LAUTERBACH A

Application Note for FDX



Application Note for FDX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTS  ....ccceeeeiiiieemnriiemns s s s mm s s sms s s mm s e mmmn s
Trace Application NOtES ... e s sssssaes
SOftWAre TraCes ......cciceceiireriiissiiinsriss s s s mn s s s s nanneass
Application Note for FDX ... s ssssssmssssas

[ €= 1=Y = 1IN 0T o3 { o o

Restrictions
Related Tutorials
Contacting Support

General Data TranSfer ......ccccieeeiiiiiimeeeirrrees s sssnsssnns

Target Application Interface for General Data Transfer
Host Application Interface for General Data Transfer
Configuration of TRACE32 for General Data Transfer

FDX SOftWare TraCE ....ccccreeerirremsirressssrsnssissenssmssssssrsnsssssnnsssssnssssansssssnnssssnnnns

Target Application Interface for FDX Trace
Configuration of TRACES32 for FDX Trace
DCC-Based Packet Transport Method
Memory Access Based Packet Transport Method

(o) <> TN SN A G I )

—
o

O O G O §
o~ B DNDDN

©1989-2024 Lauterbach

Application Note for FDX

2



Application Note for FDX

Version 06-Jun-2024

General Function

The Fast Data Exchange (FDX) enables transferring universal data between the target and the host. The
protocol implementation on target side is included in the target application. The source code (C) is provided
by LAUTERBACH. On the host side the transmitted data can be processed by a user application
communicating with the TRACE32 Application Interface or through Named Pipes. In a non-interactive mode
TRACES2 can also read or write normal files as a general data source and sink.

A special application of the FDX is the FDX software trace. Through the trace application interface the target
application can send trace information to the host. TRACES32 is capable to interpret the FDX data stream
and handle it as ordinary trace information device. This document covers only the target application interface
and FDX specific configuration. For further information about the trace functions see "Trace’ in 'General
Commands Reference Guide T'.

The basic packet transport method differs dependent on the target. TRACES32 supports memory mapped
buffered transfer through dual port memory access or normal access at breakpoints or spot breakpoints.
Some target devices support a Debug Communication Channel (DCC), which can be used to transfer FDX
data in real-time.

Target Device Host

Target Application TRACES32®PowerView Host Application

| API
| Routines

FDX Method |
Routines :

User Code User Code

_
FDX Trace

Routines 1/O Files ' Named Pipe

Restrictions

FDX requires instrumentation of the target application in order to reserve a memory output buffer and to
send/receive FDX data. The transmission speed depends on the used channel (dual port memory access,
DCC, normal memory access at breakpoints). When using breakpoints, the real-time behavior of the target
application is influenced.

©1989-2024 Lauterbach Application Note for FDX | 3



Related Tutorials

For a video tutorial about FDX trace, visit:
support.lauterbach.com/kb/articles/trace32-fdx-trace

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

To contact your local TRACES32 support team directly.

To register and submit a support ticket to the TRACE32 global center.

To log in and manage your support tickets.

To benefit from the TRACES32 knowledgebase (FAQs, technical articles, tutorial videos) and our

tips & tricks around debugging.

Or send an email in the traditional way to support@ lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration.

1.

To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

Lauterbach Homepage

Support > & System Information...
N About TRACE32

2 Update TRACE32...
B Technical Support Contacts

4 Contact Lauterbach &

Company:
Prefix:
Firstname:
Surname:
Street:
City:
Country:
Telephone:
eMail:

Product:

Compiler:

Target CPU:

Hostsystem:

Realtime05:

Generate TRACE32 Support Information

Lauterbach

Andrea

Martin

Altlaufstr, 40

Hoehenkirchen-Siegertsbr.

