
MANUAL

Application Note for FDX

Application Note for FDX

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Trace Application Notes ... 

 Software Traces .. 

 Application Note for FDX .. 1

 General Function .. 3

 Restrictions 3

 Related Tutorials 4

 Contacting Support 4

 General Data Transfer .. 6

 Target Application Interface for General Data Transfer 6

 Host Application Interface for General Data Transfer 8

 Configuration of TRACE32 for General Data Transfer 10

 FDX Software Trace ... 12

 Target Application Interface for FDX Trace 12

 Configuration of TRACE32 for FDX Trace 14

 DCC-Based Packet Transport Method 14

 Memory Access Based Packet Transport Method 15
Application Note for FDX | 2©1989-2024 Lauterbach

Application Note for FDX

Version 06-Jun-2024

General Function

The Fast Data Exchange (FDX) enables transferring universal data between the target and the host. The
protocol implementation on target side is included in the target application. The source code (C) is provided
by LAUTERBACH. On the host side the transmitted data can be processed by a user application
communicating with the TRACE32 Application Interface or through Named Pipes. In a non-interactive mode
TRACE32 can also read or write normal files as a general data source and sink.

A special application of the FDX is the FDX software trace. Through the trace application interface the target
application can send trace information to the host. TRACE32 is capable to interpret the FDX data stream
and handle it as ordinary trace information device. This document covers only the target application interface
and FDX specific configuration. For further information about the trace functions see ’Trace’ in ’General
Commands Reference Guide T’.

The basic packet transport method differs dependent on the target. TRACE32 supports memory mapped
buffered transfer through dual port memory access or normal access at breakpoints or spot breakpoints.
Some target devices support a Debug Communication Channel (DCC), which can be used to transfer FDX
data in real-time.

Restrictions

FDX requires instrumentation of the target application in order to reserve a memory output buffer and to
send/receive FDX data. The transmission speed depends on the used channel (dual port memory access,
DCC, normal memory access at breakpoints). When using breakpoints, the real-time behavior of the target
application is influenced.

Target Application

Target Device

FDX Trace
Routines

TRACE32 PowerView

Host

FDX
Routines

User Code

FDX API

Trace

I/O Files Named Pipe

Host Application

API
Routines

Method

User Code

®

Application Note for FDX | 3©1989-2024 Lauterbach

Related Tutorials

For a video tutorial about FDX trace, visit:
support.lauterbach.com/kb/articles/trace32-fdx-trace

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

• To contact your local TRACE32 support team directly.

• To register and submit a support ticket to the TRACE32 global center.

• To log in and manage your support tickets.

• To benefit from the TRACE32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.
Application Note for FDX | 4©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/trace32-fdx-trace
https://support.lauterbach.com

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.
Application Note for FDX | 5©1989-2024 Lauterbach

General Data Transfer

Target Application Interface for General Data Transfer

The target application FDX interface is provided in the files t32fdx.h and t32fdx.c which can usually be found
under the ~~/demo/<processor_family>/fdx directory. The application can open multiple FDX channels.
Every channel must have it’s own data type which can be derived by using the macro
T32_Fdx_DefineChannel. One channel can transfer data only in one direction. Usually two channels are
defined and created. One for output and the other for input direction. Every channel defines a fifo buffer
which must be more than two times larger than the block size of the maximum transferred data blocks.

When the channel data types are defined, they can be used and initialized by the macro
T32_Fdx_InitChannel.

To enable a channel for transferring data use the macro T32_Fdx_EnableChannel.

With T32_Fdx_Send data can be copied into the transmit buffer. Depending to the selected method the data
can be transmitted to the host in background. When the transmit buffer is full, the routine will be blocking to
send the data stored in the buffer to the host until the buffer can hold the new data. The macro
T32_FDX_DATATYPE defines the data type of one item in buf. When the target only allows word accesses,
T32_FDX_DATATYPE should be set to unsigned short. The host program fdxdatatype should be the same
type. The result of T32_Fdx_Send is size, if the operation finished successfully. A result of -1 indicates that
an error has occurred.

