

Multi-Core Considerations

If the target is configured for Asymmetric Multi-Processing (AMP) then each core will be controlled by a
unique instance of TRACES32. An example of this type of setup can be found under
~~/demo/rh850/hardware/rh850-f1lh-emu-adapter/multicore_amp. Configured like this,
each core has its own set of Benchmarking counters and each instance of TRACE32 will behave exactly as
described in the examples above.

If the target is configured for Symmetric Multi-Processing (SMP), where tasks or threads are scheduled
across all available processor cores by a single operating system kernel, then a single instance of TRACE32
will control all cores. An example of this can be found under
~~/demo/rh850/hardware/rh850-flh-emu-adapter/multicore_smp. In this configuration the
benchmark counters for all cores will be shown in one window. The times are displayed for the code running
across all cores and can then be opened to show the times for any particular core in the array.

i) BzBMC state EI@
control profile snoop CLOCK runtime
RESet] PROFile £ sNooPer List 11.6275
@ Init V] Autolnit [J5noopSet B PROfileChart
counter name |event atob size |value ratio ratio value ov trig value tmode [tstat
& TCNTO OFF (DisabTe Timecounter) [OFF 32BIT OFF 0| OFF
@ TCNT1 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
—&® TCNT2 OFF (Disable Timecounter) | OFF 32BIT OFF 0| OFF
& TCNT3 OFF (Disable Timecounter) | OFF 32BIT OFF 0| oFF
@ TCNT4 AVERAGE (TCNTO,/TCNT3 32BIT 0| OFF
—E BCNTO CLOCKS (Core Clocks) TOTAL | 32BIT 10173710 | runtime(| 631.199ms 0| OFF
Core 0 TOTAL 10173710 631.199ms 0 | OFF
Core 1 TOTAL 0 0.000us 0| oFF
= BCNTL CLOCKS (Core Clocks) MIN 32BIT 4140 | runtime(| 256.855us 0| OFF
Core 0 MIN 4140 256.855us 0| OFF
Core 1 MIN n/a 266.469s 0| OFF
= BCNT2 CLOCKS (Core Clocks) MAX 32BIT 4478 | runtime(| 277.825us 0| OFF
Core 0 MAX 4478 277.825us 0| OFF
Core 1 MAX 0 0.000us 0| oFF
= BCNT3 ATOB (AtoB Events) TOTAL 32BIT 2376 | OFF 0| OFF
Core 0 TOTAL 2376 0| OFF
Core 1 TOTAL 0| OFF
! 32BIT 2141 | runtime(
4282
0
For each BCNTx row:
. Top entry shows cumulative total for all cores.
- Except BCNT4 which shows the mean of all cores
o Core <n> shows the minimum, maximum, mean and total runtimes for the selected code/function

when it was running on this core only.

©1989-2024 Lauterbach Application Note Benchmark Counter RH850 | 14

	Application Note Benchmark Counter RH850
	Introduction
	Intended Audience
	Prerequisites
	Related Documents

	Measuring Runtimes
	Measuring a Single Function
	Breaking when a Function Takes Longer than a Specified Time
	Measuring Multiple Functions
	Measuring a Task or Thread

	Multi-Core Considerations