Germany

Department:

P.O.Box:
ZIP Code:

(+49) 8102-9876-555

Press the following button to get help on how to generate Support Information:

85635

andrea.martin@lauterbach.com

PowerTrace PX

ARMS40T

Windows 10 v

Arm

MNeno

Generate Support Information:

Safe Mode:

O

Save to Clipboard ||

Save to File

©1989-2024 Lauterbach

Application Note for FDX

4


https://support.lauterbach.com/kb/articles/trace32-fdx-trace
https://support.lauterbach.com

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.

©1989-2024 Lauterbach

Application Note for FDX

5



General Data Transfer

Target Application Interface for General Data Transfer

The target application FDX interface is provided in the files t32fdx.h and t32fdx.c which can usually be found
under the ~~/demo/<processor_family>/fdx directory. The application can open multiple FDX channels.
Every channel must have it's own data type which can be derived by using the macro
T32_Fdx_DefineChannel. One channel can transfer data only in one direction. Usually two channels are
defined and created. One for output and the other for input direction. Every channel defines a fifo buffer
which must be more than two times larger than the block size of the maximum transferred data blocks.

#define FDXTEST BUFSIZE 0x1000
T32_Fdx_DefineChannel (FdxTestSendBuffer, FDXTEST BUFSIZE) ;
T32_Fdx_DefineChannel (FdxTestReceiveBuffer, FDXTEST BUFSIZE) ;

When the channel data types are defined, they can be used and initialized by the macro
T32_Fdx_InitChannel.

T32_Fdx_InitChannel (FdxTestSendBuffer) ;
T32_Fdx_InitChannel (FdxTestReceiveBuffer) ;

To enable a channel for transferring data use the macro T32_Fdx_EnableChannel.

T32_Fdx_EnableChannel (FdxTestSendBuffer) ;
T32_Fdx_EnableChannel (FdxTestReceiveBuffer) ;

With T32_Fdx_Send data can be copied into the transmit buffer. Depending to the selected method the data
can be transmitted to the host in background. When the transmit buffer is full, the routine will be blocking to
send the data stored in the buffer to the host until the buffer can hold the new data. The macro
T32_FDX_DATATYPE defines the data type of one item in buf. When the target only allows word accesses,
T32_FDX_DATATYPE should be set to unsigned short. The host program fdxdatatype should be the same
type. The result of T32_Fdx_Send is size, if the operation finished successfully. A result of -1 indicates that
an error has occurred.

Declaration

int T32 Fdx_ Send(void * channel, void * buf, int size)
Example

unsigned char* buf= “Message”;

int len = strlen (buf)

T32_Fdx_Send (&FdxTestSendBuffer, buf, len+l);

©1989-2024 Lauterbach Application Note for FDX | 6



There is a non blocking variant of T32_Fdx_Send named T32_Fdx_SendPoll. If the target and host ring
buffer is full the routine returns zero and the T32_Fdx_SendPoll has to be called again later.

Declaration

int T32_Fdx SendPoll (void * channel, void * buf, int size)
Example

int result;

result = T32_Fdx_SendPoll (&FdxTestSendBuffer, buf, len+l);

To flush all pending send operations use the T32_Fdx_Poll routine combined with checking by macro
T32_Fdx_Pending.

Declaration

void T32_ Fdx_Poll (void)

Example

while (T32_Fdx_Pending (&FdxTestSendBuffer))
T32_Fdx_Poll () ;

To receive data from the host use T32_Fdx_Receive. The routine copies the next entry in the receive ring
buffer. If there is no data left in the buffer, the routine will wait for receiving data from the host.

Declaration

int T32 Fdx Receive (void * channel, void * buf, int size)
Example

len = T32_Fdx_Receilve (&FdxTestReceiveBuffer, buf, sizeof (buf));

T32_Fdx_ReceivePoll can be used to copy data from the receive fifo buffer without blocking. If no data is
available the communication port is polled one time at least.