#define FDXTEST_BUFSIZE 0x1000
T32_Fdx_DefineChannel(FdxTestSendBuffer,FDXTEST_BUFSIZE);
T32_Fdx_DefineChannel(FdxTestReceiveBuffer,FDXTEST_BUFSIZE);

T32_Fdx_InitChannel(FdxTestSendBuffer);
T32_Fdx_InitChannel(FdxTestReceiveBuffer);

T32_Fdx_EnableChannel(FdxTestSendBuffer);
T32_Fdx_EnableChannel(FdxTestReceiveBuffer);

Declaration
int T32_Fdx_Send(void * channel, void * buf, int size)
Example
unsigned char* buf= “Message”;
int len = strlen(buf)
T32_Fdx_Send(&FdxTestSendBuffer, buf, len+1);
Application Note for FDX | 6©1989-2024 Lauterbach

There is a non blocking variant of T32_Fdx_Send named T32_Fdx_SendPoll. If the target and host ring
buffer is full the routine returns zero and the T32_Fdx_SendPoll has to be called again later.

To flush all pending send operations use the T32_Fdx_Poll routine combined with checking by macro
T32_Fdx_Pending.

To receive data from the host use T32_Fdx_Receive. The routine copies the next entry in the receive ring
buffer. If there is no data left in the buffer, the routine will wait for receiving data from the host.

T32_Fdx_ReceivePoll can be used to copy data from the receive fifo buffer without blocking. If no data is
available the communication port is polled one time at least.

Declaration
int T32_Fdx_SendPoll(void * channel, void * buf, int size)
Example
int result;
result = T32_Fdx_SendPoll(&FdxTestSendBuffer, buf, len+1);

Declaration
void T32_Fdx_Poll(void)
Example
while (T32_Fdx_Pending(&FdxTestSendBuffer))
 T32_Fdx_Poll();

Declaration
int T32_Fdx_Receive(void * channel, void * buf, int size)
Example
len = T32_Fdx_Receive(&FdxTestReceiveBuffer, buf, sizeof(buf));

Declaration
int T32_Fdx_ReceivePoll(void * channel, void * buf, int size)
Example
while (!(len = T32_Fdx_ReceivePoll(&FdxTestReceiveBuffer, buf,
sizeof(buf))));
Application Note for FDX | 7©1989-2024 Lauterbach

When len becomes lower or equal than zero a communication error has occurred.

Host Application Interface for General Data Transfer

To handle FDX data a host application is required. This application can communicate either over the
TRACE32 Remote API or directly over Named Pipes. The use of Named Pipes is explained in section
“Configuration of TRACE32 for General Data Transfer”, page 10. This section covers the adaptations of
the standard T32 API to FDX communication. An example in fdxhost.c can be found in the TRACE32 demo
directory. To build a host application hlinknet.c, hremote.c and t32.h are needed. These files can be used to
create executables for all operating systems on which TRACE32 is available. A general description to use
the TRACE32 Remote API can be found in “API for Remote Control and JTAG Access in C”
(api_remote.pdf).

After initialization of the API the handles of the communication channels are created by a call of
T32_Fdx_Open. The first parameter must be equal to the symbol name of the channel structure in the target
application. The second parameter indicates read or write direction and must comply with the direction of the
channels on the target. The result of T32_Fdx_Open is a handle to the FDX channel. If the handle is -1 the
function has failed.

To receive data from the target channel T32_Fdx_Receive can be used. fdxdatatype should be the same
type as T32_FDX_DATATYPE in the target program. The third and fourth parameters are the size of
fdxdatatype and the amount of data in pieces of fdxdatatype that the destination buffer can hold. The
function result is the length of the received block. This length is equal to the length parameter of the
T32_Fdx_Send routine in the target program. When the result is lower or equal to zero an error has
occurred.

if (len <= 0)

printf(“Communication Error”);

else

printf(“Received Message %s”,buf);

Declaration
int T32_Fdx_Open(char * name, char * mode)
Example
int fdxin, fdxout;
fdxin = T32_Fdx_Open("FdxTestSendBuffer","r");
fdxout = T32_Fdx_Open("FdxTestReceiveBuffer","w")

Declaration
int T32_Fdx_Receive(int channel, void * data, int width, int maxsize)
Example
fdxdatatype buffer[4096];
len = T32_Fdx_Receive(fdxin, buffer, sizeof(buffer[0]), sizeof(buffer) /
sizeof(buffer[0]));
Application Note for FDX | 8©1989-2024 Lauterbach

T32_Fdx_ReceivePoll is the non blocking equivalent to T32_Fdx_Receive. A function result of zero indicates
that there is no data available. T32_Fdx_Receive is increasing the CPU load of the host dramatically,
because it is polling in a loop. If you still want to use TRACE32 in parallel, use the non blocking routine
combined with wait instructions. The example below lets TRACE32 be usable, but decreases the channel
latency with 50 ms in worst case.