Declaration

int T32 Fdx ReceivePoll (void * channel, void * buf, int size)
Example

while (! (len = T32_Fdx_ ReceivePoll (&FdxTestReceiveBuffer, buf,

sizeof (buf)))) ;

©1989-2024 Lauterbach Application Note for FDX | 7



When len becomes lower or equal than zero a communication error has occurred.

if (len <= 0)
printf (“Communication Error”) ;
else

printf (*Received Message %s”,buf) ;

Host Application Interface for General Data Transfer

To handle FDX data a host application is required. This application can communicate either over the
TRACES32 Remote API or directly over Named Pipes. The use of Named Pipes is explained in section
“Configuration of TRACE32 for General Data Transfer”, page 10. This section covers the adaptations of
the standard T32 API to FDX communication. An example in fdxhost.c can be found in the TRACE32 demo
directory. To build a host application hlinknet.c, hremote.c and t32.h are needed. These files can be used to
create executables for all operating systems on which TRACE32 is available. A general description to use
the TRACES32 Remote API can be found in “API for Remote Control and JTAG Access in C”
(api_remote.pdf).

After initialization of the API the handles of the communication channels are created by a call of
T32_Fdx_Open. The first parameter must be equal to the symbol name of the channel structure in the target
application. The second parameter indicates read or write direction and must comply with the direction of the
channels on the target. The result of T32_Fdx_Openis a handle to the FDX channel. If the handle is -1 the
function has failed.

Declaration

int T32_Fdx Open(char * name, char * mode)
Example

int fdxin, fdxout;

fdxin = T32_Fdx_Open ("FdxTestSendBuffer", "r") ;
fdxout = T32_Fdx_Open ("FdxTestReceiveBuffer", "w")

To receive data from the target channel T32_Fdx_Receive can be used. fdxdatatype should be the same
type as T32_FDX_DATATYPE in the target program. The third and fourth parameters are the size of
fdxdatatype and the amount of data in pieces of fdxdatatype that the destination buffer can hold. The
function result is the length of the received block. This length is equal to the length parameter of the
T32_Fdx_Send routine in the target program. When the result is lower or equal to zero an error has

occurred.
Declaration
int T32 Fdx_ Receive (int channel, void * data, int width, int maxsize)
Example
fdxdatatype buffer[4096] ;
len = T32 Fdx_Receive (fdxin, buffer, sizeof (buffer[0]), sizeof (buffer) /

sizeof (buffer[0])) ;

©1989-2024 Lauterbach Application Note for FDX | 8



T32_Fdx_ReceivePollis the non blocking equivalentto T32_Fdx_Receive. A function result of zero indicates
that there is no data available. T32_Fdx_Receive is increasing the CPU load of the host dramatically,
because it is polling in a loop. If you still want to use TRACES32 in parallel, use the non blocking routine
combined with wait instructions. The example below lets TRACE32 be usable, but decreases the channel
latency with 50 ms in worst case.

Declaration

int T32_Fdx_ReceivePoll (int channel, void * data, int width, int maxsize)
Example
while (! (len = T32_Fdx_ReceivePoll (fdxin, buffer, sizeof (buffer[0]),
sizeof (buffer) / sizeof (buffer[0])))

sleep(50) ;

With T32_Fdx_Send data can be sent to the target program. The parameters are equal to the
T32_Fdx_Receive routine, except the fourth parameter indicates the amount of data that has to be
transmitted. If the routine does not fail, the result will be size.

Declaration

int T32 Fdx_Send(int channel, void * data, int width, int size)
Example

int result;

const char* strMessage = “Message”;

fdxdatatype* buffer = (fdxdatatype*) strMessage;

int len = strlen(strMessage)+1;

result = T32 Fdx_ Send(fdxout, buffer, sizeof (buffer[0]), len
/sizeof (buffer[0]));

When the host ring buffer is full, T32_Fdx_Send may increase the CPU load similar to T32_Fdx_Receive.
Please use T32_Fdx_SendPoll combined with sleep statements to reduce this effect. The result of

T32_Fdx_SendPoll is zero, in case the packet has not been sent and T32_Fdx_SendPoll has to be called
again.

©1989-2024 Lauterbach Application Note for FDX | 9



Configuration of TRACE32 for General Data Transfer

Enable Remote APL

If the TRACE32 Remote API is used to communicate between the host application and TRACE32, the
configuration file has to be modified to enable the network interface. Please add therefore the lines to the
config.t32file. If the port is in use, the port number can be set to another value. PACKLEN must not be
higher than the system value otherwise the communication fails.

RCL=NETASSIST
PACKLEN=1024
PORT=20000

Initialize FDX Communication

Use a PRACTICE script to initialize FDX communication. The startup script depends on the basic packet
transport method of FDX. For DCC based communication the example below can be used.

FDX.DISable
FDX.METHOD DCCS8
FDX.OutChannel
FDX.InChannel

The line FDX.METHOD DCCS8 specifies the basic packet transport method. Please read the command
reference for FDX.METHOD command for more details. All DCC based communications don’t need any
additional parameter for InChannel and OutChannel.

Memory access based FDX uses a different configuration.

FDX.DISable

FDX.METHOD BUFFERE
FDX.OutChannel FdxSendBuffer
FDX.InChannel FdxReceiveBuffer

All memory access based FDX methods need the symbolic name of the target program channels as
parameter for OutChannel and InChannel. Before FDX InChannel and OutChannel are set the target
should have initialized the passed structures, otherwise the communication fails.

©1989-2024 Lauterbach Application Note for FDX | 10



InChannel and OutChannel open a dialog, where statistical data is displayed and channel specific settings
can be done. The figure below shows opened the window for an InChannel. Due to window settings for
OutChannels are a subset, it will not be explained here.

ol
— state — address
" DigableChannel
% ENableChaninel
hastfifo used done
— commands o TEEET [T [ of 262144 (Dpackets) 115729, [2164.packets)
@ CLEAR |
targetfifo uzed done
— methad . :— 0. [0 packets]
I DCCE hd l
— File / Pipe
= File browse... I‘I—
" Pipe browse... CLOSE |

DisableChannel, EnableChannel, Clear, Method and Close match to the FDX. command line functions
described in the Command Reference Manual.

The two panels in the middle show statistical data about the communication channel. There exists a FIFO
buffer for each channel on the host side and on the target side in the target application. The green labeled
fields indicate activity on the channel in the last seconds. The red labled fields show stalls during the last
time. In the DCC based communication mode there is no information available about the target fifo, because
TRACE32 has no random access to the target buffer structure.

In the File/Pipe panel a file or Named Pipe can be selected as general data input and output stream.
Because the FDX protocol is packet oriented, for packet size has to be defined for these ordinary streams.
This can be done in the field right to the browse button of the File text field.

The address panel displays the target memory address of the target buffer structure.

©1989-2024 Lauterbach Application Note for FDX | 11



FDX Software Trace

The FDX software trace uses the same interface files as needed for general data transfer, because the trace
interface routines use the FDX target interface routines.

Target Application Interface for FDX Trace

To initialize the trace, the target application calls T32_Fdx_Tracelnit.

Declaration

void T32_ Fdx_TraceInit (void) ;
Example

T32_Fdx_TraceInit () ;

A call to T32_Fdx_TraceData copies the trace information of a single trace record into the output buffer. The
declaration of this function is:

Declaration
void T32_Fdx TraceData (int cycletype, void* address, unsigned long data)

A trace record consists of the cycletype, data address and the data itself. The value for cycletype includes
the information of the data size in bytes and the bus access type (read, write, fetch).

Valid values for cycletype are the result of the expression (data byte width | (access type << 4)), with 0 <=
data byte width <= 15 and accesstype may be 0x1 for fetch, 0x2 for read and 0x3 for write accesses, e.g. a
32 Bit write access has a cycletype of 0x4 | (0x3 << 4) which equaled 0x34.