With T32_Fdx_Send data can be sent to the target program. The parameters are equal to the
T32_Fdx_Receive routine, except the fourth parameter indicates the amount of data that has to be
transmitted. If the routine does not fail, the result will be size.

When the host ring buffer is full, T32_Fdx_Send may increase the CPU load similar to T32_Fdx_Receive.
Please use T32_Fdx_SendPoll combined with sleep statements to reduce this effect. The result of
T32_Fdx_SendPoll is zero, in case the packet has not been sent and T32_Fdx_SendPoll has to be called
again.

Declaration
int T32_Fdx_ReceivePoll(int channel, void * data, int width, int maxsize)
Example
while (!(len = T32_Fdx_ReceivePoll(fdxin, buffer, sizeof(buffer[0]),
sizeof(buffer) / sizeof(buffer[0])))
 sleep(50);

Declaration
int T32_Fdx_Send(int channel, void * data, int width, int size)
Example
int result;
const char* strMessage = “Message”;
fdxdatatype* buffer = (fdxdatatype*) strMessage;
int len = strlen(strMessage)+1;
result = T32_Fdx_Send(fdxout, buffer, sizeof(buffer[0]), len
/sizeof(buffer[0]));
Application Note for FDX | 9©1989-2024 Lauterbach

Configuration of TRACE32 for General Data Transfer

Enable Remote API.

If the TRACE32 Remote API is used to communicate between the host application and TRACE32, the
configuration file has to be modified to enable the network interface. Please add therefore the lines to the
config.t32 file. If the port is in use, the port number can be set to another value. PACKLEN must not be
higher than the system value otherwise the communication fails.

Initialize FDX Communication

Use a PRACTICE script to initialize FDX communication. The startup script depends on the basic packet
transport method of FDX. For DCC based communication the example below can be used.

The line FDX.METHOD DCC8 specifies the basic packet transport method. Please read the command
reference for FDX.METHOD command for more details. All DCC based communications don’t need any
additional parameter for InChannel and OutChannel.

Memory access based FDX uses a different configuration.

All memory access based FDX methods need the symbolic name of the target program channels as
parameter for OutChannel and InChannel. Before FDX InChannel and OutChannel are set the target
should have initialized the passed structures, otherwise the communication fails.

RCL=NETASSIST
PACKLEN=1024
PORT=20000

FDX.DISable
FDX.METHOD DCC8
FDX.OutChannel
FDX.InChannel

FDX.DISable
FDX.METHOD BUFFERE
FDX.OutChannel FdxSendBuffer
FDX.InChannel FdxReceiveBuffer
Application Note for FDX | 10©1989-2024 Lauterbach

InChannel and OutChannel open a dialog, where statistical data is displayed and channel specific settings
can be done. The figure below shows opened the window for an InChannel. Due to window settings for
OutChannels are a subset, it will not be explained here.

DisableChannel, EnableChannel, Clear, Method and Close match to the FDX. command line functions
described in the Command Reference Manual.

The two panels in the middle show statistical data about the communication channel. There exists a FIFO
buffer for each channel on the host side and on the target side in the target application. The green labeled
fields indicate activity on the channel in the last seconds. The red labled fields show stalls during the last
time. In the DCC based communication mode there is no information available about the target fifo, because
TRACE32 has no random access to the target buffer structure.

In the File/Pipe panel a file or Named Pipe can be selected as general data input and output stream.
Because the FDX protocol is packet oriented, for packet size has to be defined for these ordinary streams.
This can be done in the field right to the browse button of the File text field.

The address panel displays the target memory address of the target buffer structure.
Application Note for FDX | 11©1989-2024 Lauterbach

FDX Software Trace

The FDX software trace uses the same interface files as needed for general data transfer, because the trace
interface routines use the FDX target interface routines.

Target Application Interface for FDX Trace

To initialize the trace, the target application calls T32_Fdx_TraceInit.

A call to T32_Fdx_TraceData copies the trace information of a single trace record into the output buffer. The
declaration of this function is:

A trace record consists of the cycletype, data address and the data itself. The value for cycletype includes
the information of the data size in bytes and the bus access type (read, write, fetch).

Valid values for cycletype are the result of the expression (data byte width | (access type << 4)), with 0 <=
data byte width <= 15 and accesstype may be 0x1 for fetch, 0x2 for read and 0x3 for write accesses, e.g. a
32 Bit write access has a cycletype of 0x4 | (0x3 << 4) which equaled 0x34.