Examples:

Example
//Traces a fetch of function func8 (datasize == 0 bytes)
T32_Fdx_TraceData (0x10, &func8, 0);

//Traces a write access to a 32Bit variable mcount
T32_Fdx_TraceData (0x34, &mcount, mcount) ;

If the output buffer of the trace channel is full, T32_Fdx_TraceData will send data from the buffer to the host.
To send all trace data to the host at a certain point of execution use the T32_Fdx_Poll macro.

Example
while (T32_Fdx_Pending (&FdxTraceSendBuffer))
T32_Fdx_Poll();

©1989-2024 Lauterbach Application Note for FDX | 12



The trace transmit routines support two different modes. In the compress mode, the trace records are
compressed on the target side and decompressed by the host. The uncompressed mode leaves the data as
it is. The defines T32_FDX_TRACE_COMPRESSED and T32_FDX_TRACE_UNCOMPRESSED can
switch these modes. The compressed mode has a small communication band width but needs more CPU
cycles to transform the trace data.

Every time T32_Fdx_TraceData is called from the application the timestamp is determined by a call of
T32_Fdx_GetTimebase. The declaration of T32_Fdx_GetTimebase is:

Declaration
unsigned long T32_Fdx_GetTimebase (void)

The function returns the timestamp. The implementation of it depends on the target and the resources.
Many processors have hardware counter that can be used to form a result of the routine. Another possibility
is to create a dedicated counter by using interrupts. All hardware based methods depend on free resources
on the target. LAUTERBACH provides an FDX Trace example for many devices, but this routine may be
adapted to use the right hardware resources according to the application.

©1989-2024 Lauterbach Application Note for FDX | 13



Configuration of TRACE32 for FDX Trace

DCC-Based Packet Transport Method

See below an example script of a DCC based communication.

FDX.RESet

//set transport method to 4-byte DCC
FDX.METHOD DCC

//set trace buffer size
FDX.SIZE 100000.

//set trace channel (no address because DCC here)
FDX.TraceChannel FdxTraceSendBuffer
FDX.OFF

//set compress option according target program settings
FDX.Mode.Compress OFF

//use stack mode for trace buffer
FDX.Mode Stack

//set timestamp rate (timestamp is retrieved from T32_Fdx GetTimebase)
FDX.TimeStamp.Rate 300000000.

//counter is decreasing
FDX.TimeStamp . Down

//arm trace
FDX.Arm

//begin execution
Go

©1989-2024 Lauterbach Application Note for FDX | 14



Memory Access Based Packet Transport Method

The memory based access uses nearly the same configuration script.

//avoid any access to the target before the CPU has executed
// T32_Fdx_InitChannel
FDX.RESet

SYStem.Up //start session
Data.Load.ELF <file> //load elf-file

//before the access to the symbol FdxSendChannel is done, it needs to be
initialized by T32 Fdx InitChannel and T32 Fdx EnableChannel on the target.
Go FdxChannelInitDone

WAIT!STATE.RUN ()

//set transport method to dual port
FDX.METHOD BUFFERE

//set trace buffer size
FDX.SIZE 100000.

//set trace channel
FDX.TraceChannel FdxSendChannel
FDX.OFF

//set compress option according target program settings
FDX.Mode.Compress OFF

//use stack mode for trace buffer
FDX.Mode Stack

//set timestamp rate (timestamp is retrieved from T32_Fdx_ GetTimebase)
FDX.TimeStamp.Rate 300000000.

//counter i1s decreasing
FDX.TimeStamo . Down

//arm trace
FDX.Arm

//begin execution
Go

©1989-2024 Lauterbach Application Note for FDX | 15



	Application Note for FDX
	General Function
	Restrictions
	Related Tutorials
	Contacting Support

	General Data Transfer
	Target Application Interface for General Data Transfer
	Host Application Interface for General Data Transfer
	Configuration of TRACE32 for General Data Transfer

	FDX Software Trace
	Target Application Interface for FDX Trace
	Configuration of TRACE32 for FDX Trace
	DCC-Based Packet Transport Method
	Memory Access Based Packet Transport Method