Examples:

If the output buffer of the trace channel is full, T32_Fdx_TraceData will send data from the buffer to the host.
To send all trace data to the host at a certain point of execution use the T32_Fdx_Poll macro.

Declaration
void T32_Fdx_TraceInit(void);
Example
T32_Fdx_TraceInit();

Declaration
void T32_Fdx_TraceData(int cycletype, void* address, unsigned long data)

Example
//Traces a fetch of function func8 (datasize == 0 bytes)
T32_Fdx_TraceData(0x10, &func8, 0);

//Traces a write access to a 32Bit variable mcount
T32_Fdx_TraceData(0x34, &mcount, mcount);

Example
while (T32_Fdx_Pending(&FdxTraceSendBuffer))
 T32_Fdx_Poll();
Application Note for FDX | 12©1989-2024 Lauterbach

The trace transmit routines support two different modes. In the compress mode, the trace records are
compressed on the target side and decompressed by the host. The uncompressed mode leaves the data as
it is. The defines T32_FDX_TRACE_COMPRESSED and T32_FDX_TRACE_UNCOMPRESSED can
switch these modes. The compressed mode has a small communication band width but needs more CPU
cycles to transform the trace data.

Every time T32_Fdx_TraceData is called from the application the timestamp is determined by a call of
T32_Fdx_GetTimebase. The declaration of T32_Fdx_GetTimebase is:

The function returns the timestamp. The implementation of it depends on the target and the resources.
Many processors have hardware counter that can be used to form a result of the routine. Another possibility
is to create a dedicated counter by using interrupts. All hardware based methods depend on free resources
on the target. LAUTERBACH provides an FDX Trace example for many devices, but this routine may be
adapted to use the right hardware resources according to the application.

Declaration
unsigned long T32_Fdx_GetTimebase(void)
Application Note for FDX | 13©1989-2024 Lauterbach

Configuration of TRACE32 for FDX Trace

DCC-Based Packet Transport Method

See below an example script of a DCC based communication.

FDX.RESet

//set transport method to 4-byte DCC
FDX.METHOD DCC

//set trace buffer size
FDX.SIZE 100000.

//set trace channel (no address because DCC here)
FDX.TraceChannel FdxTraceSendBuffer
FDX.OFF

//set compress option according target program settings
FDX.Mode.Compress OFF

//use stack mode for trace buffer
FDX.Mode Stack

//set timestamp rate (timestamp is retrieved from T32_Fdx_GetTimebase)
FDX.TimeStamp.Rate 300000000.

//counter is decreasing
FDX.TimeStamp.Down

//arm trace
FDX.Arm

//begin execution
Go
Application Note for FDX | 14©1989-2024 Lauterbach

Memory Access Based Packet Transport Method

The memory based access uses nearly the same configuration script.

//avoid any access to the target before the CPU has executed
// T32_Fdx_InitChannel
FDX.RESet

SYStem.Up //start session
Data.Load.ELF <file> //load elf-file

//before the access to the symbol FdxSendChannel is done, it needs to be
initialized by T32_Fdx_InitChannel and T32_Fdx_EnableChannel on the target.
Go FdxChannelInitDone
WAIT!STATE.RUN()

//set transport method to dual port
FDX.METHOD BUFFERE

//set trace buffer size
FDX.SIZE 100000.

//set trace channel
FDX.TraceChannel FdxSendChannel
FDX.OFF

//set compress option according target program settings
FDX.Mode.Compress OFF

//use stack mode for trace buffer
FDX.Mode Stack

//set timestamp rate (timestamp is retrieved from T32_Fdx_GetTimebase)
FDX.TimeStamp.Rate 300000000.

//counter is decreasing
FDX.TimeStamo.Down

//arm trace
FDX.Arm

//begin execution
Go
Application Note for FDX | 15©1989-2024 Lauterbach

	Application Note for FDX
	General Function
	Restrictions
	Related Tutorials
	Contacting Support

	General Data Transfer
	Target Application Interface for General Data Transfer
	Host Application Interface for General Data Transfer
	Configuration of TRACE32 for General Data Transfer

	FDX Software Trace
	Target Application Interface for FDX Trace
	Configuration of TRACE32 for FDX Trace
	DCC-Based Packet Transport Method
	Memory Access Based Packet Transport Method

